Auditory hallucinations in a patient who is hearing impaired

Article Type
Changed
Mon, 10/02/2023 - 00:15
Display Headline
Auditory hallucinations in a patient who is hearing impaired

CASE New-onset auditory hallucinations

Ms. L, age 78, presents to our hospital with worsening anxiety due to auditory hallucinations. She has been hearing music, which she reports is worse at night and consists of songs, usually the song Jingle Bells, sometimes just melodies and other times with lyrics. Ms. L denies paranoia, visual hallucinations, or worsening mood.

Two weeks ago, Ms. L had visited another hospital, describing 5 days of right-side hearing loss accompanied by pain and burning in her ear and face, along with vesicular lesions in a dermatomal pattern extending into her auditory canal. During this visit, Ms. L’s complete blood count, urine culture, urine drug screen, electrolytes, liver panel, thyroid studies, and vitamin levels were unremarkable. A CT scan of her head showed no abnormalities.

Ms. L was diagnosed with Ramsay Hunt syndrome (herpes zoster oticus), which affects cranial nerves, because of physical examination findings with a dermatomal pattern of lesion distribution and associated pain. Ramsay Hunt syndrome can cause facial paralysis and hearing loss in the affected ear. She was discharged with prescriptions for prednisone 60 mg/d for 7 days and valacyclovir 1 g/d for 7 days and told to follow up with her primary care physician. During the present visit to our hospital, Ms. L’s home health nurse reports that she still has her entire bottles of valacyclovir and prednisone left. Ms. L also has left-side hearing loss that began 5 years ago and a history of recurrent major depressive disorder (MDD) and generalized anxiety disorder. Due to the recent onset of right-side hearing loss, her hearing impairment requires her to communicate via writing or via a voice-to-text app.

HISTORY Depressed and living alone

Ms. L was diagnosed with MDD more than 4 decades ago and has been receiving medication since then. She reports no prior psychiatric hospitalizations, suicide attempts, manic symptoms, or psychotic symptoms. For more than 20 years, she has seen a nurse practitioner, who had prescribed mirtazapine 30 mg/d for MDD, poor appetite, and sleep. Within the last 5 years, her nurse practitioner added risperidone 0.5 mg/d at night to augment the mirtazapine for tearfulness, irritability, and mood swings.

Ms. L’s medical history also includes hypertension and chronic obstructive pulmonary disease. She is a retired teacher and lives alone. She has a chore worker who visits her home for 1 hour 5 days a week to help with cleaning and lifting, and support from her son. Ms. L no longer drives and relies on others for transportation, but is able to manage her finances, activities of daily living, cooking, and walking without any assistance.

[polldaddy:12807642]

EVALUATION Identifying the cause of the music

Ms. L is alert and oriented to time and situation, her concentration is appropriate, and her recent and remote memories are preserved. A full cognitive screen is not performed, but she is able to spell WORLD forwards and backwards and adequately perform a serial 7s test. An examination of her ear does not reveal any open vesicular lesions or swelling, but she continues to report pain and tingling in the C7 dermatomal pattern. Her urine drug screen and infectious and autoimmune laboratory testing are unremarkable. She does not have electrolyte, renal function, or blood count abnormalities. An MRI of her brain that is performed to rule out intracranial pathology due to acute hearing loss shows no acute intracranial abnormalities, with some artifact effect due to motion. Because temporal lobe epilepsy can present with hallucinations,1 an EEG is performed to rule out seizure activity; it shows a normal wake pattern.

Psychiatry is consulted for management of the auditory hallucinations because Ms. L is distressed by hearing music. Ms. L is evaluated by Neurology and Otolaryngology. Neurology recommends a repeat brain MRI in the outpatient setting after seeing an artifact in the inpatient imaging, as well as follow-up with her primary care physician. Otolaryngology believes her symptoms are secondary to Ramsay Hunt syndrome with incomplete treatment, which is consistent with the initial diagnosis from her previous hospital visit, and recommends another course of oral corticosteroids, along with Audiology and Otolaryngology follow-up.

Continue to: The authors' observations

 

 

The authors’ observations

This is the first case we have seen detailing musical hallucinations (MH) secondary to Ramsay Hunt syndrome, although musical hallucinations have been associated with other etiologies of hearing loss. MH is a “release phenomenon” believed to be caused by deprivation of stimulation of the auditory cortex.2 They are categorized as complex auditory hallucinations made up of melodies and rhythms and may be present in up to 2.5% of patients with hearing impairment.1 The condition is mostly seen in older adults because this population is more likely to experience hearing loss. MH is more common among women (70% to 80% of cases) and is highly comorbid with psychiatric disorders such as schizophrenia, obsessive-compulsive disorder, or (as was the case for Ms. L) MDD.3 Hallucinations secondary to hearing loss may be more common in left-side hearing loss.4 In a 2005 study, Warner et al5 found religious music such as hymns or Christmas carols was most commonly heard, possibly due to repetitive past exposure.

There is no consensus on treatment for MH. Current treatment guidance comes from case reports and case series. Treatment is generally most successful when the etiology of the hallucination is both apparent and treatable, such as an infectious eitiology.3 In the case of MH due to hearing loss, hallucinations may improve following treatment with hearing aids or cochlear implants,1,3,6,7 which is what was advised for Ms. L. Table 17-9 outlines other possible measures for addressing musical hallucinations.

Musical hallucinations: Treatment options

Anticholinesterases, antidepressants, and antiepileptics may provide some benefit.8 However, pharmacotherapy is generally less efficacious and can cause adverse effects, so environmental support and hearing aids may be a safer approach. No medications have been shown to completely cure MH.

TREATMENT Hearing loss management and follow-up

When speaking with the consulting psychiatry team, Ms. L reports her outpatient psychotropic regimen has been helpful. The team decides to continue mirtazapine 30 mg/d and risperidone 0.5 mg/d at night. We recommend that Ms. L discuss tapering off risperidone with her outpatient clinician if they feel it may be indicated to reduce the risk of adverse effects. The treatment team decides not to start corticosteroids due to the risk of steroid-induced psychotic symptoms. The team discusses hallucinations related to hearing loss with Ms. L and advise her to follow up with Audiology and Otolaryngology in the outpatient setting.

The authors’ observations

Approximately 40% of people age >60 struggle with hearing impairment4,9; this impacts their general quality of life and how clinicians communicate with such patients.10 People with hearing loss are more likely to develop feelings of social isolation, depression, and delirium (Table 28,10,11).11

Mental health considerations for patients who are hearing impaired

Risk factors for hearing loss include tobacco use, metabolic syndrome, exposure to loud noises, and exposure to certain ototoxic medications such as chemotherapeutic agents.11 As psychiatrists, it is important to identify patients who may be at risk for hearing loss and refer them to the appropriate medical professional. If hearing loss is new onset, refer the patient to an otolaryngologist for a full evaluation. Unilateral hearing loss should warrant further workup because this could be due to an acoustic neuroma.11

When providing care for a patient who uses a hearing aid, discuss adherence, barriers to adherence, and difficulties with adjusting the hearing aid. A referral to an audiologist may help patients address these barriers. Patients with hearing impairment or loss may benefit from auditory rehabilitation programs that provide communication strategies, ways to adapt to hearing loss, and information about different assistive options.11 Such programs are often run by audiologists or speech language pathologists and contain both counseling and group components.

Continue to: Is is critical for psychiatrists...

 

 

It is critical for psychiatrists to ensure appropriate communication with patients who are hearing impaired (Table 38-11). The use of assistive devices such as sound amplifiers, written messages, or family members to assist in communication is needed to prevent miscommunication.9-11

Communicating with a patient who is hearing impaired

OUTCOME Lack of follow-up

A home health worker visits Ms. L, communicating with her using voice-to-text. Ms. L has not yet gone to her primary care physician, audiologist, or outpatient psychiatrist for follow-up because she needs to arrange transportation. Ms. L remains distressed by the music she is hearing, which is worse at night, along with her acute hearing loss.

Bottom Line

Hearing loss can predispose a person to psychiatric disorders and symptoms, including depression, delirium, and auditory hallucinations. Psychiatrists should strive to ensure clear communication with patients who are hearing impaired and should refer such patients to appropriate resources to improve outcomes.

Related Resources

  • Wang J, Patel D, Francois D. Elaborate hallucinations, but is it a psychotic disorder? Current Psychiatry. 2021;20(2):46-50. doi:10.12788/cp.0091
  • Sosland MD, Pinninti N. 5 ways to quiet auditory hallucinations. Current Psychiatry. 2005;4(4):110.
  • Convery E, Keidser G, McLelland M, et al. A smartphone app to facilitate remote patient-provider communication in hearing health care: usability and effect on hearing aid outcomes. Telemed E-Health. 2020;26(6):798-804. doi:10.1089/ tmj.2019.0109

Drug Brand Names

Mirtazapine • Remeron
Prednisone • Rayos
Risperidone • Risperdal
Valacyclovir • Valtrex

References

1. Cole MG, Dowson L, Dendukuri N, et al. The prevalence and phenomenology of auditory hallucinations among elderly subjects attending an audiology clinic. Int J Geriatr Psychiatry. 2002;17(5):444-452. doi:10.1002/gps.618

2. Alvarez Perez P, Garcia-Antelo MJ, Rubio-Nazabal E. “Doctor, I hear music”: a brief review about musical hallucinations. Open Neurol J. 2017;11:11-14. doi:10.2174/1874205X01711010011

3. Sanchez TG, Rocha SCM, Knobel KAB, et al. Musical hallucination associated with hearing loss. Arq Neuropsiquiatr. 2011;69(2B):395-400. doi:10.1590/S0004-282X2011000300024

4. Teunisse RJ, Olde Rikkert MGM. Prevalence of musical hallucinations in patients referred for audiometric testing. Am J Geriatr Psychiatry. 2012;20(12):1075-1077. doi:10.1097/JGP.0b013e31823e31c4

5. Warner N, Aziz V. Hymns and arias: musical hallucinations in older people in Wales. Int J Geriatr Psychiatry. 2005;20(7):658-660. doi:10.1002/gps.1338

6. Low WK, Tham CA, D’Souza VD, et al. Musical ear syndrome in adult cochlear implant patients. J Laryngol Otol. 2013;127(9):854-858. doi:10.1017/S0022215113001758

7. Brunner JP, Amedee RG. Musical hallucinations in a patient with presbycusis: a case report. Ochsner J. 2015;15(1):89-91.

8. Coebergh JAF, Lauw RF, Bots R, et al. Musical hallucinations: review of treatment effects. Front Psychol. 2015;6:814. doi:10.3389/fpsyg.2015.00814

9. Ten Hulzen RD, Fabry DA. Impact of hearing loss and universal face masking in the COVID-19 era. Mayo Clin Proc. 2020;95(10):2069-2072. doi:10.1016/j.mayocp.2020.07.027

10. Shukla A, Nieman CL, Price C, et al. Impact of hearing loss on patient-provider communication among hospitalized patients: a systematic review. Am J Med Qual. 2019;34(3):284-292. doi:10.1177/1062860618798926

11. Blazer DG, Tucci DL. Hearing loss and psychiatric disorders: a review. Psychol Med. 2019;49(6):891-897. doi:10.1017/S0033291718003409

Article PDF
Author and Disclosure Information

Dr. Gallop is PGY-4 Psychiatry Resident, Department of Psychiatry, Saint Louis University, St. Louis, Missouri. Samuel Shikora and Brittani Lubeck are MD candidates, Saint Louis University School of Medicine, St. Louis, Missouri. Dr. Zheng is Assistant Professor, Department of Psychiatry, Saint Louis University, St. Louis, Missouri.

Disclosures
The authors report no financial relationships with any companies whose products are mentioned in this article, or with manufacturers of competing products.

Issue
Current Psychiatry - 22(10)
Publications
Topics
Page Number
41-45
Sections
Author and Disclosure Information

Dr. Gallop is PGY-4 Psychiatry Resident, Department of Psychiatry, Saint Louis University, St. Louis, Missouri. Samuel Shikora and Brittani Lubeck are MD candidates, Saint Louis University School of Medicine, St. Louis, Missouri. Dr. Zheng is Assistant Professor, Department of Psychiatry, Saint Louis University, St. Louis, Missouri.

Disclosures
The authors report no financial relationships with any companies whose products are mentioned in this article, or with manufacturers of competing products.

Author and Disclosure Information

Dr. Gallop is PGY-4 Psychiatry Resident, Department of Psychiatry, Saint Louis University, St. Louis, Missouri. Samuel Shikora and Brittani Lubeck are MD candidates, Saint Louis University School of Medicine, St. Louis, Missouri. Dr. Zheng is Assistant Professor, Department of Psychiatry, Saint Louis University, St. Louis, Missouri.

Disclosures
The authors report no financial relationships with any companies whose products are mentioned in this article, or with manufacturers of competing products.

Article PDF
Article PDF

CASE New-onset auditory hallucinations

Ms. L, age 78, presents to our hospital with worsening anxiety due to auditory hallucinations. She has been hearing music, which she reports is worse at night and consists of songs, usually the song Jingle Bells, sometimes just melodies and other times with lyrics. Ms. L denies paranoia, visual hallucinations, or worsening mood.

Two weeks ago, Ms. L had visited another hospital, describing 5 days of right-side hearing loss accompanied by pain and burning in her ear and face, along with vesicular lesions in a dermatomal pattern extending into her auditory canal. During this visit, Ms. L’s complete blood count, urine culture, urine drug screen, electrolytes, liver panel, thyroid studies, and vitamin levels were unremarkable. A CT scan of her head showed no abnormalities.

Ms. L was diagnosed with Ramsay Hunt syndrome (herpes zoster oticus), which affects cranial nerves, because of physical examination findings with a dermatomal pattern of lesion distribution and associated pain. Ramsay Hunt syndrome can cause facial paralysis and hearing loss in the affected ear. She was discharged with prescriptions for prednisone 60 mg/d for 7 days and valacyclovir 1 g/d for 7 days and told to follow up with her primary care physician. During the present visit to our hospital, Ms. L’s home health nurse reports that she still has her entire bottles of valacyclovir and prednisone left. Ms. L also has left-side hearing loss that began 5 years ago and a history of recurrent major depressive disorder (MDD) and generalized anxiety disorder. Due to the recent onset of right-side hearing loss, her hearing impairment requires her to communicate via writing or via a voice-to-text app.

HISTORY Depressed and living alone

Ms. L was diagnosed with MDD more than 4 decades ago and has been receiving medication since then. She reports no prior psychiatric hospitalizations, suicide attempts, manic symptoms, or psychotic symptoms. For more than 20 years, she has seen a nurse practitioner, who had prescribed mirtazapine 30 mg/d for MDD, poor appetite, and sleep. Within the last 5 years, her nurse practitioner added risperidone 0.5 mg/d at night to augment the mirtazapine for tearfulness, irritability, and mood swings.

Ms. L’s medical history also includes hypertension and chronic obstructive pulmonary disease. She is a retired teacher and lives alone. She has a chore worker who visits her home for 1 hour 5 days a week to help with cleaning and lifting, and support from her son. Ms. L no longer drives and relies on others for transportation, but is able to manage her finances, activities of daily living, cooking, and walking without any assistance.

[polldaddy:12807642]

EVALUATION Identifying the cause of the music

Ms. L is alert and oriented to time and situation, her concentration is appropriate, and her recent and remote memories are preserved. A full cognitive screen is not performed, but she is able to spell WORLD forwards and backwards and adequately perform a serial 7s test. An examination of her ear does not reveal any open vesicular lesions or swelling, but she continues to report pain and tingling in the C7 dermatomal pattern. Her urine drug screen and infectious and autoimmune laboratory testing are unremarkable. She does not have electrolyte, renal function, or blood count abnormalities. An MRI of her brain that is performed to rule out intracranial pathology due to acute hearing loss shows no acute intracranial abnormalities, with some artifact effect due to motion. Because temporal lobe epilepsy can present with hallucinations,1 an EEG is performed to rule out seizure activity; it shows a normal wake pattern.

Psychiatry is consulted for management of the auditory hallucinations because Ms. L is distressed by hearing music. Ms. L is evaluated by Neurology and Otolaryngology. Neurology recommends a repeat brain MRI in the outpatient setting after seeing an artifact in the inpatient imaging, as well as follow-up with her primary care physician. Otolaryngology believes her symptoms are secondary to Ramsay Hunt syndrome with incomplete treatment, which is consistent with the initial diagnosis from her previous hospital visit, and recommends another course of oral corticosteroids, along with Audiology and Otolaryngology follow-up.

Continue to: The authors' observations

 

 

The authors’ observations

This is the first case we have seen detailing musical hallucinations (MH) secondary to Ramsay Hunt syndrome, although musical hallucinations have been associated with other etiologies of hearing loss. MH is a “release phenomenon” believed to be caused by deprivation of stimulation of the auditory cortex.2 They are categorized as complex auditory hallucinations made up of melodies and rhythms and may be present in up to 2.5% of patients with hearing impairment.1 The condition is mostly seen in older adults because this population is more likely to experience hearing loss. MH is more common among women (70% to 80% of cases) and is highly comorbid with psychiatric disorders such as schizophrenia, obsessive-compulsive disorder, or (as was the case for Ms. L) MDD.3 Hallucinations secondary to hearing loss may be more common in left-side hearing loss.4 In a 2005 study, Warner et al5 found religious music such as hymns or Christmas carols was most commonly heard, possibly due to repetitive past exposure.

There is no consensus on treatment for MH. Current treatment guidance comes from case reports and case series. Treatment is generally most successful when the etiology of the hallucination is both apparent and treatable, such as an infectious eitiology.3 In the case of MH due to hearing loss, hallucinations may improve following treatment with hearing aids or cochlear implants,1,3,6,7 which is what was advised for Ms. L. Table 17-9 outlines other possible measures for addressing musical hallucinations.

Musical hallucinations: Treatment options

Anticholinesterases, antidepressants, and antiepileptics may provide some benefit.8 However, pharmacotherapy is generally less efficacious and can cause adverse effects, so environmental support and hearing aids may be a safer approach. No medications have been shown to completely cure MH.

TREATMENT Hearing loss management and follow-up

When speaking with the consulting psychiatry team, Ms. L reports her outpatient psychotropic regimen has been helpful. The team decides to continue mirtazapine 30 mg/d and risperidone 0.5 mg/d at night. We recommend that Ms. L discuss tapering off risperidone with her outpatient clinician if they feel it may be indicated to reduce the risk of adverse effects. The treatment team decides not to start corticosteroids due to the risk of steroid-induced psychotic symptoms. The team discusses hallucinations related to hearing loss with Ms. L and advise her to follow up with Audiology and Otolaryngology in the outpatient setting.

The authors’ observations

Approximately 40% of people age >60 struggle with hearing impairment4,9; this impacts their general quality of life and how clinicians communicate with such patients.10 People with hearing loss are more likely to develop feelings of social isolation, depression, and delirium (Table 28,10,11).11

Mental health considerations for patients who are hearing impaired

Risk factors for hearing loss include tobacco use, metabolic syndrome, exposure to loud noises, and exposure to certain ototoxic medications such as chemotherapeutic agents.11 As psychiatrists, it is important to identify patients who may be at risk for hearing loss and refer them to the appropriate medical professional. If hearing loss is new onset, refer the patient to an otolaryngologist for a full evaluation. Unilateral hearing loss should warrant further workup because this could be due to an acoustic neuroma.11

When providing care for a patient who uses a hearing aid, discuss adherence, barriers to adherence, and difficulties with adjusting the hearing aid. A referral to an audiologist may help patients address these barriers. Patients with hearing impairment or loss may benefit from auditory rehabilitation programs that provide communication strategies, ways to adapt to hearing loss, and information about different assistive options.11 Such programs are often run by audiologists or speech language pathologists and contain both counseling and group components.

Continue to: Is is critical for psychiatrists...

 

 

It is critical for psychiatrists to ensure appropriate communication with patients who are hearing impaired (Table 38-11). The use of assistive devices such as sound amplifiers, written messages, or family members to assist in communication is needed to prevent miscommunication.9-11

Communicating with a patient who is hearing impaired

OUTCOME Lack of follow-up

A home health worker visits Ms. L, communicating with her using voice-to-text. Ms. L has not yet gone to her primary care physician, audiologist, or outpatient psychiatrist for follow-up because she needs to arrange transportation. Ms. L remains distressed by the music she is hearing, which is worse at night, along with her acute hearing loss.

Bottom Line

Hearing loss can predispose a person to psychiatric disorders and symptoms, including depression, delirium, and auditory hallucinations. Psychiatrists should strive to ensure clear communication with patients who are hearing impaired and should refer such patients to appropriate resources to improve outcomes.

Related Resources

  • Wang J, Patel D, Francois D. Elaborate hallucinations, but is it a psychotic disorder? Current Psychiatry. 2021;20(2):46-50. doi:10.12788/cp.0091
  • Sosland MD, Pinninti N. 5 ways to quiet auditory hallucinations. Current Psychiatry. 2005;4(4):110.
  • Convery E, Keidser G, McLelland M, et al. A smartphone app to facilitate remote patient-provider communication in hearing health care: usability and effect on hearing aid outcomes. Telemed E-Health. 2020;26(6):798-804. doi:10.1089/ tmj.2019.0109

Drug Brand Names

Mirtazapine • Remeron
Prednisone • Rayos
Risperidone • Risperdal
Valacyclovir • Valtrex

CASE New-onset auditory hallucinations

Ms. L, age 78, presents to our hospital with worsening anxiety due to auditory hallucinations. She has been hearing music, which she reports is worse at night and consists of songs, usually the song Jingle Bells, sometimes just melodies and other times with lyrics. Ms. L denies paranoia, visual hallucinations, or worsening mood.

Two weeks ago, Ms. L had visited another hospital, describing 5 days of right-side hearing loss accompanied by pain and burning in her ear and face, along with vesicular lesions in a dermatomal pattern extending into her auditory canal. During this visit, Ms. L’s complete blood count, urine culture, urine drug screen, electrolytes, liver panel, thyroid studies, and vitamin levels were unremarkable. A CT scan of her head showed no abnormalities.

Ms. L was diagnosed with Ramsay Hunt syndrome (herpes zoster oticus), which affects cranial nerves, because of physical examination findings with a dermatomal pattern of lesion distribution and associated pain. Ramsay Hunt syndrome can cause facial paralysis and hearing loss in the affected ear. She was discharged with prescriptions for prednisone 60 mg/d for 7 days and valacyclovir 1 g/d for 7 days and told to follow up with her primary care physician. During the present visit to our hospital, Ms. L’s home health nurse reports that she still has her entire bottles of valacyclovir and prednisone left. Ms. L also has left-side hearing loss that began 5 years ago and a history of recurrent major depressive disorder (MDD) and generalized anxiety disorder. Due to the recent onset of right-side hearing loss, her hearing impairment requires her to communicate via writing or via a voice-to-text app.

HISTORY Depressed and living alone

Ms. L was diagnosed with MDD more than 4 decades ago and has been receiving medication since then. She reports no prior psychiatric hospitalizations, suicide attempts, manic symptoms, or psychotic symptoms. For more than 20 years, she has seen a nurse practitioner, who had prescribed mirtazapine 30 mg/d for MDD, poor appetite, and sleep. Within the last 5 years, her nurse practitioner added risperidone 0.5 mg/d at night to augment the mirtazapine for tearfulness, irritability, and mood swings.

Ms. L’s medical history also includes hypertension and chronic obstructive pulmonary disease. She is a retired teacher and lives alone. She has a chore worker who visits her home for 1 hour 5 days a week to help with cleaning and lifting, and support from her son. Ms. L no longer drives and relies on others for transportation, but is able to manage her finances, activities of daily living, cooking, and walking without any assistance.

[polldaddy:12807642]

EVALUATION Identifying the cause of the music

Ms. L is alert and oriented to time and situation, her concentration is appropriate, and her recent and remote memories are preserved. A full cognitive screen is not performed, but she is able to spell WORLD forwards and backwards and adequately perform a serial 7s test. An examination of her ear does not reveal any open vesicular lesions or swelling, but she continues to report pain and tingling in the C7 dermatomal pattern. Her urine drug screen and infectious and autoimmune laboratory testing are unremarkable. She does not have electrolyte, renal function, or blood count abnormalities. An MRI of her brain that is performed to rule out intracranial pathology due to acute hearing loss shows no acute intracranial abnormalities, with some artifact effect due to motion. Because temporal lobe epilepsy can present with hallucinations,1 an EEG is performed to rule out seizure activity; it shows a normal wake pattern.

Psychiatry is consulted for management of the auditory hallucinations because Ms. L is distressed by hearing music. Ms. L is evaluated by Neurology and Otolaryngology. Neurology recommends a repeat brain MRI in the outpatient setting after seeing an artifact in the inpatient imaging, as well as follow-up with her primary care physician. Otolaryngology believes her symptoms are secondary to Ramsay Hunt syndrome with incomplete treatment, which is consistent with the initial diagnosis from her previous hospital visit, and recommends another course of oral corticosteroids, along with Audiology and Otolaryngology follow-up.

Continue to: The authors' observations

 

 

The authors’ observations

This is the first case we have seen detailing musical hallucinations (MH) secondary to Ramsay Hunt syndrome, although musical hallucinations have been associated with other etiologies of hearing loss. MH is a “release phenomenon” believed to be caused by deprivation of stimulation of the auditory cortex.2 They are categorized as complex auditory hallucinations made up of melodies and rhythms and may be present in up to 2.5% of patients with hearing impairment.1 The condition is mostly seen in older adults because this population is more likely to experience hearing loss. MH is more common among women (70% to 80% of cases) and is highly comorbid with psychiatric disorders such as schizophrenia, obsessive-compulsive disorder, or (as was the case for Ms. L) MDD.3 Hallucinations secondary to hearing loss may be more common in left-side hearing loss.4 In a 2005 study, Warner et al5 found religious music such as hymns or Christmas carols was most commonly heard, possibly due to repetitive past exposure.

There is no consensus on treatment for MH. Current treatment guidance comes from case reports and case series. Treatment is generally most successful when the etiology of the hallucination is both apparent and treatable, such as an infectious eitiology.3 In the case of MH due to hearing loss, hallucinations may improve following treatment with hearing aids or cochlear implants,1,3,6,7 which is what was advised for Ms. L. Table 17-9 outlines other possible measures for addressing musical hallucinations.

Musical hallucinations: Treatment options

Anticholinesterases, antidepressants, and antiepileptics may provide some benefit.8 However, pharmacotherapy is generally less efficacious and can cause adverse effects, so environmental support and hearing aids may be a safer approach. No medications have been shown to completely cure MH.

TREATMENT Hearing loss management and follow-up

When speaking with the consulting psychiatry team, Ms. L reports her outpatient psychotropic regimen has been helpful. The team decides to continue mirtazapine 30 mg/d and risperidone 0.5 mg/d at night. We recommend that Ms. L discuss tapering off risperidone with her outpatient clinician if they feel it may be indicated to reduce the risk of adverse effects. The treatment team decides not to start corticosteroids due to the risk of steroid-induced psychotic symptoms. The team discusses hallucinations related to hearing loss with Ms. L and advise her to follow up with Audiology and Otolaryngology in the outpatient setting.

The authors’ observations

Approximately 40% of people age >60 struggle with hearing impairment4,9; this impacts their general quality of life and how clinicians communicate with such patients.10 People with hearing loss are more likely to develop feelings of social isolation, depression, and delirium (Table 28,10,11).11

Mental health considerations for patients who are hearing impaired

Risk factors for hearing loss include tobacco use, metabolic syndrome, exposure to loud noises, and exposure to certain ototoxic medications such as chemotherapeutic agents.11 As psychiatrists, it is important to identify patients who may be at risk for hearing loss and refer them to the appropriate medical professional. If hearing loss is new onset, refer the patient to an otolaryngologist for a full evaluation. Unilateral hearing loss should warrant further workup because this could be due to an acoustic neuroma.11

When providing care for a patient who uses a hearing aid, discuss adherence, barriers to adherence, and difficulties with adjusting the hearing aid. A referral to an audiologist may help patients address these barriers. Patients with hearing impairment or loss may benefit from auditory rehabilitation programs that provide communication strategies, ways to adapt to hearing loss, and information about different assistive options.11 Such programs are often run by audiologists or speech language pathologists and contain both counseling and group components.

Continue to: Is is critical for psychiatrists...

 

 

It is critical for psychiatrists to ensure appropriate communication with patients who are hearing impaired (Table 38-11). The use of assistive devices such as sound amplifiers, written messages, or family members to assist in communication is needed to prevent miscommunication.9-11

Communicating with a patient who is hearing impaired

OUTCOME Lack of follow-up

A home health worker visits Ms. L, communicating with her using voice-to-text. Ms. L has not yet gone to her primary care physician, audiologist, or outpatient psychiatrist for follow-up because she needs to arrange transportation. Ms. L remains distressed by the music she is hearing, which is worse at night, along with her acute hearing loss.

Bottom Line

Hearing loss can predispose a person to psychiatric disorders and symptoms, including depression, delirium, and auditory hallucinations. Psychiatrists should strive to ensure clear communication with patients who are hearing impaired and should refer such patients to appropriate resources to improve outcomes.

Related Resources

  • Wang J, Patel D, Francois D. Elaborate hallucinations, but is it a psychotic disorder? Current Psychiatry. 2021;20(2):46-50. doi:10.12788/cp.0091
  • Sosland MD, Pinninti N. 5 ways to quiet auditory hallucinations. Current Psychiatry. 2005;4(4):110.
  • Convery E, Keidser G, McLelland M, et al. A smartphone app to facilitate remote patient-provider communication in hearing health care: usability and effect on hearing aid outcomes. Telemed E-Health. 2020;26(6):798-804. doi:10.1089/ tmj.2019.0109

Drug Brand Names

Mirtazapine • Remeron
Prednisone • Rayos
Risperidone • Risperdal
Valacyclovir • Valtrex

References

1. Cole MG, Dowson L, Dendukuri N, et al. The prevalence and phenomenology of auditory hallucinations among elderly subjects attending an audiology clinic. Int J Geriatr Psychiatry. 2002;17(5):444-452. doi:10.1002/gps.618

2. Alvarez Perez P, Garcia-Antelo MJ, Rubio-Nazabal E. “Doctor, I hear music”: a brief review about musical hallucinations. Open Neurol J. 2017;11:11-14. doi:10.2174/1874205X01711010011

3. Sanchez TG, Rocha SCM, Knobel KAB, et al. Musical hallucination associated with hearing loss. Arq Neuropsiquiatr. 2011;69(2B):395-400. doi:10.1590/S0004-282X2011000300024

4. Teunisse RJ, Olde Rikkert MGM. Prevalence of musical hallucinations in patients referred for audiometric testing. Am J Geriatr Psychiatry. 2012;20(12):1075-1077. doi:10.1097/JGP.0b013e31823e31c4

5. Warner N, Aziz V. Hymns and arias: musical hallucinations in older people in Wales. Int J Geriatr Psychiatry. 2005;20(7):658-660. doi:10.1002/gps.1338

6. Low WK, Tham CA, D’Souza VD, et al. Musical ear syndrome in adult cochlear implant patients. J Laryngol Otol. 2013;127(9):854-858. doi:10.1017/S0022215113001758

7. Brunner JP, Amedee RG. Musical hallucinations in a patient with presbycusis: a case report. Ochsner J. 2015;15(1):89-91.

8. Coebergh JAF, Lauw RF, Bots R, et al. Musical hallucinations: review of treatment effects. Front Psychol. 2015;6:814. doi:10.3389/fpsyg.2015.00814

9. Ten Hulzen RD, Fabry DA. Impact of hearing loss and universal face masking in the COVID-19 era. Mayo Clin Proc. 2020;95(10):2069-2072. doi:10.1016/j.mayocp.2020.07.027

10. Shukla A, Nieman CL, Price C, et al. Impact of hearing loss on patient-provider communication among hospitalized patients: a systematic review. Am J Med Qual. 2019;34(3):284-292. doi:10.1177/1062860618798926

11. Blazer DG, Tucci DL. Hearing loss and psychiatric disorders: a review. Psychol Med. 2019;49(6):891-897. doi:10.1017/S0033291718003409

References

1. Cole MG, Dowson L, Dendukuri N, et al. The prevalence and phenomenology of auditory hallucinations among elderly subjects attending an audiology clinic. Int J Geriatr Psychiatry. 2002;17(5):444-452. doi:10.1002/gps.618

2. Alvarez Perez P, Garcia-Antelo MJ, Rubio-Nazabal E. “Doctor, I hear music”: a brief review about musical hallucinations. Open Neurol J. 2017;11:11-14. doi:10.2174/1874205X01711010011

3. Sanchez TG, Rocha SCM, Knobel KAB, et al. Musical hallucination associated with hearing loss. Arq Neuropsiquiatr. 2011;69(2B):395-400. doi:10.1590/S0004-282X2011000300024

4. Teunisse RJ, Olde Rikkert MGM. Prevalence of musical hallucinations in patients referred for audiometric testing. Am J Geriatr Psychiatry. 2012;20(12):1075-1077. doi:10.1097/JGP.0b013e31823e31c4

5. Warner N, Aziz V. Hymns and arias: musical hallucinations in older people in Wales. Int J Geriatr Psychiatry. 2005;20(7):658-660. doi:10.1002/gps.1338

6. Low WK, Tham CA, D’Souza VD, et al. Musical ear syndrome in adult cochlear implant patients. J Laryngol Otol. 2013;127(9):854-858. doi:10.1017/S0022215113001758

7. Brunner JP, Amedee RG. Musical hallucinations in a patient with presbycusis: a case report. Ochsner J. 2015;15(1):89-91.

8. Coebergh JAF, Lauw RF, Bots R, et al. Musical hallucinations: review of treatment effects. Front Psychol. 2015;6:814. doi:10.3389/fpsyg.2015.00814

9. Ten Hulzen RD, Fabry DA. Impact of hearing loss and universal face masking in the COVID-19 era. Mayo Clin Proc. 2020;95(10):2069-2072. doi:10.1016/j.mayocp.2020.07.027

10. Shukla A, Nieman CL, Price C, et al. Impact of hearing loss on patient-provider communication among hospitalized patients: a systematic review. Am J Med Qual. 2019;34(3):284-292. doi:10.1177/1062860618798926

11. Blazer DG, Tucci DL. Hearing loss and psychiatric disorders: a review. Psychol Med. 2019;49(6):891-897. doi:10.1017/S0033291718003409

Issue
Current Psychiatry - 22(10)
Issue
Current Psychiatry - 22(10)
Page Number
41-45
Page Number
41-45
Publications
Publications
Topics
Article Type
Display Headline
Auditory hallucinations in a patient who is hearing impaired
Display Headline
Auditory hallucinations in a patient who is hearing impaired
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article
Article PDF Media

Emotional blunting in patients taking antidepressants

Article Type
Changed
Mon, 10/02/2023 - 00:15
Display Headline
Emotional blunting in patients taking antidepressants

When used to treat anxiety or depressive disorders, antidepressants can cause a variety of adverse effects, including emotional blunting. Emotional blunting has been described as emotional numbness, indifference, decreased responsiveness, or numbing. In a study of 669 patients who had been receiving antidepressants (selective serotonin reuptake inhibitors [SSRIs], serotonin-norepinephrine reuptake inhibitors [SNRIs], or other antidepressants), 46% said they had experienced emotional blunting.1 A 2019 study found that approximately one-third of patients with unipolar depression or bipolar depression stopped taking their antidepressant due to emotional blunting.2

Historically, there has been difficulty parsing out emotional blunting (a general decrease of all range of emotions) from anhedonia (a restriction of positive emotions). Additionally, some researchers have questioned if the blunting of emotions is part of depressive symptomatology. In a study of 38 adults, most felt able to differentiate emotional blunting due to antidepressants by considering the resolution of other depressive symptoms and timeline of onset.3

A significant limitation has been how clinicians measure or assess emotional blunting. The Oxford Depression Questionnaire (ODQ), previously known as the Oxford Questionnaire on the Emotional Side-effects of Antidepressants, was created based on a qualitative survey of patients who endorsed emotional blunting.4 A validated scale, the ODQ divides emotional blunting into 4 dimensions:

  • general reduction in emotions
  • reduction in positive emotions
  • emotional detachment from others
  • not caring.4

The sections of ODQ focus on exploring specific aspects of patients’ emotional experiences, comparing experiences in the past week to before the development of illness/emotional blunting, and patients’ opinions about antidepressants. Example statements from the ODQ (Table4) may help clinicians better understand and explore emotional blunting with their patients.

Key dimensions of emotional blunting assessed by the Oxford Depression Questionnaire

There are 2 leading theories behind the mechanism of emotional blunting on antidepressants, both focused on serotonin. The first theory offers that SSRIs alter frontal lobe activity through serotonergic effects. The second theory is focused on the downward effects of serotonin on dopamine in reward pathways.5 

Treatment options: Limited evidence

Data on how to address antidepressant-induced emotional blunting are limited and based largely on case reports. One open-label study (N = 143) found that patients experiencing emotional blunting while taking SSRIs and SNRIs who were switched to vortioxetine had a statistically significant decrease in ODQ total score; 50% reported no emotional blunting.6 Options to address emotional blunting include decreasing the antidepressant dose, augmenting with or switching to another agent, or considering other treatments such as neuromodulation.5 Further research is necessary to clarify which intervention is best.

Clinicians will encounter emotional blunting in patients who are taking antidepressants. It is important to recognize and address these symptoms to help improve patients’ adherence and overall quality of life. 

References

1. Goodwin GM, Price J, De Bodinat C, et al. Emotional blunting with antidepressant treatments: a survey among depressed patients. J Affect Disord. 2017;221:31-35.

2. Rosenblat JD, Simon GE, Sachs GS, et al. Treatment effectiveness and tolerability outcomes that are most important to individuals with bipolar and unipolar depression. J Affect Disord. 2019;243:116-120.

3. Price J, Cole V, Goodwin GM. Emotional side-effects of selective serotonin reuptake inhibitors: qualitative study. Br J Psychiatry. 2009;195(3):211-217.

4. Price J, Cole V, Doll H, et al. The Oxford Questionnaire on the Emotional Side-effects of Antidepressants (OQuESA): development, validity, reliability and sensitivity to change. J Affect Disord. 2012;140(1):66-74.

5. Ma H, Cai M, Wang H. Emotional blunting in patients with major depressive disorder: a brief non-systematic review of current research. Front Psychiatry. 2021;12:792960. doi:10.3389/fpsyt.2021.792960

6. Fagiolini A, Florea I, Loft H, et al. Effectiveness of vortioxetine on emotional blunting in patients with major depressive disorder with inadequate response to SSRI/SNRI treatment. J Affect Disord. 2021;283:472-479.

Article PDF
Author and Disclosure Information

Dr. Espejo is Assistant Professor, Department of Psychiatry and Human Behavior, University of California Irvine School of Medicine, Irvine, California.

Disclosures
Dr. Espejo has served on an advisory board for Takeda Pharmaceuticals.

Issue
Current Psychiatry - 22(10)
Publications
Topics
Page Number
46-47
Sections
Author and Disclosure Information

Dr. Espejo is Assistant Professor, Department of Psychiatry and Human Behavior, University of California Irvine School of Medicine, Irvine, California.

Disclosures
Dr. Espejo has served on an advisory board for Takeda Pharmaceuticals.

Author and Disclosure Information

Dr. Espejo is Assistant Professor, Department of Psychiatry and Human Behavior, University of California Irvine School of Medicine, Irvine, California.

Disclosures
Dr. Espejo has served on an advisory board for Takeda Pharmaceuticals.

Article PDF
Article PDF

When used to treat anxiety or depressive disorders, antidepressants can cause a variety of adverse effects, including emotional blunting. Emotional blunting has been described as emotional numbness, indifference, decreased responsiveness, or numbing. In a study of 669 patients who had been receiving antidepressants (selective serotonin reuptake inhibitors [SSRIs], serotonin-norepinephrine reuptake inhibitors [SNRIs], or other antidepressants), 46% said they had experienced emotional blunting.1 A 2019 study found that approximately one-third of patients with unipolar depression or bipolar depression stopped taking their antidepressant due to emotional blunting.2

Historically, there has been difficulty parsing out emotional blunting (a general decrease of all range of emotions) from anhedonia (a restriction of positive emotions). Additionally, some researchers have questioned if the blunting of emotions is part of depressive symptomatology. In a study of 38 adults, most felt able to differentiate emotional blunting due to antidepressants by considering the resolution of other depressive symptoms and timeline of onset.3

A significant limitation has been how clinicians measure or assess emotional blunting. The Oxford Depression Questionnaire (ODQ), previously known as the Oxford Questionnaire on the Emotional Side-effects of Antidepressants, was created based on a qualitative survey of patients who endorsed emotional blunting.4 A validated scale, the ODQ divides emotional blunting into 4 dimensions:

  • general reduction in emotions
  • reduction in positive emotions
  • emotional detachment from others
  • not caring.4

The sections of ODQ focus on exploring specific aspects of patients’ emotional experiences, comparing experiences in the past week to before the development of illness/emotional blunting, and patients’ opinions about antidepressants. Example statements from the ODQ (Table4) may help clinicians better understand and explore emotional blunting with their patients.

Key dimensions of emotional blunting assessed by the Oxford Depression Questionnaire

There are 2 leading theories behind the mechanism of emotional blunting on antidepressants, both focused on serotonin. The first theory offers that SSRIs alter frontal lobe activity through serotonergic effects. The second theory is focused on the downward effects of serotonin on dopamine in reward pathways.5 

Treatment options: Limited evidence

Data on how to address antidepressant-induced emotional blunting are limited and based largely on case reports. One open-label study (N = 143) found that patients experiencing emotional blunting while taking SSRIs and SNRIs who were switched to vortioxetine had a statistically significant decrease in ODQ total score; 50% reported no emotional blunting.6 Options to address emotional blunting include decreasing the antidepressant dose, augmenting with or switching to another agent, or considering other treatments such as neuromodulation.5 Further research is necessary to clarify which intervention is best.

Clinicians will encounter emotional blunting in patients who are taking antidepressants. It is important to recognize and address these symptoms to help improve patients’ adherence and overall quality of life. 

When used to treat anxiety or depressive disorders, antidepressants can cause a variety of adverse effects, including emotional blunting. Emotional blunting has been described as emotional numbness, indifference, decreased responsiveness, or numbing. In a study of 669 patients who had been receiving antidepressants (selective serotonin reuptake inhibitors [SSRIs], serotonin-norepinephrine reuptake inhibitors [SNRIs], or other antidepressants), 46% said they had experienced emotional blunting.1 A 2019 study found that approximately one-third of patients with unipolar depression or bipolar depression stopped taking their antidepressant due to emotional blunting.2

Historically, there has been difficulty parsing out emotional blunting (a general decrease of all range of emotions) from anhedonia (a restriction of positive emotions). Additionally, some researchers have questioned if the blunting of emotions is part of depressive symptomatology. In a study of 38 adults, most felt able to differentiate emotional blunting due to antidepressants by considering the resolution of other depressive symptoms and timeline of onset.3

A significant limitation has been how clinicians measure or assess emotional blunting. The Oxford Depression Questionnaire (ODQ), previously known as the Oxford Questionnaire on the Emotional Side-effects of Antidepressants, was created based on a qualitative survey of patients who endorsed emotional blunting.4 A validated scale, the ODQ divides emotional blunting into 4 dimensions:

  • general reduction in emotions
  • reduction in positive emotions
  • emotional detachment from others
  • not caring.4

The sections of ODQ focus on exploring specific aspects of patients’ emotional experiences, comparing experiences in the past week to before the development of illness/emotional blunting, and patients’ opinions about antidepressants. Example statements from the ODQ (Table4) may help clinicians better understand and explore emotional blunting with their patients.

Key dimensions of emotional blunting assessed by the Oxford Depression Questionnaire

There are 2 leading theories behind the mechanism of emotional blunting on antidepressants, both focused on serotonin. The first theory offers that SSRIs alter frontal lobe activity through serotonergic effects. The second theory is focused on the downward effects of serotonin on dopamine in reward pathways.5 

Treatment options: Limited evidence

Data on how to address antidepressant-induced emotional blunting are limited and based largely on case reports. One open-label study (N = 143) found that patients experiencing emotional blunting while taking SSRIs and SNRIs who were switched to vortioxetine had a statistically significant decrease in ODQ total score; 50% reported no emotional blunting.6 Options to address emotional blunting include decreasing the antidepressant dose, augmenting with or switching to another agent, or considering other treatments such as neuromodulation.5 Further research is necessary to clarify which intervention is best.

Clinicians will encounter emotional blunting in patients who are taking antidepressants. It is important to recognize and address these symptoms to help improve patients’ adherence and overall quality of life. 

References

1. Goodwin GM, Price J, De Bodinat C, et al. Emotional blunting with antidepressant treatments: a survey among depressed patients. J Affect Disord. 2017;221:31-35.

2. Rosenblat JD, Simon GE, Sachs GS, et al. Treatment effectiveness and tolerability outcomes that are most important to individuals with bipolar and unipolar depression. J Affect Disord. 2019;243:116-120.

3. Price J, Cole V, Goodwin GM. Emotional side-effects of selective serotonin reuptake inhibitors: qualitative study. Br J Psychiatry. 2009;195(3):211-217.

4. Price J, Cole V, Doll H, et al. The Oxford Questionnaire on the Emotional Side-effects of Antidepressants (OQuESA): development, validity, reliability and sensitivity to change. J Affect Disord. 2012;140(1):66-74.

5. Ma H, Cai M, Wang H. Emotional blunting in patients with major depressive disorder: a brief non-systematic review of current research. Front Psychiatry. 2021;12:792960. doi:10.3389/fpsyt.2021.792960

6. Fagiolini A, Florea I, Loft H, et al. Effectiveness of vortioxetine on emotional blunting in patients with major depressive disorder with inadequate response to SSRI/SNRI treatment. J Affect Disord. 2021;283:472-479.

References

1. Goodwin GM, Price J, De Bodinat C, et al. Emotional blunting with antidepressant treatments: a survey among depressed patients. J Affect Disord. 2017;221:31-35.

2. Rosenblat JD, Simon GE, Sachs GS, et al. Treatment effectiveness and tolerability outcomes that are most important to individuals with bipolar and unipolar depression. J Affect Disord. 2019;243:116-120.

3. Price J, Cole V, Goodwin GM. Emotional side-effects of selective serotonin reuptake inhibitors: qualitative study. Br J Psychiatry. 2009;195(3):211-217.

4. Price J, Cole V, Doll H, et al. The Oxford Questionnaire on the Emotional Side-effects of Antidepressants (OQuESA): development, validity, reliability and sensitivity to change. J Affect Disord. 2012;140(1):66-74.

5. Ma H, Cai M, Wang H. Emotional blunting in patients with major depressive disorder: a brief non-systematic review of current research. Front Psychiatry. 2021;12:792960. doi:10.3389/fpsyt.2021.792960

6. Fagiolini A, Florea I, Loft H, et al. Effectiveness of vortioxetine on emotional blunting in patients with major depressive disorder with inadequate response to SSRI/SNRI treatment. J Affect Disord. 2021;283:472-479.

Issue
Current Psychiatry - 22(10)
Issue
Current Psychiatry - 22(10)
Page Number
46-47
Page Number
46-47
Publications
Publications
Topics
Article Type
Display Headline
Emotional blunting in patients taking antidepressants
Display Headline
Emotional blunting in patients taking antidepressants
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article
Article PDF Media

A street medicine view of tobacco use in patients with schizophrenia

Article Type
Changed
Mon, 10/02/2023 - 06:54
Display Headline
A street medicine view of tobacco use in patients with schizophrenia

Editor’s note: Readers’ Forum is a department for correspondence from readers that is not in response to articles published in Current Psychiatry. All submissions to Readers’ Forum undergo peer review and are subject to editing for length and style. For more information, contact [email protected].

Throughout my psychiatric clerkship, I (JWF) participated in street medicine, the practice of providing care to patients (typically those who are homeless) at the location they currently reside, such as in a homeless encampment or community shelter. Our clinical team drove to locations that provided housing for patients diagnosed with schizophrenia, where we assisted with medications and blood draws. I remember pulling up the first day and seeing someone outside smoking a cigarette. I soon learned that many people living in such situations were smokers, and that among the substances they used, tobacco was the most common.

One patient said the cigarettes helped him manage the “voices in his head” as well as some of the adverse effects from medication, such as parkinsonism and akathisia. I asked my attending physician about this and she explained that for some patients, using tobacco was a way to mitigate the positive symptoms of schizophrenia and make the adverse effects of their therapy, particularly extrapyramidal symptoms (EPS), more bearable. By the end of my 2-week rotation, I was sure of a trend: our patients with schizophrenia smoked incessantly. Near the end of my rotation, I asked a patient, “Why do you smoke”? The patient looked at me, puzzled, and replied: “I just do.” This exchange only piqued my curiosity, and I could not help but wonder: what is the relationship between tobacco use and schizophrenia? How is tobacco use related to the pathophysiology of schizophrenia? Does tobacco use among patients with schizophrenia ameliorate aspects of their psychosis? Street medicine offered me a window into a biomedically intriguing question, and I wanted to learn more.

What smoking does for patients with schizophrenia

The high prevalence of smoking among patients with schizophrenia (50% to 88%) greatly exceeds the rates of smoking among patients with other psychiatric illnesses.1,2 The role of smoking in relation to schizophrenia and other psychoses is multidimensional, and evidence implicates smoking as a risk factor for schizophrenia.3,4

Two mechanisms may help explain tobacco use in patients with schizophrenia: reducing the adverse effects of antipsychotic medications and promoting neural transmission of dopamine. Second-generation antipsychotics (SGAs) are a first-line treatment, but they can produce EPS, metabolic dysregulation, and blood disorders such as hyponatremia and (rarely) agranulocytosis (1% with clozapine).5 Compared to those who are nonsmokers, patients with schizophrenia who smoke are more likely to experience more severe symptoms (eg, hallucinations and delusions) and less severe EPS.5,6 Research suggests that exposure to polycyclic aromatic hydrocarbons released during smoking induces cytochrome P450 1A2, an enzyme that metabolizes antipsychotic medications such as haloperidol, clozapine, and olanzapine. Increased metabolism results in lower serum concentrations of antipsychotics, lower efficacy, and more severe positive symptoms.5,6

Additionally, tobacco is an activator of nicotinic acetylcholine receptors (nAChR).6 When these receptors become activated, dopamine is released. Dopamine serves as a mediator of reward for nicotine use. In the context of schizophrenia, tobacco use opposes the mechanism of action of SGAs, which is to block neural transmission of dopamine.6 The etiology of EPS is related to the blockade of postsynaptic dopamine release in the striatum.6 By activating nAChR, smoking induces a downstream release of dopamine that can alleviate iatrogenic EPS by restoring neural transmission of dopamine.6 Nicotine may also modulate alpha-7 nicotinic receptor dysfunction, and improve the ability to filter out irrelevant environmental stimuli (impaired sensory gating), which can be overwhelming for patients with schizophrenia. It also can improve cognitive dysfunction and attention by inducing the release of dopamine in mesocortical pathways.7 The implications of this neural pathway are significant because smoking is significantly greater in tobacco users who are diagnosed with schizophrenia compared to tobacco users who lack a psychiatric diagnosis.6,7 Smoking may enhance dopaminergic neural transmission to a far greater extent in tobacco users with schizophrenia compared to tobacco users who do not develop schizophrenia, which suggests intrinsic differences at the neuronal level. Neural differences between tobacco users with or without schizophrenia may synergize with smoking in clinically and biologically meaningful ways. These pathways require further research to support or disprove these hypotheses.

Aside from the dopaminergic system, mechanisms influencing tobacco use among patients with schizophrenia may also be related to nicotine’s mild antidepressant effects. Evidence suggests a clinically meaningful association between nicotine dependence and mood disorders, and this association may be due to the antidepressant effects of nicotine.8-13 Patients with schizophrenia may experience respite from depressive symptoms through their tobacco use, eventually leading to nicotine dependence.

Continue to: Treatment of schizophrenia...

 

 

Treatment of schizophrenia involves multimodal management of a patient’s life, including reducing maladaptive habits that are harmful to health. Chronic smoking in patients with schizophrenia is associated not only with atherosclerosis and cardiovascular disease, but also with poor neurologic functioning, such as significant impairment in attention, working memory, learning, executive function, reasoning, problem-solving and speed of processing.14 One study found that in patients with schizophrenia, smoking increased the 20-year cardiovascular mortality risk by 86%.15

Despite challenges to abstinence, smoking cessation should be discussed with these patients, especially given the high prevalence of smoking among this vulnerable population. Bupropion and varenicline have been studied in the context of smoking cessation among patients with schizophrenia. Data on varenicline are mixed. Smokers with schizophrenia who received bupropion showed higher rates of abstinence from smoking compared to those who received placebo.16

As part of the biopsychosocial model of clinical care, sociodemographic factors must be considered in assessing the relationship between tobacco use and schizophrenia, because a large proportion of patients diagnosed with schizophrenia are members of underrepresented minority groups.17 A PubMed database search using keywords “African American” or “Black,” “tobacco,” and “schizophrenia” located only 12 studies, most of which lacked relevance to this question. Han et al18 is 1 of the few studies to investigate sociodemographic factors as they relate to tobacco use among adults with psychoses. Social determinants of health and other confounding variables also need defining to truly distinguish causation from correlation, especially regarding tobacco use and its association with other health risk behaviors.19

Without the street medicine component of the medical school training I received, the pattern of smoking among patients with schizophrenia may have remained invisible or insignificant to me, as tobacco use is not permitted in the inpatient and outpatient academic settings. This experience not only raised insightful questions, but also emphasized the clinical value of seeing patients within their living environment.

References

1. Patkar AA, Gopalakrishnan R, Lundy A, et al. Relationship between tobacco smoking and positive and negative symptoms in schizophrenia. J Nerv Ment Dis. 2002;190(9):604-610. doi:10.1097/00005053-200209000-00005

2. Ding JB, Hu K. Cigarette smoking and schizophrenia: etiology, clinical, pharmacological, and treatment implications. Schizophr Res Treatment. 2021;2021:7698030. doi:10.1155/2021/7698030

3. Kendler KS, Lönn SL, Sundquist J, et al. Smoking and schizophrenia in population cohorts of Swedish women and men: a prospective co-relative control study. Am J Psychiatry. 2015;172(11):1092-1100. doi:10.1176/appi.ajp.2015.15010126

4. Patel KR, Cherian J, Gohil K, et al. Schizophrenia: overview and treatment options. P T. 2014;39(9):638-645.

5. King M, Jones R, Petersen I, et al. Cigarette smoking as a risk factor for schizophrenia or all non-affective psychoses. Psychol Med. 2021;51(8):1373-1381. doi:10.1017/S0033291720000136

6. Sagud M, Mihaljevic Peles A, Pivac N, et al. Smoking in schizophrenia: recent findings about an old problem. Curr Opin Psychiatry. 2019;32(5):402-408. doi:10.1097/YCO.0000000000000529

7. Quigley H, MacCabe JH. The relationship between nicotine and psychosis. Ther Adv Psychopharmacol. 2019;9:2045125319859969. doi:10.1177/2045125319859969

8. Balfour DJ, Ridley DL. The effects of nicotine on neural pathways implicated in depression: a factor in nicotine addiction? Pharmacol Biochem Behav. 2000;66(1):79-85. doi:10.1016/s0091-3057(00)00205-7

9. Wang P, Abdin E, Asharani PV, et al. Nicotine dependence in patients with major depressive disorder and psychotic disorders and its relationship with quality of life. Int J Environ Res Public Health. 2021;18(24):13035. doi:10.3390/ijerph182413035

10. Popik P, Krawczyk M, Kos T, et al. Nicotine produces antidepressant-like actions: behavioral and neurochemical evidence. Eur J Pharmacol. 2005;515(1-3):128-133. doi:10.1016/j.ejphar.2005.04.009

11. Quattrocki E, Baird A, Yurgelun-Todd D. Biological aspects of the link between smoking and depression. Harv Rev Psychiatry. 2000;8(3):99-110.

12. Pal A, Balhara YP. A review of impact of tobacco use on patients with co-occurring psychiatric disorders. Tob Use Insights. 2016;9:7-12. doi:10.4137/TUI.S32201

13. Prochaska JJ, Das S, Young-Wolff KC. Smoking, mental illness, and public health. Annu Rev Public Health. 2017;38:165-185. doi:10.1146/annurev-publhealth-031816-044618

14. Coustals N, Martelli C, Brunet-Lecomte M, et al. Chronic smoking and cognition in patients with schizophrenia: a meta-analysis. Schizophr Res. 2020;222:113-121. doi:10.1016/j.schres.2020.03.071

15. Stolz PA, Wehring HJ, Liu F, et al. Effects of cigarette smoking and clozapine treatment on 20-year all-cause & cardiovascular mortality in schizophrenia. Psychiatr Q. 2019;90(2):351-359. doi:10.1007/s11126-018-9621-4

16. Tsoi DT, Porwal M, Webster AC. Interventions for smoking cessation and reduction in individuals with schizophrenia. Cochrane Database Syst Rev. 2013;2013(2):CD007253. doi:10.1002/14651858.CD007253.pub3

17. Heun-Johnson H, Menchine M, Axeen S, et al. Association between race/ethnicity and disparities in health care use before first-episode psychosis among privately insured young patients. JAMA Psychiatry. 2021;78(3):311-319. doi:10.1001/jamapsychiatry.2020.3995

18. Han B, Aung TW, Volkow ND, et al. Tobacco use, nicotine dependence, and cessation methods in us adults with psychosis. JAMA Netw Open. 2023;6(3):e234995. doi:10.1001/jamanetworkopen.2023.4995

19. Peltzer K, Pengpid S. Tobacco use and associated mental symptoms and health risk behaviours amongst individuals 15 years or older in South Africa. S Afr J Psychiatr. 2020;26:1499. doi:10.4102/sajpsychiatry.v26.i0.1499

Article PDF
Author and Disclosure Information

John W. Figg is a 4th-year MD/ PhD student, University of Florida College of Medicine, Gainesville, Florida. Jake A. Surges and Yasmeen Murtaza are 4th-year medical students, University of Florida College of Medicine, Gainesville, Florida. Dr. Dean is a Postdoctoral Fellow, University of Florida College of Medicine, Gainesville, Florida. Dr. Turner is Assistant Professor and Program Director, University of Florida College of Medicine-Jacksonville, Jacksonville, Florida.

Disclosures
The authors report no financial relationships with any companies whose products are mentioned in this article, or with manufacturers of competing products.

Issue
Current Psychiatry - 22(10)
Publications
Topics
Page Number
e3-e5
Sections
Author and Disclosure Information

John W. Figg is a 4th-year MD/ PhD student, University of Florida College of Medicine, Gainesville, Florida. Jake A. Surges and Yasmeen Murtaza are 4th-year medical students, University of Florida College of Medicine, Gainesville, Florida. Dr. Dean is a Postdoctoral Fellow, University of Florida College of Medicine, Gainesville, Florida. Dr. Turner is Assistant Professor and Program Director, University of Florida College of Medicine-Jacksonville, Jacksonville, Florida.

Disclosures
The authors report no financial relationships with any companies whose products are mentioned in this article, or with manufacturers of competing products.

Author and Disclosure Information

John W. Figg is a 4th-year MD/ PhD student, University of Florida College of Medicine, Gainesville, Florida. Jake A. Surges and Yasmeen Murtaza are 4th-year medical students, University of Florida College of Medicine, Gainesville, Florida. Dr. Dean is a Postdoctoral Fellow, University of Florida College of Medicine, Gainesville, Florida. Dr. Turner is Assistant Professor and Program Director, University of Florida College of Medicine-Jacksonville, Jacksonville, Florida.

Disclosures
The authors report no financial relationships with any companies whose products are mentioned in this article, or with manufacturers of competing products.

Article PDF
Article PDF

Editor’s note: Readers’ Forum is a department for correspondence from readers that is not in response to articles published in Current Psychiatry. All submissions to Readers’ Forum undergo peer review and are subject to editing for length and style. For more information, contact [email protected].

Throughout my psychiatric clerkship, I (JWF) participated in street medicine, the practice of providing care to patients (typically those who are homeless) at the location they currently reside, such as in a homeless encampment or community shelter. Our clinical team drove to locations that provided housing for patients diagnosed with schizophrenia, where we assisted with medications and blood draws. I remember pulling up the first day and seeing someone outside smoking a cigarette. I soon learned that many people living in such situations were smokers, and that among the substances they used, tobacco was the most common.

One patient said the cigarettes helped him manage the “voices in his head” as well as some of the adverse effects from medication, such as parkinsonism and akathisia. I asked my attending physician about this and she explained that for some patients, using tobacco was a way to mitigate the positive symptoms of schizophrenia and make the adverse effects of their therapy, particularly extrapyramidal symptoms (EPS), more bearable. By the end of my 2-week rotation, I was sure of a trend: our patients with schizophrenia smoked incessantly. Near the end of my rotation, I asked a patient, “Why do you smoke”? The patient looked at me, puzzled, and replied: “I just do.” This exchange only piqued my curiosity, and I could not help but wonder: what is the relationship between tobacco use and schizophrenia? How is tobacco use related to the pathophysiology of schizophrenia? Does tobacco use among patients with schizophrenia ameliorate aspects of their psychosis? Street medicine offered me a window into a biomedically intriguing question, and I wanted to learn more.

What smoking does for patients with schizophrenia

The high prevalence of smoking among patients with schizophrenia (50% to 88%) greatly exceeds the rates of smoking among patients with other psychiatric illnesses.1,2 The role of smoking in relation to schizophrenia and other psychoses is multidimensional, and evidence implicates smoking as a risk factor for schizophrenia.3,4

Two mechanisms may help explain tobacco use in patients with schizophrenia: reducing the adverse effects of antipsychotic medications and promoting neural transmission of dopamine. Second-generation antipsychotics (SGAs) are a first-line treatment, but they can produce EPS, metabolic dysregulation, and blood disorders such as hyponatremia and (rarely) agranulocytosis (1% with clozapine).5 Compared to those who are nonsmokers, patients with schizophrenia who smoke are more likely to experience more severe symptoms (eg, hallucinations and delusions) and less severe EPS.5,6 Research suggests that exposure to polycyclic aromatic hydrocarbons released during smoking induces cytochrome P450 1A2, an enzyme that metabolizes antipsychotic medications such as haloperidol, clozapine, and olanzapine. Increased metabolism results in lower serum concentrations of antipsychotics, lower efficacy, and more severe positive symptoms.5,6

Additionally, tobacco is an activator of nicotinic acetylcholine receptors (nAChR).6 When these receptors become activated, dopamine is released. Dopamine serves as a mediator of reward for nicotine use. In the context of schizophrenia, tobacco use opposes the mechanism of action of SGAs, which is to block neural transmission of dopamine.6 The etiology of EPS is related to the blockade of postsynaptic dopamine release in the striatum.6 By activating nAChR, smoking induces a downstream release of dopamine that can alleviate iatrogenic EPS by restoring neural transmission of dopamine.6 Nicotine may also modulate alpha-7 nicotinic receptor dysfunction, and improve the ability to filter out irrelevant environmental stimuli (impaired sensory gating), which can be overwhelming for patients with schizophrenia. It also can improve cognitive dysfunction and attention by inducing the release of dopamine in mesocortical pathways.7 The implications of this neural pathway are significant because smoking is significantly greater in tobacco users who are diagnosed with schizophrenia compared to tobacco users who lack a psychiatric diagnosis.6,7 Smoking may enhance dopaminergic neural transmission to a far greater extent in tobacco users with schizophrenia compared to tobacco users who do not develop schizophrenia, which suggests intrinsic differences at the neuronal level. Neural differences between tobacco users with or without schizophrenia may synergize with smoking in clinically and biologically meaningful ways. These pathways require further research to support or disprove these hypotheses.

Aside from the dopaminergic system, mechanisms influencing tobacco use among patients with schizophrenia may also be related to nicotine’s mild antidepressant effects. Evidence suggests a clinically meaningful association between nicotine dependence and mood disorders, and this association may be due to the antidepressant effects of nicotine.8-13 Patients with schizophrenia may experience respite from depressive symptoms through their tobacco use, eventually leading to nicotine dependence.

Continue to: Treatment of schizophrenia...

 

 

Treatment of schizophrenia involves multimodal management of a patient’s life, including reducing maladaptive habits that are harmful to health. Chronic smoking in patients with schizophrenia is associated not only with atherosclerosis and cardiovascular disease, but also with poor neurologic functioning, such as significant impairment in attention, working memory, learning, executive function, reasoning, problem-solving and speed of processing.14 One study found that in patients with schizophrenia, smoking increased the 20-year cardiovascular mortality risk by 86%.15

Despite challenges to abstinence, smoking cessation should be discussed with these patients, especially given the high prevalence of smoking among this vulnerable population. Bupropion and varenicline have been studied in the context of smoking cessation among patients with schizophrenia. Data on varenicline are mixed. Smokers with schizophrenia who received bupropion showed higher rates of abstinence from smoking compared to those who received placebo.16

As part of the biopsychosocial model of clinical care, sociodemographic factors must be considered in assessing the relationship between tobacco use and schizophrenia, because a large proportion of patients diagnosed with schizophrenia are members of underrepresented minority groups.17 A PubMed database search using keywords “African American” or “Black,” “tobacco,” and “schizophrenia” located only 12 studies, most of which lacked relevance to this question. Han et al18 is 1 of the few studies to investigate sociodemographic factors as they relate to tobacco use among adults with psychoses. Social determinants of health and other confounding variables also need defining to truly distinguish causation from correlation, especially regarding tobacco use and its association with other health risk behaviors.19

Without the street medicine component of the medical school training I received, the pattern of smoking among patients with schizophrenia may have remained invisible or insignificant to me, as tobacco use is not permitted in the inpatient and outpatient academic settings. This experience not only raised insightful questions, but also emphasized the clinical value of seeing patients within their living environment.

Editor’s note: Readers’ Forum is a department for correspondence from readers that is not in response to articles published in Current Psychiatry. All submissions to Readers’ Forum undergo peer review and are subject to editing for length and style. For more information, contact [email protected].

Throughout my psychiatric clerkship, I (JWF) participated in street medicine, the practice of providing care to patients (typically those who are homeless) at the location they currently reside, such as in a homeless encampment or community shelter. Our clinical team drove to locations that provided housing for patients diagnosed with schizophrenia, where we assisted with medications and blood draws. I remember pulling up the first day and seeing someone outside smoking a cigarette. I soon learned that many people living in such situations were smokers, and that among the substances they used, tobacco was the most common.

One patient said the cigarettes helped him manage the “voices in his head” as well as some of the adverse effects from medication, such as parkinsonism and akathisia. I asked my attending physician about this and she explained that for some patients, using tobacco was a way to mitigate the positive symptoms of schizophrenia and make the adverse effects of their therapy, particularly extrapyramidal symptoms (EPS), more bearable. By the end of my 2-week rotation, I was sure of a trend: our patients with schizophrenia smoked incessantly. Near the end of my rotation, I asked a patient, “Why do you smoke”? The patient looked at me, puzzled, and replied: “I just do.” This exchange only piqued my curiosity, and I could not help but wonder: what is the relationship between tobacco use and schizophrenia? How is tobacco use related to the pathophysiology of schizophrenia? Does tobacco use among patients with schizophrenia ameliorate aspects of their psychosis? Street medicine offered me a window into a biomedically intriguing question, and I wanted to learn more.

What smoking does for patients with schizophrenia

The high prevalence of smoking among patients with schizophrenia (50% to 88%) greatly exceeds the rates of smoking among patients with other psychiatric illnesses.1,2 The role of smoking in relation to schizophrenia and other psychoses is multidimensional, and evidence implicates smoking as a risk factor for schizophrenia.3,4

Two mechanisms may help explain tobacco use in patients with schizophrenia: reducing the adverse effects of antipsychotic medications and promoting neural transmission of dopamine. Second-generation antipsychotics (SGAs) are a first-line treatment, but they can produce EPS, metabolic dysregulation, and blood disorders such as hyponatremia and (rarely) agranulocytosis (1% with clozapine).5 Compared to those who are nonsmokers, patients with schizophrenia who smoke are more likely to experience more severe symptoms (eg, hallucinations and delusions) and less severe EPS.5,6 Research suggests that exposure to polycyclic aromatic hydrocarbons released during smoking induces cytochrome P450 1A2, an enzyme that metabolizes antipsychotic medications such as haloperidol, clozapine, and olanzapine. Increased metabolism results in lower serum concentrations of antipsychotics, lower efficacy, and more severe positive symptoms.5,6

Additionally, tobacco is an activator of nicotinic acetylcholine receptors (nAChR).6 When these receptors become activated, dopamine is released. Dopamine serves as a mediator of reward for nicotine use. In the context of schizophrenia, tobacco use opposes the mechanism of action of SGAs, which is to block neural transmission of dopamine.6 The etiology of EPS is related to the blockade of postsynaptic dopamine release in the striatum.6 By activating nAChR, smoking induces a downstream release of dopamine that can alleviate iatrogenic EPS by restoring neural transmission of dopamine.6 Nicotine may also modulate alpha-7 nicotinic receptor dysfunction, and improve the ability to filter out irrelevant environmental stimuli (impaired sensory gating), which can be overwhelming for patients with schizophrenia. It also can improve cognitive dysfunction and attention by inducing the release of dopamine in mesocortical pathways.7 The implications of this neural pathway are significant because smoking is significantly greater in tobacco users who are diagnosed with schizophrenia compared to tobacco users who lack a psychiatric diagnosis.6,7 Smoking may enhance dopaminergic neural transmission to a far greater extent in tobacco users with schizophrenia compared to tobacco users who do not develop schizophrenia, which suggests intrinsic differences at the neuronal level. Neural differences between tobacco users with or without schizophrenia may synergize with smoking in clinically and biologically meaningful ways. These pathways require further research to support or disprove these hypotheses.

Aside from the dopaminergic system, mechanisms influencing tobacco use among patients with schizophrenia may also be related to nicotine’s mild antidepressant effects. Evidence suggests a clinically meaningful association between nicotine dependence and mood disorders, and this association may be due to the antidepressant effects of nicotine.8-13 Patients with schizophrenia may experience respite from depressive symptoms through their tobacco use, eventually leading to nicotine dependence.

Continue to: Treatment of schizophrenia...

 

 

Treatment of schizophrenia involves multimodal management of a patient’s life, including reducing maladaptive habits that are harmful to health. Chronic smoking in patients with schizophrenia is associated not only with atherosclerosis and cardiovascular disease, but also with poor neurologic functioning, such as significant impairment in attention, working memory, learning, executive function, reasoning, problem-solving and speed of processing.14 One study found that in patients with schizophrenia, smoking increased the 20-year cardiovascular mortality risk by 86%.15

Despite challenges to abstinence, smoking cessation should be discussed with these patients, especially given the high prevalence of smoking among this vulnerable population. Bupropion and varenicline have been studied in the context of smoking cessation among patients with schizophrenia. Data on varenicline are mixed. Smokers with schizophrenia who received bupropion showed higher rates of abstinence from smoking compared to those who received placebo.16

As part of the biopsychosocial model of clinical care, sociodemographic factors must be considered in assessing the relationship between tobacco use and schizophrenia, because a large proportion of patients diagnosed with schizophrenia are members of underrepresented minority groups.17 A PubMed database search using keywords “African American” or “Black,” “tobacco,” and “schizophrenia” located only 12 studies, most of which lacked relevance to this question. Han et al18 is 1 of the few studies to investigate sociodemographic factors as they relate to tobacco use among adults with psychoses. Social determinants of health and other confounding variables also need defining to truly distinguish causation from correlation, especially regarding tobacco use and its association with other health risk behaviors.19

Without the street medicine component of the medical school training I received, the pattern of smoking among patients with schizophrenia may have remained invisible or insignificant to me, as tobacco use is not permitted in the inpatient and outpatient academic settings. This experience not only raised insightful questions, but also emphasized the clinical value of seeing patients within their living environment.

References

1. Patkar AA, Gopalakrishnan R, Lundy A, et al. Relationship between tobacco smoking and positive and negative symptoms in schizophrenia. J Nerv Ment Dis. 2002;190(9):604-610. doi:10.1097/00005053-200209000-00005

2. Ding JB, Hu K. Cigarette smoking and schizophrenia: etiology, clinical, pharmacological, and treatment implications. Schizophr Res Treatment. 2021;2021:7698030. doi:10.1155/2021/7698030

3. Kendler KS, Lönn SL, Sundquist J, et al. Smoking and schizophrenia in population cohorts of Swedish women and men: a prospective co-relative control study. Am J Psychiatry. 2015;172(11):1092-1100. doi:10.1176/appi.ajp.2015.15010126

4. Patel KR, Cherian J, Gohil K, et al. Schizophrenia: overview and treatment options. P T. 2014;39(9):638-645.

5. King M, Jones R, Petersen I, et al. Cigarette smoking as a risk factor for schizophrenia or all non-affective psychoses. Psychol Med. 2021;51(8):1373-1381. doi:10.1017/S0033291720000136

6. Sagud M, Mihaljevic Peles A, Pivac N, et al. Smoking in schizophrenia: recent findings about an old problem. Curr Opin Psychiatry. 2019;32(5):402-408. doi:10.1097/YCO.0000000000000529

7. Quigley H, MacCabe JH. The relationship between nicotine and psychosis. Ther Adv Psychopharmacol. 2019;9:2045125319859969. doi:10.1177/2045125319859969

8. Balfour DJ, Ridley DL. The effects of nicotine on neural pathways implicated in depression: a factor in nicotine addiction? Pharmacol Biochem Behav. 2000;66(1):79-85. doi:10.1016/s0091-3057(00)00205-7

9. Wang P, Abdin E, Asharani PV, et al. Nicotine dependence in patients with major depressive disorder and psychotic disorders and its relationship with quality of life. Int J Environ Res Public Health. 2021;18(24):13035. doi:10.3390/ijerph182413035

10. Popik P, Krawczyk M, Kos T, et al. Nicotine produces antidepressant-like actions: behavioral and neurochemical evidence. Eur J Pharmacol. 2005;515(1-3):128-133. doi:10.1016/j.ejphar.2005.04.009

11. Quattrocki E, Baird A, Yurgelun-Todd D. Biological aspects of the link between smoking and depression. Harv Rev Psychiatry. 2000;8(3):99-110.

12. Pal A, Balhara YP. A review of impact of tobacco use on patients with co-occurring psychiatric disorders. Tob Use Insights. 2016;9:7-12. doi:10.4137/TUI.S32201

13. Prochaska JJ, Das S, Young-Wolff KC. Smoking, mental illness, and public health. Annu Rev Public Health. 2017;38:165-185. doi:10.1146/annurev-publhealth-031816-044618

14. Coustals N, Martelli C, Brunet-Lecomte M, et al. Chronic smoking and cognition in patients with schizophrenia: a meta-analysis. Schizophr Res. 2020;222:113-121. doi:10.1016/j.schres.2020.03.071

15. Stolz PA, Wehring HJ, Liu F, et al. Effects of cigarette smoking and clozapine treatment on 20-year all-cause & cardiovascular mortality in schizophrenia. Psychiatr Q. 2019;90(2):351-359. doi:10.1007/s11126-018-9621-4

16. Tsoi DT, Porwal M, Webster AC. Interventions for smoking cessation and reduction in individuals with schizophrenia. Cochrane Database Syst Rev. 2013;2013(2):CD007253. doi:10.1002/14651858.CD007253.pub3

17. Heun-Johnson H, Menchine M, Axeen S, et al. Association between race/ethnicity and disparities in health care use before first-episode psychosis among privately insured young patients. JAMA Psychiatry. 2021;78(3):311-319. doi:10.1001/jamapsychiatry.2020.3995

18. Han B, Aung TW, Volkow ND, et al. Tobacco use, nicotine dependence, and cessation methods in us adults with psychosis. JAMA Netw Open. 2023;6(3):e234995. doi:10.1001/jamanetworkopen.2023.4995

19. Peltzer K, Pengpid S. Tobacco use and associated mental symptoms and health risk behaviours amongst individuals 15 years or older in South Africa. S Afr J Psychiatr. 2020;26:1499. doi:10.4102/sajpsychiatry.v26.i0.1499

References

1. Patkar AA, Gopalakrishnan R, Lundy A, et al. Relationship between tobacco smoking and positive and negative symptoms in schizophrenia. J Nerv Ment Dis. 2002;190(9):604-610. doi:10.1097/00005053-200209000-00005

2. Ding JB, Hu K. Cigarette smoking and schizophrenia: etiology, clinical, pharmacological, and treatment implications. Schizophr Res Treatment. 2021;2021:7698030. doi:10.1155/2021/7698030

3. Kendler KS, Lönn SL, Sundquist J, et al. Smoking and schizophrenia in population cohorts of Swedish women and men: a prospective co-relative control study. Am J Psychiatry. 2015;172(11):1092-1100. doi:10.1176/appi.ajp.2015.15010126

4. Patel KR, Cherian J, Gohil K, et al. Schizophrenia: overview and treatment options. P T. 2014;39(9):638-645.

5. King M, Jones R, Petersen I, et al. Cigarette smoking as a risk factor for schizophrenia or all non-affective psychoses. Psychol Med. 2021;51(8):1373-1381. doi:10.1017/S0033291720000136

6. Sagud M, Mihaljevic Peles A, Pivac N, et al. Smoking in schizophrenia: recent findings about an old problem. Curr Opin Psychiatry. 2019;32(5):402-408. doi:10.1097/YCO.0000000000000529

7. Quigley H, MacCabe JH. The relationship between nicotine and psychosis. Ther Adv Psychopharmacol. 2019;9:2045125319859969. doi:10.1177/2045125319859969

8. Balfour DJ, Ridley DL. The effects of nicotine on neural pathways implicated in depression: a factor in nicotine addiction? Pharmacol Biochem Behav. 2000;66(1):79-85. doi:10.1016/s0091-3057(00)00205-7

9. Wang P, Abdin E, Asharani PV, et al. Nicotine dependence in patients with major depressive disorder and psychotic disorders and its relationship with quality of life. Int J Environ Res Public Health. 2021;18(24):13035. doi:10.3390/ijerph182413035

10. Popik P, Krawczyk M, Kos T, et al. Nicotine produces antidepressant-like actions: behavioral and neurochemical evidence. Eur J Pharmacol. 2005;515(1-3):128-133. doi:10.1016/j.ejphar.2005.04.009

11. Quattrocki E, Baird A, Yurgelun-Todd D. Biological aspects of the link between smoking and depression. Harv Rev Psychiatry. 2000;8(3):99-110.

12. Pal A, Balhara YP. A review of impact of tobacco use on patients with co-occurring psychiatric disorders. Tob Use Insights. 2016;9:7-12. doi:10.4137/TUI.S32201

13. Prochaska JJ, Das S, Young-Wolff KC. Smoking, mental illness, and public health. Annu Rev Public Health. 2017;38:165-185. doi:10.1146/annurev-publhealth-031816-044618

14. Coustals N, Martelli C, Brunet-Lecomte M, et al. Chronic smoking and cognition in patients with schizophrenia: a meta-analysis. Schizophr Res. 2020;222:113-121. doi:10.1016/j.schres.2020.03.071

15. Stolz PA, Wehring HJ, Liu F, et al. Effects of cigarette smoking and clozapine treatment on 20-year all-cause & cardiovascular mortality in schizophrenia. Psychiatr Q. 2019;90(2):351-359. doi:10.1007/s11126-018-9621-4

16. Tsoi DT, Porwal M, Webster AC. Interventions for smoking cessation and reduction in individuals with schizophrenia. Cochrane Database Syst Rev. 2013;2013(2):CD007253. doi:10.1002/14651858.CD007253.pub3

17. Heun-Johnson H, Menchine M, Axeen S, et al. Association between race/ethnicity and disparities in health care use before first-episode psychosis among privately insured young patients. JAMA Psychiatry. 2021;78(3):311-319. doi:10.1001/jamapsychiatry.2020.3995

18. Han B, Aung TW, Volkow ND, et al. Tobacco use, nicotine dependence, and cessation methods in us adults with psychosis. JAMA Netw Open. 2023;6(3):e234995. doi:10.1001/jamanetworkopen.2023.4995

19. Peltzer K, Pengpid S. Tobacco use and associated mental symptoms and health risk behaviours amongst individuals 15 years or older in South Africa. S Afr J Psychiatr. 2020;26:1499. doi:10.4102/sajpsychiatry.v26.i0.1499

Issue
Current Psychiatry - 22(10)
Issue
Current Psychiatry - 22(10)
Page Number
e3-e5
Page Number
e3-e5
Publications
Publications
Topics
Article Type
Display Headline
A street medicine view of tobacco use in patients with schizophrenia
Display Headline
A street medicine view of tobacco use in patients with schizophrenia
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article
Article PDF Media

More on interventional psychiatry

Article Type
Changed
Mon, 10/02/2023 - 00:15
Display Headline
More on interventional psychiatry

Thank you very much to Drs. Vincent, Good, and El-Mallakh for their guest editorial on interventional psychiatry (“Interventional psychiatry: What are the next steps?Current Psychiatry, July 2023, p. 7-9, doi:10.12788/cp.0378). Your addressing the “gap in training” regarding “evidence the growth of interventional psychiatry has exceeded the capacity of the current training infrastructure to provide trainees with adequate exposure to these procedures” is right on the mark, as is the observation that the Accreditation Council for Graduate Medical Education (ACGME) Psychiatry Milestones “do not indicate how competency in these therapies can be achieved.”

The Clinical Transcranial Magnetic Stimulation Society (CTMSS) is well aware of these issues and is actively addressing them:

1. We have increased the number of PULSES courses—designed to serve as intensive, introductory courses on TMS—we provide, and increased the number of members on our PULSES team to address this. We have also increased the number of PULSES scholarships for psychiatry residents that cover the costs of the conference and materials.

2. We created a standing Resident Subcommittee of our Education Committee that is focused on psychiatry resident training. We realize not all psychiatric residency programs have active TMS programs or attendings who are trained in TMS. Last year we presented lectures aimed at introducing TMS to PGY-1 and PGY-2 psychiatry residents. These were recorded and are available for free on the CTMSS website (www.clinicaltmssociety.org).

3. The Resident Subcommittee presented the American Association of Directors of Psychiatric Residency Training with a curriculum submission that was accepted and will be available to all psychiatric residents across the country free of charge. (Current Psychiatry Associate Editor Phillip G. Janicak, MD was very helpful to our subcommittee with this project.)

4. The topic of resident/fellow training in all forms of neuromodulation was discussed during our monthly Grand Rounds webinar and at our annual meeting.

5. The issue of having a broader base of knowledge and training in neuromodulation was a topic at a recent Education Committee meeting, and this year we are adding lectures on electroconvulsive therapy and esketamine to our Grand Rounds webinars. Many CTMSS members are trained and knowledgeable in multiple neuromodulation modalities.

Continue to: 6. Many CTMSS members...

 

 

6. Many CTMSS members are involved in academic programs or are invited to training programs to teach psychiatric residents as guest lecturers.

7. The UK's Royal College of Psychiatrists has requested access to our prerecorded lectures, and CTMSS members are working on translating our lectures into Spanish.

Resident education is a key component of the main goals of the CTMSS. Our Board of Directors is fully committed to resident education and has directed the Education Committee to address it. We look forward to moving forward on educating psychiatric residents, with the hope of eventually engaging the ACGME to acknowledge TMS by name in the ACGME guidelines, provide residents with at least basic information on TMS, and clarify how competency in these therapies can be achieved.

Article PDF
Author and Disclosure Information

Carlos Lowell, DO
CTMSS Education Committee Co-Chair
Sandusky, Ohio

Disclosures
The author is Clinical Transcranial Magnetic Stimulation Society (CTMSS) Education Committee Co-Chair (volunteer position) and serves as a speaker/faculty for the CTMSS PULSES courses.

Issue
Current Psychiatry - 22(10)
Publications
Page Number
e1
Sections
Author and Disclosure Information

Carlos Lowell, DO
CTMSS Education Committee Co-Chair
Sandusky, Ohio

Disclosures
The author is Clinical Transcranial Magnetic Stimulation Society (CTMSS) Education Committee Co-Chair (volunteer position) and serves as a speaker/faculty for the CTMSS PULSES courses.

Author and Disclosure Information

Carlos Lowell, DO
CTMSS Education Committee Co-Chair
Sandusky, Ohio

Disclosures
The author is Clinical Transcranial Magnetic Stimulation Society (CTMSS) Education Committee Co-Chair (volunteer position) and serves as a speaker/faculty for the CTMSS PULSES courses.

Article PDF
Article PDF

Thank you very much to Drs. Vincent, Good, and El-Mallakh for their guest editorial on interventional psychiatry (“Interventional psychiatry: What are the next steps?Current Psychiatry, July 2023, p. 7-9, doi:10.12788/cp.0378). Your addressing the “gap in training” regarding “evidence the growth of interventional psychiatry has exceeded the capacity of the current training infrastructure to provide trainees with adequate exposure to these procedures” is right on the mark, as is the observation that the Accreditation Council for Graduate Medical Education (ACGME) Psychiatry Milestones “do not indicate how competency in these therapies can be achieved.”

The Clinical Transcranial Magnetic Stimulation Society (CTMSS) is well aware of these issues and is actively addressing them:

1. We have increased the number of PULSES courses—designed to serve as intensive, introductory courses on TMS—we provide, and increased the number of members on our PULSES team to address this. We have also increased the number of PULSES scholarships for psychiatry residents that cover the costs of the conference and materials.

2. We created a standing Resident Subcommittee of our Education Committee that is focused on psychiatry resident training. We realize not all psychiatric residency programs have active TMS programs or attendings who are trained in TMS. Last year we presented lectures aimed at introducing TMS to PGY-1 and PGY-2 psychiatry residents. These were recorded and are available for free on the CTMSS website (www.clinicaltmssociety.org).

3. The Resident Subcommittee presented the American Association of Directors of Psychiatric Residency Training with a curriculum submission that was accepted and will be available to all psychiatric residents across the country free of charge. (Current Psychiatry Associate Editor Phillip G. Janicak, MD was very helpful to our subcommittee with this project.)

4. The topic of resident/fellow training in all forms of neuromodulation was discussed during our monthly Grand Rounds webinar and at our annual meeting.

5. The issue of having a broader base of knowledge and training in neuromodulation was a topic at a recent Education Committee meeting, and this year we are adding lectures on electroconvulsive therapy and esketamine to our Grand Rounds webinars. Many CTMSS members are trained and knowledgeable in multiple neuromodulation modalities.

Continue to: 6. Many CTMSS members...

 

 

6. Many CTMSS members are involved in academic programs or are invited to training programs to teach psychiatric residents as guest lecturers.

7. The UK's Royal College of Psychiatrists has requested access to our prerecorded lectures, and CTMSS members are working on translating our lectures into Spanish.

Resident education is a key component of the main goals of the CTMSS. Our Board of Directors is fully committed to resident education and has directed the Education Committee to address it. We look forward to moving forward on educating psychiatric residents, with the hope of eventually engaging the ACGME to acknowledge TMS by name in the ACGME guidelines, provide residents with at least basic information on TMS, and clarify how competency in these therapies can be achieved.

Thank you very much to Drs. Vincent, Good, and El-Mallakh for their guest editorial on interventional psychiatry (“Interventional psychiatry: What are the next steps?Current Psychiatry, July 2023, p. 7-9, doi:10.12788/cp.0378). Your addressing the “gap in training” regarding “evidence the growth of interventional psychiatry has exceeded the capacity of the current training infrastructure to provide trainees with adequate exposure to these procedures” is right on the mark, as is the observation that the Accreditation Council for Graduate Medical Education (ACGME) Psychiatry Milestones “do not indicate how competency in these therapies can be achieved.”

The Clinical Transcranial Magnetic Stimulation Society (CTMSS) is well aware of these issues and is actively addressing them:

1. We have increased the number of PULSES courses—designed to serve as intensive, introductory courses on TMS—we provide, and increased the number of members on our PULSES team to address this. We have also increased the number of PULSES scholarships for psychiatry residents that cover the costs of the conference and materials.

2. We created a standing Resident Subcommittee of our Education Committee that is focused on psychiatry resident training. We realize not all psychiatric residency programs have active TMS programs or attendings who are trained in TMS. Last year we presented lectures aimed at introducing TMS to PGY-1 and PGY-2 psychiatry residents. These were recorded and are available for free on the CTMSS website (www.clinicaltmssociety.org).

3. The Resident Subcommittee presented the American Association of Directors of Psychiatric Residency Training with a curriculum submission that was accepted and will be available to all psychiatric residents across the country free of charge. (Current Psychiatry Associate Editor Phillip G. Janicak, MD was very helpful to our subcommittee with this project.)

4. The topic of resident/fellow training in all forms of neuromodulation was discussed during our monthly Grand Rounds webinar and at our annual meeting.

5. The issue of having a broader base of knowledge and training in neuromodulation was a topic at a recent Education Committee meeting, and this year we are adding lectures on electroconvulsive therapy and esketamine to our Grand Rounds webinars. Many CTMSS members are trained and knowledgeable in multiple neuromodulation modalities.

Continue to: 6. Many CTMSS members...

 

 

6. Many CTMSS members are involved in academic programs or are invited to training programs to teach psychiatric residents as guest lecturers.

7. The UK's Royal College of Psychiatrists has requested access to our prerecorded lectures, and CTMSS members are working on translating our lectures into Spanish.

Resident education is a key component of the main goals of the CTMSS. Our Board of Directors is fully committed to resident education and has directed the Education Committee to address it. We look forward to moving forward on educating psychiatric residents, with the hope of eventually engaging the ACGME to acknowledge TMS by name in the ACGME guidelines, provide residents with at least basic information on TMS, and clarify how competency in these therapies can be achieved.

Issue
Current Psychiatry - 22(10)
Issue
Current Psychiatry - 22(10)
Page Number
e1
Page Number
e1
Publications
Publications
Article Type
Display Headline
More on interventional psychiatry
Display Headline
More on interventional psychiatry
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article
Article PDF Media

Neuropsychiatric aspects of Parkinson’s disease: Practical considerations

Article Type
Changed
Mon, 10/02/2023 - 00:15
Display Headline
Neuropsychiatric aspects of Parkinson’s disease: Practical considerations

Parkinson’s disease (PD) is a neurodegenerative condition diagnosed pathologically by alpha synuclein–containing Lewy bodies and dopaminergic cell loss in the substantia nigra pars compacta of the midbrain. Loss of dopaminergic input to the caudate and putamen disrupts the direct and indirect basal ganglia pathways for motor control and contributes to the motor symptoms of PD.1 According to the Movement Disorder Society criteria, PD is diagnosed clinically by bradykinesia (slowness of movement) plus resting tremor and/or rigidity in the presence of supportive criteria, such as levodopa responsiveness and hyposmia, and in the absence of exclusion criteria and red flags that would suggest atypical parkinsonism or an alternative diagnosis.2

Although the diagnosis and treatment of PD focus heavily on the motor symptoms, nonmotor symptoms can arise decades before the onset of motor symptoms and continue throughout the lifespan. Nonmotor symptoms affect patients from head (ie, cognition and mood) to toe (ie, striatal toe pain) and multiple organ systems in between, including the olfactory, integumentary, cardiovascular, gastrointestinal, genitourinary, and autonomic nervous systems. Thus, it is not surprising that nonmotor symptoms of PD impact health-related quality of life more substantially than motor symptoms.3 A helpful analogy is to consider the motor symptoms of PD as the tip of the iceberg and the nonmotor symptoms as the larger, submerged portions of the iceberg.4

Nonmotor symptoms can negatively impact the treatment of motor symptoms. For example, imagine a patient who is very rigid and dyscoordinated in the arms and legs, which limits their ability to dress and walk. If this patient also suffers from nonmotor symptoms of orthostatic hypotension and psychosis—both of which can be exacerbated by levodopa—dose escalation of levodopa for the rigidity and dyscoordination could be compromised, rendering the patient undertreated and less mobile.

In this review, we focus on identifying and managing nonmotor symptoms of PD that are relevant to psychiatric practice, including mood and motivational disorders, anxiety disorders, psychosis, cognitive disorders, and disorders related to the pharmacologic and surgical treatment of PD (Figure 1).

The neuropsychiatric aspects of Parkinson’s disease

Mood and motivational disorders

Depression

Depression is a common symptom in PD that can occur in the prodromal period years to decades before the onset of motor symptoms, as well as throughout the disease course.5 The prevalence of depression in PD varies from 3% to 90%, depending on the methods of assessment, clinical setting of assessment, motor symptom severity, and other factors; clinically significant depression likely affects approximately 35% to 38% of patients.5,6 How depression in patients with PD differs from depression in the general population is not entirely understood, but there does seem to be less guilt and suicidal ideation and a substantial component of negative affect, including dysphoria and anxiety.7 Practically speaking, depression is treated similarly in PD and general populations, with a few considerations.

Despite limited randomized controlled trials (RCTs) for efficacy specifically in patients with PD, selective serotonin reuptake inhibitors (SSRIs) and serotonin-norepinephrine reuptake inhibitors (SNRIs) are generally considered first-line treatments. There is also evidence for tricyclic antidepressants (TCAs), but due to potential worsening of orthostatic hypotension and cognition, TCAs may not be a favorable option for certain patients with PD.8,9 All antidepressants have the potential to worsen tremor. Theoretically, SNRIs, with noradrenergic activity, may be less tolerable than SSRIs in patients with PD. However, worsening tremor generally has not been a clinically significant adverse event reported in PD depression clinical trials, although it was seen in 17% of patients receiving paroxetine and 21% of patients receiving venlafaxine compared to 7% of patients receiving placebo.9-11 If tremor worsens, mirtazapine could be considered because it has been reported to cause less tremor than SSRIs or TCAs.12

Among medications for PD, pramipexole, a dopamine agonist, may have a beneficial effect on depression.13 Additionally, some evidence supports rasagiline, a monoamine oxidase type B inhibitor, as an adjunctive medication for depression in PD.14 Nevertheless, antidepressant medications remain the standard pharmacologic treatment for PD depression.

Continue to: In terms of nonpharmacologic options...

 

 

In terms of nonpharmacologic options, cognitive-behavioral therapy (CBT) is likely efficacious, exercise (especially yoga) is likely efficacious, and repetitive transcranial magnetic stimulation may be efficacious.15,16 While further high-quality trials are needed, these treatments are low-risk and can be considered, especially for patients who cannot tolerate medications.

Apathy

Apathy—a loss of motivation and goal-directed behavior—can occur in up to 30% of patients during the prodromal period of PD, and in up to 70% of patients throughout the disease course.17 Apathy can coexist with depression, which can make apathy difficult to diagnose.17 Given the time constraints of a clinic visit, a practical approach would be to first screen for depression and cognitive impairment. If there is continued suspicion of apathy, the Movement Disorder Society-Sponsored Revision of the Unified Parkinson’s Disease Rating Scale part I question (“In the past week have you felt indifferent to doing activities or being with people?”) can be used to screen for apathy, and more detailed scales, such as the Apathy Scale (AS) or Lille Apathy Rating Scale (LARS), could be used if indicated.18

There are limited high-quality positive trials of apathy-specific treatments in PD. In an RCT of patients with PD who did not have depression or dementia, rivastigmine improved LARS scores compared to placebo.15 Piribedil, a D2/D3 receptor agonist, improved apathy in patients who underwent subthalamic nucleus deep brain stimulation (STN DBS).15 Exercise such as individualized physical therapy programs, dance, and Nordic walking as well as mindfulness interventions were shown to significantly reduce apathy scale scores.19 SSRIs, SNRIs, and rotigotine showed a trend toward reducing AS scores in RCTs.10,20

Larger, high-quality studies are needed to clarify the treatment of apathy in PD. In the meantime, a reasonable approach is to first treat any comorbid psychiatric or cognitive disorders, since apathy can be associated with these conditions, and to optimize antiparkinsonian medications for motor symptoms, motor fluctuations, and nonmotor fluctuations. Then, the investigational apathy treatments described in this section could be considered on an individual basis.

Anxiety disorders

Anxiety is seen throughout the disease course of PD in approximately 30% to 50% of patients.21 It can manifest as generalized anxiety disorder, panic disorder, and other anxiety disorders. There are no high-quality RCTs of pharmacologic treatments of anxiety specifically in patients with PD, except for a negative safety and tolerability study of buspirone in which one-half of patients experienced worsening motor symptoms.15,22 Thus, the treatment of anxiety in patients with PD is similar to treatments in the general population. SSRIs and SNRIs are typically considered first-line, benzodiazepines are sometimes used with caution (although cognitive adverse effects and fall risk need to be considered), and nonpharma­cologic treatments such as mindfulness yoga, exercise, CBT, and psycho­therapy can be effective.16,21,23

Continue to: Because there is the lack...

 

 

Because there is the lack of evidence-based treatments for anxiety in PD, we highlight 2 PD-specific anxiety disorders: internal tremor, and nonmotor “off” anxiety.

Internal tremor

Internal tremor is a sense of vibration in the axial and/or appendicular muscles that cannot be seen externally by the patient or examiner. It is not yet fully understood if this phenomenon is sensory, anxiety-related, related to subclinical tremor, or the result of a combination of these factors (ie, sensory awareness of a subclinical tremor that triggers or is worsened by anxiety). There is some evidence for subclinical tremor on electromyography, but internal tremor does not respond to antiparkinsonian medications in 70% of patients.24 More electrophysiological research is needed to clarify this phenomenon. Internal tremor has been associated with anxiety in 64% of patients and often improves with anxiolytic therapies.24

Although poorly understood, internal tremor is a documented phenomenon in 33% to 44% of patients with PD, and in some cases, it may be an initial symptom that motivates a patient to seek medical attention for the first time.24,25 Internal tremor has also been reported in patients with essential tremor and multiple sclerosis.25 Therefore, physicians should be aware of internal tremor because this symptom could herald an underlying neurological disease.

Nonmotor ‘off’ anxiety

Patients with PD are commonly prescribed carbidopa-levodopa, a dopamine precursor, at least 3 times daily. Initially, this medication controls motor symptoms well from 1 dose to the next. However, as the disease progresses, some patients report motor fluctuations in which an individual dose of carbidopa-levodopa may wear off early, take longer than usual to take effect, or not take effect at all. Patients describe these periods as an “off” state in which they do not feel their medications are working. Such motor fluctuations can lead to anxiety and avoidance behaviors, because patients fear being in public at times when the medication does not adequately control their motor symptoms.

In addition to these motor symptom fluctuations and related anxiety, patients can also experience nonmotor symptom fluctuations. A wide variety of nonmotor symptoms, such as mood, cognitive, and behavioral symptoms, have been reported to fluctuate in parallel with motor symptoms.26,27 One study reported fluctuating restlessness in 39% of patients with PD, excessive worry in 17%, shortness of breath in 13%, excessive sweating and fear in 12%, and palpitations in 10%.27 A patient with fluctuating shortness of breath, sweating, and palpitations (for example) may repeatedly present to the emergency department with a negative cardiac workup and eventually be diagnosed with panic disorder, whereas the patient is truly experiencing nonmotor “off” symptoms. Thus, it is important to be aware of nonmotor fluctuations so this diagnosis can be made and the symptoms appropriately treated. The first step in treating nonmotor fluctuations is to optimize the antiparkinsonian regimen to minimize fluctuations. If “off” anxiety symptoms persist, anxiolytic medications can be prescribed.21

Continue to: Psychosis

 

 

Psychosis

Psychosis can occur in prodromal and early PD but is most common in advanced PD.28 One study reported that 60% of patients developed hallucinations or delusions after 12 years of follow-up.29 Disease duration, disease severity, dementia, and rapid eye movement sleep behavior disorder are significant risk factors for psychosis in PD.30 Well-formed visual hallucinations are the most common manifestation of psychosis in patients with PD. Auditory hallucinations and delusions are less common. Delusions are usually seen in patients with dementia and are often paranoid delusions, such as of spousal infidelity.30 Sensory hallucinations can occur, but should not be mistaken with formication, a central pain syndrome in PD that can represent a nonmotor “off” symptom that may respond to dopaminergic medication.31 Other more mild psychotic symptoms include illusions or misinterpretation of stimuli, false sense of presence, and passage hallucinations of fleeting figures in the peripheral vision.30

The pathophysiology of PD psychosis is not entirely understood but differs from psychosis in other disorders. It can occur in the absence of antiparkinsonian medication exposure and is thought to be a consequence of the underlying disease process of PD involving neurodegeneration in certain brain regions and aberrant neurotransmission of not only dopamine but also serotonin, acetylcholine, and glutamate.30

Figure 2 outlines the management of psychosis in PD. After addressing medical and medication-related causes, it is important to determine if the psychotic symptom is sufficiently bothersome to and/or potentially dangerous for the patient to warrant treatment. If treatment is indicated, pimavanserin and clozapine are efficacious for psychosis in PD without worsening motor symptoms, and quetiapine is possibly efficacious with a low risk of worsening motor symptoms.15 Other antipsychotics, such as olanzapine, risperidone, and haloperidol, can substantially worsen motor symptoms.15 Both second-generation antipsychotics and pimavanserin have an FDA black-box warning for a higher risk of all-cause mortality in older patients with dementia; however, because psychosis is associated with early mortality in PD, the risk/benefit ratio should be discussed with the patient and family for shared decision-making.30 If the patient also has dementia, rivastigmine—which is FDA-approved for PD dementia (PDD)—may also improve hallucinations.32

An approach to psychosis in a patient with Parkinson’s disease

Cognitive disorders

This section focuses on PD mild cognitive impairment (PD-MCI) and PDD. When a patient with PD reports cognitive concerns, the approach outlined in Figure 3 can be used to diagnose the cognitive disorder. A detailed history, medication review, and physical examination can identify any medical or psychiatric conditions that could affect cognition. The American Academy of Neurology recommends screening for depression, obtaining blood levels of vitamin B12 and thyroid-stimulating hormone, and obtaining a CT or MRI of the brain to rule out reversible causes of dementia.33 A validated screening test such as the Montreal Cognitive Assessment, which has higher sensitivity for PD-MCI than the Mini-Mental State Examination, is used to identify and quantify cognitive impairment.34 Neuropsychological testing is the gold standard and can be used to confirm and/or better quantify the degree and domains of cognitive impairment.35 Typically, cognitive deficits in PD affect executive function, attention, and/or visuospatial domains more than memory and language early on, and deficits in visuospatial and language domains have the highest sensitivity for predicting progression to PDD.36

An approach to cognitive deficits in a patient with Parkinson’s disease

Once reversible causes of dementia are addressed or ruled out and cognitive testing is completed, the Movement Disorder Society (MDS) criteria for PD-MCI and PDD summarized in Figure 3 can be used to diagnose the cognitive disorder.37,38 The MDS criteria for PDD require a diagnosis of PD for ≥1 year prior to the onset of dementia to differentiate PDD from dementia with Lewy bodies (DLB). If the dementia starts within 1 year of the onset of parkinsonism, the diagnosis would be DLB. PDD and DLB are on the spectrum of Lewy body dementia, with the same Lewy body pathology in different temporal and spatial distributions in the brain.38

Continue to: PD-MCI is present in...

 

 

PD-MCI is present in approximately 25% of patients.35 PD-MCI does not always progress to dementia but increases the risk of dementia 6-fold. The prevalence of PDD increases with disease duration; it is present in approximately 50% of patients at 10 years and 80% of patients at 20 years of disease.35 Rivastigmine is the only FDA-approved medication to slow progression of PDD. There is insufficient evidence for other acetylcholinesterase inhibitors and memantine.15 Unfortunately, RCTs of pharmacotherapy for PD-MCI have failed to show efficacy. However, exercise, cognitive rehabilitation, and neuromodulation are being studied. In the meantime, addressing modifiable risk factors (such as vascular risk factors and alcohol consumption) and treating comorbid orthostatic hypotension, obstructive sleep apnea, and depression may improve cognition.35,39

Treatment-related disorders

Impulse control disorders

Impulse control disorders (ICDs) are an important medication-related consideration in patients with PD. The ICDs seen in PD include pathological gambling, binge eating, excessive shopping, hypersexual behaviors, and dopamine dysregulation syndrome (Table). These disorders are more common in younger patients with a history of impulsive personality traits and addictive behaviors (eg, history of tobacco or alcohol abuse), and are most strongly associated with dopaminergic therapies, particularly the dopamine agonists.40,41 In the DOMINION study, the odds of ICDs were 2- to 3.5-fold higher in patients taking dopamine agonists.42 This is mainly thought to be due to stimulation of D2/D3 receptors in the mesolimbic system.40 High doses of levodopa, monoamine oxidase inhibitors, and amantadine are also associated with ICDs.40-42

Impulse control disorder definitions, examples, and additional treatment considerations

The first step in managing ICDs is diagnosing them, which can be difficult because patients often are not forthcoming about these problems due to embarrassment or failure to recognize that the ICD is related to PD medications. If a family member accompanies the patient at the visit, the patient may not want to disclose the amount of money they spend or the extent to which the behavior is a problem. Thus, a screening questionnaire, such as the Questionnaire for Impulsive-Compulsive Disorders in Parkinson’s Disease (QUIP) can be a helpful way for patients to alert the clinician to the issue.41 Education for the patient and family is crucial before the ICD causes significant financial, health, or relationship problems.

The mainstay of treatment is to reduce or taper off the dopamine agonist or other offending agent while monitoring for worsening motor symptoms and dopamine withdrawal syndrome. If this is unsuccessful, there is very limited evidence for further treatment strategies (Table), including antidepressants, antipsychotics, and mood stabilizers.40,43,44 There is insufficient evidence for naltrexone based on an RCT that failed to meet its primary endpoint, although naltrexone did significantly reduce QUIP scores.15,44 There is also insufficient evidence for amantadine, which showed benefit in some studies but was associated with ICDs in the DOMINION study.15,40,42 In terms of nonpharmacologic treatments, CBT is likely efficacious.15,40 There are mixed results for STN DBS. Some studies showed improvement in the ICD, due at least in part to dopaminergic medication reduction postoperatively, but this treatment has also been reported to increase impulsivity.40,45

Deep brain stimulation–related disorders

For patients with PD, the ideal lead location for STN DBS is the dorsolateral aspect of the STN, as this is the motor region of the nucleus. The STN functions in indirect and hyperdirect pathways to put the brake on certain motor programs so only the desired movement can be executed. Its function is clinically demonstrated by patients with STN stroke who develop excessive ballistic movements. Adjacent to the motor region of the STN is a centrally located associative region and a medially located limbic region. Thus, when stimulating the dorsolateral STN, current can spread to those regions as well, and the STN’s ability to put the brake on behavioral and emotional programs can be affected.46 Stimulation of the STN has been associated with mania, euphoria, new-onset ICDs, decreased verbal fluency, and executive dysfunction. Depression, apathy, and anxiety can also occur, but more commonly result from rapid withdrawal of antiparkinsonian medications after DBS surgery.46,47 Therefore, for PD patients with DBS with new or worsening psychiatric or cognitive symptoms, it is important to inquire about any recent programming sessions with neurology as well as recent self-increases in stimulation by the patient using their controller. Collaboration with neurology is important to troubleshoot whether stimulation could be contributing to the patient’s psychiatric or cognitive symptoms.

Continue to: Bottom Line

 

 

Bottom Line

Mood, anxiety, psychotic, and cognitive symptoms and disorders are common psychiatric manifestations associated with Parkinson’s disease (PD). In addition, patients with PD may experience impulsive control disorders and other symptoms related to treatments they receive for PD. Careful assessment and collaboration with neurology is crucial to alleviating the effects of these conditions.

Related Resources

  • Weintraub D, Aarsland D, Chaudhuri KR, et al. The neuropsychiatry of Parkinson’s disease: advances and challenges. Lancet Neurology. 2022;21(1):89-102. doi:10.1016/S1474-4422(21)00330-6
  • Goldman JG, Guerra CM. Treatment of nonmotor symptoms associated with Parkinson disease. Neurologic Clinics. 2020;38(2):269-292. doi:10.1016/j.ncl.2019.12.003
  • Castrioto A, Lhommee E, Moro E et al. Mood and behavioral effects of subthalamic stimulation in Parkinson’s disease. Lancet Neurology. 2014;13(3):287-305. doi:10.1016/ S1474-4422(13)70294-1

Drug Brand Names

Amantadine • Gocovri
Carbidopa-levodopa • Sinemet
Clozapine • Clozaril
Haloperidol • Haldol
Memantine • Namenda
Mirtazapine • Remeron
Naltrexone • Vivitrol
Olanzapine • Zyprexa
Paroxetine • Paxil
Pimavanserin • Nuplazid
Piribedil • Pronoran
Pramipexole • Mirapex
Quetiapine • Seroquel
Rasagiline • Azilect
Risperidone • Risperdal
Rivastigmine • Exelon
Ropinirole • Requip
Rotigotine • Neupro
Venlafaxine • Effexor
Zonisamide • Zonegran

References

1. Bloem BR, Okun MS, Klein C. Parkinson’s disease. Lancet Neurology. 2021;397(10291):2284-2303.

2. Postuma RB, Berg D, Stern M, et al. MDS clinical diagnostic criteria for Parkinson’s disease. Movement Disorders. 2015;30(12):1591-1601.

3. Martinez-Martin P, Rodriguez-Blazquez C, Kurtiz MM, et al. The impact of non-motor symptoms on health-related quality of life of patients with Parkinson’s disease. Mov Disord. 2011;26(3):399-406.

4. Langston WJ. The Parkinson’s complex: parkinsonism is just the tip of the iceberg. Ann Neurol. 2006;59(4):591-596.

5. Cong S, Xiang C, Zhang S, et al. Prevalence and clinical aspects of depression in Parkinson’s disease: a systematic review and meta‑analysis of 129 studies. Neurosci Biobehav Rev. 2022;141:104749. doi:10.1016/j.neubiorev.2022.104749

6. Reijnders JS, Ehrt U, Weber WE, et al. A systematic review of prevalence studies in depression in Parkinson’s disease. Mov Disord. 2008;23(2):183-189.

7. Zahodne LB, Marsiske M, Okun MS, et al. Components of depression in Parkinson disease. J Geriatr Psychiatry Neurol. 2012;25(3):131-137.

8. Skapinakis P, Bakola E, Salanti G, et al. Efficacy and acceptability of selective serotonin reuptake inhibitors for the treatment of depression in Parkinson’s disease: a systematic review and meta-analysis of randomized controlled trials. BMC Neurology. 2010;10:49. doi:10.1186/1471-2377-10-49

9. Richard IH, McDermott MP, Kurlan R, et al; SAD-PD Study Group. A randomized, double-blind placebo-controlled trial of antidepressants in Parkinson’s disease. Neurology. 2012;78(16):1229-1236.

10. Takahashi M, Tabu H, Ozaki A, et al. Antidepressants for depression, apathy, and gait instability in Parkinson’s disease: a multicenter randomized study. Intern Med. 2019;58(3):361-368.

11. Bonuccelli U, Mecco G, Fabrini G, et al. A non-comparative assessment of tolerability and efficacy of duloxetine in the treatment of depressed patients with Parkinson’s disease. Expert Opin Pharmacother. 2012;13(16):2269-2280.

12. Wantanabe N, Omorio IM, Nakagawa A, et al; MANGA (Meta-Analysis of New Generation Antidepressants) Study Group. Safety reporting and adverse-event profile of mirtazapine described in randomized controlled trials in comparison with other classes of antidepressants in the acute-phase treatment of adults with depression. CNS Drugs. 2010;24(1):35-53.

13. Barone P, Scarzella L, Marconi R, et al; Depression/Parkinson Italian Study Group. Pramipexole versus sertraline in the treatment of depression in Parkinson’s disease: a national multicenter parallel-group randomized study. J Neurol. 2006;253(5):601-607.

14. Smith KM, Eyal E, Weintraub D, et al; ADAGIO Investigators. Combined rasagiline and anti-depressant use in Parkinson’s disease in the ADAGIO study: effects on non-motor symptoms and tolerability. JAMA Neurology. 2015;72(1):88-95.

15. Seppi K, Chaudhuri R, Coelho M, et al; the collaborators of the Parkinson’s Disease Update on Non-Motor Symptoms Study Group on behalf of the Movement Disorders Society Evidence-Based Medicine Committee. Update on treatments for nonmotor symptoms of Parkinson’s disease--an evidence-based medicine review. Mov Disord. 2019;34(2):180-198.

16. Kwok JYY, Kwan JCY, Auyeung M, et al. Effects of mindfulness yoga vs stretching and resistance training exercises on anxiety and depression for people with Parkinson disease: a randomized clinical trial. JAMA Neurol. 2019;76(7):755-763.

17. De Waele S, Cras P, Crosiers D. Apathy in Parkinson’s disease: defining the Park apathy subtype. Brain Sci. 2022;12(7):923.

18. Mele B, Van S, Holroyd-Leduc J, et al. Diagnosis, treatment and management of apathy in Parkinson’s disease: a scoping review. BMJ Open. 2020;10(9):037632. doi:10.1136/bmjopen-2020-037632

19. Mele B, Ismail Z, Goodarzi Z, et al. Non-pharmacological interventions to treat apathy in Parkinson’s disease: a realist review. Clin Park Relat Disord. 2021;4:100096. doi:10.1016/j.prdoa.2021.100096

20. Chung SJ, Asgharnejad M, Bauer L, et al. Evaluation of rotigotine transdermal patch for the treatment of depressive symptoms in patients with Parkinson’s disease. Expert Opin Pharmacother. 2016;(17)11:1453-1461.

21. Goldman JG, Guerra CM. Treatment of nonmotor symptoms associated with Parkinson disease. Neurol Clin. 2020;38(2):269-292.

22. Schneider RB, Auinger P, Tarolli CG, et al. A trial of buspirone for anxiety in Parkinson’s disease: safety and tolerability. Parkinsonism Relat Disord. 2020;81:69-74.

23. Moonen AJH, Mulders AEP, Defebvre L, et al. Cognitive behavioral therapy for anxiety in Parkinson’s disease: a randomized controlled trial. Mov Disord. 2021;36(11):2539-2548.

24. Shulman LM, Singer C, Bean JA, et al. Internal tremor in patient with Parkinson’s disease. Mov Disord. 1996;11(1):3-7.

25. Cochrane GD, Rizvi S, Abrantes A, et al. Internal tremor in Parkinson’s disease, multiple sclerosis, and essential tremor. Parkinsonism Relat Disord. 2015;21(10):1145-1147.

26. Del Prete E, Schmitt E, Meoni S, et al. Do neuropsychiatric fluctuations temporally match motor fluctuations in Parkinson’s disease? Neurol Sci. 2022;43(6):3641-3647.

27. Kleiner G, Fernandez HH, Chou KL, et al. Non-motor fluctuations in Parkinson’s disease: validation of the non-motor fluctuation assessment questionnaire. Mov Disord. 2021;36(6):1392-1400.

28. Pachi I, Maraki MI, Giagkou N, et al. Late life psychotic features in prodromal Parkinson’s disease. Parkinsonism Relat Disord. 2021;86:67-73.

29. Forsaa EB, Larsen JP, Wentzel-Larsen T, et al. A 12-year population-based study of psychosis in Parkinson’s disease. Arch Neurol. 2010;67(8):996-1001.

30. Chang A, Fox SH. Psychosis in Parkinson’s disease: epidemiology, pathophysiology, and management. Drugs. 2016;76(11):1093-1118.

31. Kasunich A, Kilbane C, Wiggins R. Movement disorders moment: pain and palliative care in movement disorders. Practical Neurology. 2021;20(4):63-67.

32. Burn D, Emre M, McKeith I, et al. Effects of rivastigmine in patients with and without visual hallucinations in dementia associated with Parkinson’s disease. Mov Disord. 2006;21(11):1899-1907.

33. Tripathi M, Vibha D. Reversible dementias. Indian J Psychiatry. 2009; 51 Suppl 1(Suppl 1): S52-S55.

34. Dalrymple-Alford JC, MacAskill MR, Nakas CT, et al. The MoCA: well-suited screen for cognitive impairment in Parkinson disease. Neurology. 2010;75(19):1717-1725.

35. Goldman J, Sieg, E. Cognitive impairment and dementia in Parkinson disease. Clin Geriatr Med. 2020;36(2):365-377.

36. Gonzalez-Latapi P, Bayram E, Litvan I, et al. Cognitive impairment in Parkinson’s disease: epidemiology, clinical profile, protective and risk factors. Behav Sci (Basel). 2021;11(5):74.

37. Litvan I, Goldman JG, Tröster AI, et al. Diagnostic criteria for mild cognitive impairment in Parkinson’s disease: Movement Disorder Society Task Force Guidelines. Mov Disord. 2012;27(3):349-356.

38. Dubois B, Burn D, Goetz C, et al. Diagnostic procedures for Parkinson’s disease dementia: recommendations from the movement disorder society task force. Mov Disord. 2007;22(16):2314-2324.

39. Aarsland D, Batzu L, Halliday GM, et al. Parkinson disease-associated cognitive impairment. Nat Rev Dis Primers. 2021;7(1):47. doi:10.1038/s41572-021-00280-3

40. Weintraub D, Claassen DO. Impulse control and related disorders in Parkinson’s disease. Int Rev Neurobiol. 2017;133:679-717.

41. Vilas D, Pont-Sunyer C, Tolosa E. Impulse control disorders in Parkinson’s disease. Parkinsonism Relat Disord. 2012;18 Suppl 1:S80-S84.

42. Weintraub D, Koester J, Potenza MN, et al. Impulse control disorders in Parkinson disease: a cross-sectional study of 3090 patients. Arch Neurol. 2010;67(5):589-595.

43. Faouzi J, Corvol JC, Mariani LL. Impulse control disorders and related behaviors in Parkinson’s disease: risk factors, clinical and genetic aspects, and management. Curr Opin Neurol. 2021;34(4):547-555.

44. Samuel M, Rodriguez-Oroz M, Antonini A, et al. Impulse control disorders in Parkinson’s disease: management, controversies, and potential approaches. Mov Disord. 2015;30(2):150-159.

45. Frank MJ, Samanta J, Moustafa AA, et al. Hold your horses: impulsivity, deep brain stimulation and medication in Parkinsonism. Science. 2007;318(5854):1309-1312.

46. Jahanshahi M, Obeso I, Baunez C, et al. Parkinson’s disease, the subthalamic nucleus, inhibition, and impulsivity. Mov Disord. 2015;30(2):128-140.

47. Castrioto A, Lhommée E, Moro E, et al. Mood and behavioral effects of subthalamic stimulation in Parkinson’s disease. Lancet Neurol. 2014;13(3):287-305.

Article PDF
Author and Disclosure Information

Alissa S. Higinbotham, MD
Assistant Professor of Neurology
Division of Parkinson’s Disease and Movement Disorders
University of Virginia Medical Center
Charlottesville, Virginia

Steven A. Gunzler, MD
Senior Attending Physician, Neurological Institute
Parkinson’s and Movement Disorders Center
University Hospitals Cleveland Medical Center
Associate Professor of Neurology
Case Western Reserve University School of Medicine
Cleveland, Ohio

Disclosures
Dr. Higinbotham reports no financial relationships with any companies whose products are mentioned in this article, or with manufacturers of competing products. Dr. Gunzler receives research support from Amneal, Biogen, the Michael J. Fox Foundation, the National Institutes of Health, the Parkinson’s Foundation, and Teva.

Issue
Current Psychiatry - 22(10)
Publications
Topics
Page Number
14-24
Sections
Author and Disclosure Information

Alissa S. Higinbotham, MD
Assistant Professor of Neurology
Division of Parkinson’s Disease and Movement Disorders
University of Virginia Medical Center
Charlottesville, Virginia

Steven A. Gunzler, MD
Senior Attending Physician, Neurological Institute
Parkinson’s and Movement Disorders Center
University Hospitals Cleveland Medical Center
Associate Professor of Neurology
Case Western Reserve University School of Medicine
Cleveland, Ohio

Disclosures
Dr. Higinbotham reports no financial relationships with any companies whose products are mentioned in this article, or with manufacturers of competing products. Dr. Gunzler receives research support from Amneal, Biogen, the Michael J. Fox Foundation, the National Institutes of Health, the Parkinson’s Foundation, and Teva.

Author and Disclosure Information

Alissa S. Higinbotham, MD
Assistant Professor of Neurology
Division of Parkinson’s Disease and Movement Disorders
University of Virginia Medical Center
Charlottesville, Virginia

Steven A. Gunzler, MD
Senior Attending Physician, Neurological Institute
Parkinson’s and Movement Disorders Center
University Hospitals Cleveland Medical Center
Associate Professor of Neurology
Case Western Reserve University School of Medicine
Cleveland, Ohio

Disclosures
Dr. Higinbotham reports no financial relationships with any companies whose products are mentioned in this article, or with manufacturers of competing products. Dr. Gunzler receives research support from Amneal, Biogen, the Michael J. Fox Foundation, the National Institutes of Health, the Parkinson’s Foundation, and Teva.

Article PDF
Article PDF

Parkinson’s disease (PD) is a neurodegenerative condition diagnosed pathologically by alpha synuclein–containing Lewy bodies and dopaminergic cell loss in the substantia nigra pars compacta of the midbrain. Loss of dopaminergic input to the caudate and putamen disrupts the direct and indirect basal ganglia pathways for motor control and contributes to the motor symptoms of PD.1 According to the Movement Disorder Society criteria, PD is diagnosed clinically by bradykinesia (slowness of movement) plus resting tremor and/or rigidity in the presence of supportive criteria, such as levodopa responsiveness and hyposmia, and in the absence of exclusion criteria and red flags that would suggest atypical parkinsonism or an alternative diagnosis.2

Although the diagnosis and treatment of PD focus heavily on the motor symptoms, nonmotor symptoms can arise decades before the onset of motor symptoms and continue throughout the lifespan. Nonmotor symptoms affect patients from head (ie, cognition and mood) to toe (ie, striatal toe pain) and multiple organ systems in between, including the olfactory, integumentary, cardiovascular, gastrointestinal, genitourinary, and autonomic nervous systems. Thus, it is not surprising that nonmotor symptoms of PD impact health-related quality of life more substantially than motor symptoms.3 A helpful analogy is to consider the motor symptoms of PD as the tip of the iceberg and the nonmotor symptoms as the larger, submerged portions of the iceberg.4

Nonmotor symptoms can negatively impact the treatment of motor symptoms. For example, imagine a patient who is very rigid and dyscoordinated in the arms and legs, which limits their ability to dress and walk. If this patient also suffers from nonmotor symptoms of orthostatic hypotension and psychosis—both of which can be exacerbated by levodopa—dose escalation of levodopa for the rigidity and dyscoordination could be compromised, rendering the patient undertreated and less mobile.

In this review, we focus on identifying and managing nonmotor symptoms of PD that are relevant to psychiatric practice, including mood and motivational disorders, anxiety disorders, psychosis, cognitive disorders, and disorders related to the pharmacologic and surgical treatment of PD (Figure 1).

The neuropsychiatric aspects of Parkinson’s disease

Mood and motivational disorders

Depression

Depression is a common symptom in PD that can occur in the prodromal period years to decades before the onset of motor symptoms, as well as throughout the disease course.5 The prevalence of depression in PD varies from 3% to 90%, depending on the methods of assessment, clinical setting of assessment, motor symptom severity, and other factors; clinically significant depression likely affects approximately 35% to 38% of patients.5,6 How depression in patients with PD differs from depression in the general population is not entirely understood, but there does seem to be less guilt and suicidal ideation and a substantial component of negative affect, including dysphoria and anxiety.7 Practically speaking, depression is treated similarly in PD and general populations, with a few considerations.

Despite limited randomized controlled trials (RCTs) for efficacy specifically in patients with PD, selective serotonin reuptake inhibitors (SSRIs) and serotonin-norepinephrine reuptake inhibitors (SNRIs) are generally considered first-line treatments. There is also evidence for tricyclic antidepressants (TCAs), but due to potential worsening of orthostatic hypotension and cognition, TCAs may not be a favorable option for certain patients with PD.8,9 All antidepressants have the potential to worsen tremor. Theoretically, SNRIs, with noradrenergic activity, may be less tolerable than SSRIs in patients with PD. However, worsening tremor generally has not been a clinically significant adverse event reported in PD depression clinical trials, although it was seen in 17% of patients receiving paroxetine and 21% of patients receiving venlafaxine compared to 7% of patients receiving placebo.9-11 If tremor worsens, mirtazapine could be considered because it has been reported to cause less tremor than SSRIs or TCAs.12

Among medications for PD, pramipexole, a dopamine agonist, may have a beneficial effect on depression.13 Additionally, some evidence supports rasagiline, a monoamine oxidase type B inhibitor, as an adjunctive medication for depression in PD.14 Nevertheless, antidepressant medications remain the standard pharmacologic treatment for PD depression.

Continue to: In terms of nonpharmacologic options...

 

 

In terms of nonpharmacologic options, cognitive-behavioral therapy (CBT) is likely efficacious, exercise (especially yoga) is likely efficacious, and repetitive transcranial magnetic stimulation may be efficacious.15,16 While further high-quality trials are needed, these treatments are low-risk and can be considered, especially for patients who cannot tolerate medications.

Apathy

Apathy—a loss of motivation and goal-directed behavior—can occur in up to 30% of patients during the prodromal period of PD, and in up to 70% of patients throughout the disease course.17 Apathy can coexist with depression, which can make apathy difficult to diagnose.17 Given the time constraints of a clinic visit, a practical approach would be to first screen for depression and cognitive impairment. If there is continued suspicion of apathy, the Movement Disorder Society-Sponsored Revision of the Unified Parkinson’s Disease Rating Scale part I question (“In the past week have you felt indifferent to doing activities or being with people?”) can be used to screen for apathy, and more detailed scales, such as the Apathy Scale (AS) or Lille Apathy Rating Scale (LARS), could be used if indicated.18

There are limited high-quality positive trials of apathy-specific treatments in PD. In an RCT of patients with PD who did not have depression or dementia, rivastigmine improved LARS scores compared to placebo.15 Piribedil, a D2/D3 receptor agonist, improved apathy in patients who underwent subthalamic nucleus deep brain stimulation (STN DBS).15 Exercise such as individualized physical therapy programs, dance, and Nordic walking as well as mindfulness interventions were shown to significantly reduce apathy scale scores.19 SSRIs, SNRIs, and rotigotine showed a trend toward reducing AS scores in RCTs.10,20

Larger, high-quality studies are needed to clarify the treatment of apathy in PD. In the meantime, a reasonable approach is to first treat any comorbid psychiatric or cognitive disorders, since apathy can be associated with these conditions, and to optimize antiparkinsonian medications for motor symptoms, motor fluctuations, and nonmotor fluctuations. Then, the investigational apathy treatments described in this section could be considered on an individual basis.

Anxiety disorders

Anxiety is seen throughout the disease course of PD in approximately 30% to 50% of patients.21 It can manifest as generalized anxiety disorder, panic disorder, and other anxiety disorders. There are no high-quality RCTs of pharmacologic treatments of anxiety specifically in patients with PD, except for a negative safety and tolerability study of buspirone in which one-half of patients experienced worsening motor symptoms.15,22 Thus, the treatment of anxiety in patients with PD is similar to treatments in the general population. SSRIs and SNRIs are typically considered first-line, benzodiazepines are sometimes used with caution (although cognitive adverse effects and fall risk need to be considered), and nonpharma­cologic treatments such as mindfulness yoga, exercise, CBT, and psycho­therapy can be effective.16,21,23

Continue to: Because there is the lack...

 

 

Because there is the lack of evidence-based treatments for anxiety in PD, we highlight 2 PD-specific anxiety disorders: internal tremor, and nonmotor “off” anxiety.

Internal tremor

Internal tremor is a sense of vibration in the axial and/or appendicular muscles that cannot be seen externally by the patient or examiner. It is not yet fully understood if this phenomenon is sensory, anxiety-related, related to subclinical tremor, or the result of a combination of these factors (ie, sensory awareness of a subclinical tremor that triggers or is worsened by anxiety). There is some evidence for subclinical tremor on electromyography, but internal tremor does not respond to antiparkinsonian medications in 70% of patients.24 More electrophysiological research is needed to clarify this phenomenon. Internal tremor has been associated with anxiety in 64% of patients and often improves with anxiolytic therapies.24

Although poorly understood, internal tremor is a documented phenomenon in 33% to 44% of patients with PD, and in some cases, it may be an initial symptom that motivates a patient to seek medical attention for the first time.24,25 Internal tremor has also been reported in patients with essential tremor and multiple sclerosis.25 Therefore, physicians should be aware of internal tremor because this symptom could herald an underlying neurological disease.

Nonmotor ‘off’ anxiety

Patients with PD are commonly prescribed carbidopa-levodopa, a dopamine precursor, at least 3 times daily. Initially, this medication controls motor symptoms well from 1 dose to the next. However, as the disease progresses, some patients report motor fluctuations in which an individual dose of carbidopa-levodopa may wear off early, take longer than usual to take effect, or not take effect at all. Patients describe these periods as an “off” state in which they do not feel their medications are working. Such motor fluctuations can lead to anxiety and avoidance behaviors, because patients fear being in public at times when the medication does not adequately control their motor symptoms.

In addition to these motor symptom fluctuations and related anxiety, patients can also experience nonmotor symptom fluctuations. A wide variety of nonmotor symptoms, such as mood, cognitive, and behavioral symptoms, have been reported to fluctuate in parallel with motor symptoms.26,27 One study reported fluctuating restlessness in 39% of patients with PD, excessive worry in 17%, shortness of breath in 13%, excessive sweating and fear in 12%, and palpitations in 10%.27 A patient with fluctuating shortness of breath, sweating, and palpitations (for example) may repeatedly present to the emergency department with a negative cardiac workup and eventually be diagnosed with panic disorder, whereas the patient is truly experiencing nonmotor “off” symptoms. Thus, it is important to be aware of nonmotor fluctuations so this diagnosis can be made and the symptoms appropriately treated. The first step in treating nonmotor fluctuations is to optimize the antiparkinsonian regimen to minimize fluctuations. If “off” anxiety symptoms persist, anxiolytic medications can be prescribed.21

Continue to: Psychosis

 

 

Psychosis

Psychosis can occur in prodromal and early PD but is most common in advanced PD.28 One study reported that 60% of patients developed hallucinations or delusions after 12 years of follow-up.29 Disease duration, disease severity, dementia, and rapid eye movement sleep behavior disorder are significant risk factors for psychosis in PD.30 Well-formed visual hallucinations are the most common manifestation of psychosis in patients with PD. Auditory hallucinations and delusions are less common. Delusions are usually seen in patients with dementia and are often paranoid delusions, such as of spousal infidelity.30 Sensory hallucinations can occur, but should not be mistaken with formication, a central pain syndrome in PD that can represent a nonmotor “off” symptom that may respond to dopaminergic medication.31 Other more mild psychotic symptoms include illusions or misinterpretation of stimuli, false sense of presence, and passage hallucinations of fleeting figures in the peripheral vision.30

The pathophysiology of PD psychosis is not entirely understood but differs from psychosis in other disorders. It can occur in the absence of antiparkinsonian medication exposure and is thought to be a consequence of the underlying disease process of PD involving neurodegeneration in certain brain regions and aberrant neurotransmission of not only dopamine but also serotonin, acetylcholine, and glutamate.30

Figure 2 outlines the management of psychosis in PD. After addressing medical and medication-related causes, it is important to determine if the psychotic symptom is sufficiently bothersome to and/or potentially dangerous for the patient to warrant treatment. If treatment is indicated, pimavanserin and clozapine are efficacious for psychosis in PD without worsening motor symptoms, and quetiapine is possibly efficacious with a low risk of worsening motor symptoms.15 Other antipsychotics, such as olanzapine, risperidone, and haloperidol, can substantially worsen motor symptoms.15 Both second-generation antipsychotics and pimavanserin have an FDA black-box warning for a higher risk of all-cause mortality in older patients with dementia; however, because psychosis is associated with early mortality in PD, the risk/benefit ratio should be discussed with the patient and family for shared decision-making.30 If the patient also has dementia, rivastigmine—which is FDA-approved for PD dementia (PDD)—may also improve hallucinations.32

An approach to psychosis in a patient with Parkinson’s disease

Cognitive disorders

This section focuses on PD mild cognitive impairment (PD-MCI) and PDD. When a patient with PD reports cognitive concerns, the approach outlined in Figure 3 can be used to diagnose the cognitive disorder. A detailed history, medication review, and physical examination can identify any medical or psychiatric conditions that could affect cognition. The American Academy of Neurology recommends screening for depression, obtaining blood levels of vitamin B12 and thyroid-stimulating hormone, and obtaining a CT or MRI of the brain to rule out reversible causes of dementia.33 A validated screening test such as the Montreal Cognitive Assessment, which has higher sensitivity for PD-MCI than the Mini-Mental State Examination, is used to identify and quantify cognitive impairment.34 Neuropsychological testing is the gold standard and can be used to confirm and/or better quantify the degree and domains of cognitive impairment.35 Typically, cognitive deficits in PD affect executive function, attention, and/or visuospatial domains more than memory and language early on, and deficits in visuospatial and language domains have the highest sensitivity for predicting progression to PDD.36

An approach to cognitive deficits in a patient with Parkinson’s disease

Once reversible causes of dementia are addressed or ruled out and cognitive testing is completed, the Movement Disorder Society (MDS) criteria for PD-MCI and PDD summarized in Figure 3 can be used to diagnose the cognitive disorder.37,38 The MDS criteria for PDD require a diagnosis of PD for ≥1 year prior to the onset of dementia to differentiate PDD from dementia with Lewy bodies (DLB). If the dementia starts within 1 year of the onset of parkinsonism, the diagnosis would be DLB. PDD and DLB are on the spectrum of Lewy body dementia, with the same Lewy body pathology in different temporal and spatial distributions in the brain.38

Continue to: PD-MCI is present in...

 

 

PD-MCI is present in approximately 25% of patients.35 PD-MCI does not always progress to dementia but increases the risk of dementia 6-fold. The prevalence of PDD increases with disease duration; it is present in approximately 50% of patients at 10 years and 80% of patients at 20 years of disease.35 Rivastigmine is the only FDA-approved medication to slow progression of PDD. There is insufficient evidence for other acetylcholinesterase inhibitors and memantine.15 Unfortunately, RCTs of pharmacotherapy for PD-MCI have failed to show efficacy. However, exercise, cognitive rehabilitation, and neuromodulation are being studied. In the meantime, addressing modifiable risk factors (such as vascular risk factors and alcohol consumption) and treating comorbid orthostatic hypotension, obstructive sleep apnea, and depression may improve cognition.35,39

Treatment-related disorders

Impulse control disorders

Impulse control disorders (ICDs) are an important medication-related consideration in patients with PD. The ICDs seen in PD include pathological gambling, binge eating, excessive shopping, hypersexual behaviors, and dopamine dysregulation syndrome (Table). These disorders are more common in younger patients with a history of impulsive personality traits and addictive behaviors (eg, history of tobacco or alcohol abuse), and are most strongly associated with dopaminergic therapies, particularly the dopamine agonists.40,41 In the DOMINION study, the odds of ICDs were 2- to 3.5-fold higher in patients taking dopamine agonists.42 This is mainly thought to be due to stimulation of D2/D3 receptors in the mesolimbic system.40 High doses of levodopa, monoamine oxidase inhibitors, and amantadine are also associated with ICDs.40-42

Impulse control disorder definitions, examples, and additional treatment considerations

The first step in managing ICDs is diagnosing them, which can be difficult because patients often are not forthcoming about these problems due to embarrassment or failure to recognize that the ICD is related to PD medications. If a family member accompanies the patient at the visit, the patient may not want to disclose the amount of money they spend or the extent to which the behavior is a problem. Thus, a screening questionnaire, such as the Questionnaire for Impulsive-Compulsive Disorders in Parkinson’s Disease (QUIP) can be a helpful way for patients to alert the clinician to the issue.41 Education for the patient and family is crucial before the ICD causes significant financial, health, or relationship problems.

The mainstay of treatment is to reduce or taper off the dopamine agonist or other offending agent while monitoring for worsening motor symptoms and dopamine withdrawal syndrome. If this is unsuccessful, there is very limited evidence for further treatment strategies (Table), including antidepressants, antipsychotics, and mood stabilizers.40,43,44 There is insufficient evidence for naltrexone based on an RCT that failed to meet its primary endpoint, although naltrexone did significantly reduce QUIP scores.15,44 There is also insufficient evidence for amantadine, which showed benefit in some studies but was associated with ICDs in the DOMINION study.15,40,42 In terms of nonpharmacologic treatments, CBT is likely efficacious.15,40 There are mixed results for STN DBS. Some studies showed improvement in the ICD, due at least in part to dopaminergic medication reduction postoperatively, but this treatment has also been reported to increase impulsivity.40,45

Deep brain stimulation–related disorders

For patients with PD, the ideal lead location for STN DBS is the dorsolateral aspect of the STN, as this is the motor region of the nucleus. The STN functions in indirect and hyperdirect pathways to put the brake on certain motor programs so only the desired movement can be executed. Its function is clinically demonstrated by patients with STN stroke who develop excessive ballistic movements. Adjacent to the motor region of the STN is a centrally located associative region and a medially located limbic region. Thus, when stimulating the dorsolateral STN, current can spread to those regions as well, and the STN’s ability to put the brake on behavioral and emotional programs can be affected.46 Stimulation of the STN has been associated with mania, euphoria, new-onset ICDs, decreased verbal fluency, and executive dysfunction. Depression, apathy, and anxiety can also occur, but more commonly result from rapid withdrawal of antiparkinsonian medications after DBS surgery.46,47 Therefore, for PD patients with DBS with new or worsening psychiatric or cognitive symptoms, it is important to inquire about any recent programming sessions with neurology as well as recent self-increases in stimulation by the patient using their controller. Collaboration with neurology is important to troubleshoot whether stimulation could be contributing to the patient’s psychiatric or cognitive symptoms.

Continue to: Bottom Line

 

 

Bottom Line

Mood, anxiety, psychotic, and cognitive symptoms and disorders are common psychiatric manifestations associated with Parkinson’s disease (PD). In addition, patients with PD may experience impulsive control disorders and other symptoms related to treatments they receive for PD. Careful assessment and collaboration with neurology is crucial to alleviating the effects of these conditions.

Related Resources

  • Weintraub D, Aarsland D, Chaudhuri KR, et al. The neuropsychiatry of Parkinson’s disease: advances and challenges. Lancet Neurology. 2022;21(1):89-102. doi:10.1016/S1474-4422(21)00330-6
  • Goldman JG, Guerra CM. Treatment of nonmotor symptoms associated with Parkinson disease. Neurologic Clinics. 2020;38(2):269-292. doi:10.1016/j.ncl.2019.12.003
  • Castrioto A, Lhommee E, Moro E et al. Mood and behavioral effects of subthalamic stimulation in Parkinson’s disease. Lancet Neurology. 2014;13(3):287-305. doi:10.1016/ S1474-4422(13)70294-1

Drug Brand Names

Amantadine • Gocovri
Carbidopa-levodopa • Sinemet
Clozapine • Clozaril
Haloperidol • Haldol
Memantine • Namenda
Mirtazapine • Remeron
Naltrexone • Vivitrol
Olanzapine • Zyprexa
Paroxetine • Paxil
Pimavanserin • Nuplazid
Piribedil • Pronoran
Pramipexole • Mirapex
Quetiapine • Seroquel
Rasagiline • Azilect
Risperidone • Risperdal
Rivastigmine • Exelon
Ropinirole • Requip
Rotigotine • Neupro
Venlafaxine • Effexor
Zonisamide • Zonegran

Parkinson’s disease (PD) is a neurodegenerative condition diagnosed pathologically by alpha synuclein–containing Lewy bodies and dopaminergic cell loss in the substantia nigra pars compacta of the midbrain. Loss of dopaminergic input to the caudate and putamen disrupts the direct and indirect basal ganglia pathways for motor control and contributes to the motor symptoms of PD.1 According to the Movement Disorder Society criteria, PD is diagnosed clinically by bradykinesia (slowness of movement) plus resting tremor and/or rigidity in the presence of supportive criteria, such as levodopa responsiveness and hyposmia, and in the absence of exclusion criteria and red flags that would suggest atypical parkinsonism or an alternative diagnosis.2

Although the diagnosis and treatment of PD focus heavily on the motor symptoms, nonmotor symptoms can arise decades before the onset of motor symptoms and continue throughout the lifespan. Nonmotor symptoms affect patients from head (ie, cognition and mood) to toe (ie, striatal toe pain) and multiple organ systems in between, including the olfactory, integumentary, cardiovascular, gastrointestinal, genitourinary, and autonomic nervous systems. Thus, it is not surprising that nonmotor symptoms of PD impact health-related quality of life more substantially than motor symptoms.3 A helpful analogy is to consider the motor symptoms of PD as the tip of the iceberg and the nonmotor symptoms as the larger, submerged portions of the iceberg.4

Nonmotor symptoms can negatively impact the treatment of motor symptoms. For example, imagine a patient who is very rigid and dyscoordinated in the arms and legs, which limits their ability to dress and walk. If this patient also suffers from nonmotor symptoms of orthostatic hypotension and psychosis—both of which can be exacerbated by levodopa—dose escalation of levodopa for the rigidity and dyscoordination could be compromised, rendering the patient undertreated and less mobile.

In this review, we focus on identifying and managing nonmotor symptoms of PD that are relevant to psychiatric practice, including mood and motivational disorders, anxiety disorders, psychosis, cognitive disorders, and disorders related to the pharmacologic and surgical treatment of PD (Figure 1).

The neuropsychiatric aspects of Parkinson’s disease

Mood and motivational disorders

Depression

Depression is a common symptom in PD that can occur in the prodromal period years to decades before the onset of motor symptoms, as well as throughout the disease course.5 The prevalence of depression in PD varies from 3% to 90%, depending on the methods of assessment, clinical setting of assessment, motor symptom severity, and other factors; clinically significant depression likely affects approximately 35% to 38% of patients.5,6 How depression in patients with PD differs from depression in the general population is not entirely understood, but there does seem to be less guilt and suicidal ideation and a substantial component of negative affect, including dysphoria and anxiety.7 Practically speaking, depression is treated similarly in PD and general populations, with a few considerations.

Despite limited randomized controlled trials (RCTs) for efficacy specifically in patients with PD, selective serotonin reuptake inhibitors (SSRIs) and serotonin-norepinephrine reuptake inhibitors (SNRIs) are generally considered first-line treatments. There is also evidence for tricyclic antidepressants (TCAs), but due to potential worsening of orthostatic hypotension and cognition, TCAs may not be a favorable option for certain patients with PD.8,9 All antidepressants have the potential to worsen tremor. Theoretically, SNRIs, with noradrenergic activity, may be less tolerable than SSRIs in patients with PD. However, worsening tremor generally has not been a clinically significant adverse event reported in PD depression clinical trials, although it was seen in 17% of patients receiving paroxetine and 21% of patients receiving venlafaxine compared to 7% of patients receiving placebo.9-11 If tremor worsens, mirtazapine could be considered because it has been reported to cause less tremor than SSRIs or TCAs.12

Among medications for PD, pramipexole, a dopamine agonist, may have a beneficial effect on depression.13 Additionally, some evidence supports rasagiline, a monoamine oxidase type B inhibitor, as an adjunctive medication for depression in PD.14 Nevertheless, antidepressant medications remain the standard pharmacologic treatment for PD depression.

Continue to: In terms of nonpharmacologic options...

 

 

In terms of nonpharmacologic options, cognitive-behavioral therapy (CBT) is likely efficacious, exercise (especially yoga) is likely efficacious, and repetitive transcranial magnetic stimulation may be efficacious.15,16 While further high-quality trials are needed, these treatments are low-risk and can be considered, especially for patients who cannot tolerate medications.

Apathy

Apathy—a loss of motivation and goal-directed behavior—can occur in up to 30% of patients during the prodromal period of PD, and in up to 70% of patients throughout the disease course.17 Apathy can coexist with depression, which can make apathy difficult to diagnose.17 Given the time constraints of a clinic visit, a practical approach would be to first screen for depression and cognitive impairment. If there is continued suspicion of apathy, the Movement Disorder Society-Sponsored Revision of the Unified Parkinson’s Disease Rating Scale part I question (“In the past week have you felt indifferent to doing activities or being with people?”) can be used to screen for apathy, and more detailed scales, such as the Apathy Scale (AS) or Lille Apathy Rating Scale (LARS), could be used if indicated.18

There are limited high-quality positive trials of apathy-specific treatments in PD. In an RCT of patients with PD who did not have depression or dementia, rivastigmine improved LARS scores compared to placebo.15 Piribedil, a D2/D3 receptor agonist, improved apathy in patients who underwent subthalamic nucleus deep brain stimulation (STN DBS).15 Exercise such as individualized physical therapy programs, dance, and Nordic walking as well as mindfulness interventions were shown to significantly reduce apathy scale scores.19 SSRIs, SNRIs, and rotigotine showed a trend toward reducing AS scores in RCTs.10,20

Larger, high-quality studies are needed to clarify the treatment of apathy in PD. In the meantime, a reasonable approach is to first treat any comorbid psychiatric or cognitive disorders, since apathy can be associated with these conditions, and to optimize antiparkinsonian medications for motor symptoms, motor fluctuations, and nonmotor fluctuations. Then, the investigational apathy treatments described in this section could be considered on an individual basis.

Anxiety disorders

Anxiety is seen throughout the disease course of PD in approximately 30% to 50% of patients.21 It can manifest as generalized anxiety disorder, panic disorder, and other anxiety disorders. There are no high-quality RCTs of pharmacologic treatments of anxiety specifically in patients with PD, except for a negative safety and tolerability study of buspirone in which one-half of patients experienced worsening motor symptoms.15,22 Thus, the treatment of anxiety in patients with PD is similar to treatments in the general population. SSRIs and SNRIs are typically considered first-line, benzodiazepines are sometimes used with caution (although cognitive adverse effects and fall risk need to be considered), and nonpharma­cologic treatments such as mindfulness yoga, exercise, CBT, and psycho­therapy can be effective.16,21,23

Continue to: Because there is the lack...

 

 

Because there is the lack of evidence-based treatments for anxiety in PD, we highlight 2 PD-specific anxiety disorders: internal tremor, and nonmotor “off” anxiety.

Internal tremor

Internal tremor is a sense of vibration in the axial and/or appendicular muscles that cannot be seen externally by the patient or examiner. It is not yet fully understood if this phenomenon is sensory, anxiety-related, related to subclinical tremor, or the result of a combination of these factors (ie, sensory awareness of a subclinical tremor that triggers or is worsened by anxiety). There is some evidence for subclinical tremor on electromyography, but internal tremor does not respond to antiparkinsonian medications in 70% of patients.24 More electrophysiological research is needed to clarify this phenomenon. Internal tremor has been associated with anxiety in 64% of patients and often improves with anxiolytic therapies.24

Although poorly understood, internal tremor is a documented phenomenon in 33% to 44% of patients with PD, and in some cases, it may be an initial symptom that motivates a patient to seek medical attention for the first time.24,25 Internal tremor has also been reported in patients with essential tremor and multiple sclerosis.25 Therefore, physicians should be aware of internal tremor because this symptom could herald an underlying neurological disease.

Nonmotor ‘off’ anxiety

Patients with PD are commonly prescribed carbidopa-levodopa, a dopamine precursor, at least 3 times daily. Initially, this medication controls motor symptoms well from 1 dose to the next. However, as the disease progresses, some patients report motor fluctuations in which an individual dose of carbidopa-levodopa may wear off early, take longer than usual to take effect, or not take effect at all. Patients describe these periods as an “off” state in which they do not feel their medications are working. Such motor fluctuations can lead to anxiety and avoidance behaviors, because patients fear being in public at times when the medication does not adequately control their motor symptoms.

In addition to these motor symptom fluctuations and related anxiety, patients can also experience nonmotor symptom fluctuations. A wide variety of nonmotor symptoms, such as mood, cognitive, and behavioral symptoms, have been reported to fluctuate in parallel with motor symptoms.26,27 One study reported fluctuating restlessness in 39% of patients with PD, excessive worry in 17%, shortness of breath in 13%, excessive sweating and fear in 12%, and palpitations in 10%.27 A patient with fluctuating shortness of breath, sweating, and palpitations (for example) may repeatedly present to the emergency department with a negative cardiac workup and eventually be diagnosed with panic disorder, whereas the patient is truly experiencing nonmotor “off” symptoms. Thus, it is important to be aware of nonmotor fluctuations so this diagnosis can be made and the symptoms appropriately treated. The first step in treating nonmotor fluctuations is to optimize the antiparkinsonian regimen to minimize fluctuations. If “off” anxiety symptoms persist, anxiolytic medications can be prescribed.21

Continue to: Psychosis

 

 

Psychosis

Psychosis can occur in prodromal and early PD but is most common in advanced PD.28 One study reported that 60% of patients developed hallucinations or delusions after 12 years of follow-up.29 Disease duration, disease severity, dementia, and rapid eye movement sleep behavior disorder are significant risk factors for psychosis in PD.30 Well-formed visual hallucinations are the most common manifestation of psychosis in patients with PD. Auditory hallucinations and delusions are less common. Delusions are usually seen in patients with dementia and are often paranoid delusions, such as of spousal infidelity.30 Sensory hallucinations can occur, but should not be mistaken with formication, a central pain syndrome in PD that can represent a nonmotor “off” symptom that may respond to dopaminergic medication.31 Other more mild psychotic symptoms include illusions or misinterpretation of stimuli, false sense of presence, and passage hallucinations of fleeting figures in the peripheral vision.30

The pathophysiology of PD psychosis is not entirely understood but differs from psychosis in other disorders. It can occur in the absence of antiparkinsonian medication exposure and is thought to be a consequence of the underlying disease process of PD involving neurodegeneration in certain brain regions and aberrant neurotransmission of not only dopamine but also serotonin, acetylcholine, and glutamate.30

Figure 2 outlines the management of psychosis in PD. After addressing medical and medication-related causes, it is important to determine if the psychotic symptom is sufficiently bothersome to and/or potentially dangerous for the patient to warrant treatment. If treatment is indicated, pimavanserin and clozapine are efficacious for psychosis in PD without worsening motor symptoms, and quetiapine is possibly efficacious with a low risk of worsening motor symptoms.15 Other antipsychotics, such as olanzapine, risperidone, and haloperidol, can substantially worsen motor symptoms.15 Both second-generation antipsychotics and pimavanserin have an FDA black-box warning for a higher risk of all-cause mortality in older patients with dementia; however, because psychosis is associated with early mortality in PD, the risk/benefit ratio should be discussed with the patient and family for shared decision-making.30 If the patient also has dementia, rivastigmine—which is FDA-approved for PD dementia (PDD)—may also improve hallucinations.32

An approach to psychosis in a patient with Parkinson’s disease

Cognitive disorders

This section focuses on PD mild cognitive impairment (PD-MCI) and PDD. When a patient with PD reports cognitive concerns, the approach outlined in Figure 3 can be used to diagnose the cognitive disorder. A detailed history, medication review, and physical examination can identify any medical or psychiatric conditions that could affect cognition. The American Academy of Neurology recommends screening for depression, obtaining blood levels of vitamin B12 and thyroid-stimulating hormone, and obtaining a CT or MRI of the brain to rule out reversible causes of dementia.33 A validated screening test such as the Montreal Cognitive Assessment, which has higher sensitivity for PD-MCI than the Mini-Mental State Examination, is used to identify and quantify cognitive impairment.34 Neuropsychological testing is the gold standard and can be used to confirm and/or better quantify the degree and domains of cognitive impairment.35 Typically, cognitive deficits in PD affect executive function, attention, and/or visuospatial domains more than memory and language early on, and deficits in visuospatial and language domains have the highest sensitivity for predicting progression to PDD.36

An approach to cognitive deficits in a patient with Parkinson’s disease

Once reversible causes of dementia are addressed or ruled out and cognitive testing is completed, the Movement Disorder Society (MDS) criteria for PD-MCI and PDD summarized in Figure 3 can be used to diagnose the cognitive disorder.37,38 The MDS criteria for PDD require a diagnosis of PD for ≥1 year prior to the onset of dementia to differentiate PDD from dementia with Lewy bodies (DLB). If the dementia starts within 1 year of the onset of parkinsonism, the diagnosis would be DLB. PDD and DLB are on the spectrum of Lewy body dementia, with the same Lewy body pathology in different temporal and spatial distributions in the brain.38

Continue to: PD-MCI is present in...

 

 

PD-MCI is present in approximately 25% of patients.35 PD-MCI does not always progress to dementia but increases the risk of dementia 6-fold. The prevalence of PDD increases with disease duration; it is present in approximately 50% of patients at 10 years and 80% of patients at 20 years of disease.35 Rivastigmine is the only FDA-approved medication to slow progression of PDD. There is insufficient evidence for other acetylcholinesterase inhibitors and memantine.15 Unfortunately, RCTs of pharmacotherapy for PD-MCI have failed to show efficacy. However, exercise, cognitive rehabilitation, and neuromodulation are being studied. In the meantime, addressing modifiable risk factors (such as vascular risk factors and alcohol consumption) and treating comorbid orthostatic hypotension, obstructive sleep apnea, and depression may improve cognition.35,39

Treatment-related disorders

Impulse control disorders

Impulse control disorders (ICDs) are an important medication-related consideration in patients with PD. The ICDs seen in PD include pathological gambling, binge eating, excessive shopping, hypersexual behaviors, and dopamine dysregulation syndrome (Table). These disorders are more common in younger patients with a history of impulsive personality traits and addictive behaviors (eg, history of tobacco or alcohol abuse), and are most strongly associated with dopaminergic therapies, particularly the dopamine agonists.40,41 In the DOMINION study, the odds of ICDs were 2- to 3.5-fold higher in patients taking dopamine agonists.42 This is mainly thought to be due to stimulation of D2/D3 receptors in the mesolimbic system.40 High doses of levodopa, monoamine oxidase inhibitors, and amantadine are also associated with ICDs.40-42

Impulse control disorder definitions, examples, and additional treatment considerations

The first step in managing ICDs is diagnosing them, which can be difficult because patients often are not forthcoming about these problems due to embarrassment or failure to recognize that the ICD is related to PD medications. If a family member accompanies the patient at the visit, the patient may not want to disclose the amount of money they spend or the extent to which the behavior is a problem. Thus, a screening questionnaire, such as the Questionnaire for Impulsive-Compulsive Disorders in Parkinson’s Disease (QUIP) can be a helpful way for patients to alert the clinician to the issue.41 Education for the patient and family is crucial before the ICD causes significant financial, health, or relationship problems.

The mainstay of treatment is to reduce or taper off the dopamine agonist or other offending agent while monitoring for worsening motor symptoms and dopamine withdrawal syndrome. If this is unsuccessful, there is very limited evidence for further treatment strategies (Table), including antidepressants, antipsychotics, and mood stabilizers.40,43,44 There is insufficient evidence for naltrexone based on an RCT that failed to meet its primary endpoint, although naltrexone did significantly reduce QUIP scores.15,44 There is also insufficient evidence for amantadine, which showed benefit in some studies but was associated with ICDs in the DOMINION study.15,40,42 In terms of nonpharmacologic treatments, CBT is likely efficacious.15,40 There are mixed results for STN DBS. Some studies showed improvement in the ICD, due at least in part to dopaminergic medication reduction postoperatively, but this treatment has also been reported to increase impulsivity.40,45

Deep brain stimulation–related disorders

For patients with PD, the ideal lead location for STN DBS is the dorsolateral aspect of the STN, as this is the motor region of the nucleus. The STN functions in indirect and hyperdirect pathways to put the brake on certain motor programs so only the desired movement can be executed. Its function is clinically demonstrated by patients with STN stroke who develop excessive ballistic movements. Adjacent to the motor region of the STN is a centrally located associative region and a medially located limbic region. Thus, when stimulating the dorsolateral STN, current can spread to those regions as well, and the STN’s ability to put the brake on behavioral and emotional programs can be affected.46 Stimulation of the STN has been associated with mania, euphoria, new-onset ICDs, decreased verbal fluency, and executive dysfunction. Depression, apathy, and anxiety can also occur, but more commonly result from rapid withdrawal of antiparkinsonian medications after DBS surgery.46,47 Therefore, for PD patients with DBS with new or worsening psychiatric or cognitive symptoms, it is important to inquire about any recent programming sessions with neurology as well as recent self-increases in stimulation by the patient using their controller. Collaboration with neurology is important to troubleshoot whether stimulation could be contributing to the patient’s psychiatric or cognitive symptoms.

Continue to: Bottom Line

 

 

Bottom Line

Mood, anxiety, psychotic, and cognitive symptoms and disorders are common psychiatric manifestations associated with Parkinson’s disease (PD). In addition, patients with PD may experience impulsive control disorders and other symptoms related to treatments they receive for PD. Careful assessment and collaboration with neurology is crucial to alleviating the effects of these conditions.

Related Resources

  • Weintraub D, Aarsland D, Chaudhuri KR, et al. The neuropsychiatry of Parkinson’s disease: advances and challenges. Lancet Neurology. 2022;21(1):89-102. doi:10.1016/S1474-4422(21)00330-6
  • Goldman JG, Guerra CM. Treatment of nonmotor symptoms associated with Parkinson disease. Neurologic Clinics. 2020;38(2):269-292. doi:10.1016/j.ncl.2019.12.003
  • Castrioto A, Lhommee E, Moro E et al. Mood and behavioral effects of subthalamic stimulation in Parkinson’s disease. Lancet Neurology. 2014;13(3):287-305. doi:10.1016/ S1474-4422(13)70294-1

Drug Brand Names

Amantadine • Gocovri
Carbidopa-levodopa • Sinemet
Clozapine • Clozaril
Haloperidol • Haldol
Memantine • Namenda
Mirtazapine • Remeron
Naltrexone • Vivitrol
Olanzapine • Zyprexa
Paroxetine • Paxil
Pimavanserin • Nuplazid
Piribedil • Pronoran
Pramipexole • Mirapex
Quetiapine • Seroquel
Rasagiline • Azilect
Risperidone • Risperdal
Rivastigmine • Exelon
Ropinirole • Requip
Rotigotine • Neupro
Venlafaxine • Effexor
Zonisamide • Zonegran

References

1. Bloem BR, Okun MS, Klein C. Parkinson’s disease. Lancet Neurology. 2021;397(10291):2284-2303.

2. Postuma RB, Berg D, Stern M, et al. MDS clinical diagnostic criteria for Parkinson’s disease. Movement Disorders. 2015;30(12):1591-1601.

3. Martinez-Martin P, Rodriguez-Blazquez C, Kurtiz MM, et al. The impact of non-motor symptoms on health-related quality of life of patients with Parkinson’s disease. Mov Disord. 2011;26(3):399-406.

4. Langston WJ. The Parkinson’s complex: parkinsonism is just the tip of the iceberg. Ann Neurol. 2006;59(4):591-596.

5. Cong S, Xiang C, Zhang S, et al. Prevalence and clinical aspects of depression in Parkinson’s disease: a systematic review and meta‑analysis of 129 studies. Neurosci Biobehav Rev. 2022;141:104749. doi:10.1016/j.neubiorev.2022.104749

6. Reijnders JS, Ehrt U, Weber WE, et al. A systematic review of prevalence studies in depression in Parkinson’s disease. Mov Disord. 2008;23(2):183-189.

7. Zahodne LB, Marsiske M, Okun MS, et al. Components of depression in Parkinson disease. J Geriatr Psychiatry Neurol. 2012;25(3):131-137.

8. Skapinakis P, Bakola E, Salanti G, et al. Efficacy and acceptability of selective serotonin reuptake inhibitors for the treatment of depression in Parkinson’s disease: a systematic review and meta-analysis of randomized controlled trials. BMC Neurology. 2010;10:49. doi:10.1186/1471-2377-10-49

9. Richard IH, McDermott MP, Kurlan R, et al; SAD-PD Study Group. A randomized, double-blind placebo-controlled trial of antidepressants in Parkinson’s disease. Neurology. 2012;78(16):1229-1236.

10. Takahashi M, Tabu H, Ozaki A, et al. Antidepressants for depression, apathy, and gait instability in Parkinson’s disease: a multicenter randomized study. Intern Med. 2019;58(3):361-368.

11. Bonuccelli U, Mecco G, Fabrini G, et al. A non-comparative assessment of tolerability and efficacy of duloxetine in the treatment of depressed patients with Parkinson’s disease. Expert Opin Pharmacother. 2012;13(16):2269-2280.

12. Wantanabe N, Omorio IM, Nakagawa A, et al; MANGA (Meta-Analysis of New Generation Antidepressants) Study Group. Safety reporting and adverse-event profile of mirtazapine described in randomized controlled trials in comparison with other classes of antidepressants in the acute-phase treatment of adults with depression. CNS Drugs. 2010;24(1):35-53.

13. Barone P, Scarzella L, Marconi R, et al; Depression/Parkinson Italian Study Group. Pramipexole versus sertraline in the treatment of depression in Parkinson’s disease: a national multicenter parallel-group randomized study. J Neurol. 2006;253(5):601-607.

14. Smith KM, Eyal E, Weintraub D, et al; ADAGIO Investigators. Combined rasagiline and anti-depressant use in Parkinson’s disease in the ADAGIO study: effects on non-motor symptoms and tolerability. JAMA Neurology. 2015;72(1):88-95.

15. Seppi K, Chaudhuri R, Coelho M, et al; the collaborators of the Parkinson’s Disease Update on Non-Motor Symptoms Study Group on behalf of the Movement Disorders Society Evidence-Based Medicine Committee. Update on treatments for nonmotor symptoms of Parkinson’s disease--an evidence-based medicine review. Mov Disord. 2019;34(2):180-198.

16. Kwok JYY, Kwan JCY, Auyeung M, et al. Effects of mindfulness yoga vs stretching and resistance training exercises on anxiety and depression for people with Parkinson disease: a randomized clinical trial. JAMA Neurol. 2019;76(7):755-763.

17. De Waele S, Cras P, Crosiers D. Apathy in Parkinson’s disease: defining the Park apathy subtype. Brain Sci. 2022;12(7):923.

18. Mele B, Van S, Holroyd-Leduc J, et al. Diagnosis, treatment and management of apathy in Parkinson’s disease: a scoping review. BMJ Open. 2020;10(9):037632. doi:10.1136/bmjopen-2020-037632

19. Mele B, Ismail Z, Goodarzi Z, et al. Non-pharmacological interventions to treat apathy in Parkinson’s disease: a realist review. Clin Park Relat Disord. 2021;4:100096. doi:10.1016/j.prdoa.2021.100096

20. Chung SJ, Asgharnejad M, Bauer L, et al. Evaluation of rotigotine transdermal patch for the treatment of depressive symptoms in patients with Parkinson’s disease. Expert Opin Pharmacother. 2016;(17)11:1453-1461.

21. Goldman JG, Guerra CM. Treatment of nonmotor symptoms associated with Parkinson disease. Neurol Clin. 2020;38(2):269-292.

22. Schneider RB, Auinger P, Tarolli CG, et al. A trial of buspirone for anxiety in Parkinson’s disease: safety and tolerability. Parkinsonism Relat Disord. 2020;81:69-74.

23. Moonen AJH, Mulders AEP, Defebvre L, et al. Cognitive behavioral therapy for anxiety in Parkinson’s disease: a randomized controlled trial. Mov Disord. 2021;36(11):2539-2548.

24. Shulman LM, Singer C, Bean JA, et al. Internal tremor in patient with Parkinson’s disease. Mov Disord. 1996;11(1):3-7.

25. Cochrane GD, Rizvi S, Abrantes A, et al. Internal tremor in Parkinson’s disease, multiple sclerosis, and essential tremor. Parkinsonism Relat Disord. 2015;21(10):1145-1147.

26. Del Prete E, Schmitt E, Meoni S, et al. Do neuropsychiatric fluctuations temporally match motor fluctuations in Parkinson’s disease? Neurol Sci. 2022;43(6):3641-3647.

27. Kleiner G, Fernandez HH, Chou KL, et al. Non-motor fluctuations in Parkinson’s disease: validation of the non-motor fluctuation assessment questionnaire. Mov Disord. 2021;36(6):1392-1400.

28. Pachi I, Maraki MI, Giagkou N, et al. Late life psychotic features in prodromal Parkinson’s disease. Parkinsonism Relat Disord. 2021;86:67-73.

29. Forsaa EB, Larsen JP, Wentzel-Larsen T, et al. A 12-year population-based study of psychosis in Parkinson’s disease. Arch Neurol. 2010;67(8):996-1001.

30. Chang A, Fox SH. Psychosis in Parkinson’s disease: epidemiology, pathophysiology, and management. Drugs. 2016;76(11):1093-1118.

31. Kasunich A, Kilbane C, Wiggins R. Movement disorders moment: pain and palliative care in movement disorders. Practical Neurology. 2021;20(4):63-67.

32. Burn D, Emre M, McKeith I, et al. Effects of rivastigmine in patients with and without visual hallucinations in dementia associated with Parkinson’s disease. Mov Disord. 2006;21(11):1899-1907.

33. Tripathi M, Vibha D. Reversible dementias. Indian J Psychiatry. 2009; 51 Suppl 1(Suppl 1): S52-S55.

34. Dalrymple-Alford JC, MacAskill MR, Nakas CT, et al. The MoCA: well-suited screen for cognitive impairment in Parkinson disease. Neurology. 2010;75(19):1717-1725.

35. Goldman J, Sieg, E. Cognitive impairment and dementia in Parkinson disease. Clin Geriatr Med. 2020;36(2):365-377.

36. Gonzalez-Latapi P, Bayram E, Litvan I, et al. Cognitive impairment in Parkinson’s disease: epidemiology, clinical profile, protective and risk factors. Behav Sci (Basel). 2021;11(5):74.

37. Litvan I, Goldman JG, Tröster AI, et al. Diagnostic criteria for mild cognitive impairment in Parkinson’s disease: Movement Disorder Society Task Force Guidelines. Mov Disord. 2012;27(3):349-356.

38. Dubois B, Burn D, Goetz C, et al. Diagnostic procedures for Parkinson’s disease dementia: recommendations from the movement disorder society task force. Mov Disord. 2007;22(16):2314-2324.

39. Aarsland D, Batzu L, Halliday GM, et al. Parkinson disease-associated cognitive impairment. Nat Rev Dis Primers. 2021;7(1):47. doi:10.1038/s41572-021-00280-3

40. Weintraub D, Claassen DO. Impulse control and related disorders in Parkinson’s disease. Int Rev Neurobiol. 2017;133:679-717.

41. Vilas D, Pont-Sunyer C, Tolosa E. Impulse control disorders in Parkinson’s disease. Parkinsonism Relat Disord. 2012;18 Suppl 1:S80-S84.

42. Weintraub D, Koester J, Potenza MN, et al. Impulse control disorders in Parkinson disease: a cross-sectional study of 3090 patients. Arch Neurol. 2010;67(5):589-595.

43. Faouzi J, Corvol JC, Mariani LL. Impulse control disorders and related behaviors in Parkinson’s disease: risk factors, clinical and genetic aspects, and management. Curr Opin Neurol. 2021;34(4):547-555.

44. Samuel M, Rodriguez-Oroz M, Antonini A, et al. Impulse control disorders in Parkinson’s disease: management, controversies, and potential approaches. Mov Disord. 2015;30(2):150-159.

45. Frank MJ, Samanta J, Moustafa AA, et al. Hold your horses: impulsivity, deep brain stimulation and medication in Parkinsonism. Science. 2007;318(5854):1309-1312.

46. Jahanshahi M, Obeso I, Baunez C, et al. Parkinson’s disease, the subthalamic nucleus, inhibition, and impulsivity. Mov Disord. 2015;30(2):128-140.

47. Castrioto A, Lhommée E, Moro E, et al. Mood and behavioral effects of subthalamic stimulation in Parkinson’s disease. Lancet Neurol. 2014;13(3):287-305.

References

1. Bloem BR, Okun MS, Klein C. Parkinson’s disease. Lancet Neurology. 2021;397(10291):2284-2303.

2. Postuma RB, Berg D, Stern M, et al. MDS clinical diagnostic criteria for Parkinson’s disease. Movement Disorders. 2015;30(12):1591-1601.

3. Martinez-Martin P, Rodriguez-Blazquez C, Kurtiz MM, et al. The impact of non-motor symptoms on health-related quality of life of patients with Parkinson’s disease. Mov Disord. 2011;26(3):399-406.

4. Langston WJ. The Parkinson’s complex: parkinsonism is just the tip of the iceberg. Ann Neurol. 2006;59(4):591-596.

5. Cong S, Xiang C, Zhang S, et al. Prevalence and clinical aspects of depression in Parkinson’s disease: a systematic review and meta‑analysis of 129 studies. Neurosci Biobehav Rev. 2022;141:104749. doi:10.1016/j.neubiorev.2022.104749

6. Reijnders JS, Ehrt U, Weber WE, et al. A systematic review of prevalence studies in depression in Parkinson’s disease. Mov Disord. 2008;23(2):183-189.

7. Zahodne LB, Marsiske M, Okun MS, et al. Components of depression in Parkinson disease. J Geriatr Psychiatry Neurol. 2012;25(3):131-137.

8. Skapinakis P, Bakola E, Salanti G, et al. Efficacy and acceptability of selective serotonin reuptake inhibitors for the treatment of depression in Parkinson’s disease: a systematic review and meta-analysis of randomized controlled trials. BMC Neurology. 2010;10:49. doi:10.1186/1471-2377-10-49

9. Richard IH, McDermott MP, Kurlan R, et al; SAD-PD Study Group. A randomized, double-blind placebo-controlled trial of antidepressants in Parkinson’s disease. Neurology. 2012;78(16):1229-1236.

10. Takahashi M, Tabu H, Ozaki A, et al. Antidepressants for depression, apathy, and gait instability in Parkinson’s disease: a multicenter randomized study. Intern Med. 2019;58(3):361-368.

11. Bonuccelli U, Mecco G, Fabrini G, et al. A non-comparative assessment of tolerability and efficacy of duloxetine in the treatment of depressed patients with Parkinson’s disease. Expert Opin Pharmacother. 2012;13(16):2269-2280.

12. Wantanabe N, Omorio IM, Nakagawa A, et al; MANGA (Meta-Analysis of New Generation Antidepressants) Study Group. Safety reporting and adverse-event profile of mirtazapine described in randomized controlled trials in comparison with other classes of antidepressants in the acute-phase treatment of adults with depression. CNS Drugs. 2010;24(1):35-53.

13. Barone P, Scarzella L, Marconi R, et al; Depression/Parkinson Italian Study Group. Pramipexole versus sertraline in the treatment of depression in Parkinson’s disease: a national multicenter parallel-group randomized study. J Neurol. 2006;253(5):601-607.

14. Smith KM, Eyal E, Weintraub D, et al; ADAGIO Investigators. Combined rasagiline and anti-depressant use in Parkinson’s disease in the ADAGIO study: effects on non-motor symptoms and tolerability. JAMA Neurology. 2015;72(1):88-95.

15. Seppi K, Chaudhuri R, Coelho M, et al; the collaborators of the Parkinson’s Disease Update on Non-Motor Symptoms Study Group on behalf of the Movement Disorders Society Evidence-Based Medicine Committee. Update on treatments for nonmotor symptoms of Parkinson’s disease--an evidence-based medicine review. Mov Disord. 2019;34(2):180-198.

16. Kwok JYY, Kwan JCY, Auyeung M, et al. Effects of mindfulness yoga vs stretching and resistance training exercises on anxiety and depression for people with Parkinson disease: a randomized clinical trial. JAMA Neurol. 2019;76(7):755-763.

17. De Waele S, Cras P, Crosiers D. Apathy in Parkinson’s disease: defining the Park apathy subtype. Brain Sci. 2022;12(7):923.

18. Mele B, Van S, Holroyd-Leduc J, et al. Diagnosis, treatment and management of apathy in Parkinson’s disease: a scoping review. BMJ Open. 2020;10(9):037632. doi:10.1136/bmjopen-2020-037632

19. Mele B, Ismail Z, Goodarzi Z, et al. Non-pharmacological interventions to treat apathy in Parkinson’s disease: a realist review. Clin Park Relat Disord. 2021;4:100096. doi:10.1016/j.prdoa.2021.100096

20. Chung SJ, Asgharnejad M, Bauer L, et al. Evaluation of rotigotine transdermal patch for the treatment of depressive symptoms in patients with Parkinson’s disease. Expert Opin Pharmacother. 2016;(17)11:1453-1461.

21. Goldman JG, Guerra CM. Treatment of nonmotor symptoms associated with Parkinson disease. Neurol Clin. 2020;38(2):269-292.

22. Schneider RB, Auinger P, Tarolli CG, et al. A trial of buspirone for anxiety in Parkinson’s disease: safety and tolerability. Parkinsonism Relat Disord. 2020;81:69-74.

23. Moonen AJH, Mulders AEP, Defebvre L, et al. Cognitive behavioral therapy for anxiety in Parkinson’s disease: a randomized controlled trial. Mov Disord. 2021;36(11):2539-2548.

24. Shulman LM, Singer C, Bean JA, et al. Internal tremor in patient with Parkinson’s disease. Mov Disord. 1996;11(1):3-7.

25. Cochrane GD, Rizvi S, Abrantes A, et al. Internal tremor in Parkinson’s disease, multiple sclerosis, and essential tremor. Parkinsonism Relat Disord. 2015;21(10):1145-1147.

26. Del Prete E, Schmitt E, Meoni S, et al. Do neuropsychiatric fluctuations temporally match motor fluctuations in Parkinson’s disease? Neurol Sci. 2022;43(6):3641-3647.

27. Kleiner G, Fernandez HH, Chou KL, et al. Non-motor fluctuations in Parkinson’s disease: validation of the non-motor fluctuation assessment questionnaire. Mov Disord. 2021;36(6):1392-1400.

28. Pachi I, Maraki MI, Giagkou N, et al. Late life psychotic features in prodromal Parkinson’s disease. Parkinsonism Relat Disord. 2021;86:67-73.

29. Forsaa EB, Larsen JP, Wentzel-Larsen T, et al. A 12-year population-based study of psychosis in Parkinson’s disease. Arch Neurol. 2010;67(8):996-1001.

30. Chang A, Fox SH. Psychosis in Parkinson’s disease: epidemiology, pathophysiology, and management. Drugs. 2016;76(11):1093-1118.

31. Kasunich A, Kilbane C, Wiggins R. Movement disorders moment: pain and palliative care in movement disorders. Practical Neurology. 2021;20(4):63-67.

32. Burn D, Emre M, McKeith I, et al. Effects of rivastigmine in patients with and without visual hallucinations in dementia associated with Parkinson’s disease. Mov Disord. 2006;21(11):1899-1907.

33. Tripathi M, Vibha D. Reversible dementias. Indian J Psychiatry. 2009; 51 Suppl 1(Suppl 1): S52-S55.

34. Dalrymple-Alford JC, MacAskill MR, Nakas CT, et al. The MoCA: well-suited screen for cognitive impairment in Parkinson disease. Neurology. 2010;75(19):1717-1725.

35. Goldman J, Sieg, E. Cognitive impairment and dementia in Parkinson disease. Clin Geriatr Med. 2020;36(2):365-377.

36. Gonzalez-Latapi P, Bayram E, Litvan I, et al. Cognitive impairment in Parkinson’s disease: epidemiology, clinical profile, protective and risk factors. Behav Sci (Basel). 2021;11(5):74.

37. Litvan I, Goldman JG, Tröster AI, et al. Diagnostic criteria for mild cognitive impairment in Parkinson’s disease: Movement Disorder Society Task Force Guidelines. Mov Disord. 2012;27(3):349-356.

38. Dubois B, Burn D, Goetz C, et al. Diagnostic procedures for Parkinson’s disease dementia: recommendations from the movement disorder society task force. Mov Disord. 2007;22(16):2314-2324.

39. Aarsland D, Batzu L, Halliday GM, et al. Parkinson disease-associated cognitive impairment. Nat Rev Dis Primers. 2021;7(1):47. doi:10.1038/s41572-021-00280-3

40. Weintraub D, Claassen DO. Impulse control and related disorders in Parkinson’s disease. Int Rev Neurobiol. 2017;133:679-717.

41. Vilas D, Pont-Sunyer C, Tolosa E. Impulse control disorders in Parkinson’s disease. Parkinsonism Relat Disord. 2012;18 Suppl 1:S80-S84.

42. Weintraub D, Koester J, Potenza MN, et al. Impulse control disorders in Parkinson disease: a cross-sectional study of 3090 patients. Arch Neurol. 2010;67(5):589-595.

43. Faouzi J, Corvol JC, Mariani LL. Impulse control disorders and related behaviors in Parkinson’s disease: risk factors, clinical and genetic aspects, and management. Curr Opin Neurol. 2021;34(4):547-555.

44. Samuel M, Rodriguez-Oroz M, Antonini A, et al. Impulse control disorders in Parkinson’s disease: management, controversies, and potential approaches. Mov Disord. 2015;30(2):150-159.

45. Frank MJ, Samanta J, Moustafa AA, et al. Hold your horses: impulsivity, deep brain stimulation and medication in Parkinsonism. Science. 2007;318(5854):1309-1312.

46. Jahanshahi M, Obeso I, Baunez C, et al. Parkinson’s disease, the subthalamic nucleus, inhibition, and impulsivity. Mov Disord. 2015;30(2):128-140.

47. Castrioto A, Lhommée E, Moro E, et al. Mood and behavioral effects of subthalamic stimulation in Parkinson’s disease. Lancet Neurol. 2014;13(3):287-305.

Issue
Current Psychiatry - 22(10)
Issue
Current Psychiatry - 22(10)
Page Number
14-24
Page Number
14-24
Publications
Publications
Topics
Article Type
Display Headline
Neuropsychiatric aspects of Parkinson’s disease: Practical considerations
Display Headline
Neuropsychiatric aspects of Parkinson’s disease: Practical considerations
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article
Article PDF Media

New York GI advocates for team approach in GI care

Article Type
Changed
Mon, 10/02/2023 - 00:15

Sameer K. Berry, MD, MBA, comes from a family of GI doctors. As a child, he used to accompany his father when he made rounds at the local county hospital.

Oshi Health
Dr. Sameer K. Berry


“I was a little kid, so I wasn’t helping him,” but he said he learned a great deal by sitting in the hallways and listening to his father talk to patients. “I could clearly hear the human suffering on the other side.”

This experience had a big impact on Dr. Berry, who continues the family trade. Like his father, talking with patients about their condition is his favorite part of the job, but especially talking about the role of diet, lifestyle, and stress on GI health, said Dr. Berry, who is a gastroenterologist and clinical assistant professor of medicine at New York University’s Grossman School of Medicine.

In addition to his clinical practice, Dr.Berry serves as the co-founder & chief medical officer at Oshi Health. Oshi is an integrative healthcare clinic that is entirely virtual and entirely and solely about GI health. The clinic works with GI clinicians and other healthcare providers, allowing patients access to multidisciplinary care that has proven to reduce healthcare costs and improve patient outcomes. The company was recently named a recipient of funding through the American College of Gastroenterology and the American Gastroenterological Association’s Center for GI Innovation & Technology’s GI Opportunity Fund.

The Oshi model is a whole-person, multidisciplinary GI care model, which includes traditional medical care for GI conditions but also provides access to health coaching, nutrition and diet support, and behavioral and mental health services. Research shows the approach is effective in mitigating symptoms. A 2020 randomized controlled trial published in Lancet Gastroenterology and Hepatology demonstrated that integrated multidisciplinary care led to improvement in symptoms, quality of life, and cost of care for complex GI conditions, as compared with the traditional GI specialist care model. Numerous similar studies have found that integrated care teams were better equipped to meet the needs of patients with inflammatory bowel disease (IBD) and patients with disorders of gut-brain interaction (DGBIs), patient outcomes and satisfaction were better, overall direct and indirect costs were lower and psychological health needs better addressed.



Q: What was the inspiration behind Oshi Health?

Dr. Berry: Gastroenterologists continue to witness unnecessary patient suffering due to antiquated care delivery models and perverse incentives in our healthcare system. Oshi’s care model was designed to align incentives and provide patients with access to clinicians who are traditionally not reimbursed in fee-for-service healthcare while also helping GI practices provide this care to their patients. During my clinical training it was easy for me to order expensive and invasive testing for my patients, but very difficult for me to get them the multidisciplinary care they needed. Many of the patients I would see didn’t need more MRIs, CT scans, or expensive medications. They needed access to a team of clinicians to help with all the aspects of GI care, including diet, behavioral, and medical.



Q: Why is multidisciplinary care the right approach?

Dr. Berry: GI is a very complex field with many nuances that can impact a patient’s symptoms. As physicians, our role is now evolving to oversee a team of clinicians working together to maximize expertise in nutrition and the gut-brain axis. With these new multidisciplinary care models, GI practices can expand their capabilities. At Oshi Health, every single patient has access to a nurse practitioner, dietician, psychologist, and health coach — all overseen by a gastroenterologist — as a covered benefit through their health plan. Providing multidisciplinary care through a virtual-first model solves some of the scalability challenges of these intensive care models and can significantly improve access to care.



Q: What grant-funded clinical research are you doing right now?

Dr. Berry: Most of my research focuses on evaluating the impact of novel care delivery models in GI and the evaluation of digital technologies in GI and how we can incorporate those digital technologies into clinical practice. How can we determine what type of care can be done remotely via video visits? What can be done on the phone or via text messaging? How can we get these new services paid for so patients can reap the benefits of seeing their doctor more frequently?



Q: What teacher or mentor had the greatest impact on you?

Dr. Berry:
Dr. John Allen, MD, MBA has had an incredible impact on my career. He’s the former president of the American Gastroenterological Association, and was the chief clinical officer and a professor at the University of Michigan. He’s one of the rare GI doctors that has both a strong clinical and leadership role in GI. I can’t thank him enough for planting the seeds to encourage me to focus on improving the ways we deliver care to patients.



Q: Describe how you would spend a free Saturday afternoon.

Dr. Berry: Roaming around and exploring a new neighborhood either in New York City or anywhere in the world. If I wasn’t going to be a doctor, I’d probably be an anthropologist. I love observing people in their element, and exploring new neighborhoods that are off the beaten path is a great way to do that.

 

 

Lightning round! Do you prefer texting or talking?
Texting


What’s high on your list of travel destinations?
Antarctica


Where was your most memorable vacation?
Patagonia


How many cups of coffee do you drink daily?
Four


What’s your favorite holiday?
Halloween


What’s your favorite junk food?
In-N-Out Burger


If you weren’t a gastroenterologist, what would you be?
Anthropologist

 

Publications
Topics
Sections

Sameer K. Berry, MD, MBA, comes from a family of GI doctors. As a child, he used to accompany his father when he made rounds at the local county hospital.

Oshi Health
Dr. Sameer K. Berry


“I was a little kid, so I wasn’t helping him,” but he said he learned a great deal by sitting in the hallways and listening to his father talk to patients. “I could clearly hear the human suffering on the other side.”

This experience had a big impact on Dr. Berry, who continues the family trade. Like his father, talking with patients about their condition is his favorite part of the job, but especially talking about the role of diet, lifestyle, and stress on GI health, said Dr. Berry, who is a gastroenterologist and clinical assistant professor of medicine at New York University’s Grossman School of Medicine.

In addition to his clinical practice, Dr.Berry serves as the co-founder & chief medical officer at Oshi Health. Oshi is an integrative healthcare clinic that is entirely virtual and entirely and solely about GI health. The clinic works with GI clinicians and other healthcare providers, allowing patients access to multidisciplinary care that has proven to reduce healthcare costs and improve patient outcomes. The company was recently named a recipient of funding through the American College of Gastroenterology and the American Gastroenterological Association’s Center for GI Innovation & Technology’s GI Opportunity Fund.

The Oshi model is a whole-person, multidisciplinary GI care model, which includes traditional medical care for GI conditions but also provides access to health coaching, nutrition and diet support, and behavioral and mental health services. Research shows the approach is effective in mitigating symptoms. A 2020 randomized controlled trial published in Lancet Gastroenterology and Hepatology demonstrated that integrated multidisciplinary care led to improvement in symptoms, quality of life, and cost of care for complex GI conditions, as compared with the traditional GI specialist care model. Numerous similar studies have found that integrated care teams were better equipped to meet the needs of patients with inflammatory bowel disease (IBD) and patients with disorders of gut-brain interaction (DGBIs), patient outcomes and satisfaction were better, overall direct and indirect costs were lower and psychological health needs better addressed.



Q: What was the inspiration behind Oshi Health?

Dr. Berry: Gastroenterologists continue to witness unnecessary patient suffering due to antiquated care delivery models and perverse incentives in our healthcare system. Oshi’s care model was designed to align incentives and provide patients with access to clinicians who are traditionally not reimbursed in fee-for-service healthcare while also helping GI practices provide this care to their patients. During my clinical training it was easy for me to order expensive and invasive testing for my patients, but very difficult for me to get them the multidisciplinary care they needed. Many of the patients I would see didn’t need more MRIs, CT scans, or expensive medications. They needed access to a team of clinicians to help with all the aspects of GI care, including diet, behavioral, and medical.



Q: Why is multidisciplinary care the right approach?

Dr. Berry: GI is a very complex field with many nuances that can impact a patient’s symptoms. As physicians, our role is now evolving to oversee a team of clinicians working together to maximize expertise in nutrition and the gut-brain axis. With these new multidisciplinary care models, GI practices can expand their capabilities. At Oshi Health, every single patient has access to a nurse practitioner, dietician, psychologist, and health coach — all overseen by a gastroenterologist — as a covered benefit through their health plan. Providing multidisciplinary care through a virtual-first model solves some of the scalability challenges of these intensive care models and can significantly improve access to care.



Q: What grant-funded clinical research are you doing right now?

Dr. Berry: Most of my research focuses on evaluating the impact of novel care delivery models in GI and the evaluation of digital technologies in GI and how we can incorporate those digital technologies into clinical practice. How can we determine what type of care can be done remotely via video visits? What can be done on the phone or via text messaging? How can we get these new services paid for so patients can reap the benefits of seeing their doctor more frequently?



Q: What teacher or mentor had the greatest impact on you?

Dr. Berry:
Dr. John Allen, MD, MBA has had an incredible impact on my career. He’s the former president of the American Gastroenterological Association, and was the chief clinical officer and a professor at the University of Michigan. He’s one of the rare GI doctors that has both a strong clinical and leadership role in GI. I can’t thank him enough for planting the seeds to encourage me to focus on improving the ways we deliver care to patients.



Q: Describe how you would spend a free Saturday afternoon.

Dr. Berry: Roaming around and exploring a new neighborhood either in New York City or anywhere in the world. If I wasn’t going to be a doctor, I’d probably be an anthropologist. I love observing people in their element, and exploring new neighborhoods that are off the beaten path is a great way to do that.

 

 

Lightning round! Do you prefer texting or talking?
Texting


What’s high on your list of travel destinations?
Antarctica


Where was your most memorable vacation?
Patagonia


How many cups of coffee do you drink daily?
Four


What’s your favorite holiday?
Halloween


What’s your favorite junk food?
In-N-Out Burger


If you weren’t a gastroenterologist, what would you be?
Anthropologist

 

Sameer K. Berry, MD, MBA, comes from a family of GI doctors. As a child, he used to accompany his father when he made rounds at the local county hospital.

Oshi Health
Dr. Sameer K. Berry


“I was a little kid, so I wasn’t helping him,” but he said he learned a great deal by sitting in the hallways and listening to his father talk to patients. “I could clearly hear the human suffering on the other side.”

This experience had a big impact on Dr. Berry, who continues the family trade. Like his father, talking with patients about their condition is his favorite part of the job, but especially talking about the role of diet, lifestyle, and stress on GI health, said Dr. Berry, who is a gastroenterologist and clinical assistant professor of medicine at New York University’s Grossman School of Medicine.

In addition to his clinical practice, Dr.Berry serves as the co-founder & chief medical officer at Oshi Health. Oshi is an integrative healthcare clinic that is entirely virtual and entirely and solely about GI health. The clinic works with GI clinicians and other healthcare providers, allowing patients access to multidisciplinary care that has proven to reduce healthcare costs and improve patient outcomes. The company was recently named a recipient of funding through the American College of Gastroenterology and the American Gastroenterological Association’s Center for GI Innovation & Technology’s GI Opportunity Fund.

The Oshi model is a whole-person, multidisciplinary GI care model, which includes traditional medical care for GI conditions but also provides access to health coaching, nutrition and diet support, and behavioral and mental health services. Research shows the approach is effective in mitigating symptoms. A 2020 randomized controlled trial published in Lancet Gastroenterology and Hepatology demonstrated that integrated multidisciplinary care led to improvement in symptoms, quality of life, and cost of care for complex GI conditions, as compared with the traditional GI specialist care model. Numerous similar studies have found that integrated care teams were better equipped to meet the needs of patients with inflammatory bowel disease (IBD) and patients with disorders of gut-brain interaction (DGBIs), patient outcomes and satisfaction were better, overall direct and indirect costs were lower and psychological health needs better addressed.



Q: What was the inspiration behind Oshi Health?

Dr. Berry: Gastroenterologists continue to witness unnecessary patient suffering due to antiquated care delivery models and perverse incentives in our healthcare system. Oshi’s care model was designed to align incentives and provide patients with access to clinicians who are traditionally not reimbursed in fee-for-service healthcare while also helping GI practices provide this care to their patients. During my clinical training it was easy for me to order expensive and invasive testing for my patients, but very difficult for me to get them the multidisciplinary care they needed. Many of the patients I would see didn’t need more MRIs, CT scans, or expensive medications. They needed access to a team of clinicians to help with all the aspects of GI care, including diet, behavioral, and medical.



Q: Why is multidisciplinary care the right approach?

Dr. Berry: GI is a very complex field with many nuances that can impact a patient’s symptoms. As physicians, our role is now evolving to oversee a team of clinicians working together to maximize expertise in nutrition and the gut-brain axis. With these new multidisciplinary care models, GI practices can expand their capabilities. At Oshi Health, every single patient has access to a nurse practitioner, dietician, psychologist, and health coach — all overseen by a gastroenterologist — as a covered benefit through their health plan. Providing multidisciplinary care through a virtual-first model solves some of the scalability challenges of these intensive care models and can significantly improve access to care.



Q: What grant-funded clinical research are you doing right now?

Dr. Berry: Most of my research focuses on evaluating the impact of novel care delivery models in GI and the evaluation of digital technologies in GI and how we can incorporate those digital technologies into clinical practice. How can we determine what type of care can be done remotely via video visits? What can be done on the phone or via text messaging? How can we get these new services paid for so patients can reap the benefits of seeing their doctor more frequently?



Q: What teacher or mentor had the greatest impact on you?

Dr. Berry:
Dr. John Allen, MD, MBA has had an incredible impact on my career. He’s the former president of the American Gastroenterological Association, and was the chief clinical officer and a professor at the University of Michigan. He’s one of the rare GI doctors that has both a strong clinical and leadership role in GI. I can’t thank him enough for planting the seeds to encourage me to focus on improving the ways we deliver care to patients.



Q: Describe how you would spend a free Saturday afternoon.

Dr. Berry: Roaming around and exploring a new neighborhood either in New York City or anywhere in the world. If I wasn’t going to be a doctor, I’d probably be an anthropologist. I love observing people in their element, and exploring new neighborhoods that are off the beaten path is a great way to do that.

 

 

Lightning round! Do you prefer texting or talking?
Texting


What’s high on your list of travel destinations?
Antarctica


Where was your most memorable vacation?
Patagonia


How many cups of coffee do you drink daily?
Four


What’s your favorite holiday?
Halloween


What’s your favorite junk food?
In-N-Out Burger


If you weren’t a gastroenterologist, what would you be?
Anthropologist

 

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Obesity in GI care

Article Type
Changed
Mon, 10/02/2023 - 00:15

AGA has long been a powerful voice in advocating locally and nationally for issues of critical importance to our profession and patients.

While AGA’s advocacy efforts related to access to colorectal cancer screening are frequently highlighted, this is one aspect of a larger advocacy agenda.

This month, I wish to highlight AGA’s extensive advocacy efforts focused on expanding access to obesity treatment. More than 2 in 5 adults in the U.S. have obesity, and weight management has been shown to be beneficial in patients with comorbid gastrointestinal diseases, such as metabolic dysfunction–associated steatotic liver disease, gastroesophageal reflux disease, gallbladder disease, pancreatitis, and GI malignancy.

In 2022, Inside Scope, a podcast by AGA, featured a 6-part seriescalled “Obesity in GI.” In July, Drs. Octavia Pickett-Blakely and Naresh Gunaratnam moderated a Gastro Bites lunch-and-learn session on “Obesity in GI Care – Embracing and Putting It into Practice” in which they discussed models of care delivery supporting obesity management in GI practice.

Dr. Megan A. Adams

In November 2022, AGA released “AGA Clinical Practice Guideline on Pharmacological Interventions for Adults With Obesity,” (https://shorturl.at/bDNOV) to aid clinicians in appropriately prescribing obesity pharmacotherapy on the front lines of care.

On the policy front, in June, AGA held a Capitol Hill briefing in support of H.R.1577 - Treat and Reduce Obesity Act of 2021 (TROA), a bipartisan bill that would improve access to obesity treatment and care by expanding coverage under Medicare Part D for FDA-approved obesity pharmacotherapy, as well as related services such as behavioral, nutrition, and other counseling. Please check out our new obesity advocacy toolkit for more information.

This month we update you on important multi-society guidance regarding peri-endoscopic management of GLP-1 receptor agonists. We highlight new AGA Clinical Practice Updates on ostomy management and use of gastric POEM for treatment of gastroparesis, as well as a randomized controlled trial from Gastroenterology showing the effectiveness of hemostatic powder in the management of malignant GI bleeding as compared with standard care.

In our Member Spotlight, we feature gastroenterologist Sameer Berry, MD, MBA, who discusses his role as a physician-entrepreneur seeking to transform GI care delivery through his AGA GI Opportunity Fund–supported company, Oshi Health.

This issue includes our annual supplement, “Gastroenterology Data Trends.” It features a collection of contributions on GI and climate change, long COVID and the GI tract, and the evolution of targeted therapies for C. difficile, among others.

We hope you enjoy this, and all the exciting content included in our October issue.

Megan A. Adams, MD, JD, MSc
Editor-in-Chief

Publications
Topics
Sections

AGA has long been a powerful voice in advocating locally and nationally for issues of critical importance to our profession and patients.

While AGA’s advocacy efforts related to access to colorectal cancer screening are frequently highlighted, this is one aspect of a larger advocacy agenda.

This month, I wish to highlight AGA’s extensive advocacy efforts focused on expanding access to obesity treatment. More than 2 in 5 adults in the U.S. have obesity, and weight management has been shown to be beneficial in patients with comorbid gastrointestinal diseases, such as metabolic dysfunction–associated steatotic liver disease, gastroesophageal reflux disease, gallbladder disease, pancreatitis, and GI malignancy.

In 2022, Inside Scope, a podcast by AGA, featured a 6-part seriescalled “Obesity in GI.” In July, Drs. Octavia Pickett-Blakely and Naresh Gunaratnam moderated a Gastro Bites lunch-and-learn session on “Obesity in GI Care – Embracing and Putting It into Practice” in which they discussed models of care delivery supporting obesity management in GI practice.

Dr. Megan A. Adams

In November 2022, AGA released “AGA Clinical Practice Guideline on Pharmacological Interventions for Adults With Obesity,” (https://shorturl.at/bDNOV) to aid clinicians in appropriately prescribing obesity pharmacotherapy on the front lines of care.

On the policy front, in June, AGA held a Capitol Hill briefing in support of H.R.1577 - Treat and Reduce Obesity Act of 2021 (TROA), a bipartisan bill that would improve access to obesity treatment and care by expanding coverage under Medicare Part D for FDA-approved obesity pharmacotherapy, as well as related services such as behavioral, nutrition, and other counseling. Please check out our new obesity advocacy toolkit for more information.

This month we update you on important multi-society guidance regarding peri-endoscopic management of GLP-1 receptor agonists. We highlight new AGA Clinical Practice Updates on ostomy management and use of gastric POEM for treatment of gastroparesis, as well as a randomized controlled trial from Gastroenterology showing the effectiveness of hemostatic powder in the management of malignant GI bleeding as compared with standard care.

In our Member Spotlight, we feature gastroenterologist Sameer Berry, MD, MBA, who discusses his role as a physician-entrepreneur seeking to transform GI care delivery through his AGA GI Opportunity Fund–supported company, Oshi Health.

This issue includes our annual supplement, “Gastroenterology Data Trends.” It features a collection of contributions on GI and climate change, long COVID and the GI tract, and the evolution of targeted therapies for C. difficile, among others.

We hope you enjoy this, and all the exciting content included in our October issue.

Megan A. Adams, MD, JD, MSc
Editor-in-Chief

AGA has long been a powerful voice in advocating locally and nationally for issues of critical importance to our profession and patients.

While AGA’s advocacy efforts related to access to colorectal cancer screening are frequently highlighted, this is one aspect of a larger advocacy agenda.

This month, I wish to highlight AGA’s extensive advocacy efforts focused on expanding access to obesity treatment. More than 2 in 5 adults in the U.S. have obesity, and weight management has been shown to be beneficial in patients with comorbid gastrointestinal diseases, such as metabolic dysfunction–associated steatotic liver disease, gastroesophageal reflux disease, gallbladder disease, pancreatitis, and GI malignancy.

In 2022, Inside Scope, a podcast by AGA, featured a 6-part seriescalled “Obesity in GI.” In July, Drs. Octavia Pickett-Blakely and Naresh Gunaratnam moderated a Gastro Bites lunch-and-learn session on “Obesity in GI Care – Embracing and Putting It into Practice” in which they discussed models of care delivery supporting obesity management in GI practice.

Dr. Megan A. Adams

In November 2022, AGA released “AGA Clinical Practice Guideline on Pharmacological Interventions for Adults With Obesity,” (https://shorturl.at/bDNOV) to aid clinicians in appropriately prescribing obesity pharmacotherapy on the front lines of care.

On the policy front, in June, AGA held a Capitol Hill briefing in support of H.R.1577 - Treat and Reduce Obesity Act of 2021 (TROA), a bipartisan bill that would improve access to obesity treatment and care by expanding coverage under Medicare Part D for FDA-approved obesity pharmacotherapy, as well as related services such as behavioral, nutrition, and other counseling. Please check out our new obesity advocacy toolkit for more information.

This month we update you on important multi-society guidance regarding peri-endoscopic management of GLP-1 receptor agonists. We highlight new AGA Clinical Practice Updates on ostomy management and use of gastric POEM for treatment of gastroparesis, as well as a randomized controlled trial from Gastroenterology showing the effectiveness of hemostatic powder in the management of malignant GI bleeding as compared with standard care.

In our Member Spotlight, we feature gastroenterologist Sameer Berry, MD, MBA, who discusses his role as a physician-entrepreneur seeking to transform GI care delivery through his AGA GI Opportunity Fund–supported company, Oshi Health.

This issue includes our annual supplement, “Gastroenterology Data Trends.” It features a collection of contributions on GI and climate change, long COVID and the GI tract, and the evolution of targeted therapies for C. difficile, among others.

We hope you enjoy this, and all the exciting content included in our October issue.

Megan A. Adams, MD, JD, MSc
Editor-in-Chief

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Commentary: Chronic and Remission Treatment in RA, October 2023

Article Type
Changed
Wed, 11/01/2023 - 22:03
Dr. Jayatilleke scans the journals, so you don't have to!

It is well known that the best outcomes for patients with rheumatoid arthritis (RA) are achieved with a treat-to-target strategy, but recent research has also focused on tapering therapy, especially biologics, in patients who are in prolonged disease remission without synovitis. In the open-label, randomized, noninferiority ARCTIC REWIND trial, Lillegraven and colleagues looked at the effects of tapering tumor necrosis factor inhibitors (TNFi) in 84 patients at different sites in Norway. Patients who had been in remission for a year or more on stable therapy (including TNFi and conventional synthetic disease-modifying antirheumatic drugs [csDMARD]) were included in the study. Of the 43 randomly assigned to tapering TNFi therapy, nearly two-thirds had a flare in 12 months of follow-up, compared with 5% in the stable TNFi group; thus, noninferiority of tapering TNFi was not supported. This study is small and seems to highlight a greater disparity between the two groups than expected from prior studies. Given the stark difference between the two groups, however, caution is advised in tapering TNFi therapy in patients with RA, even those in "deep remission." This information is reassuring in that most patients who flared had a good response to reinstating TNFi therapy, and it is helpful in counseling patients who prefer to try to reduce their medication burden despite the potential for flare.

 

The impact of chronic steroid use in RA has also received a lot of scrutiny in recent literature due to possible long-term side effects such as bone loss, hyperglycemia, and accelerated atherosclerotic disease. Palmowski and colleagues conducted a pooled analysis of several European randomized trials comparing the use of low-dose glucocorticoids (< 7.5 mg/d prednisone) vs placebo in combination with targeted therapy for RA. Data from over 1100 patients in five trials were analyzed. Over the course of 2 years, participants in both groups had gained weight, more so in the glucocorticoid group compared with the control group (1.8 kg vs 0.7 kg), with negligible effects on blood pressure. While use of moderate and high doses of glucocorticoids is not advisable for the long term, the use of low doses appears to be tolerable, with relatively minor effects on weight and blood pressure.

 

Given the chronic nature of RA and increasing incidence with age, comorbidities and multimorbidity (two or more comorbidities) are common in patients with RA. Stevens and colleagues used a national claims database to examine the burden of multimorbidity in people with RA and its association with sex and age in two different age groups (18-50 years and older than 51 years). Over 154,000 patients with RA were matched 1:1 to those without. The risk for multimorbidity was higher in women vs men with RA, though the absolute difference in risk was not large. The magnitude of these differences (between women and men, and between those with and without RA) was more pronounced in the younger age group and, as expected, decreased in the older age group. Of note, men with RA, compared with women with RA, had a higher risk for cardiovascular disease, including hypertension, high cholesterol, coronary artery disease, valvular disease, and heart failure. Women with RA had more psychological, neurologic, and comorbid noninflammatory musculoskeletal conditions, such as chronic lower back pain. These differences stress the need for attention to individualized care to improve patients' quality of life and reduce adverse effects on other areas of health.

Author and Disclosure Information

Arundathi Jayatilleke, MD
Lewis Katz School of Medicine, Temple University

Publications
Topics
Sections
Author and Disclosure Information

Arundathi Jayatilleke, MD
Lewis Katz School of Medicine, Temple University

Author and Disclosure Information

Arundathi Jayatilleke, MD
Lewis Katz School of Medicine, Temple University

Dr. Jayatilleke scans the journals, so you don't have to!
Dr. Jayatilleke scans the journals, so you don't have to!

It is well known that the best outcomes for patients with rheumatoid arthritis (RA) are achieved with a treat-to-target strategy, but recent research has also focused on tapering therapy, especially biologics, in patients who are in prolonged disease remission without synovitis. In the open-label, randomized, noninferiority ARCTIC REWIND trial, Lillegraven and colleagues looked at the effects of tapering tumor necrosis factor inhibitors (TNFi) in 84 patients at different sites in Norway. Patients who had been in remission for a year or more on stable therapy (including TNFi and conventional synthetic disease-modifying antirheumatic drugs [csDMARD]) were included in the study. Of the 43 randomly assigned to tapering TNFi therapy, nearly two-thirds had a flare in 12 months of follow-up, compared with 5% in the stable TNFi group; thus, noninferiority of tapering TNFi was not supported. This study is small and seems to highlight a greater disparity between the two groups than expected from prior studies. Given the stark difference between the two groups, however, caution is advised in tapering TNFi therapy in patients with RA, even those in "deep remission." This information is reassuring in that most patients who flared had a good response to reinstating TNFi therapy, and it is helpful in counseling patients who prefer to try to reduce their medication burden despite the potential for flare.

 

The impact of chronic steroid use in RA has also received a lot of scrutiny in recent literature due to possible long-term side effects such as bone loss, hyperglycemia, and accelerated atherosclerotic disease. Palmowski and colleagues conducted a pooled analysis of several European randomized trials comparing the use of low-dose glucocorticoids (< 7.5 mg/d prednisone) vs placebo in combination with targeted therapy for RA. Data from over 1100 patients in five trials were analyzed. Over the course of 2 years, participants in both groups had gained weight, more so in the glucocorticoid group compared with the control group (1.8 kg vs 0.7 kg), with negligible effects on blood pressure. While use of moderate and high doses of glucocorticoids is not advisable for the long term, the use of low doses appears to be tolerable, with relatively minor effects on weight and blood pressure.

 

Given the chronic nature of RA and increasing incidence with age, comorbidities and multimorbidity (two or more comorbidities) are common in patients with RA. Stevens and colleagues used a national claims database to examine the burden of multimorbidity in people with RA and its association with sex and age in two different age groups (18-50 years and older than 51 years). Over 154,000 patients with RA were matched 1:1 to those without. The risk for multimorbidity was higher in women vs men with RA, though the absolute difference in risk was not large. The magnitude of these differences (between women and men, and between those with and without RA) was more pronounced in the younger age group and, as expected, decreased in the older age group. Of note, men with RA, compared with women with RA, had a higher risk for cardiovascular disease, including hypertension, high cholesterol, coronary artery disease, valvular disease, and heart failure. Women with RA had more psychological, neurologic, and comorbid noninflammatory musculoskeletal conditions, such as chronic lower back pain. These differences stress the need for attention to individualized care to improve patients' quality of life and reduce adverse effects on other areas of health.

It is well known that the best outcomes for patients with rheumatoid arthritis (RA) are achieved with a treat-to-target strategy, but recent research has also focused on tapering therapy, especially biologics, in patients who are in prolonged disease remission without synovitis. In the open-label, randomized, noninferiority ARCTIC REWIND trial, Lillegraven and colleagues looked at the effects of tapering tumor necrosis factor inhibitors (TNFi) in 84 patients at different sites in Norway. Patients who had been in remission for a year or more on stable therapy (including TNFi and conventional synthetic disease-modifying antirheumatic drugs [csDMARD]) were included in the study. Of the 43 randomly assigned to tapering TNFi therapy, nearly two-thirds had a flare in 12 months of follow-up, compared with 5% in the stable TNFi group; thus, noninferiority of tapering TNFi was not supported. This study is small and seems to highlight a greater disparity between the two groups than expected from prior studies. Given the stark difference between the two groups, however, caution is advised in tapering TNFi therapy in patients with RA, even those in "deep remission." This information is reassuring in that most patients who flared had a good response to reinstating TNFi therapy, and it is helpful in counseling patients who prefer to try to reduce their medication burden despite the potential for flare.

 

The impact of chronic steroid use in RA has also received a lot of scrutiny in recent literature due to possible long-term side effects such as bone loss, hyperglycemia, and accelerated atherosclerotic disease. Palmowski and colleagues conducted a pooled analysis of several European randomized trials comparing the use of low-dose glucocorticoids (< 7.5 mg/d prednisone) vs placebo in combination with targeted therapy for RA. Data from over 1100 patients in five trials were analyzed. Over the course of 2 years, participants in both groups had gained weight, more so in the glucocorticoid group compared with the control group (1.8 kg vs 0.7 kg), with negligible effects on blood pressure. While use of moderate and high doses of glucocorticoids is not advisable for the long term, the use of low doses appears to be tolerable, with relatively minor effects on weight and blood pressure.

 

Given the chronic nature of RA and increasing incidence with age, comorbidities and multimorbidity (two or more comorbidities) are common in patients with RA. Stevens and colleagues used a national claims database to examine the burden of multimorbidity in people with RA and its association with sex and age in two different age groups (18-50 years and older than 51 years). Over 154,000 patients with RA were matched 1:1 to those without. The risk for multimorbidity was higher in women vs men with RA, though the absolute difference in risk was not large. The magnitude of these differences (between women and men, and between those with and without RA) was more pronounced in the younger age group and, as expected, decreased in the older age group. Of note, men with RA, compared with women with RA, had a higher risk for cardiovascular disease, including hypertension, high cholesterol, coronary artery disease, valvular disease, and heart failure. Women with RA had more psychological, neurologic, and comorbid noninflammatory musculoskeletal conditions, such as chronic lower back pain. These differences stress the need for attention to individualized care to improve patients' quality of life and reduce adverse effects on other areas of health.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Article Series
Clinical Edge Journal Scan: Rheumatoid Arthritis, October 2023
Gate On Date
Tue, 04/06/2021 - 10:45
Un-Gate On Date
Tue, 04/06/2021 - 10:45
Use ProPublica
CFC Schedule Remove Status
Tue, 04/06/2021 - 10:45
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article
Activity Salesforce Deliverable ID
365603.29
Activity ID
94312
Product Name
Clinical Edge Journal Scan
Product ID
124
Supporter Name /ID
RINVOQ [ 5260 ]

Commentary: Genetics, prognosis score, and PI3K in MCL, October 2023

Article Type
Changed
Wed, 11/01/2023 - 22:43
Dr Crombie scans the journals so you don't have to!

The treatment of mantle cell lymphoma (MCL) continues to evolve. In the front-line setting, studies are evaluating the role of novel therapies as well as consolidation with autologous stem cell transplantation. In the relapsed/refractory setting, patients can be considered for treatment with Bruton tyrosine kinase (BTK) inhibitors, other targeted therapies, or chimeric antigen receptor (CAR) T-cell therapy. Other novel therapies, including bispecific antibodies and novel antibody drug conjugates, are being studied as well.

 

Despite the availability of novel agents, a subset of patients continues to have difficult-to-treat disease and a poor prognosis. Established prognostic tools that aid in identifying high-risk patients include alternations in TP53, high proliferation rates, nonclassic morphology, and the Mantle Cell Lymphoma International Prognostic Index (MIPI) score, which incorporates age, performance status, lactate dehydrogenase levels, and white blood cell count. The Nordic study group recently published a paper which provides additional prognostic information beyond these known variables (Rodrigues et al). They examined MYC expression in a cohort of 251 patients with MCL and structural aberrations in MYC and MYC mRNA levels in a smaller cohort. They found that patients with tumors comprising 20% or more cells with MYC overexpression (MYChigh tumors) vs MYClow tumors had significantly higher risks for death (adjusted hazard ratio [aHR] 2.03; P = .007) and disease progression (aHR 2.20; P = .04), when adjusted for additional high-risk features. Patients with tumors with concomitant MYChigh expression and TP53/p53 alterations vs MYClow tumors had a particularly poor prognosis, with significantly increased risks for progression (HR 16.90) and death (HR 7.83) with a median overall survival of only 0.9 years (both P < .001). Though MYC overexpression was rare, this study identified a high-risk group of patients, especially those harboring concurrent TP53 aberrations, that may benefit from novel treatment approaches.

 

Another study recently aimed to identify patients who are at risk for poor outcomes after treatment with brexucabtagene autoleucel (brexu-cel) infusion. Though brexu-cel is an active therapy for patients with relapsed/refractory MCL, there are known toxicities, including cytokine release syndrome, neurologic toxicity, and hematologic toxicity. Given the potential for prolonged cytopenias and immune suppression, patients are also at risk for severe infections, which currently represent the driving determinant of nonrelapse mortality.1 The CAR-HEMATOTOX (HT) score was previously found to identify patients who are at increased risk for hematologic toxicity after CAR T-cell therapy in diffuse large B-cell lymphoma.2 In the current multicenter observational study, which included 103 patients receiving brexu-cel, the authors reported an association between baseline HT score and outcome in MCL as well. Patients with high (2-7) vs low (0-1) HT scores had significantly longer median duration of severe neutropenia (P < .0001), higher rates of severe infections (P = .001), and lower overall response rates (P = .003). The HT score represented an independent predictor of poor progression-free (aHR 3.7; P < .001) and overall (aHR 5.6; P = .002) survival. This tool may provide a helpful guide when counseling patients on treatment options and allow for more personalized toxicity management.

 

Despite availability of BTK inhibitors and CAR T-cell therapy for patients with MCL, relapses remain common. As upregulation of phosphoinositide 3-kinase (PI3K) is known to play a critical role in lymphomagenesis, there has been interest in targeting this pathway across lymphoma subtypes. Though PI3K inhibitors have been found to be active agents, they have also been associated with poor tolerability and safety concerns. Parsaclisib is a selective PI3K delta inhibitor that showed encouraging data in the phase 1/2 study in patients with non-Hodgkin lymphoma.3 More recently, the phase 2 CITADEL-205 study, which included adult patients with relapsed or refractory MCL previously treated with one to three systemic therapies, with (n = 53) or without (n = 108) prior BTK inhibitor treatment, was published (Zinazni et al). Patients received 20 mg parsaclisib once daily for 8 weeks followed by either 20 mg parsaclisib once weekly or 2.5 mg parsaclisib once daily. Among BTK inhibitor–naive patients who received parsaclisib once daily, 70.1% (95% CI 58.6%-80.0%) and 15.6% (95% CI 8.3%-25.6%) achieved an objective response and a complete response, respectively, with the median duration of response being 12.1 months (95% CI 9.0 to not evaluable). Responses were not thought to be clinically meaningful in the patients treated with prior BTK inhibitors. Most treatment-emergent adverse events were low grade and manageable by dose interruptions or reductions. A total of 30% of patients required drug discontinuation due to adverse events. Though parsaclisib demonstrated activity in patients with relapsed/refractory MCL, the role of this drug in clinical practice is not clear given the increased use of BTK inhibitors as a preferred second-line therapy and ongoing concerns regarding PI3K inhibitor-related toxicity.

 

Additional References

1.      Wang Y, Jain P, Locke FL, et al. Brexucabtagene autoleucel for relapsed or refractory mantle cell lymphoma in standard-of-care practice: Results from the US Lymphoma CAR T Consortium. J Clin Oncol. 2023;41:2594-2606. doi: 10.1200/JCO.22.01797

2.      Rejeski K, Perez A, Sesques P, et al. CAR-HEMATOTOX: A model for CAR T-cell-related hematologic toxicity in relapsed/refractory large B-cell lymphoma. Blood. 2021;138:2499-2513. doi: 10.1182/blood.2020010543

3.      Forero-Torres A, Ramchandren R, Yacoub A, et al. Parsaclisib, a potent and highly selective PI3Kδ inhibitor, in patients with relapsed or refractory B-cell malignancies. Blood. 2019;133:1742-1752. doi: 10.1182/blood-2018-08-867499

 

Author and Disclosure Information

Jennifer Crombie, MD, Dana Farber Cancer Institute, Harvard Medical Center, Boston, MA

Publications
Topics
Sections
Author and Disclosure Information

Jennifer Crombie, MD, Dana Farber Cancer Institute, Harvard Medical Center, Boston, MA

Author and Disclosure Information

Jennifer Crombie, MD, Dana Farber Cancer Institute, Harvard Medical Center, Boston, MA

Dr Crombie scans the journals so you don't have to!
Dr Crombie scans the journals so you don't have to!

The treatment of mantle cell lymphoma (MCL) continues to evolve. In the front-line setting, studies are evaluating the role of novel therapies as well as consolidation with autologous stem cell transplantation. In the relapsed/refractory setting, patients can be considered for treatment with Bruton tyrosine kinase (BTK) inhibitors, other targeted therapies, or chimeric antigen receptor (CAR) T-cell therapy. Other novel therapies, including bispecific antibodies and novel antibody drug conjugates, are being studied as well.

 

Despite the availability of novel agents, a subset of patients continues to have difficult-to-treat disease and a poor prognosis. Established prognostic tools that aid in identifying high-risk patients include alternations in TP53, high proliferation rates, nonclassic morphology, and the Mantle Cell Lymphoma International Prognostic Index (MIPI) score, which incorporates age, performance status, lactate dehydrogenase levels, and white blood cell count. The Nordic study group recently published a paper which provides additional prognostic information beyond these known variables (Rodrigues et al). They examined MYC expression in a cohort of 251 patients with MCL and structural aberrations in MYC and MYC mRNA levels in a smaller cohort. They found that patients with tumors comprising 20% or more cells with MYC overexpression (MYChigh tumors) vs MYClow tumors had significantly higher risks for death (adjusted hazard ratio [aHR] 2.03; P = .007) and disease progression (aHR 2.20; P = .04), when adjusted for additional high-risk features. Patients with tumors with concomitant MYChigh expression and TP53/p53 alterations vs MYClow tumors had a particularly poor prognosis, with significantly increased risks for progression (HR 16.90) and death (HR 7.83) with a median overall survival of only 0.9 years (both P < .001). Though MYC overexpression was rare, this study identified a high-risk group of patients, especially those harboring concurrent TP53 aberrations, that may benefit from novel treatment approaches.

 

Another study recently aimed to identify patients who are at risk for poor outcomes after treatment with brexucabtagene autoleucel (brexu-cel) infusion. Though brexu-cel is an active therapy for patients with relapsed/refractory MCL, there are known toxicities, including cytokine release syndrome, neurologic toxicity, and hematologic toxicity. Given the potential for prolonged cytopenias and immune suppression, patients are also at risk for severe infections, which currently represent the driving determinant of nonrelapse mortality.1 The CAR-HEMATOTOX (HT) score was previously found to identify patients who are at increased risk for hematologic toxicity after CAR T-cell therapy in diffuse large B-cell lymphoma.2 In the current multicenter observational study, which included 103 patients receiving brexu-cel, the authors reported an association between baseline HT score and outcome in MCL as well. Patients with high (2-7) vs low (0-1) HT scores had significantly longer median duration of severe neutropenia (P < .0001), higher rates of severe infections (P = .001), and lower overall response rates (P = .003). The HT score represented an independent predictor of poor progression-free (aHR 3.7; P < .001) and overall (aHR 5.6; P = .002) survival. This tool may provide a helpful guide when counseling patients on treatment options and allow for more personalized toxicity management.

 

Despite availability of BTK inhibitors and CAR T-cell therapy for patients with MCL, relapses remain common. As upregulation of phosphoinositide 3-kinase (PI3K) is known to play a critical role in lymphomagenesis, there has been interest in targeting this pathway across lymphoma subtypes. Though PI3K inhibitors have been found to be active agents, they have also been associated with poor tolerability and safety concerns. Parsaclisib is a selective PI3K delta inhibitor that showed encouraging data in the phase 1/2 study in patients with non-Hodgkin lymphoma.3 More recently, the phase 2 CITADEL-205 study, which included adult patients with relapsed or refractory MCL previously treated with one to three systemic therapies, with (n = 53) or without (n = 108) prior BTK inhibitor treatment, was published (Zinazni et al). Patients received 20 mg parsaclisib once daily for 8 weeks followed by either 20 mg parsaclisib once weekly or 2.5 mg parsaclisib once daily. Among BTK inhibitor–naive patients who received parsaclisib once daily, 70.1% (95% CI 58.6%-80.0%) and 15.6% (95% CI 8.3%-25.6%) achieved an objective response and a complete response, respectively, with the median duration of response being 12.1 months (95% CI 9.0 to not evaluable). Responses were not thought to be clinically meaningful in the patients treated with prior BTK inhibitors. Most treatment-emergent adverse events were low grade and manageable by dose interruptions or reductions. A total of 30% of patients required drug discontinuation due to adverse events. Though parsaclisib demonstrated activity in patients with relapsed/refractory MCL, the role of this drug in clinical practice is not clear given the increased use of BTK inhibitors as a preferred second-line therapy and ongoing concerns regarding PI3K inhibitor-related toxicity.

 

Additional References

1.      Wang Y, Jain P, Locke FL, et al. Brexucabtagene autoleucel for relapsed or refractory mantle cell lymphoma in standard-of-care practice: Results from the US Lymphoma CAR T Consortium. J Clin Oncol. 2023;41:2594-2606. doi: 10.1200/JCO.22.01797

2.      Rejeski K, Perez A, Sesques P, et al. CAR-HEMATOTOX: A model for CAR T-cell-related hematologic toxicity in relapsed/refractory large B-cell lymphoma. Blood. 2021;138:2499-2513. doi: 10.1182/blood.2020010543

3.      Forero-Torres A, Ramchandren R, Yacoub A, et al. Parsaclisib, a potent and highly selective PI3Kδ inhibitor, in patients with relapsed or refractory B-cell malignancies. Blood. 2019;133:1742-1752. doi: 10.1182/blood-2018-08-867499

 

The treatment of mantle cell lymphoma (MCL) continues to evolve. In the front-line setting, studies are evaluating the role of novel therapies as well as consolidation with autologous stem cell transplantation. In the relapsed/refractory setting, patients can be considered for treatment with Bruton tyrosine kinase (BTK) inhibitors, other targeted therapies, or chimeric antigen receptor (CAR) T-cell therapy. Other novel therapies, including bispecific antibodies and novel antibody drug conjugates, are being studied as well.

 

Despite the availability of novel agents, a subset of patients continues to have difficult-to-treat disease and a poor prognosis. Established prognostic tools that aid in identifying high-risk patients include alternations in TP53, high proliferation rates, nonclassic morphology, and the Mantle Cell Lymphoma International Prognostic Index (MIPI) score, which incorporates age, performance status, lactate dehydrogenase levels, and white blood cell count. The Nordic study group recently published a paper which provides additional prognostic information beyond these known variables (Rodrigues et al). They examined MYC expression in a cohort of 251 patients with MCL and structural aberrations in MYC and MYC mRNA levels in a smaller cohort. They found that patients with tumors comprising 20% or more cells with MYC overexpression (MYChigh tumors) vs MYClow tumors had significantly higher risks for death (adjusted hazard ratio [aHR] 2.03; P = .007) and disease progression (aHR 2.20; P = .04), when adjusted for additional high-risk features. Patients with tumors with concomitant MYChigh expression and TP53/p53 alterations vs MYClow tumors had a particularly poor prognosis, with significantly increased risks for progression (HR 16.90) and death (HR 7.83) with a median overall survival of only 0.9 years (both P < .001). Though MYC overexpression was rare, this study identified a high-risk group of patients, especially those harboring concurrent TP53 aberrations, that may benefit from novel treatment approaches.

 

Another study recently aimed to identify patients who are at risk for poor outcomes after treatment with brexucabtagene autoleucel (brexu-cel) infusion. Though brexu-cel is an active therapy for patients with relapsed/refractory MCL, there are known toxicities, including cytokine release syndrome, neurologic toxicity, and hematologic toxicity. Given the potential for prolonged cytopenias and immune suppression, patients are also at risk for severe infections, which currently represent the driving determinant of nonrelapse mortality.1 The CAR-HEMATOTOX (HT) score was previously found to identify patients who are at increased risk for hematologic toxicity after CAR T-cell therapy in diffuse large B-cell lymphoma.2 In the current multicenter observational study, which included 103 patients receiving brexu-cel, the authors reported an association between baseline HT score and outcome in MCL as well. Patients with high (2-7) vs low (0-1) HT scores had significantly longer median duration of severe neutropenia (P < .0001), higher rates of severe infections (P = .001), and lower overall response rates (P = .003). The HT score represented an independent predictor of poor progression-free (aHR 3.7; P < .001) and overall (aHR 5.6; P = .002) survival. This tool may provide a helpful guide when counseling patients on treatment options and allow for more personalized toxicity management.

 

Despite availability of BTK inhibitors and CAR T-cell therapy for patients with MCL, relapses remain common. As upregulation of phosphoinositide 3-kinase (PI3K) is known to play a critical role in lymphomagenesis, there has been interest in targeting this pathway across lymphoma subtypes. Though PI3K inhibitors have been found to be active agents, they have also been associated with poor tolerability and safety concerns. Parsaclisib is a selective PI3K delta inhibitor that showed encouraging data in the phase 1/2 study in patients with non-Hodgkin lymphoma.3 More recently, the phase 2 CITADEL-205 study, which included adult patients with relapsed or refractory MCL previously treated with one to three systemic therapies, with (n = 53) or without (n = 108) prior BTK inhibitor treatment, was published (Zinazni et al). Patients received 20 mg parsaclisib once daily for 8 weeks followed by either 20 mg parsaclisib once weekly or 2.5 mg parsaclisib once daily. Among BTK inhibitor–naive patients who received parsaclisib once daily, 70.1% (95% CI 58.6%-80.0%) and 15.6% (95% CI 8.3%-25.6%) achieved an objective response and a complete response, respectively, with the median duration of response being 12.1 months (95% CI 9.0 to not evaluable). Responses were not thought to be clinically meaningful in the patients treated with prior BTK inhibitors. Most treatment-emergent adverse events were low grade and manageable by dose interruptions or reductions. A total of 30% of patients required drug discontinuation due to adverse events. Though parsaclisib demonstrated activity in patients with relapsed/refractory MCL, the role of this drug in clinical practice is not clear given the increased use of BTK inhibitors as a preferred second-line therapy and ongoing concerns regarding PI3K inhibitor-related toxicity.

 

Additional References

1.      Wang Y, Jain P, Locke FL, et al. Brexucabtagene autoleucel for relapsed or refractory mantle cell lymphoma in standard-of-care practice: Results from the US Lymphoma CAR T Consortium. J Clin Oncol. 2023;41:2594-2606. doi: 10.1200/JCO.22.01797

2.      Rejeski K, Perez A, Sesques P, et al. CAR-HEMATOTOX: A model for CAR T-cell-related hematologic toxicity in relapsed/refractory large B-cell lymphoma. Blood. 2021;138:2499-2513. doi: 10.1182/blood.2020010543

3.      Forero-Torres A, Ramchandren R, Yacoub A, et al. Parsaclisib, a potent and highly selective PI3Kδ inhibitor, in patients with relapsed or refractory B-cell malignancies. Blood. 2019;133:1742-1752. doi: 10.1182/blood-2018-08-867499

 

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Article Series
Clinical Edge Journal Scan: B-Cell Lymphoma, October 2023
Gate On Date
Wed, 03/01/2023 - 21:30
Un-Gate On Date
Wed, 03/01/2023 - 21:30
Use ProPublica
CFC Schedule Remove Status
Wed, 03/01/2023 - 21:30
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article
Activity Salesforce Deliverable ID
343187.19
Activity ID
95012
Product Name
Clinical Briefings ICYMI
Product ID
112
Supporter Name /ID
Pirtobrutinib [ 5829 ]

Cost concerns lead to cancer treatment delays, nonadherence

Article Type
Changed
Thu, 10/05/2023 - 19:29

 

TOPLINE:

When patients deal directly with their insurance companies for answers about copayments and other issues, they are more likely to experience delays in cancer care and to be nonadherent.

METHODOLOGY:

  • Navigating the complexities of insurance coverage is difficult for cancer patients, and the clinical impact of managing these intricacies remains unclear.
  • To understand the issue, investigators surveyed 510 insured cancer patients in the United States about how often they estimate out-of-pocket costs for medications, doctors’ visits, and lab tests and scans, as well as how often they ask their insurance company to help them understand their coverage and how often they appeal coverage decisions.
  • The team then correlated the answers with how often patients reported postponing or skipping doctors’ appointments and lab tests and how often they delayed filling prescriptions or skipped doses.
  • Breast, colorectal, lung, and prostate cancer were the most common diagnoses among respondents.

TAKEAWAY:

  • Overall, 55% of participants said they “never” or “rarely” engaged in any insurance-related cost tasks. The most frequently performed administrative tasks included finding out the cost before filling a prescription (28%) or before undergoing lab tests or scans (20%), as well as estimating the cost before agreeing to a treatment (20%), asking an insurance company for help understanding coverage (18%), or appealing a denial (17%).
  • After adjusting for age, race/ethnicity, education, and monthly out-of-pocket costs, participants who engaged in any cost task were 18% more likely to experience treatment delays or forgo care.
  • Every additional cost task or increase in frequency of a cost task was associated with 32% higher frequency of treatment delay or nonadherence.
  • Age, race, and monthly out-of-pocket costs were more strongly associated with treatment delays/nonadherence than cost-task burden. Younger patients and Black patients were more likely than others to experience cost-related delays/nonadherence.

IN PRACTICE:

  • “Reductions to administrative burden on patients, whether through patient-level education interventions, the adaptation of hospital-based navigation programs, or policy-focused changes to insurance systems, will be crucial” for helping patients with cancer to overcome administrative burdens and improve access to care, the authors said.

SOURCE:

  • The study, led by Meredith Doherty, PhD, of the University of Pennsylvania, Philadelphia, was published in Cancer Epidemiology, Biomarkers and Prevention.

LIMITATIONS:

The survey was voluntary, which raises the possibility of self-selection bias. Recall bias may also have occurred, particularly among patients farther out from diagnosis and treatment. The investigators did not include uninsured patients and did not stratify patients by insurance type, and they did not measure or account for health care literacy.

DISCLOSURES:

The study was funded by the American Cancer Society. The investigators have disclosed no relevant financial relationships.

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

 

TOPLINE:

When patients deal directly with their insurance companies for answers about copayments and other issues, they are more likely to experience delays in cancer care and to be nonadherent.

METHODOLOGY:

  • Navigating the complexities of insurance coverage is difficult for cancer patients, and the clinical impact of managing these intricacies remains unclear.
  • To understand the issue, investigators surveyed 510 insured cancer patients in the United States about how often they estimate out-of-pocket costs for medications, doctors’ visits, and lab tests and scans, as well as how often they ask their insurance company to help them understand their coverage and how often they appeal coverage decisions.
  • The team then correlated the answers with how often patients reported postponing or skipping doctors’ appointments and lab tests and how often they delayed filling prescriptions or skipped doses.
  • Breast, colorectal, lung, and prostate cancer were the most common diagnoses among respondents.

TAKEAWAY:

  • Overall, 55% of participants said they “never” or “rarely” engaged in any insurance-related cost tasks. The most frequently performed administrative tasks included finding out the cost before filling a prescription (28%) or before undergoing lab tests or scans (20%), as well as estimating the cost before agreeing to a treatment (20%), asking an insurance company for help understanding coverage (18%), or appealing a denial (17%).
  • After adjusting for age, race/ethnicity, education, and monthly out-of-pocket costs, participants who engaged in any cost task were 18% more likely to experience treatment delays or forgo care.
  • Every additional cost task or increase in frequency of a cost task was associated with 32% higher frequency of treatment delay or nonadherence.
  • Age, race, and monthly out-of-pocket costs were more strongly associated with treatment delays/nonadherence than cost-task burden. Younger patients and Black patients were more likely than others to experience cost-related delays/nonadherence.

IN PRACTICE:

  • “Reductions to administrative burden on patients, whether through patient-level education interventions, the adaptation of hospital-based navigation programs, or policy-focused changes to insurance systems, will be crucial” for helping patients with cancer to overcome administrative burdens and improve access to care, the authors said.

SOURCE:

  • The study, led by Meredith Doherty, PhD, of the University of Pennsylvania, Philadelphia, was published in Cancer Epidemiology, Biomarkers and Prevention.

LIMITATIONS:

The survey was voluntary, which raises the possibility of self-selection bias. Recall bias may also have occurred, particularly among patients farther out from diagnosis and treatment. The investigators did not include uninsured patients and did not stratify patients by insurance type, and they did not measure or account for health care literacy.

DISCLOSURES:

The study was funded by the American Cancer Society. The investigators have disclosed no relevant financial relationships.

A version of this article appeared on Medscape.com.

 

TOPLINE:

When patients deal directly with their insurance companies for answers about copayments and other issues, they are more likely to experience delays in cancer care and to be nonadherent.

METHODOLOGY:

  • Navigating the complexities of insurance coverage is difficult for cancer patients, and the clinical impact of managing these intricacies remains unclear.
  • To understand the issue, investigators surveyed 510 insured cancer patients in the United States about how often they estimate out-of-pocket costs for medications, doctors’ visits, and lab tests and scans, as well as how often they ask their insurance company to help them understand their coverage and how often they appeal coverage decisions.
  • The team then correlated the answers with how often patients reported postponing or skipping doctors’ appointments and lab tests and how often they delayed filling prescriptions or skipped doses.
  • Breast, colorectal, lung, and prostate cancer were the most common diagnoses among respondents.

TAKEAWAY:

  • Overall, 55% of participants said they “never” or “rarely” engaged in any insurance-related cost tasks. The most frequently performed administrative tasks included finding out the cost before filling a prescription (28%) or before undergoing lab tests or scans (20%), as well as estimating the cost before agreeing to a treatment (20%), asking an insurance company for help understanding coverage (18%), or appealing a denial (17%).
  • After adjusting for age, race/ethnicity, education, and monthly out-of-pocket costs, participants who engaged in any cost task were 18% more likely to experience treatment delays or forgo care.
  • Every additional cost task or increase in frequency of a cost task was associated with 32% higher frequency of treatment delay or nonadherence.
  • Age, race, and monthly out-of-pocket costs were more strongly associated with treatment delays/nonadherence than cost-task burden. Younger patients and Black patients were more likely than others to experience cost-related delays/nonadherence.

IN PRACTICE:

  • “Reductions to administrative burden on patients, whether through patient-level education interventions, the adaptation of hospital-based navigation programs, or policy-focused changes to insurance systems, will be crucial” for helping patients with cancer to overcome administrative burdens and improve access to care, the authors said.

SOURCE:

  • The study, led by Meredith Doherty, PhD, of the University of Pennsylvania, Philadelphia, was published in Cancer Epidemiology, Biomarkers and Prevention.

LIMITATIONS:

The survey was voluntary, which raises the possibility of self-selection bias. Recall bias may also have occurred, particularly among patients farther out from diagnosis and treatment. The investigators did not include uninsured patients and did not stratify patients by insurance type, and they did not measure or account for health care literacy.

DISCLOSURES:

The study was funded by the American Cancer Society. The investigators have disclosed no relevant financial relationships.

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Article Source

FROM CANCER EPIDEMIOLOGY, BIOMARKERS AND PREVENTION

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article