Problems with Using Women's Cancer Screening Rates to Measure Performance

Article Type
Changed
Wed, 01/04/2023 - 17:17
Display Headline
Problems with Using Women's Cancer Screening Rates to Measure Performance
Article PDF
Author and Disclosure Information

 

Paul A. Heineken, MD, Cheryl Wenell, RNP, MS, Karla Kerlikowske, MD, and Louise C. Walter, MD

Dr. Heineken is the associate chief of staff of ambulatory care, Ms. Wenell is the coordinator of the Women Veterans Program, Dr. Kerlikowske is the director of the Women's Clinic, and Dr. Walter is a staff physician, all at the San Francisco VA Medical Center, San Francisco, CA. In addition, Dr. Heineken is a clinical professor in the School of Medicine, Ms. Wenell is an associate clinical professor in the School of Nursing, Dr. Kerlikowske is a professor in residence in the departments of medicine and epidemiology and biostatistics in the School of Medicine, and Dr. Walter is an associate professor in the division of geriatrics and the codirector of the Geriatrics Research Program in the School of Medicine, all at the University of California, San Francisco.

Issue
Federal Practitioner - 26(6)
Publications
Topics
Page Number
17
Legacy Keywords
women's health, cancer, breast, cervical, VA, Veterans Affairs, VHA, Veterans Health Administration, audit, auditing, screening, mammogram, Papanicolaou, Pap, Problems, Using, Rates, Measure, Performancewomen's health, cancer, breast, cervical, VA, Veterans Affairs, VHA, Veterans Health Administration, audit, auditing, screening, mammogram, Papanicolaou, Pap, Problems, Using, Rates, Measure, Performance
Sections
Author and Disclosure Information

 

Paul A. Heineken, MD, Cheryl Wenell, RNP, MS, Karla Kerlikowske, MD, and Louise C. Walter, MD

Dr. Heineken is the associate chief of staff of ambulatory care, Ms. Wenell is the coordinator of the Women Veterans Program, Dr. Kerlikowske is the director of the Women's Clinic, and Dr. Walter is a staff physician, all at the San Francisco VA Medical Center, San Francisco, CA. In addition, Dr. Heineken is a clinical professor in the School of Medicine, Ms. Wenell is an associate clinical professor in the School of Nursing, Dr. Kerlikowske is a professor in residence in the departments of medicine and epidemiology and biostatistics in the School of Medicine, and Dr. Walter is an associate professor in the division of geriatrics and the codirector of the Geriatrics Research Program in the School of Medicine, all at the University of California, San Francisco.

Author and Disclosure Information

 

Paul A. Heineken, MD, Cheryl Wenell, RNP, MS, Karla Kerlikowske, MD, and Louise C. Walter, MD

Dr. Heineken is the associate chief of staff of ambulatory care, Ms. Wenell is the coordinator of the Women Veterans Program, Dr. Kerlikowske is the director of the Women's Clinic, and Dr. Walter is a staff physician, all at the San Francisco VA Medical Center, San Francisco, CA. In addition, Dr. Heineken is a clinical professor in the School of Medicine, Ms. Wenell is an associate clinical professor in the School of Nursing, Dr. Kerlikowske is a professor in residence in the departments of medicine and epidemiology and biostatistics in the School of Medicine, and Dr. Walter is an associate professor in the division of geriatrics and the codirector of the Geriatrics Research Program in the School of Medicine, all at the University of California, San Francisco.

Article PDF
Article PDF
Issue
Federal Practitioner - 26(6)
Issue
Federal Practitioner - 26(6)
Page Number
17
Page Number
17
Publications
Publications
Topics
Article Type
Display Headline
Problems with Using Women's Cancer Screening Rates to Measure Performance
Display Headline
Problems with Using Women's Cancer Screening Rates to Measure Performance
Legacy Keywords
women's health, cancer, breast, cervical, VA, Veterans Affairs, VHA, Veterans Health Administration, audit, auditing, screening, mammogram, Papanicolaou, Pap, Problems, Using, Rates, Measure, Performancewomen's health, cancer, breast, cervical, VA, Veterans Affairs, VHA, Veterans Health Administration, audit, auditing, screening, mammogram, Papanicolaou, Pap, Problems, Using, Rates, Measure, Performance
Legacy Keywords
women's health, cancer, breast, cervical, VA, Veterans Affairs, VHA, Veterans Health Administration, audit, auditing, screening, mammogram, Papanicolaou, Pap, Problems, Using, Rates, Measure, Performancewomen's health, cancer, breast, cervical, VA, Veterans Affairs, VHA, Veterans Health Administration, audit, auditing, screening, mammogram, Papanicolaou, Pap, Problems, Using, Rates, Measure, Performance
Sections
Disallow All Ads
Article PDF Media

Grand Rounds: Boy, 10, With Knee Pain

Article Type
Changed
Mon, 07/09/2018 - 10:47
Display Headline
Boy, 10, With Knee Pain
 

A 10-year-old boy first complained of right knee pain two months prior to presentation. There was no traumatic event to explain the pain and no prior viral or bacterial illness. Radiographs taken earlier at another facility were initially pronounced normal. One month later, repeat x-rays showed a possible hairline fracture, and MRI was ordered. MRI documented a destructive lesion in the right distal femur with a soft-tissue mass that was worrisome for primary bone malignancy.

The boy was placed on weight-bearing restrictions and was given a wheelchair. Unfortunately, he fell from the wheelchair and sustained a pathologic fracture through the lesion (see Figure 1). He was transported to the hospital and admitted. A biopsy was performed with a closed reduction, as the fracture was maligned. The patient was placed in a long leg cast with a pelvic band.

His history was previously unremarkable. He was taking no medications and had experienced no recent illnesses. His surgical/medical history was positive for a tonsillectomy at an early age and a fracture of the right proximal femur at age 2. On examination, he was noted to be talkative with his family but guarded during conversations with staff.

His physical exam was positive for pain at the right distal femur and knee with palpation; otherwise, all other systems were unremarkable. The patient was in too much pain to range the knee and had been placed in a long posterior leg splint (prior to surgery and application of the cast). Distally, his right lower extremity motor and sensory function were intact.

The patient’s vital signs were within normal limits, and results from his blood chemistries and alkaline phosphatase and C-reactive protein levels were unremarkable. Findings on the complete blood cell count were slightly abnormal: Hemoglobin was 11 g and the hematocrit, 33% (both within normal limits); however, in the differential there was an elevation in segmented neutrophils (72%, compared with a reference range of 31% to 61%), with Döhle bodies present—possibly signifying acute and/or chronic systemic infection or malignancy. The lymphocyte count represented 11% of the total white blood cell count (range, 28% to 48%), and platelets were 82 x 103/mL (normal range, 150 to 350 x 103/mL). The patient’s erythrocyte sedimentation rate was 44 mm/h (normal range, 0 to 20).

Result from pathology were positive for osteosarcoma, telangiectatic type. The patient underwent a nuclear medicine bone scan that showed no metastases, and chest CT was negative for pulmonary lesions as well. After a psychology consult, the boy was gently told about his condition.

Treatment then proceeded, including surgical placement of a double-lumen chest catheter for delivery of neoadjuvant and adjuvant chemotherapy. Doxorubicin, cisplatin, and methotrexate were used because the boy was enrolled in an international cooperative trial through the Children’s Oncology Group for treatment of localized osteosarcoma.

Discussion
Osteosarcoma (OS) is the most common primary bone malignancy.1,2 Approximately 5% of all pediatric patients with tumors present with this diagnosis, and about 400 new cases are diagnosed in the United States each year.1 Most osteosarcomas develop in the bones of the lower extremities and in the humerus, affecting males more often than females.1-3 This kind of malignancy is frequently seen during the adolescent growth spurt, but it can affect patients of any age.1,2 Patients usually present with pain or functional limitation in gait or daily activities or both.1-3

The telangiectatic subtype of OS is a rare, aggressive variant that represents 2% to 12% of all cases of OS.4-6 Telangiectatic OS (TOS) is characterized by multiple aneurysmally dilated, blood-filled cavities with high-grade sarcomatous cells seen in the peripheral rim and septae.3,7,8 This process can cause the lesion to resemble an aneurysmal bone cyst, explaining why some cases of TOS are misdiagnosed—with delayed time to treatment and increased morbidity and mortality.3,5 Generally, TOS patients are more likely than other OS patients to have tumors of femoral location, larger lesions, and normal alkaline phosphatase values. Many have pathologic fractures on presentation.7

The medical literature chronicles a long debate regarding the difference in mortality between patients with OS and those with TOS. It was once believed that patients with TOS were at higher risk for recurrence (especially those with a pathologic fracture) and mortality. However, in recent studies examining newer neoadjuvant and adjuvant chemotherapies, mortality rates for the two conditions are similar and certainly lower than they were many years ago.7,8 In one study, a better histologic response was reported to neoadjuvant chemotherapy in patients with TOS than with OS.7

Diagnosis
The first diagnostic tool used for patients with suspected OS or TOS is a plain radiographic film. A TOS lesion is lytic, with no areas of sclerosis, and almost always involves the long bones. It is poorly defined, destroying the cortex with formation of periosteal bone and invading the soft tissue. An initial pattern of parallel striations is highly suggestive of TOS.5

 

 

 

MRI and CT often reveal thick nodular tissue in a largely hemorrhagic and/or necrotic osseous lesion, with an associated soft-tissue mass that allows distinction from an aneurysmal bone cyst.3 Next, patients generally undergo a nuclear medicine bone scan and CT of the chest to observe for signs of metastases. Chest CT is commonly repeated on a regular basis during and after treatment.9

Pathologic evaluation, the final step to diagnosis, is very important, especially in the effort to differentiate TOS from an aneurysmal bone cyst. The typical gross findings for a TOS tumor include a dominant cystic cavity–like architecture, with a pushing peripheral margin that frequently expands and erodes the adjacent cortex and extends into the surrounding tissue. There is usually no area of intramural bone tissue.

Microscopically, the cystic areas contain clots and fragments of tumor that are often lined with a layer of neoplasm. The blood-filled telangiectatic spaces form in these areas. The spaces are irregularly shaped and typically traversed by septae composed in part of neoplastic cells. Osteoid formation through these cells can appear as a fine, ice-like material between tumor cells.4,7

Treatment
The main goals of treatment are to limit the anatomical extent of the disease, decrease the possibility of recurrence, and restore the highest possible level of function.2 Initial treatment of any OS or TOS consists of aggressive, immediate chemotherapy prior to and after any surgical intervention.1 (Chemotherapy will not be discussed in further detail here.) Surgical treatments for patients younger than 14 include amputation (above the lesion with wide margins), an expanding prosthesis, or rotationplasty. The location and extent of the tumor, the patient’s age, and his or her desired lifestyle will all have an impact on the choice of surgery.10

Historic data demonstrate that patients who undergo amputation alone almost always develop metastatic disease.1 Other data show that only 10% of patients with OS have been cured by chemotherapy alone. Yet when medical treatment is combined with surgical treatment, the overall expected cure rate can be as high as 65%.2

Discussing amputation with a young patient and the family can be emotionally difficult. If functional levels are to be restored, above-knee amputation (AKA) is the least favored surgical method. Compared with healthy individuals, patients who undergo AKA will walk 43% less quickly and will expend much more energy. These patients frequently have an inefficient gait and, given their limited reserve, they may lose the ability to walk altogether.2

Reconstructive surgical options include limb-salvage procedures; since the late 1980s, these have become the standard of care for OS at all sites.11 One such option includes removal of the lesion (eg, a distal femoral or proximal tibial lesion) with acceptable margins and replacement of the lost bone with an allograft or with a metallic prosthesis and knee joint (called arthroplasty). This endoprosthesis expands as the child grows (by way of a minor surgical procedure or a magnetic spring) so there is no apparent discrepancy between limb lengths, and the patient’s appearance is as normal and socially acceptable as possible.1,2

Because the case patient developed a pathologic fracture through his TOS tumor, he was not a candidate for endoprosthesis. His options were AKA or rotationplasty.

This procedure was first described in 195012 for treatment of proximal focal femoral deficiency. It is considered an alternative for skeletally immature individuals for whom the goal is to preserve function.

When AKA is indicated, the lower limb can be salvaged to allow functioning similar to that of a patient with a below-knee amputation (BKA). During rotationplasty, all but the most proximal aspect of the femur is resected. The tibia is externally rotated on the axis of the neurovascular bundle, then an arthrodesis of the proximal portion of the femur and the tibial plateau is performed (see Figure 2).

The end result is an extremity with the appearance, dimensions, and functional potential of a BKA. The ankle is rotated 180° so that it can serve as the new knee joint, and the attached foot, now pointing in the opposite direction, acts as the residual limb for fitting a prosthesis.2 This procedure is favored in patients with an extensive soft-tissue mass, intra-articular extension of the tumor, and/or pathologic fractures. It can also help prevent phantom pain.13

The Case Patient
After psychological evaluation of the patient and extensive family discussion, he underwent successful rotationplasty. The day after his surgery, however, he developed compartment syndrome and was required to undergo fasciotomies of the calf and proximal thigh. His wounds were treated, a skin graft was performed to close the proximal thigh wound, and his calf wounds were sutured closed (see Figures 3 and 4). His hip range of motion is excellent, and his ankle range of motion continues to improve with physical therapy.

 

 

 

At this writing, the patient was scheduled for his first prosthetic fitting, and he had nearly completed his chemotherapy. His outlook is very promising.

Conclusion
TOS is a rare, aggressive subtype of OS but the most common primary malignant bone tumor of childhood. In the past, outcomes in patients treated with surgery alone were poor. With the advent of chemotherapy and the combination of medical and surgical treatment, TOS-associated mortality has continued to decline. There is no significant difference in outcomes among the available surgical options, but limb-salvage surgical procedures usually offer patients much better function and quality of life. The most important consideration is early diagnosis followed by immediate treatment.

References

 
1. Siegel HJ, Pressey JG. Current concepts on the surgical and medical management of osteosarcoma. Expert Rev Anticancer Ther. 2008;8(8):1257-1269.

2. Marulanda GA, Henderson ER, Johnson DA, et al. Orthopedic surgery options for the treatment of primary osteosarcoma. Cancer Control. 2008;15(1):13-20.

3. Murphey MD, wan Jaovisidha S, Temple HT, et al. Telangiectatic osteosarcoma: radiologic-pathologic comparison. Radiology. 2003;229(2):545-553.

4. Mervak TR, Unni KK, Pritchard DJ, McLeod RA. Telangiectatic osteosarcoma. Clin Orthop Relat Res. 1991 Sep;270:135-139.

5. Vanel D, Tcheng S, Contesso G, et al. The radiological appearances of telangiectatic osteosarcoma: a study of 14 cases. Skeletal Radiol. 1987;16(3):196-200.

6. Ferrari S, Smeland S, Mercuri M, et al. Neoadjuvant chemotherapy with high-dose ifosfamide, high-dose methotrexate, cisplatin, and doxorubicin for patients with localized osteosarcoma of the extremity: a joint study by the Italian and Scandinavian Sarcoma Groups. J Clin Oncol. 2005;23(34):8845-8852.

7. Bacci G, Ferrari S, Ruggieri P, et al. Telangiectatic osteosarcoma of the extremity: neoadjuvant chemotherapy in 24 cases. Acta Orthop Scand. 2001;72(2):167-172.

8. Weiss A, Khoury JD, Hoffer FA, et al. Telangiectatic osteosarcoma: the St. Jude Children’s Research Hospital’s experience. Cancer. 2007;109(8):1627-1637.

9. Agarwal M, Anchan C, Shah M, et al. Limb salvage surgery for osteosarcoma: effective low-cost treatment. Clin Orthop Relat Res. 2007;459:82-91.

10. Bacci G, Ferrari S, Lari S, et al. Osteosarcoma of the limb: amputation or limb salvage in patients treated by neoadjuvant chemotherapy. J Bone Joint Surg Br. 2002;84(1):88-92.

11. Simon MA, Aschliman MA, Thomas N, Mankin HJ. Limb-salvage treatment versus amputation for osteosarcoma of the distal end of the femur. J Bone Joint Surg Am. 1986;68(9):1331-1337.

12. Van Nes CP. Rotation-plasty for congenital defects of the femur: making use of the shortened limb to control the knee joint of a prosthesis. J Bone Joint Surg. 1950;32B:12-16.

13. Sawamura C, Hornicek FJ, Gebhardt MC. Complications and risk factors for failure of rotationplasty: review of 25 patients. Clin Orthop Relat Res. 2008;466(6):1302-1308.

Author and Disclosure Information

 

Pamela L. Horn, MSN, CNP, RNFA, Brenda Ruth, RN, BSN, CWON

Issue
Clinician Reviews - 19(6)
Publications
Topics
Page Number
15-17
Legacy Keywords
knees, knee pain, osteosarcomas, bone tumors, chemotherapy, primary bone malignancy, telangiectatic, arthroplasty, allografts, rationplasty knees, knee pain, osteosarcomas, bone tumors, chemotherapy, primary bone malignancy, telangiectatic, arthroplasty, allografts, rationplasty
Sections
Author and Disclosure Information

 

Pamela L. Horn, MSN, CNP, RNFA, Brenda Ruth, RN, BSN, CWON

Author and Disclosure Information

 

Pamela L. Horn, MSN, CNP, RNFA, Brenda Ruth, RN, BSN, CWON

 

A 10-year-old boy first complained of right knee pain two months prior to presentation. There was no traumatic event to explain the pain and no prior viral or bacterial illness. Radiographs taken earlier at another facility were initially pronounced normal. One month later, repeat x-rays showed a possible hairline fracture, and MRI was ordered. MRI documented a destructive lesion in the right distal femur with a soft-tissue mass that was worrisome for primary bone malignancy.

The boy was placed on weight-bearing restrictions and was given a wheelchair. Unfortunately, he fell from the wheelchair and sustained a pathologic fracture through the lesion (see Figure 1). He was transported to the hospital and admitted. A biopsy was performed with a closed reduction, as the fracture was maligned. The patient was placed in a long leg cast with a pelvic band.

His history was previously unremarkable. He was taking no medications and had experienced no recent illnesses. His surgical/medical history was positive for a tonsillectomy at an early age and a fracture of the right proximal femur at age 2. On examination, he was noted to be talkative with his family but guarded during conversations with staff.

His physical exam was positive for pain at the right distal femur and knee with palpation; otherwise, all other systems were unremarkable. The patient was in too much pain to range the knee and had been placed in a long posterior leg splint (prior to surgery and application of the cast). Distally, his right lower extremity motor and sensory function were intact.

The patient’s vital signs were within normal limits, and results from his blood chemistries and alkaline phosphatase and C-reactive protein levels were unremarkable. Findings on the complete blood cell count were slightly abnormal: Hemoglobin was 11 g and the hematocrit, 33% (both within normal limits); however, in the differential there was an elevation in segmented neutrophils (72%, compared with a reference range of 31% to 61%), with Döhle bodies present—possibly signifying acute and/or chronic systemic infection or malignancy. The lymphocyte count represented 11% of the total white blood cell count (range, 28% to 48%), and platelets were 82 x 103/mL (normal range, 150 to 350 x 103/mL). The patient’s erythrocyte sedimentation rate was 44 mm/h (normal range, 0 to 20).

Result from pathology were positive for osteosarcoma, telangiectatic type. The patient underwent a nuclear medicine bone scan that showed no metastases, and chest CT was negative for pulmonary lesions as well. After a psychology consult, the boy was gently told about his condition.

Treatment then proceeded, including surgical placement of a double-lumen chest catheter for delivery of neoadjuvant and adjuvant chemotherapy. Doxorubicin, cisplatin, and methotrexate were used because the boy was enrolled in an international cooperative trial through the Children’s Oncology Group for treatment of localized osteosarcoma.

Discussion
Osteosarcoma (OS) is the most common primary bone malignancy.1,2 Approximately 5% of all pediatric patients with tumors present with this diagnosis, and about 400 new cases are diagnosed in the United States each year.1 Most osteosarcomas develop in the bones of the lower extremities and in the humerus, affecting males more often than females.1-3 This kind of malignancy is frequently seen during the adolescent growth spurt, but it can affect patients of any age.1,2 Patients usually present with pain or functional limitation in gait or daily activities or both.1-3

The telangiectatic subtype of OS is a rare, aggressive variant that represents 2% to 12% of all cases of OS.4-6 Telangiectatic OS (TOS) is characterized by multiple aneurysmally dilated, blood-filled cavities with high-grade sarcomatous cells seen in the peripheral rim and septae.3,7,8 This process can cause the lesion to resemble an aneurysmal bone cyst, explaining why some cases of TOS are misdiagnosed—with delayed time to treatment and increased morbidity and mortality.3,5 Generally, TOS patients are more likely than other OS patients to have tumors of femoral location, larger lesions, and normal alkaline phosphatase values. Many have pathologic fractures on presentation.7

The medical literature chronicles a long debate regarding the difference in mortality between patients with OS and those with TOS. It was once believed that patients with TOS were at higher risk for recurrence (especially those with a pathologic fracture) and mortality. However, in recent studies examining newer neoadjuvant and adjuvant chemotherapies, mortality rates for the two conditions are similar and certainly lower than they were many years ago.7,8 In one study, a better histologic response was reported to neoadjuvant chemotherapy in patients with TOS than with OS.7

Diagnosis
The first diagnostic tool used for patients with suspected OS or TOS is a plain radiographic film. A TOS lesion is lytic, with no areas of sclerosis, and almost always involves the long bones. It is poorly defined, destroying the cortex with formation of periosteal bone and invading the soft tissue. An initial pattern of parallel striations is highly suggestive of TOS.5

 

 

 

MRI and CT often reveal thick nodular tissue in a largely hemorrhagic and/or necrotic osseous lesion, with an associated soft-tissue mass that allows distinction from an aneurysmal bone cyst.3 Next, patients generally undergo a nuclear medicine bone scan and CT of the chest to observe for signs of metastases. Chest CT is commonly repeated on a regular basis during and after treatment.9

Pathologic evaluation, the final step to diagnosis, is very important, especially in the effort to differentiate TOS from an aneurysmal bone cyst. The typical gross findings for a TOS tumor include a dominant cystic cavity–like architecture, with a pushing peripheral margin that frequently expands and erodes the adjacent cortex and extends into the surrounding tissue. There is usually no area of intramural bone tissue.

Microscopically, the cystic areas contain clots and fragments of tumor that are often lined with a layer of neoplasm. The blood-filled telangiectatic spaces form in these areas. The spaces are irregularly shaped and typically traversed by septae composed in part of neoplastic cells. Osteoid formation through these cells can appear as a fine, ice-like material between tumor cells.4,7

Treatment
The main goals of treatment are to limit the anatomical extent of the disease, decrease the possibility of recurrence, and restore the highest possible level of function.2 Initial treatment of any OS or TOS consists of aggressive, immediate chemotherapy prior to and after any surgical intervention.1 (Chemotherapy will not be discussed in further detail here.) Surgical treatments for patients younger than 14 include amputation (above the lesion with wide margins), an expanding prosthesis, or rotationplasty. The location and extent of the tumor, the patient’s age, and his or her desired lifestyle will all have an impact on the choice of surgery.10

Historic data demonstrate that patients who undergo amputation alone almost always develop metastatic disease.1 Other data show that only 10% of patients with OS have been cured by chemotherapy alone. Yet when medical treatment is combined with surgical treatment, the overall expected cure rate can be as high as 65%.2

Discussing amputation with a young patient and the family can be emotionally difficult. If functional levels are to be restored, above-knee amputation (AKA) is the least favored surgical method. Compared with healthy individuals, patients who undergo AKA will walk 43% less quickly and will expend much more energy. These patients frequently have an inefficient gait and, given their limited reserve, they may lose the ability to walk altogether.2

Reconstructive surgical options include limb-salvage procedures; since the late 1980s, these have become the standard of care for OS at all sites.11 One such option includes removal of the lesion (eg, a distal femoral or proximal tibial lesion) with acceptable margins and replacement of the lost bone with an allograft or with a metallic prosthesis and knee joint (called arthroplasty). This endoprosthesis expands as the child grows (by way of a minor surgical procedure or a magnetic spring) so there is no apparent discrepancy between limb lengths, and the patient’s appearance is as normal and socially acceptable as possible.1,2

Because the case patient developed a pathologic fracture through his TOS tumor, he was not a candidate for endoprosthesis. His options were AKA or rotationplasty.

This procedure was first described in 195012 for treatment of proximal focal femoral deficiency. It is considered an alternative for skeletally immature individuals for whom the goal is to preserve function.

When AKA is indicated, the lower limb can be salvaged to allow functioning similar to that of a patient with a below-knee amputation (BKA). During rotationplasty, all but the most proximal aspect of the femur is resected. The tibia is externally rotated on the axis of the neurovascular bundle, then an arthrodesis of the proximal portion of the femur and the tibial plateau is performed (see Figure 2).

The end result is an extremity with the appearance, dimensions, and functional potential of a BKA. The ankle is rotated 180° so that it can serve as the new knee joint, and the attached foot, now pointing in the opposite direction, acts as the residual limb for fitting a prosthesis.2 This procedure is favored in patients with an extensive soft-tissue mass, intra-articular extension of the tumor, and/or pathologic fractures. It can also help prevent phantom pain.13

The Case Patient
After psychological evaluation of the patient and extensive family discussion, he underwent successful rotationplasty. The day after his surgery, however, he developed compartment syndrome and was required to undergo fasciotomies of the calf and proximal thigh. His wounds were treated, a skin graft was performed to close the proximal thigh wound, and his calf wounds were sutured closed (see Figures 3 and 4). His hip range of motion is excellent, and his ankle range of motion continues to improve with physical therapy.

 

 

 

At this writing, the patient was scheduled for his first prosthetic fitting, and he had nearly completed his chemotherapy. His outlook is very promising.

Conclusion
TOS is a rare, aggressive subtype of OS but the most common primary malignant bone tumor of childhood. In the past, outcomes in patients treated with surgery alone were poor. With the advent of chemotherapy and the combination of medical and surgical treatment, TOS-associated mortality has continued to decline. There is no significant difference in outcomes among the available surgical options, but limb-salvage surgical procedures usually offer patients much better function and quality of life. The most important consideration is early diagnosis followed by immediate treatment.

 

A 10-year-old boy first complained of right knee pain two months prior to presentation. There was no traumatic event to explain the pain and no prior viral or bacterial illness. Radiographs taken earlier at another facility were initially pronounced normal. One month later, repeat x-rays showed a possible hairline fracture, and MRI was ordered. MRI documented a destructive lesion in the right distal femur with a soft-tissue mass that was worrisome for primary bone malignancy.

The boy was placed on weight-bearing restrictions and was given a wheelchair. Unfortunately, he fell from the wheelchair and sustained a pathologic fracture through the lesion (see Figure 1). He was transported to the hospital and admitted. A biopsy was performed with a closed reduction, as the fracture was maligned. The patient was placed in a long leg cast with a pelvic band.

His history was previously unremarkable. He was taking no medications and had experienced no recent illnesses. His surgical/medical history was positive for a tonsillectomy at an early age and a fracture of the right proximal femur at age 2. On examination, he was noted to be talkative with his family but guarded during conversations with staff.

His physical exam was positive for pain at the right distal femur and knee with palpation; otherwise, all other systems were unremarkable. The patient was in too much pain to range the knee and had been placed in a long posterior leg splint (prior to surgery and application of the cast). Distally, his right lower extremity motor and sensory function were intact.

The patient’s vital signs were within normal limits, and results from his blood chemistries and alkaline phosphatase and C-reactive protein levels were unremarkable. Findings on the complete blood cell count were slightly abnormal: Hemoglobin was 11 g and the hematocrit, 33% (both within normal limits); however, in the differential there was an elevation in segmented neutrophils (72%, compared with a reference range of 31% to 61%), with Döhle bodies present—possibly signifying acute and/or chronic systemic infection or malignancy. The lymphocyte count represented 11% of the total white blood cell count (range, 28% to 48%), and platelets were 82 x 103/mL (normal range, 150 to 350 x 103/mL). The patient’s erythrocyte sedimentation rate was 44 mm/h (normal range, 0 to 20).

Result from pathology were positive for osteosarcoma, telangiectatic type. The patient underwent a nuclear medicine bone scan that showed no metastases, and chest CT was negative for pulmonary lesions as well. After a psychology consult, the boy was gently told about his condition.

Treatment then proceeded, including surgical placement of a double-lumen chest catheter for delivery of neoadjuvant and adjuvant chemotherapy. Doxorubicin, cisplatin, and methotrexate were used because the boy was enrolled in an international cooperative trial through the Children’s Oncology Group for treatment of localized osteosarcoma.

Discussion
Osteosarcoma (OS) is the most common primary bone malignancy.1,2 Approximately 5% of all pediatric patients with tumors present with this diagnosis, and about 400 new cases are diagnosed in the United States each year.1 Most osteosarcomas develop in the bones of the lower extremities and in the humerus, affecting males more often than females.1-3 This kind of malignancy is frequently seen during the adolescent growth spurt, but it can affect patients of any age.1,2 Patients usually present with pain or functional limitation in gait or daily activities or both.1-3

The telangiectatic subtype of OS is a rare, aggressive variant that represents 2% to 12% of all cases of OS.4-6 Telangiectatic OS (TOS) is characterized by multiple aneurysmally dilated, blood-filled cavities with high-grade sarcomatous cells seen in the peripheral rim and septae.3,7,8 This process can cause the lesion to resemble an aneurysmal bone cyst, explaining why some cases of TOS are misdiagnosed—with delayed time to treatment and increased morbidity and mortality.3,5 Generally, TOS patients are more likely than other OS patients to have tumors of femoral location, larger lesions, and normal alkaline phosphatase values. Many have pathologic fractures on presentation.7

The medical literature chronicles a long debate regarding the difference in mortality between patients with OS and those with TOS. It was once believed that patients with TOS were at higher risk for recurrence (especially those with a pathologic fracture) and mortality. However, in recent studies examining newer neoadjuvant and adjuvant chemotherapies, mortality rates for the two conditions are similar and certainly lower than they were many years ago.7,8 In one study, a better histologic response was reported to neoadjuvant chemotherapy in patients with TOS than with OS.7

Diagnosis
The first diagnostic tool used for patients with suspected OS or TOS is a plain radiographic film. A TOS lesion is lytic, with no areas of sclerosis, and almost always involves the long bones. It is poorly defined, destroying the cortex with formation of periosteal bone and invading the soft tissue. An initial pattern of parallel striations is highly suggestive of TOS.5

 

 

 

MRI and CT often reveal thick nodular tissue in a largely hemorrhagic and/or necrotic osseous lesion, with an associated soft-tissue mass that allows distinction from an aneurysmal bone cyst.3 Next, patients generally undergo a nuclear medicine bone scan and CT of the chest to observe for signs of metastases. Chest CT is commonly repeated on a regular basis during and after treatment.9

Pathologic evaluation, the final step to diagnosis, is very important, especially in the effort to differentiate TOS from an aneurysmal bone cyst. The typical gross findings for a TOS tumor include a dominant cystic cavity–like architecture, with a pushing peripheral margin that frequently expands and erodes the adjacent cortex and extends into the surrounding tissue. There is usually no area of intramural bone tissue.

Microscopically, the cystic areas contain clots and fragments of tumor that are often lined with a layer of neoplasm. The blood-filled telangiectatic spaces form in these areas. The spaces are irregularly shaped and typically traversed by septae composed in part of neoplastic cells. Osteoid formation through these cells can appear as a fine, ice-like material between tumor cells.4,7

Treatment
The main goals of treatment are to limit the anatomical extent of the disease, decrease the possibility of recurrence, and restore the highest possible level of function.2 Initial treatment of any OS or TOS consists of aggressive, immediate chemotherapy prior to and after any surgical intervention.1 (Chemotherapy will not be discussed in further detail here.) Surgical treatments for patients younger than 14 include amputation (above the lesion with wide margins), an expanding prosthesis, or rotationplasty. The location and extent of the tumor, the patient’s age, and his or her desired lifestyle will all have an impact on the choice of surgery.10

Historic data demonstrate that patients who undergo amputation alone almost always develop metastatic disease.1 Other data show that only 10% of patients with OS have been cured by chemotherapy alone. Yet when medical treatment is combined with surgical treatment, the overall expected cure rate can be as high as 65%.2

Discussing amputation with a young patient and the family can be emotionally difficult. If functional levels are to be restored, above-knee amputation (AKA) is the least favored surgical method. Compared with healthy individuals, patients who undergo AKA will walk 43% less quickly and will expend much more energy. These patients frequently have an inefficient gait and, given their limited reserve, they may lose the ability to walk altogether.2

Reconstructive surgical options include limb-salvage procedures; since the late 1980s, these have become the standard of care for OS at all sites.11 One such option includes removal of the lesion (eg, a distal femoral or proximal tibial lesion) with acceptable margins and replacement of the lost bone with an allograft or with a metallic prosthesis and knee joint (called arthroplasty). This endoprosthesis expands as the child grows (by way of a minor surgical procedure or a magnetic spring) so there is no apparent discrepancy between limb lengths, and the patient’s appearance is as normal and socially acceptable as possible.1,2

Because the case patient developed a pathologic fracture through his TOS tumor, he was not a candidate for endoprosthesis. His options were AKA or rotationplasty.

This procedure was first described in 195012 for treatment of proximal focal femoral deficiency. It is considered an alternative for skeletally immature individuals for whom the goal is to preserve function.

When AKA is indicated, the lower limb can be salvaged to allow functioning similar to that of a patient with a below-knee amputation (BKA). During rotationplasty, all but the most proximal aspect of the femur is resected. The tibia is externally rotated on the axis of the neurovascular bundle, then an arthrodesis of the proximal portion of the femur and the tibial plateau is performed (see Figure 2).

The end result is an extremity with the appearance, dimensions, and functional potential of a BKA. The ankle is rotated 180° so that it can serve as the new knee joint, and the attached foot, now pointing in the opposite direction, acts as the residual limb for fitting a prosthesis.2 This procedure is favored in patients with an extensive soft-tissue mass, intra-articular extension of the tumor, and/or pathologic fractures. It can also help prevent phantom pain.13

The Case Patient
After psychological evaluation of the patient and extensive family discussion, he underwent successful rotationplasty. The day after his surgery, however, he developed compartment syndrome and was required to undergo fasciotomies of the calf and proximal thigh. His wounds were treated, a skin graft was performed to close the proximal thigh wound, and his calf wounds were sutured closed (see Figures 3 and 4). His hip range of motion is excellent, and his ankle range of motion continues to improve with physical therapy.

 

 

 

At this writing, the patient was scheduled for his first prosthetic fitting, and he had nearly completed his chemotherapy. His outlook is very promising.

Conclusion
TOS is a rare, aggressive subtype of OS but the most common primary malignant bone tumor of childhood. In the past, outcomes in patients treated with surgery alone were poor. With the advent of chemotherapy and the combination of medical and surgical treatment, TOS-associated mortality has continued to decline. There is no significant difference in outcomes among the available surgical options, but limb-salvage surgical procedures usually offer patients much better function and quality of life. The most important consideration is early diagnosis followed by immediate treatment.

References

 
1. Siegel HJ, Pressey JG. Current concepts on the surgical and medical management of osteosarcoma. Expert Rev Anticancer Ther. 2008;8(8):1257-1269.

2. Marulanda GA, Henderson ER, Johnson DA, et al. Orthopedic surgery options for the treatment of primary osteosarcoma. Cancer Control. 2008;15(1):13-20.

3. Murphey MD, wan Jaovisidha S, Temple HT, et al. Telangiectatic osteosarcoma: radiologic-pathologic comparison. Radiology. 2003;229(2):545-553.

4. Mervak TR, Unni KK, Pritchard DJ, McLeod RA. Telangiectatic osteosarcoma. Clin Orthop Relat Res. 1991 Sep;270:135-139.

5. Vanel D, Tcheng S, Contesso G, et al. The radiological appearances of telangiectatic osteosarcoma: a study of 14 cases. Skeletal Radiol. 1987;16(3):196-200.

6. Ferrari S, Smeland S, Mercuri M, et al. Neoadjuvant chemotherapy with high-dose ifosfamide, high-dose methotrexate, cisplatin, and doxorubicin for patients with localized osteosarcoma of the extremity: a joint study by the Italian and Scandinavian Sarcoma Groups. J Clin Oncol. 2005;23(34):8845-8852.

7. Bacci G, Ferrari S, Ruggieri P, et al. Telangiectatic osteosarcoma of the extremity: neoadjuvant chemotherapy in 24 cases. Acta Orthop Scand. 2001;72(2):167-172.

8. Weiss A, Khoury JD, Hoffer FA, et al. Telangiectatic osteosarcoma: the St. Jude Children’s Research Hospital’s experience. Cancer. 2007;109(8):1627-1637.

9. Agarwal M, Anchan C, Shah M, et al. Limb salvage surgery for osteosarcoma: effective low-cost treatment. Clin Orthop Relat Res. 2007;459:82-91.

10. Bacci G, Ferrari S, Lari S, et al. Osteosarcoma of the limb: amputation or limb salvage in patients treated by neoadjuvant chemotherapy. J Bone Joint Surg Br. 2002;84(1):88-92.

11. Simon MA, Aschliman MA, Thomas N, Mankin HJ. Limb-salvage treatment versus amputation for osteosarcoma of the distal end of the femur. J Bone Joint Surg Am. 1986;68(9):1331-1337.

12. Van Nes CP. Rotation-plasty for congenital defects of the femur: making use of the shortened limb to control the knee joint of a prosthesis. J Bone Joint Surg. 1950;32B:12-16.

13. Sawamura C, Hornicek FJ, Gebhardt MC. Complications and risk factors for failure of rotationplasty: review of 25 patients. Clin Orthop Relat Res. 2008;466(6):1302-1308.

References

 
1. Siegel HJ, Pressey JG. Current concepts on the surgical and medical management of osteosarcoma. Expert Rev Anticancer Ther. 2008;8(8):1257-1269.

2. Marulanda GA, Henderson ER, Johnson DA, et al. Orthopedic surgery options for the treatment of primary osteosarcoma. Cancer Control. 2008;15(1):13-20.

3. Murphey MD, wan Jaovisidha S, Temple HT, et al. Telangiectatic osteosarcoma: radiologic-pathologic comparison. Radiology. 2003;229(2):545-553.

4. Mervak TR, Unni KK, Pritchard DJ, McLeod RA. Telangiectatic osteosarcoma. Clin Orthop Relat Res. 1991 Sep;270:135-139.

5. Vanel D, Tcheng S, Contesso G, et al. The radiological appearances of telangiectatic osteosarcoma: a study of 14 cases. Skeletal Radiol. 1987;16(3):196-200.

6. Ferrari S, Smeland S, Mercuri M, et al. Neoadjuvant chemotherapy with high-dose ifosfamide, high-dose methotrexate, cisplatin, and doxorubicin for patients with localized osteosarcoma of the extremity: a joint study by the Italian and Scandinavian Sarcoma Groups. J Clin Oncol. 2005;23(34):8845-8852.

7. Bacci G, Ferrari S, Ruggieri P, et al. Telangiectatic osteosarcoma of the extremity: neoadjuvant chemotherapy in 24 cases. Acta Orthop Scand. 2001;72(2):167-172.

8. Weiss A, Khoury JD, Hoffer FA, et al. Telangiectatic osteosarcoma: the St. Jude Children’s Research Hospital’s experience. Cancer. 2007;109(8):1627-1637.

9. Agarwal M, Anchan C, Shah M, et al. Limb salvage surgery for osteosarcoma: effective low-cost treatment. Clin Orthop Relat Res. 2007;459:82-91.

10. Bacci G, Ferrari S, Lari S, et al. Osteosarcoma of the limb: amputation or limb salvage in patients treated by neoadjuvant chemotherapy. J Bone Joint Surg Br. 2002;84(1):88-92.

11. Simon MA, Aschliman MA, Thomas N, Mankin HJ. Limb-salvage treatment versus amputation for osteosarcoma of the distal end of the femur. J Bone Joint Surg Am. 1986;68(9):1331-1337.

12. Van Nes CP. Rotation-plasty for congenital defects of the femur: making use of the shortened limb to control the knee joint of a prosthesis. J Bone Joint Surg. 1950;32B:12-16.

13. Sawamura C, Hornicek FJ, Gebhardt MC. Complications and risk factors for failure of rotationplasty: review of 25 patients. Clin Orthop Relat Res. 2008;466(6):1302-1308.

Issue
Clinician Reviews - 19(6)
Issue
Clinician Reviews - 19(6)
Page Number
15-17
Page Number
15-17
Publications
Publications
Topics
Article Type
Display Headline
Boy, 10, With Knee Pain
Display Headline
Boy, 10, With Knee Pain
Legacy Keywords
knees, knee pain, osteosarcomas, bone tumors, chemotherapy, primary bone malignancy, telangiectatic, arthroplasty, allografts, rationplasty knees, knee pain, osteosarcomas, bone tumors, chemotherapy, primary bone malignancy, telangiectatic, arthroplasty, allografts, rationplasty
Legacy Keywords
knees, knee pain, osteosarcomas, bone tumors, chemotherapy, primary bone malignancy, telangiectatic, arthroplasty, allografts, rationplasty knees, knee pain, osteosarcomas, bone tumors, chemotherapy, primary bone malignancy, telangiectatic, arthroplasty, allografts, rationplasty
Sections
Disallow All Ads
Alternative CME

Ellis-van Creveld Syndrome: Case Report and Review of the Literature

Article Type
Changed
Thu, 01/10/2019 - 12:17
Display Headline
Ellis-van Creveld Syndrome: Case Report and Review of the Literature

Article PDF
Author and Disclosure Information

Jenkins S, Morrell DS

Issue
Cutis - 83(6)
Publications
Page Number
303-305
Sections
Author and Disclosure Information

Jenkins S, Morrell DS

Author and Disclosure Information

Jenkins S, Morrell DS

Article PDF
Article PDF

Issue
Cutis - 83(6)
Issue
Cutis - 83(6)
Page Number
303-305
Page Number
303-305
Publications
Publications
Article Type
Display Headline
Ellis-van Creveld Syndrome: Case Report and Review of the Literature
Display Headline
Ellis-van Creveld Syndrome: Case Report and Review of the Literature
Sections
Article Source

PURLs Copyright

Inside the Article

Article PDF Media

A Comparative Split-Face Study of Cryosurgery and Trichloroacetic Acid 100% Peels in the Treatment of HIV-Associated Disseminated Facial Molluscum Contagiosum

Article Type
Changed
Fri, 03/08/2019 - 16:55
Display Headline
A Comparative Split-Face Study of Cryosurgery and Trichloroacetic Acid 100% Peels in the Treatment of HIV-Associated Disseminated Facial Molluscum Contagiosum

Article PDF
Author and Disclosure Information

Sadick N, Sorhaindo L

Issue
Cutis - 83(6)
Publications
Topics
Page Number
299-302
Sections
Author and Disclosure Information

Sadick N, Sorhaindo L

Author and Disclosure Information

Sadick N, Sorhaindo L

Article PDF
Article PDF

Issue
Cutis - 83(6)
Issue
Cutis - 83(6)
Page Number
299-302
Page Number
299-302
Publications
Publications
Topics
Article Type
Display Headline
A Comparative Split-Face Study of Cryosurgery and Trichloroacetic Acid 100% Peels in the Treatment of HIV-Associated Disseminated Facial Molluscum Contagiosum
Display Headline
A Comparative Split-Face Study of Cryosurgery and Trichloroacetic Acid 100% Peels in the Treatment of HIV-Associated Disseminated Facial Molluscum Contagiosum
Sections
Article Source

PURLs Copyright

Inside the Article

Article PDF Media

Acute Generalized Exanthematous Pustulosis: An Enigmatic Drug-Induced Reaction

Article Type
Changed
Thu, 01/10/2019 - 12:17
Display Headline
Acute Generalized Exanthematous Pustulosis: An Enigmatic Drug-Induced Reaction

Article PDF
Author and Disclosure Information

Momin SB, Del Rosso JQ, Michaels B, Mobini N

Issue
Cutis - 83(6)
Publications
Topics
Page Number
291-298
Sections
Author and Disclosure Information

Momin SB, Del Rosso JQ, Michaels B, Mobini N

Author and Disclosure Information

Momin SB, Del Rosso JQ, Michaels B, Mobini N

Article PDF
Article PDF

Issue
Cutis - 83(6)
Issue
Cutis - 83(6)
Page Number
291-298
Page Number
291-298
Publications
Publications
Topics
Article Type
Display Headline
Acute Generalized Exanthematous Pustulosis: An Enigmatic Drug-Induced Reaction
Display Headline
Acute Generalized Exanthematous Pustulosis: An Enigmatic Drug-Induced Reaction
Sections
Article Source

PURLs Copyright

Inside the Article

Article PDF Media

Mobbing is not PTSD

Article Type
Changed
Mon, 04/16/2018 - 14:29
Display Headline
Mobbing is not PTSD

Giving all due respect to James Randolph Hillard, MD, I cannot agree with his posttraumatic stress disorder (PTSD) diagnosis, given the information he provided in “Workplace mobbing: Are they really out to get your patient?” (Current Psychiatry). He does not make a case for DSM-IV-TR Criterion A (the person has been exposed to a traumatic event in which both of the following were present: the event involved actual or threatened death or serious injury, or a threat to the physical integrity of self or others [A1] and the person’s response involved intense fear, helplessness, or horror [A2]),1 despite what other “stress” symptoms the patient experienced.

If data exist that correspond with Criterion A, let us know. Criterion A exists for a purpose, and unless it’s changed in DSM-V clinicians should stick to what’s defined and not make up their own diagnosis.

Melvyn Nizny, MD, DLF
Cincinnati, OH

Reference

1. Diagnostic and statistical manual of mental disorders, 4th ed, text rev. Washington DC: American Psychiatric Association; 2000.

Dr. Hillard responds

Dr. Nizny makes a very interesting point. DSM-IV-TR requires that a patient must meet 6 sets of criteria for a PTSD diagnosis. The patient described in my article convincingly met Criterion A2 and Criteria B, C, D, E, and F. In terms of Criterion A1, DSM-IV-TR states: “Traumatic events that are experienced directly include, but are not limited to, military combat, violent physical assault (sexual assault, physical attack, robbery, mugging), being kidnapped, being taken hostage, terrorist attack, torture, incarcerations as a prisoner of war or in a concentration camp, natural or manmade disasters, severe automobile accidents, or being diagnosed with a life-threatening illness.”

I think I can make the case that the patient described in my article meets the “letter” of Criterion A1 by arguing that he experienced threat of “serious injury.” He faced loss of livelihood, loss of much of his core identity, and loss of nearly his whole social network, which consisted mostly of people at his place of employment.

I am fairly sure, however, that such an argument does not follow the spirit of Criterion A1, which seems to imply that PTSD should be diagnosed only if there has been a physical threat. On the other hand, I do not have much sympathy with that concept. Why should threats of physical harm be more likely to produce symptoms than other types of threats? Recent empirical studies1 do not support the existence of a posttraumatic stress syndrome uniquely associated with physical threats, as opposed to all other threats.

Dr. Nizny notes that Criterion A exists for a purpose, but for what purpose? Michael First, MD, co-chair and editor of DSM-IV-TR, was quoted as giving a partial answer: “The litigation about PTSD when we were working on DSM-IV was going crazy, so we thought it would be wise to limit it to high-magnitude events…there was a huge debate over how broad versus how narrow Criterion A should be.”2 In the same article, Dr. First is quoted as stating that the definition “should change with the next revision of the Diagnostic and Statistical Manual.” The committee that designed the criteria for PTSD in DSM-IV in 1994 would probably have preferred to have seen this patient diagnosed as “adjustment disorder with mixed anxiety and depressed mood,” probably to make it less likely that he could successfully sue for damages.

I am convinced that workplace mobbing can present a pathogenic stress to victims that is as severe as that caused by physical injuries or threats. Furthermore, I am convinced that mobbing victims are entitled to have their day in court, as are victims of physical injuries in the workplace. Finally, I am convinced that when psychiatrists underestimate the severity of stress involved in workplace mobbing, they are at risk of failing to treat their patients appropriately. For these reasons, I have not chosen to use a “strict constructionist” approach to diagnosis in this case.

James Randolph Hillard, MD
Associate provost for human health affairs
Michigan State University
East Lansing, MI

References

1. Bodkin JA, Pope HG, Detke MJ, et al. Is PTSD caused by traumatic stress? J Anxiety Disord. 2007;21(2):176-182.

2. McNamara D. Latest evidence on PTSD may bring changes in DSM-V: Subthreshold events can lead to disorder. Clinical Psychiatry News. 2007;35(11):1.-

Article PDF
Author and Disclosure Information

Issue
Current Psychiatry - 08(06)
Publications
Topics
Page Number
8-8
Sections
Author and Disclosure Information

Author and Disclosure Information

Article PDF
Article PDF

Giving all due respect to James Randolph Hillard, MD, I cannot agree with his posttraumatic stress disorder (PTSD) diagnosis, given the information he provided in “Workplace mobbing: Are they really out to get your patient?” (Current Psychiatry). He does not make a case for DSM-IV-TR Criterion A (the person has been exposed to a traumatic event in which both of the following were present: the event involved actual or threatened death or serious injury, or a threat to the physical integrity of self or others [A1] and the person’s response involved intense fear, helplessness, or horror [A2]),1 despite what other “stress” symptoms the patient experienced.

If data exist that correspond with Criterion A, let us know. Criterion A exists for a purpose, and unless it’s changed in DSM-V clinicians should stick to what’s defined and not make up their own diagnosis.

Melvyn Nizny, MD, DLF
Cincinnati, OH

Reference

1. Diagnostic and statistical manual of mental disorders, 4th ed, text rev. Washington DC: American Psychiatric Association; 2000.

Dr. Hillard responds

Dr. Nizny makes a very interesting point. DSM-IV-TR requires that a patient must meet 6 sets of criteria for a PTSD diagnosis. The patient described in my article convincingly met Criterion A2 and Criteria B, C, D, E, and F. In terms of Criterion A1, DSM-IV-TR states: “Traumatic events that are experienced directly include, but are not limited to, military combat, violent physical assault (sexual assault, physical attack, robbery, mugging), being kidnapped, being taken hostage, terrorist attack, torture, incarcerations as a prisoner of war or in a concentration camp, natural or manmade disasters, severe automobile accidents, or being diagnosed with a life-threatening illness.”

I think I can make the case that the patient described in my article meets the “letter” of Criterion A1 by arguing that he experienced threat of “serious injury.” He faced loss of livelihood, loss of much of his core identity, and loss of nearly his whole social network, which consisted mostly of people at his place of employment.

I am fairly sure, however, that such an argument does not follow the spirit of Criterion A1, which seems to imply that PTSD should be diagnosed only if there has been a physical threat. On the other hand, I do not have much sympathy with that concept. Why should threats of physical harm be more likely to produce symptoms than other types of threats? Recent empirical studies1 do not support the existence of a posttraumatic stress syndrome uniquely associated with physical threats, as opposed to all other threats.

Dr. Nizny notes that Criterion A exists for a purpose, but for what purpose? Michael First, MD, co-chair and editor of DSM-IV-TR, was quoted as giving a partial answer: “The litigation about PTSD when we were working on DSM-IV was going crazy, so we thought it would be wise to limit it to high-magnitude events…there was a huge debate over how broad versus how narrow Criterion A should be.”2 In the same article, Dr. First is quoted as stating that the definition “should change with the next revision of the Diagnostic and Statistical Manual.” The committee that designed the criteria for PTSD in DSM-IV in 1994 would probably have preferred to have seen this patient diagnosed as “adjustment disorder with mixed anxiety and depressed mood,” probably to make it less likely that he could successfully sue for damages.

I am convinced that workplace mobbing can present a pathogenic stress to victims that is as severe as that caused by physical injuries or threats. Furthermore, I am convinced that mobbing victims are entitled to have their day in court, as are victims of physical injuries in the workplace. Finally, I am convinced that when psychiatrists underestimate the severity of stress involved in workplace mobbing, they are at risk of failing to treat their patients appropriately. For these reasons, I have not chosen to use a “strict constructionist” approach to diagnosis in this case.

James Randolph Hillard, MD
Associate provost for human health affairs
Michigan State University
East Lansing, MI

Giving all due respect to James Randolph Hillard, MD, I cannot agree with his posttraumatic stress disorder (PTSD) diagnosis, given the information he provided in “Workplace mobbing: Are they really out to get your patient?” (Current Psychiatry). He does not make a case for DSM-IV-TR Criterion A (the person has been exposed to a traumatic event in which both of the following were present: the event involved actual or threatened death or serious injury, or a threat to the physical integrity of self or others [A1] and the person’s response involved intense fear, helplessness, or horror [A2]),1 despite what other “stress” symptoms the patient experienced.

If data exist that correspond with Criterion A, let us know. Criterion A exists for a purpose, and unless it’s changed in DSM-V clinicians should stick to what’s defined and not make up their own diagnosis.

Melvyn Nizny, MD, DLF
Cincinnati, OH

Reference

1. Diagnostic and statistical manual of mental disorders, 4th ed, text rev. Washington DC: American Psychiatric Association; 2000.

Dr. Hillard responds

Dr. Nizny makes a very interesting point. DSM-IV-TR requires that a patient must meet 6 sets of criteria for a PTSD diagnosis. The patient described in my article convincingly met Criterion A2 and Criteria B, C, D, E, and F. In terms of Criterion A1, DSM-IV-TR states: “Traumatic events that are experienced directly include, but are not limited to, military combat, violent physical assault (sexual assault, physical attack, robbery, mugging), being kidnapped, being taken hostage, terrorist attack, torture, incarcerations as a prisoner of war or in a concentration camp, natural or manmade disasters, severe automobile accidents, or being diagnosed with a life-threatening illness.”

I think I can make the case that the patient described in my article meets the “letter” of Criterion A1 by arguing that he experienced threat of “serious injury.” He faced loss of livelihood, loss of much of his core identity, and loss of nearly his whole social network, which consisted mostly of people at his place of employment.

I am fairly sure, however, that such an argument does not follow the spirit of Criterion A1, which seems to imply that PTSD should be diagnosed only if there has been a physical threat. On the other hand, I do not have much sympathy with that concept. Why should threats of physical harm be more likely to produce symptoms than other types of threats? Recent empirical studies1 do not support the existence of a posttraumatic stress syndrome uniquely associated with physical threats, as opposed to all other threats.

Dr. Nizny notes that Criterion A exists for a purpose, but for what purpose? Michael First, MD, co-chair and editor of DSM-IV-TR, was quoted as giving a partial answer: “The litigation about PTSD when we were working on DSM-IV was going crazy, so we thought it would be wise to limit it to high-magnitude events…there was a huge debate over how broad versus how narrow Criterion A should be.”2 In the same article, Dr. First is quoted as stating that the definition “should change with the next revision of the Diagnostic and Statistical Manual.” The committee that designed the criteria for PTSD in DSM-IV in 1994 would probably have preferred to have seen this patient diagnosed as “adjustment disorder with mixed anxiety and depressed mood,” probably to make it less likely that he could successfully sue for damages.

I am convinced that workplace mobbing can present a pathogenic stress to victims that is as severe as that caused by physical injuries or threats. Furthermore, I am convinced that mobbing victims are entitled to have their day in court, as are victims of physical injuries in the workplace. Finally, I am convinced that when psychiatrists underestimate the severity of stress involved in workplace mobbing, they are at risk of failing to treat their patients appropriately. For these reasons, I have not chosen to use a “strict constructionist” approach to diagnosis in this case.

James Randolph Hillard, MD
Associate provost for human health affairs
Michigan State University
East Lansing, MI

References

1. Bodkin JA, Pope HG, Detke MJ, et al. Is PTSD caused by traumatic stress? J Anxiety Disord. 2007;21(2):176-182.

2. McNamara D. Latest evidence on PTSD may bring changes in DSM-V: Subthreshold events can lead to disorder. Clinical Psychiatry News. 2007;35(11):1.-

References

1. Bodkin JA, Pope HG, Detke MJ, et al. Is PTSD caused by traumatic stress? J Anxiety Disord. 2007;21(2):176-182.

2. McNamara D. Latest evidence on PTSD may bring changes in DSM-V: Subthreshold events can lead to disorder. Clinical Psychiatry News. 2007;35(11):1.-

Issue
Current Psychiatry - 08(06)
Issue
Current Psychiatry - 08(06)
Page Number
8-8
Page Number
8-8
Publications
Publications
Topics
Article Type
Display Headline
Mobbing is not PTSD
Display Headline
Mobbing is not PTSD
Sections
Article Source

PURLs Copyright

Inside the Article

Article PDF Media

SJS is diagnosed, but not quickly...Lithium unmonitored, kidney failure followed...more...

Article Type
Changed
Mon, 01/14/2019 - 11:25
Display Headline
SJS is diagnosed, but not quickly...Lithium unmonitored, kidney failure followed...more...

SJS is diagnosed, but not quickly

AFTER MULTIPLE HOSPITAL VISITS FOR A RASH, a 34-year-old man was sent to a regional medical center for treatment. The rash was eventually diagnosed as a reaction to allopurinol, a potential side effect that was prominently noted in the drug warnings.

The patient developed Stevens-Johnson syndrome. He recovered after several days in the intensive care unit and was discharged with mild scarring over 80% of his body.

PLAINTIFF’S CLAIM The defendants negligently failed to diagnose a drug reaction after multiple reports of a known side effect.

DOCTORS’ DEFENSE Rashes are a common complaint in an emergency room; delayed withdrawal of the drug caused no additional harm.

VERDICT $72,500 South Carolina settlement.

COMMENT Although instances are rare, failure to diagnose and treat a dermatologic problem promptly can have catastrophic results. Stevens-Johnson syndrome needs to be included in the differential diagnosis of drug reactions and must be handled promptly. (See “Derm diagnoses you can’t afford to miss”.)

Lithium unmonitored, kidney failure followed

A WOMAN WAS STARTED ON LITHIUM, but the doctor who wrote the prescription never ordered follow-up blood tests for creatinine levels. When her blood was tested 7 years later by another physician for another medical problem, her creatinine levels were high.

The physician sent the woman to a nephrologist, who discontinued the lithium. Three years later the patient went into renal failure. She received a kidney transplant from her sister. The patient, 39 years of age, will have to take antirejection medication for the rest of her life. The plaintiff sued the doctor who wrote the original prescription as well as 2 other physicians who treated her.

PLAINTIFF’S CLAIM The 2 physicians who treated her saw blood test results showing a rise in creatinine, which should have prompted them to act.

DOCTORS’ DEFENSE No information about the doctors’ defense is available.

VERDICT $2 million New Jersey settlement.

COMMENT Certain medications, such as lithium, require careful and frequent monitoring. Although such surveillance is seldom evidence-based, this is probably one of those times when covering yourself is a guiding precept.

 

 

One more drug leads to one big problem

A 56-YEAR-OLD MAN WAS HOSPITALIZED WITH PNEUMONIA, for which his physician prescribed fluconazole (supplied by the hospital pharmacy). The patient was taking cyclosporine, prescribed after a kidney transplant 20 years earlier, and atorvastatin. Lab work performed a week later revealed renal function problems. The patient’s medications weren’t adjusted.

The patient’s wife had him transferred to another facility, where he was diagnosed with rhabdomyolysis resulting from the multiple medications. After extensive hospitalization and rehabilitation, the patient was left with debilitating muscle weakness, especially in his legs.

PLAINTIFF’S CLAIM The hospital and doctor were negligent in failing to recognize the potential for adverse interaction among atorvastatin, cyclosporine, and fluconazole, and in failing to discontinue the atorvastatin.

THE DEFENSE No information about the nature of the defense is available.

VERDICT $1.63 million gross verdict in West Virginia.

COMMENT Can you remember all those CYP450 drug-drug interactions? Neither can I. So when a patient is on an unfamiliar medication (cyclosporine isn’t a regular in my practice), it’s worth looking up the drug and exploring potential problems.

Necrotizing fasciitis leads to lost use of arm

REDNESS AND SWELLING OF THE RIGHT ARM, vomiting, and dehydration brought a 30-year-old woman to the family practice clinic at an Air Force base. The patient’s medical history included endometriosis, hypothyroidism, insomnia, headaches, anxiety, and diffuse cellulitis. She took many drugs for pain associated with the endometriosis and cellulitis, including opioids such as hydromorphone. She also took lorazepam for anxiety.

About 2 weeks later she was seen by an endocrinologist at a hospital for testing related to hypothyroidism. She had a fever and skin lesions, which prompted the endocrinologist to refer her to the Air Force base emergency room for treatment of an infection.

A month later, the patient returned to the endocrinologist, who placed a peripherally inserted catheter on the inside of her right arm near the elbow to facilitate blood drawing for endocrine tests. After 10 days, the patient experienced redness, pain, and swelling in her right arm. A few days later, she saw a family practitioner at the Air Force family practice clinic, who told her to go home, take ibuprofen, and come back if the symptoms didn’t improve.

Four days later, the patient was brought to the Air Force base emergency room and diagnosed with necrotizing fasciitis. After immediate aggressive debridement, she was transferred to another hospital, where she underwent 5 surgeries, including skin grafts. As a result, her right arm is withered and scarred and lacks the muscles and tendons necessary to sustain meaningful activity. The patient has to wear a prosthetic device over her forearm and wrist to provide support and compression, and she suffers continuous, debilitating pain, for which she wears a fentanyl transdermal patch. She is unable to work.

PLAINTIFF’S CLAIM Her arm was not properly examined when the redness and swelling developed; cellulitis should have been diagnosed during that first visit.

DOCTOR’S DEFENSE The patient didn’t complain about her right arm during the initial visit to the family practice clinic, and neither the doctor nor his assistant noted any problems, as evidenced by the lack of mention of the arm in the chart notes. The chart recorded complaints of vomiting, dehydration, and “the same symptoms I always have” and noted that the patient had come to the clinic to refill a lorazepam/hydromorphone prescription to replace a lost bottle of pills. The infection occurred after the visit; once the process began, nothing could be done to alter the outcome.

VERDICT $8.6 million Illinois bench verdict.

COMMENT It is crucial to recognize aggressive skin infections, including necrotizing fasciitis, and to initiate prompt treatment.

Article PDF
Author and Disclosure Information

Jeffrey L. Susman, MD
Editor-in-Chief

Issue
The Journal of Family Practice - 58(6)
Publications
Topics
Page Number
332-337
Legacy Keywords
Stevens-Johnson syndrome; lithium unmonitored; nephrologist; necrotizing fasciitis
Sections
Author and Disclosure Information

Jeffrey L. Susman, MD
Editor-in-Chief

Author and Disclosure Information

Jeffrey L. Susman, MD
Editor-in-Chief

Article PDF
Article PDF

SJS is diagnosed, but not quickly

AFTER MULTIPLE HOSPITAL VISITS FOR A RASH, a 34-year-old man was sent to a regional medical center for treatment. The rash was eventually diagnosed as a reaction to allopurinol, a potential side effect that was prominently noted in the drug warnings.

The patient developed Stevens-Johnson syndrome. He recovered after several days in the intensive care unit and was discharged with mild scarring over 80% of his body.

PLAINTIFF’S CLAIM The defendants negligently failed to diagnose a drug reaction after multiple reports of a known side effect.

DOCTORS’ DEFENSE Rashes are a common complaint in an emergency room; delayed withdrawal of the drug caused no additional harm.

VERDICT $72,500 South Carolina settlement.

COMMENT Although instances are rare, failure to diagnose and treat a dermatologic problem promptly can have catastrophic results. Stevens-Johnson syndrome needs to be included in the differential diagnosis of drug reactions and must be handled promptly. (See “Derm diagnoses you can’t afford to miss”.)

Lithium unmonitored, kidney failure followed

A WOMAN WAS STARTED ON LITHIUM, but the doctor who wrote the prescription never ordered follow-up blood tests for creatinine levels. When her blood was tested 7 years later by another physician for another medical problem, her creatinine levels were high.

The physician sent the woman to a nephrologist, who discontinued the lithium. Three years later the patient went into renal failure. She received a kidney transplant from her sister. The patient, 39 years of age, will have to take antirejection medication for the rest of her life. The plaintiff sued the doctor who wrote the original prescription as well as 2 other physicians who treated her.

PLAINTIFF’S CLAIM The 2 physicians who treated her saw blood test results showing a rise in creatinine, which should have prompted them to act.

DOCTORS’ DEFENSE No information about the doctors’ defense is available.

VERDICT $2 million New Jersey settlement.

COMMENT Certain medications, such as lithium, require careful and frequent monitoring. Although such surveillance is seldom evidence-based, this is probably one of those times when covering yourself is a guiding precept.

 

 

One more drug leads to one big problem

A 56-YEAR-OLD MAN WAS HOSPITALIZED WITH PNEUMONIA, for which his physician prescribed fluconazole (supplied by the hospital pharmacy). The patient was taking cyclosporine, prescribed after a kidney transplant 20 years earlier, and atorvastatin. Lab work performed a week later revealed renal function problems. The patient’s medications weren’t adjusted.

The patient’s wife had him transferred to another facility, where he was diagnosed with rhabdomyolysis resulting from the multiple medications. After extensive hospitalization and rehabilitation, the patient was left with debilitating muscle weakness, especially in his legs.

PLAINTIFF’S CLAIM The hospital and doctor were negligent in failing to recognize the potential for adverse interaction among atorvastatin, cyclosporine, and fluconazole, and in failing to discontinue the atorvastatin.

THE DEFENSE No information about the nature of the defense is available.

VERDICT $1.63 million gross verdict in West Virginia.

COMMENT Can you remember all those CYP450 drug-drug interactions? Neither can I. So when a patient is on an unfamiliar medication (cyclosporine isn’t a regular in my practice), it’s worth looking up the drug and exploring potential problems.

Necrotizing fasciitis leads to lost use of arm

REDNESS AND SWELLING OF THE RIGHT ARM, vomiting, and dehydration brought a 30-year-old woman to the family practice clinic at an Air Force base. The patient’s medical history included endometriosis, hypothyroidism, insomnia, headaches, anxiety, and diffuse cellulitis. She took many drugs for pain associated with the endometriosis and cellulitis, including opioids such as hydromorphone. She also took lorazepam for anxiety.

About 2 weeks later she was seen by an endocrinologist at a hospital for testing related to hypothyroidism. She had a fever and skin lesions, which prompted the endocrinologist to refer her to the Air Force base emergency room for treatment of an infection.

A month later, the patient returned to the endocrinologist, who placed a peripherally inserted catheter on the inside of her right arm near the elbow to facilitate blood drawing for endocrine tests. After 10 days, the patient experienced redness, pain, and swelling in her right arm. A few days later, she saw a family practitioner at the Air Force family practice clinic, who told her to go home, take ibuprofen, and come back if the symptoms didn’t improve.

Four days later, the patient was brought to the Air Force base emergency room and diagnosed with necrotizing fasciitis. After immediate aggressive debridement, she was transferred to another hospital, where she underwent 5 surgeries, including skin grafts. As a result, her right arm is withered and scarred and lacks the muscles and tendons necessary to sustain meaningful activity. The patient has to wear a prosthetic device over her forearm and wrist to provide support and compression, and she suffers continuous, debilitating pain, for which she wears a fentanyl transdermal patch. She is unable to work.

PLAINTIFF’S CLAIM Her arm was not properly examined when the redness and swelling developed; cellulitis should have been diagnosed during that first visit.

DOCTOR’S DEFENSE The patient didn’t complain about her right arm during the initial visit to the family practice clinic, and neither the doctor nor his assistant noted any problems, as evidenced by the lack of mention of the arm in the chart notes. The chart recorded complaints of vomiting, dehydration, and “the same symptoms I always have” and noted that the patient had come to the clinic to refill a lorazepam/hydromorphone prescription to replace a lost bottle of pills. The infection occurred after the visit; once the process began, nothing could be done to alter the outcome.

VERDICT $8.6 million Illinois bench verdict.

COMMENT It is crucial to recognize aggressive skin infections, including necrotizing fasciitis, and to initiate prompt treatment.

SJS is diagnosed, but not quickly

AFTER MULTIPLE HOSPITAL VISITS FOR A RASH, a 34-year-old man was sent to a regional medical center for treatment. The rash was eventually diagnosed as a reaction to allopurinol, a potential side effect that was prominently noted in the drug warnings.

The patient developed Stevens-Johnson syndrome. He recovered after several days in the intensive care unit and was discharged with mild scarring over 80% of his body.

PLAINTIFF’S CLAIM The defendants negligently failed to diagnose a drug reaction after multiple reports of a known side effect.

DOCTORS’ DEFENSE Rashes are a common complaint in an emergency room; delayed withdrawal of the drug caused no additional harm.

VERDICT $72,500 South Carolina settlement.

COMMENT Although instances are rare, failure to diagnose and treat a dermatologic problem promptly can have catastrophic results. Stevens-Johnson syndrome needs to be included in the differential diagnosis of drug reactions and must be handled promptly. (See “Derm diagnoses you can’t afford to miss”.)

Lithium unmonitored, kidney failure followed

A WOMAN WAS STARTED ON LITHIUM, but the doctor who wrote the prescription never ordered follow-up blood tests for creatinine levels. When her blood was tested 7 years later by another physician for another medical problem, her creatinine levels were high.

The physician sent the woman to a nephrologist, who discontinued the lithium. Three years later the patient went into renal failure. She received a kidney transplant from her sister. The patient, 39 years of age, will have to take antirejection medication for the rest of her life. The plaintiff sued the doctor who wrote the original prescription as well as 2 other physicians who treated her.

PLAINTIFF’S CLAIM The 2 physicians who treated her saw blood test results showing a rise in creatinine, which should have prompted them to act.

DOCTORS’ DEFENSE No information about the doctors’ defense is available.

VERDICT $2 million New Jersey settlement.

COMMENT Certain medications, such as lithium, require careful and frequent monitoring. Although such surveillance is seldom evidence-based, this is probably one of those times when covering yourself is a guiding precept.

 

 

One more drug leads to one big problem

A 56-YEAR-OLD MAN WAS HOSPITALIZED WITH PNEUMONIA, for which his physician prescribed fluconazole (supplied by the hospital pharmacy). The patient was taking cyclosporine, prescribed after a kidney transplant 20 years earlier, and atorvastatin. Lab work performed a week later revealed renal function problems. The patient’s medications weren’t adjusted.

The patient’s wife had him transferred to another facility, where he was diagnosed with rhabdomyolysis resulting from the multiple medications. After extensive hospitalization and rehabilitation, the patient was left with debilitating muscle weakness, especially in his legs.

PLAINTIFF’S CLAIM The hospital and doctor were negligent in failing to recognize the potential for adverse interaction among atorvastatin, cyclosporine, and fluconazole, and in failing to discontinue the atorvastatin.

THE DEFENSE No information about the nature of the defense is available.

VERDICT $1.63 million gross verdict in West Virginia.

COMMENT Can you remember all those CYP450 drug-drug interactions? Neither can I. So when a patient is on an unfamiliar medication (cyclosporine isn’t a regular in my practice), it’s worth looking up the drug and exploring potential problems.

Necrotizing fasciitis leads to lost use of arm

REDNESS AND SWELLING OF THE RIGHT ARM, vomiting, and dehydration brought a 30-year-old woman to the family practice clinic at an Air Force base. The patient’s medical history included endometriosis, hypothyroidism, insomnia, headaches, anxiety, and diffuse cellulitis. She took many drugs for pain associated with the endometriosis and cellulitis, including opioids such as hydromorphone. She also took lorazepam for anxiety.

About 2 weeks later she was seen by an endocrinologist at a hospital for testing related to hypothyroidism. She had a fever and skin lesions, which prompted the endocrinologist to refer her to the Air Force base emergency room for treatment of an infection.

A month later, the patient returned to the endocrinologist, who placed a peripherally inserted catheter on the inside of her right arm near the elbow to facilitate blood drawing for endocrine tests. After 10 days, the patient experienced redness, pain, and swelling in her right arm. A few days later, she saw a family practitioner at the Air Force family practice clinic, who told her to go home, take ibuprofen, and come back if the symptoms didn’t improve.

Four days later, the patient was brought to the Air Force base emergency room and diagnosed with necrotizing fasciitis. After immediate aggressive debridement, she was transferred to another hospital, where she underwent 5 surgeries, including skin grafts. As a result, her right arm is withered and scarred and lacks the muscles and tendons necessary to sustain meaningful activity. The patient has to wear a prosthetic device over her forearm and wrist to provide support and compression, and she suffers continuous, debilitating pain, for which she wears a fentanyl transdermal patch. She is unable to work.

PLAINTIFF’S CLAIM Her arm was not properly examined when the redness and swelling developed; cellulitis should have been diagnosed during that first visit.

DOCTOR’S DEFENSE The patient didn’t complain about her right arm during the initial visit to the family practice clinic, and neither the doctor nor his assistant noted any problems, as evidenced by the lack of mention of the arm in the chart notes. The chart recorded complaints of vomiting, dehydration, and “the same symptoms I always have” and noted that the patient had come to the clinic to refill a lorazepam/hydromorphone prescription to replace a lost bottle of pills. The infection occurred after the visit; once the process began, nothing could be done to alter the outcome.

VERDICT $8.6 million Illinois bench verdict.

COMMENT It is crucial to recognize aggressive skin infections, including necrotizing fasciitis, and to initiate prompt treatment.

Issue
The Journal of Family Practice - 58(6)
Issue
The Journal of Family Practice - 58(6)
Page Number
332-337
Page Number
332-337
Publications
Publications
Topics
Article Type
Display Headline
SJS is diagnosed, but not quickly...Lithium unmonitored, kidney failure followed...more...
Display Headline
SJS is diagnosed, but not quickly...Lithium unmonitored, kidney failure followed...more...
Legacy Keywords
Stevens-Johnson syndrome; lithium unmonitored; nephrologist; necrotizing fasciitis
Legacy Keywords
Stevens-Johnson syndrome; lithium unmonitored; nephrologist; necrotizing fasciitis
Sections
Disallow All Ads
Article PDF Media

Colpocleisis: A simple, effective, and underutilized procedure

Article Type
Changed
Tue, 08/28/2018 - 10:56
Display Headline
Colpocleisis: A simple, effective, and underutilized procedure

CASE 1: Problematic prolapse, but no incontinence

An 81-year-old multiparous woman, who has a history of recurrent stage-III pelvic organ prolapse (POP), reports worsening discomfort that makes it difficult for her to care for her ailing husband. She also has “trouble” with bladder emptying and constipation, but denies any loss of urine. She has not had vaginal intercourse in more than a decade because of her husband’s medical condition.

Aside from health issues—she suffers from obesity, coronary artery disease, hypertension, and diabetes—the patient is content with her marriage of 58 years.

Urodynamic testing fails to demonstrate detrusor overactivity, stress urinary incontinence, or intrinsic sphincteric deficiency. A cough stress test is repeated after reduction of her prolapse using a large cotton swab, and confirms the findings of the urodynamic tests.

Is reconstructive surgery appropriate for this patient?

Traditional reconstructive surgical procedures for treating POP fail in as many as 30% of patients, and new approaches—some involving grafts—are proposed every day, often without much data behind them.1

Regardless of the approach, reconstructive surgery is a lengthy procedure that subjects patients who are already medically compromised to significant risk, including bleeding, infection, and fluid shifts. Delayed return to normal activity may be especially costly among elderly women because of the risk of venous thromboembolism.

Because of the high failure rate, slow recovery, and risk of complications, reconstructive surgery may not be as appropriate as colpocleisis for the woman described above. Colpocleisis—suturing the inside walls of the vagina together—has an efficacy rate exceeding 90%.2 This relatively simple operation has been around for almost two centuries and has a good track record, but is often overlooked when counseling a patient about her options.

Any frail, elderly woman who has stage-III or -IV POP who does not desire to preserve coital ability is a candidate for colpocleisis (TABLE). Advantages include:

  • a short operating time
  • few complications
  • amenability of local anesthesia
  • short hospitalization
  • speedy recovery
  • high success rate
  • low rate of regret.2-5

Because it precludes coital activity, however, colpocleisis may cause problems with self-image. It also may lead to de novo or worsening urinary incontinence and complicate or delay the diagnosis of cervical and endometrial pathology.

This article explores these issues through a case-based discussion of colpocleisis, including a detailed description of surgical technique.

TABLE

Requirements for colpocleisis

Both of the following must be present
  • No desire for or likelihood of future coital activity
  • Stage-III or -IV pelvic organ prolapse
Plus at least one of the following
  • Severe coronary artery disease
  • Severe pulmonary disease
  • Severe dementia
  • Advanced-stage cancer
  • Multiple surgical failures

Why colpocleisis?

Colpocleisis, as noted, entails suturing the inside walls of the vagina together. It is controversial because of its impact on coital activity. With careful patient selection, however, colpocleisis is considered a valid option for frail and elderly women who have POP and do not desire or foresee the possibility of future vaginal intercourse. Such women may represent a surprising percentage of the elderly population. A community-based survey found that 78% of married women 70 to 79 years old are not sexually active,6 and a study from The Netherlands found a prevalence of symptomatic POP of 11.4% among white women 45 to 85 years old.7

The fundamental reason for choosing an obliterative procedure such as colpocleisis over total pelvic reconstruction is to treat the prolapse with the least invasive technique in the shortest time. Hysterectomy, which often adds 30 to 80 minutes to the procedure, should therefore be performed only in patients who have a suspicious finding upon initial evaluation. For the same reason, partial colpocleisis—performed using the LeFort technique with limited dissection—has become the most popular obliterative approach. We try to avoid a total colpocleisis procedure—also known as colpectomy—in which the entire vaginal epithelium is stripped, because it is feasible only when the uterus is already absent or scheduled to be removed concomitantly.

 

 

(Note: The term vaginectomy should be reserved for gynecologic oncology procedures performed to remove vaginal cancer. Vaginectomy entails full-thickness excision of the vaginal walls, including the fibromuscular layer, as opposed to excision of the epithelial layer only, as in colpocleisis. In this article, we present the LeFort method, a partial colpocleisis technique, because we believe it is more easily adapted by the general gynecologist.8)

CASE 1 RESOLVED

After detailed counseling, which includes family members, the patient opts to undergo colpocleisis. The procedure takes 45 minutes. She is discharged on postoperative Day 1, and reports substantially improved quality of life.

CASE 2: Recurrent prolapse and problems with a pessary

A 72-year-old multiparous, widowed woman experiences recurrent stage-III isolated apical prolapse. She has already undergone two reconstructive procedures, and was discouraged from undergoing a third because of her chronic obstructive lung disease. She tried to use a Gellhorn-type pessary, which required a doctor’s intervention to insert and remove. Frustrated by the many office visits involved in having the pessary checked, she now demands surgical therapy. Another gynecologist has offered to repair the prolapse using mesh, but the patient has concerns about the safety and efficacy of the procedure because it is a relatively new approach.

In addition to the recurrent prolapse, she loses urine with stress and urge. She often has a postvoid residual volume >100 cc; urodynamic assessment confirms mixed urinary incontinence. The patient does not foresee any change in her social status (unmarried, sexually inactive).

Is colpocleisis a reasonable option?

Although the pessary is a helpful conservative alternative for women who are either unable or unwilling to undergo complex surgical pelvic repair and is considered first-line treatment by a majority of urogynecologists, it sometimes becomes more difficult to maintain than the patient is willing to tolerate.9 When a woman cannot remove and reinsert the device herself, the pessary requires a lifelong commitment to doctor’s visits every 2 or 3 months. This commitment is especially problematic for patients who become unable to drive or who lack social support.

Maintenance of the pessary becomes more frustrating as the patient becomes more dependent. Many gynecologists have seen a patient who developed a serious complication such as vesicovaginal or rectovaginal fistula because of a neglected pessary.10

In Case 2, the patient appears to be a potential candidate for colpocleisis, given her age and single status. Although pelvic floor repair appears to be safe in older women, any perioperative complication in a patient 70 years of age or older doubles the risk of discharge to a care facility.11,12 Women who have already undergone several surgeries or who have advanced medical problems such as coronary artery disease or cancer should be counseled thoroughly about the safety and efficacy of colpocleisis.

As for self-image, colpocleisis eliminates prolapse and reduces the genital hiatus. If the patient understands that colpocleisis is obliterative for the vagina but may improve the external appearance of the genital area, she may be more accepting of the procedure. One recent prospective, multicenter study found that only 2% of women thought their body looked worse 1 year after colpocleisis; 60% thought their body looked better.5

When reviewing treatment options, inform the patient that the pessary is a palliative option, whereas surgical therapy aims to be definitive.

CASE 2 RESOLVED

After comprehensive counseling, the patient elects to undergo colpocleisis, along with placement of a midurethral sling. She is discharged 1 day after surgery, and reports substantially improved urinary function, including bladder emptying, and quality of life. She says she would recommend the procedure to any woman who has a similar condition.

CASE 3: Pessary-related complications, incontinence, and underlying medical conditions

A 92-year-old multiparous widow, whose stage-IV uterovaginal prolapse has been managed by a pessary, develops vaginal ulcers in both anterior and posterior walls. After removal of the pessary and 4 weeks of treatment with vaginal estrogen, a smaller pessary is inserted, but she again develops ulcers and bleeding.

The patient’s medical condition is complicated by hypertension and generalized arthritis. She has urodynamically confirmed mixed urinary incontinence. She lives with her daughter and does not want to be placed in a nursing home.

What treatment options should you offer to her?

Because of this patient’s advanced age, poor health, and pessary-related problems, she is an ideal candidate for colpocleisis, provided she consents to the procedure after thorough counseling about its benefits and limitations.

Preoperative concerns

A thorough history, physical examination, and normal Pap test are necessary. If a suspicious pelvic mass or uterine bleeding is present, transvaginal ultrasonography (US) is crucial. In-office endometrial sampling also is necessary in any woman who has unexplained vaginal bleeding. More invasive procedures such as dilatation and curettage and hysteroscopy are needed only when the biopsy is inadequate or endometrial thickness exceeds 4 mm on transvaginal US.13

 

 

All elderly women who have high-risk medical problems must be cleared for surgery, with the necessary cardiac and pulmonary workup completed before the procedure.

Because colpocleisis is an extraperitoneal procedure, we have adapted use of over-the-counter enema products on the day before surgery in lieu of mechanical bowel preparation, which may lead to dehydration in very elderly women.

Coordinated consultation between the surgeon and anesthesiologist is necessary to determine the type of anesthesia to be used. Sedation and local anesthesia can be adequate for extremely high-risk women.14,15 Antibiotic prophylaxis is conventional for all patients.

Surgical technique

The LeFort method involves denudation and approximation of the midportions of the anterior and posterior vaginal walls.8 This operation creates a longitudinal vaginal septum with bilateral channels on each side, which serve as conduits for any secretion or bleeding from the apical vagina (FIGURE 1A AND B). Aggressive perineorraphy is also needed to shorten the genital hiatus. The following description incorporates perineorraphy into the LeFort technique.


FIGURE 1 Principles of LeFort colpocleisis

The depiction here is not anatomically precise: The vagina is illustrated as a rectangular prism to clarify the relationship between tissues.

Patient positioning

Place the patient in the dorsal lithotomy position, using stirrups to support the entire leg up to the knee. Let the patient’s buttocks overhang the edge of the table by 1 to 2 inches. A slight Trendelenburg position is imperative, especially when operating on the anterior compartment of the vagina. The bladder should be only partially emptied because the leakage of urine from the bladder makes it easier to identify inadvertent cystotomy. Infiltration of local anesthetic solution to develop the surgical planes is acceptable.

Initiating the procedure

Remove a rectangular piece of vaginal epithelium from the anterior vaginal wall, beginning 2 to 3 cm distal to the vaginal apex (or cervix, if the uterus is present) and ending immediately proximal to the urethrovesical junction to leave space for midurethral sling placement. Remove a similarly sized piece of epithelium from the posterior vaginal wall. This posterior rectangle is an almost geometric projection of the anterior rectangle, but is somewhat longer (2 to 3 cm) (FIGURE 1).

When removing the vaginal epithelium, it may be helpful to use the skills developed for anterior and posterior colporraphy. Our operation begins with a 5- to 6-cm transverse incision at the anterior vaginal apex, which creates the proximal side of the anterior rectangle described above (FIGURE 2A).

As you develop the plane between the epithelium and fibromuscular layer, make a midline sagittal incision and extend it to the urethrovesical junction (FIGURE 2B). Dissect the epithelium off the fibromuscular layer approximately 3 cm bilaterally, then make a transverse incision at the urethrovesical junction. Finally, remove the anterior rectangle in two pieces by cutting along the lateral sides (FIGURE 2C AND D). Remove the posterior rectangle using the same technique, but also excise a triangular piece of skin from the posterior fourchette for the perineorraphy portion of the procedure (FIGURE 2E).


FIGURE 2 LeFort technique, step by step

Begin with a 5–6 cm transverse incision at the anterior vaginal apex.

Dissect the epithelium off the fibromuscular layer, with a midline sagittal incision extending to the urethrovesical junction.

After dissection is completed, make a transverse incision at the urethrovesical junction, and remove the anterior rectangle in two pieces by cutting along the lateral sides.

Denude the posterior rectangle using the same technique. In addition, excise a triangular piece of skin from the perineum.

The posterior rectangle is ready for removal.

Suturing

Suture the apical sides of the anterior and posterior rectangles together using a continuous running technique (FIGURE 2F). Then approximate the lateral sides bilaterally using continuous sutures.

To ensure adherence of the anterior and posterior rectangles, stitch the raw surfaces together in three rows (FIGURE 2G). Do not include the distal 2 cm of the posterior vagina because you will need to leave room for perineorraphy.

Using several sutures, reapproximate the torn perineal fibromuscular structures in the midline to perform perineorraphy (FIGURE 2H). Close the distal vagina, beginning at the midpoint of the anterior transverse side, which lies at the urethrovesical junction (FIGURE 2I). Continue this suture on the posterior vagina and then the perineal body, sagittally, creating a small invagination in the distal vagina (FIGURE 2J).


FIGURE 2 LeFort technique, step by step

Suture all but the distal sides of the rectangles between the anterior and posterior vaginal walls.

Also stitch together the raw surfaces in three rows in an imbricating fashion.

Perform perineorraphy.

Close the distal vagina, starting at the midpoint of the anterior transverse side. If indicated, place a midurethral sling.

 

 

Final appearance.

Sling procedure

We place a midurethral sling as part of most colpocleisis operations. It is best to do this after the colpocleisis but before the perineorraphy.

In our cases, cystoscopy with simultaneous intravenous indigo carmine injection is standard before perineorraphy, even when a sling procedure is not planned. This safeguard ensures ureteral patency, which can be compromised (although rarely) in these procedures. Cutting and replacement of one of the sutures that approximate the raw tissues typically resolve the problem.16

Special considerations

Here are additional key points about colpocleisis, based on our experience:

  • If an ulcer lies within the area designated to be denuded, some debridement to freshen up the surface will suffice. An ulcer is not an indication to deviate from the standard procedure.
  • A modification developed by Goodall and Power may allow coitus by removing only a triangular piece of epithelium from each wall, leaving more room for the channels.17
  • We have been unable to find any report of uterine or cervical cancer after colpocleisis, despite a MEDLINE search of the literature in English. Even so, the lateral channels created by the LeFort procedure allow any bleeding to escape the vagina, and may therefore enable recognition of malignancy. When noninvasive imaging techniques such as US or magnetic resonance are inadequate, vaginoscopy and hysteroscopy may be accomplished via these channels.
  • When colpocleisis is performed in a hysterectomized woman, no lateral channel is necessary. Therefore, it is appropriate to do total colpocleisis.18,19
  • When a patient with POP has a rectovaginal or vesicovaginal fistula caused by a neglected pessary, the addition of LeFort colpocleisis to the fistula repair may provide an effective treatment for both problems.10

Surgical outcomes

Success rate

Evidence concerning colpocleisis comes from case series, some of which are more than 30 years old. Although the definition of success is not clear in some series, the reported success rate has always exceeded 90% over the past three decades.2,18-22 Moreover, some of these reports involve as many as 30 years of follow-up.

Perioperative complication

In a recent review of the literature, the procedure-related mortality rate was 0.025%.2 When the authors focused only on studies published since 1980, major complications due to the patient’s underlying cardiovascular and pulmonary condition were seen in 2% of cases. Major surgical complications such as pyelonephritis and bleeding requiring transfusion occurred in 4% of cases, and less severe complications occurred in 15%.

In a study that included women who underwent concomitant vaginal hysterectomy, hysterectomy prolonged the surgery by 52 minutes, with a 5% rate of laparotomy as a result of intraoperative bleeding.22

Quality of life

In our series of 40 colpocleisis cases, we noted no instance in which a patient regretted the procedure.18 Others have also reported a low rate of regret—the highest being 9%.3-5,19-21

Using validated questionnaires, FitzGerald and colleagues found significant improvement in mental and physical quality of life, as well as urinary, colorectal, and bulge-related pelvic floor symptoms, 1 year after colpocleisis.5

De novo or worsening urinary incontinence is one of the drawbacks of colpocleisis. However, the same risk is present in approximately 40% of women who undergo surgical reconstructive procedures for POP without a continence operation.23 Because preoperative urinary retention is common in women who have POP, the decision to add a potentially harmful continence procedure is complicated in colpocleisis candidates. A small case series reported that the success rate ranged from 90% to 94% in women who underwent a midurethral tension-free sling procedure for the treatment of urinary incontinence at the time of colpocleisis.5

Preoperative urodynamic studies to detect urethral intrinsic deficiency and detrusor dysfunction are prudent, and detailed counseling of the patient about urinary control is vital. We perform a midurethral sling procedure in most of our colpocleisis cases, and have had pleasing results.

CASE 3 RESOLVED

The patient decides to undergo partial colpocleisis using the LeFort procedure, along with placement of a midurethral sling, for a total operative time of 75 minutes. She is discharged 1 day later and reports substantial improvement in urinary function and quality of life.

References

1. Luber KM, Boero S, Choe JY. The demographics of pelvic floor disorders: current observations and future projections. Am J Obstet Gynecol. 2001;184:1496-1503.

2. FitzGerald MP, Richter HE, Siddique S, Thompson P, Zyczynski H, Weber A. For the Pelvic Floor Disorders Network. Colpocleisis: a review. Int Urogynecol J Pelvic Floor Dysfunct. 2006;17:261-271.

3. Wheeler TL, Jr, Richter HE, Burgio KL, et al. Regret, satisfaction, and symptom improvement: analysis of the impact of partial colpocleisis for the management of severe pelvic organ prolapse. Am J Obstet Gynecol. 2005;193:2067-2070.

4. Hullfish KL, Bovbjerg VE, Steers WD. Colpocleisis for pelvic organ prolapse: patient goals, quality of life, and satisfaction. Obstet Gynecol. 2007;110(2 Pt 1):341-345.

5. FitzGerald MP, Richter HE, Bradley CS, et al. For the Pelvic Floor Disorders Network. Pelvic support, pelvic symptoms, and patient satisfaction after colpocleisis. Int Urogynecol J Pelvic Floor Dysfunct. 2008;19:1603-1609.

6. Patel D, Gillespie B, Foxman B. Sexual behavior of older women: results of a random-digit-dialing survey of 2,000 women in the United States. Sex Transm Dis. 2003;30:216-220.

7. Slieker-ten Hove MC, Pool-Goudzwaard AL, Eijkemans MJ, Steegers-Theunissen RP, Burger CW, Vierhout ME. Symptomatic pelvic organ prolapse and possible risk factors in a general population. Am J Obstet Gynecol. 2009;200:184.e1-184.e7.

8. Berlin F. Three cases of complete prolapsus uteri operated upon according to the method of Leon LeFort. Am J Obstet Gynecol. 1881;14:866-868.

9. Cundiff GW, Weidner AC, Visco AG, Bump RC, Addison WA. A survey of pessary use by members of the American Urogynecologic Society. Obstet Gynecol. 2000;95(6 Pt 1):931-935.

10. Esin S, Harmanli OH. Large vesicovaginal fistula in women with pelvic organ prolapse: the role of colpocleisis revisited. Int Urogynecol J Pelvic Floor Dysfunct. 2008;19:1711-1713.

11. Gerten KA, Markland AD, Lloyd LK, Richter HE. Prolapse and incontinence surgery in older women. J Urol. 2008;179:2111-2118.

12. Manku K, Bacchetti P, Leung JM. Prognostic significance of postoperative in-hospital complications in elderly patients. I. Long-term survival. Anesth Analg. 2003;96:583-589.

13. American College of Obstetricians and Gynecologists. ACOG Committee Opinion No. 426: The role of transvaginal ultrasonography in the evaluation of postmenopausal bleeding. Obstet Gynecol. 2009;113(2 Pt 1):462-464.

14. Moore RD, Miklos JR. Colpocleisis and tension-free vaginal tape sling for severe uterine and vaginal prolapse and stress urinary incontinence under local anesthesia. J Am Assoc Gynecol Laparosc. 2003;10:276-280.

15. Buchsbaum GM, Albushies DT, Schoenecker E, Duecy EE, Glantz JC. Local anesthesia with sedation for vaginal reconstructive surgery. Int Urogynecol J Pelvic Floor Dysfunct. 2006;17:211-214.

16. Gustilo-Ashby AM, Jelovsek JE, Barber MD, Yoo EH, Paraiso MF, Walters MD. The incidence of ureteral obstruction and the value of intraoperative cystoscopy during vaginal surgery for pelvic organ prolapse. Am J Obstet Gynecol. 2006;194:1478-1485.

17. Goodall JR, Power RMH. A modification of the Le Fort operation for increasing its scope. Am J Obstet Gynecol. 1937;34:968-976.

18. Harmanli OH, Dandolu V, Chatwani AJ, Grody MT. Total colpocleisis for severe pelvic organ prolapse. J Reprod Med. 2003;48:703-706.

19. DeLancey JOL, Morley GW. Total colpocleisis for vaginal eversion. Am J Obstet Gynecol. 1997;176:1228-1232.

20. Goldman J, Ovadia J, Feldberg D. The Neugebauer-Le Fort operation: a review of 118 partial colpocleises. Eur J Obstet Gynecol Reprod Biol. 1981;12:31-35.

21. Ubachs JM, van Sante TJ, Schellekens LA. Partial colpocleisis by a modification of Le Fort’s operation. Obstet Gynecol. 1973;42:415-420.

22. Von Pechmann WS, Mutone MD, Fyffe J, Hale DS. Total colpocleisis with high levator plication for the treatment of advanced pelvic organ prolapse. Am J Obstet Gynecol. 2003;189:121-126.

23. Albo ME, Richter HE, Brubaker L, et al. For Urinary Incontinence Treatment Network. Burch colposuspension versus fascial sling to reduce urinary stress incontinence. N Engl J Med. 2007;356:2143-2155.

Article PDF
Author and Disclosure Information

Oz Harmanli, MD
Dr. Harmanli is Director of Urogynecology and Pelvic Surgery at Baystate Medical Center and Associate Professor of Obstetrics and Gynecology at Tufts University School of Medicine in Springfield, Mass.

The author reports no financial relationships relevant to this article.

Issue
OBG Management - 21(06)
Publications
Page Number
19-28
Legacy Keywords
Oz Harmanli MD; colpocleisis; pelvic organ prolapse; POP; prolapse; sexual intercourse; reconstructive surgery; elderly; coitus; coital activity; coronary artery disease; pulmonary disease; dementia; vagina; vaginal intercourse; obliterative; reconstruction; LeFort technique; vaginectomy; LeFort; pessary; genital hiatus; midurethral sling; transvaginal ultrasonography; dilatation and curettage; hysteroscopy; LeFort colpocleisis; vaginal epithelium; cystoscopy; malignancy; cancer; hysterectomy
Sections
Author and Disclosure Information

Oz Harmanli, MD
Dr. Harmanli is Director of Urogynecology and Pelvic Surgery at Baystate Medical Center and Associate Professor of Obstetrics and Gynecology at Tufts University School of Medicine in Springfield, Mass.

The author reports no financial relationships relevant to this article.

Author and Disclosure Information

Oz Harmanli, MD
Dr. Harmanli is Director of Urogynecology and Pelvic Surgery at Baystate Medical Center and Associate Professor of Obstetrics and Gynecology at Tufts University School of Medicine in Springfield, Mass.

The author reports no financial relationships relevant to this article.

Article PDF
Article PDF

CASE 1: Problematic prolapse, but no incontinence

An 81-year-old multiparous woman, who has a history of recurrent stage-III pelvic organ prolapse (POP), reports worsening discomfort that makes it difficult for her to care for her ailing husband. She also has “trouble” with bladder emptying and constipation, but denies any loss of urine. She has not had vaginal intercourse in more than a decade because of her husband’s medical condition.

Aside from health issues—she suffers from obesity, coronary artery disease, hypertension, and diabetes—the patient is content with her marriage of 58 years.

Urodynamic testing fails to demonstrate detrusor overactivity, stress urinary incontinence, or intrinsic sphincteric deficiency. A cough stress test is repeated after reduction of her prolapse using a large cotton swab, and confirms the findings of the urodynamic tests.

Is reconstructive surgery appropriate for this patient?

Traditional reconstructive surgical procedures for treating POP fail in as many as 30% of patients, and new approaches—some involving grafts—are proposed every day, often without much data behind them.1

Regardless of the approach, reconstructive surgery is a lengthy procedure that subjects patients who are already medically compromised to significant risk, including bleeding, infection, and fluid shifts. Delayed return to normal activity may be especially costly among elderly women because of the risk of venous thromboembolism.

Because of the high failure rate, slow recovery, and risk of complications, reconstructive surgery may not be as appropriate as colpocleisis for the woman described above. Colpocleisis—suturing the inside walls of the vagina together—has an efficacy rate exceeding 90%.2 This relatively simple operation has been around for almost two centuries and has a good track record, but is often overlooked when counseling a patient about her options.

Any frail, elderly woman who has stage-III or -IV POP who does not desire to preserve coital ability is a candidate for colpocleisis (TABLE). Advantages include:

  • a short operating time
  • few complications
  • amenability of local anesthesia
  • short hospitalization
  • speedy recovery
  • high success rate
  • low rate of regret.2-5

Because it precludes coital activity, however, colpocleisis may cause problems with self-image. It also may lead to de novo or worsening urinary incontinence and complicate or delay the diagnosis of cervical and endometrial pathology.

This article explores these issues through a case-based discussion of colpocleisis, including a detailed description of surgical technique.

TABLE

Requirements for colpocleisis

Both of the following must be present
  • No desire for or likelihood of future coital activity
  • Stage-III or -IV pelvic organ prolapse
Plus at least one of the following
  • Severe coronary artery disease
  • Severe pulmonary disease
  • Severe dementia
  • Advanced-stage cancer
  • Multiple surgical failures

Why colpocleisis?

Colpocleisis, as noted, entails suturing the inside walls of the vagina together. It is controversial because of its impact on coital activity. With careful patient selection, however, colpocleisis is considered a valid option for frail and elderly women who have POP and do not desire or foresee the possibility of future vaginal intercourse. Such women may represent a surprising percentage of the elderly population. A community-based survey found that 78% of married women 70 to 79 years old are not sexually active,6 and a study from The Netherlands found a prevalence of symptomatic POP of 11.4% among white women 45 to 85 years old.7

The fundamental reason for choosing an obliterative procedure such as colpocleisis over total pelvic reconstruction is to treat the prolapse with the least invasive technique in the shortest time. Hysterectomy, which often adds 30 to 80 minutes to the procedure, should therefore be performed only in patients who have a suspicious finding upon initial evaluation. For the same reason, partial colpocleisis—performed using the LeFort technique with limited dissection—has become the most popular obliterative approach. We try to avoid a total colpocleisis procedure—also known as colpectomy—in which the entire vaginal epithelium is stripped, because it is feasible only when the uterus is already absent or scheduled to be removed concomitantly.

 

 

(Note: The term vaginectomy should be reserved for gynecologic oncology procedures performed to remove vaginal cancer. Vaginectomy entails full-thickness excision of the vaginal walls, including the fibromuscular layer, as opposed to excision of the epithelial layer only, as in colpocleisis. In this article, we present the LeFort method, a partial colpocleisis technique, because we believe it is more easily adapted by the general gynecologist.8)

CASE 1 RESOLVED

After detailed counseling, which includes family members, the patient opts to undergo colpocleisis. The procedure takes 45 minutes. She is discharged on postoperative Day 1, and reports substantially improved quality of life.

CASE 2: Recurrent prolapse and problems with a pessary

A 72-year-old multiparous, widowed woman experiences recurrent stage-III isolated apical prolapse. She has already undergone two reconstructive procedures, and was discouraged from undergoing a third because of her chronic obstructive lung disease. She tried to use a Gellhorn-type pessary, which required a doctor’s intervention to insert and remove. Frustrated by the many office visits involved in having the pessary checked, she now demands surgical therapy. Another gynecologist has offered to repair the prolapse using mesh, but the patient has concerns about the safety and efficacy of the procedure because it is a relatively new approach.

In addition to the recurrent prolapse, she loses urine with stress and urge. She often has a postvoid residual volume >100 cc; urodynamic assessment confirms mixed urinary incontinence. The patient does not foresee any change in her social status (unmarried, sexually inactive).

Is colpocleisis a reasonable option?

Although the pessary is a helpful conservative alternative for women who are either unable or unwilling to undergo complex surgical pelvic repair and is considered first-line treatment by a majority of urogynecologists, it sometimes becomes more difficult to maintain than the patient is willing to tolerate.9 When a woman cannot remove and reinsert the device herself, the pessary requires a lifelong commitment to doctor’s visits every 2 or 3 months. This commitment is especially problematic for patients who become unable to drive or who lack social support.

Maintenance of the pessary becomes more frustrating as the patient becomes more dependent. Many gynecologists have seen a patient who developed a serious complication such as vesicovaginal or rectovaginal fistula because of a neglected pessary.10

In Case 2, the patient appears to be a potential candidate for colpocleisis, given her age and single status. Although pelvic floor repair appears to be safe in older women, any perioperative complication in a patient 70 years of age or older doubles the risk of discharge to a care facility.11,12 Women who have already undergone several surgeries or who have advanced medical problems such as coronary artery disease or cancer should be counseled thoroughly about the safety and efficacy of colpocleisis.

As for self-image, colpocleisis eliminates prolapse and reduces the genital hiatus. If the patient understands that colpocleisis is obliterative for the vagina but may improve the external appearance of the genital area, she may be more accepting of the procedure. One recent prospective, multicenter study found that only 2% of women thought their body looked worse 1 year after colpocleisis; 60% thought their body looked better.5

When reviewing treatment options, inform the patient that the pessary is a palliative option, whereas surgical therapy aims to be definitive.

CASE 2 RESOLVED

After comprehensive counseling, the patient elects to undergo colpocleisis, along with placement of a midurethral sling. She is discharged 1 day after surgery, and reports substantially improved urinary function, including bladder emptying, and quality of life. She says she would recommend the procedure to any woman who has a similar condition.

CASE 3: Pessary-related complications, incontinence, and underlying medical conditions

A 92-year-old multiparous widow, whose stage-IV uterovaginal prolapse has been managed by a pessary, develops vaginal ulcers in both anterior and posterior walls. After removal of the pessary and 4 weeks of treatment with vaginal estrogen, a smaller pessary is inserted, but she again develops ulcers and bleeding.

The patient’s medical condition is complicated by hypertension and generalized arthritis. She has urodynamically confirmed mixed urinary incontinence. She lives with her daughter and does not want to be placed in a nursing home.

What treatment options should you offer to her?

Because of this patient’s advanced age, poor health, and pessary-related problems, she is an ideal candidate for colpocleisis, provided she consents to the procedure after thorough counseling about its benefits and limitations.

Preoperative concerns

A thorough history, physical examination, and normal Pap test are necessary. If a suspicious pelvic mass or uterine bleeding is present, transvaginal ultrasonography (US) is crucial. In-office endometrial sampling also is necessary in any woman who has unexplained vaginal bleeding. More invasive procedures such as dilatation and curettage and hysteroscopy are needed only when the biopsy is inadequate or endometrial thickness exceeds 4 mm on transvaginal US.13

 

 

All elderly women who have high-risk medical problems must be cleared for surgery, with the necessary cardiac and pulmonary workup completed before the procedure.

Because colpocleisis is an extraperitoneal procedure, we have adapted use of over-the-counter enema products on the day before surgery in lieu of mechanical bowel preparation, which may lead to dehydration in very elderly women.

Coordinated consultation between the surgeon and anesthesiologist is necessary to determine the type of anesthesia to be used. Sedation and local anesthesia can be adequate for extremely high-risk women.14,15 Antibiotic prophylaxis is conventional for all patients.

Surgical technique

The LeFort method involves denudation and approximation of the midportions of the anterior and posterior vaginal walls.8 This operation creates a longitudinal vaginal septum with bilateral channels on each side, which serve as conduits for any secretion or bleeding from the apical vagina (FIGURE 1A AND B). Aggressive perineorraphy is also needed to shorten the genital hiatus. The following description incorporates perineorraphy into the LeFort technique.


FIGURE 1 Principles of LeFort colpocleisis

The depiction here is not anatomically precise: The vagina is illustrated as a rectangular prism to clarify the relationship between tissues.

Patient positioning

Place the patient in the dorsal lithotomy position, using stirrups to support the entire leg up to the knee. Let the patient’s buttocks overhang the edge of the table by 1 to 2 inches. A slight Trendelenburg position is imperative, especially when operating on the anterior compartment of the vagina. The bladder should be only partially emptied because the leakage of urine from the bladder makes it easier to identify inadvertent cystotomy. Infiltration of local anesthetic solution to develop the surgical planes is acceptable.

Initiating the procedure

Remove a rectangular piece of vaginal epithelium from the anterior vaginal wall, beginning 2 to 3 cm distal to the vaginal apex (or cervix, if the uterus is present) and ending immediately proximal to the urethrovesical junction to leave space for midurethral sling placement. Remove a similarly sized piece of epithelium from the posterior vaginal wall. This posterior rectangle is an almost geometric projection of the anterior rectangle, but is somewhat longer (2 to 3 cm) (FIGURE 1).

When removing the vaginal epithelium, it may be helpful to use the skills developed for anterior and posterior colporraphy. Our operation begins with a 5- to 6-cm transverse incision at the anterior vaginal apex, which creates the proximal side of the anterior rectangle described above (FIGURE 2A).

As you develop the plane between the epithelium and fibromuscular layer, make a midline sagittal incision and extend it to the urethrovesical junction (FIGURE 2B). Dissect the epithelium off the fibromuscular layer approximately 3 cm bilaterally, then make a transverse incision at the urethrovesical junction. Finally, remove the anterior rectangle in two pieces by cutting along the lateral sides (FIGURE 2C AND D). Remove the posterior rectangle using the same technique, but also excise a triangular piece of skin from the posterior fourchette for the perineorraphy portion of the procedure (FIGURE 2E).


FIGURE 2 LeFort technique, step by step

Begin with a 5–6 cm transverse incision at the anterior vaginal apex.

Dissect the epithelium off the fibromuscular layer, with a midline sagittal incision extending to the urethrovesical junction.

After dissection is completed, make a transverse incision at the urethrovesical junction, and remove the anterior rectangle in two pieces by cutting along the lateral sides.

Denude the posterior rectangle using the same technique. In addition, excise a triangular piece of skin from the perineum.

The posterior rectangle is ready for removal.

Suturing

Suture the apical sides of the anterior and posterior rectangles together using a continuous running technique (FIGURE 2F). Then approximate the lateral sides bilaterally using continuous sutures.

To ensure adherence of the anterior and posterior rectangles, stitch the raw surfaces together in three rows (FIGURE 2G). Do not include the distal 2 cm of the posterior vagina because you will need to leave room for perineorraphy.

Using several sutures, reapproximate the torn perineal fibromuscular structures in the midline to perform perineorraphy (FIGURE 2H). Close the distal vagina, beginning at the midpoint of the anterior transverse side, which lies at the urethrovesical junction (FIGURE 2I). Continue this suture on the posterior vagina and then the perineal body, sagittally, creating a small invagination in the distal vagina (FIGURE 2J).


FIGURE 2 LeFort technique, step by step

Suture all but the distal sides of the rectangles between the anterior and posterior vaginal walls.

Also stitch together the raw surfaces in three rows in an imbricating fashion.

Perform perineorraphy.

Close the distal vagina, starting at the midpoint of the anterior transverse side. If indicated, place a midurethral sling.

 

 

Final appearance.

Sling procedure

We place a midurethral sling as part of most colpocleisis operations. It is best to do this after the colpocleisis but before the perineorraphy.

In our cases, cystoscopy with simultaneous intravenous indigo carmine injection is standard before perineorraphy, even when a sling procedure is not planned. This safeguard ensures ureteral patency, which can be compromised (although rarely) in these procedures. Cutting and replacement of one of the sutures that approximate the raw tissues typically resolve the problem.16

Special considerations

Here are additional key points about colpocleisis, based on our experience:

  • If an ulcer lies within the area designated to be denuded, some debridement to freshen up the surface will suffice. An ulcer is not an indication to deviate from the standard procedure.
  • A modification developed by Goodall and Power may allow coitus by removing only a triangular piece of epithelium from each wall, leaving more room for the channels.17
  • We have been unable to find any report of uterine or cervical cancer after colpocleisis, despite a MEDLINE search of the literature in English. Even so, the lateral channels created by the LeFort procedure allow any bleeding to escape the vagina, and may therefore enable recognition of malignancy. When noninvasive imaging techniques such as US or magnetic resonance are inadequate, vaginoscopy and hysteroscopy may be accomplished via these channels.
  • When colpocleisis is performed in a hysterectomized woman, no lateral channel is necessary. Therefore, it is appropriate to do total colpocleisis.18,19
  • When a patient with POP has a rectovaginal or vesicovaginal fistula caused by a neglected pessary, the addition of LeFort colpocleisis to the fistula repair may provide an effective treatment for both problems.10

Surgical outcomes

Success rate

Evidence concerning colpocleisis comes from case series, some of which are more than 30 years old. Although the definition of success is not clear in some series, the reported success rate has always exceeded 90% over the past three decades.2,18-22 Moreover, some of these reports involve as many as 30 years of follow-up.

Perioperative complication

In a recent review of the literature, the procedure-related mortality rate was 0.025%.2 When the authors focused only on studies published since 1980, major complications due to the patient’s underlying cardiovascular and pulmonary condition were seen in 2% of cases. Major surgical complications such as pyelonephritis and bleeding requiring transfusion occurred in 4% of cases, and less severe complications occurred in 15%.

In a study that included women who underwent concomitant vaginal hysterectomy, hysterectomy prolonged the surgery by 52 minutes, with a 5% rate of laparotomy as a result of intraoperative bleeding.22

Quality of life

In our series of 40 colpocleisis cases, we noted no instance in which a patient regretted the procedure.18 Others have also reported a low rate of regret—the highest being 9%.3-5,19-21

Using validated questionnaires, FitzGerald and colleagues found significant improvement in mental and physical quality of life, as well as urinary, colorectal, and bulge-related pelvic floor symptoms, 1 year after colpocleisis.5

De novo or worsening urinary incontinence is one of the drawbacks of colpocleisis. However, the same risk is present in approximately 40% of women who undergo surgical reconstructive procedures for POP without a continence operation.23 Because preoperative urinary retention is common in women who have POP, the decision to add a potentially harmful continence procedure is complicated in colpocleisis candidates. A small case series reported that the success rate ranged from 90% to 94% in women who underwent a midurethral tension-free sling procedure for the treatment of urinary incontinence at the time of colpocleisis.5

Preoperative urodynamic studies to detect urethral intrinsic deficiency and detrusor dysfunction are prudent, and detailed counseling of the patient about urinary control is vital. We perform a midurethral sling procedure in most of our colpocleisis cases, and have had pleasing results.

CASE 3 RESOLVED

The patient decides to undergo partial colpocleisis using the LeFort procedure, along with placement of a midurethral sling, for a total operative time of 75 minutes. She is discharged 1 day later and reports substantial improvement in urinary function and quality of life.

CASE 1: Problematic prolapse, but no incontinence

An 81-year-old multiparous woman, who has a history of recurrent stage-III pelvic organ prolapse (POP), reports worsening discomfort that makes it difficult for her to care for her ailing husband. She also has “trouble” with bladder emptying and constipation, but denies any loss of urine. She has not had vaginal intercourse in more than a decade because of her husband’s medical condition.

Aside from health issues—she suffers from obesity, coronary artery disease, hypertension, and diabetes—the patient is content with her marriage of 58 years.

Urodynamic testing fails to demonstrate detrusor overactivity, stress urinary incontinence, or intrinsic sphincteric deficiency. A cough stress test is repeated after reduction of her prolapse using a large cotton swab, and confirms the findings of the urodynamic tests.

Is reconstructive surgery appropriate for this patient?

Traditional reconstructive surgical procedures for treating POP fail in as many as 30% of patients, and new approaches—some involving grafts—are proposed every day, often without much data behind them.1

Regardless of the approach, reconstructive surgery is a lengthy procedure that subjects patients who are already medically compromised to significant risk, including bleeding, infection, and fluid shifts. Delayed return to normal activity may be especially costly among elderly women because of the risk of venous thromboembolism.

Because of the high failure rate, slow recovery, and risk of complications, reconstructive surgery may not be as appropriate as colpocleisis for the woman described above. Colpocleisis—suturing the inside walls of the vagina together—has an efficacy rate exceeding 90%.2 This relatively simple operation has been around for almost two centuries and has a good track record, but is often overlooked when counseling a patient about her options.

Any frail, elderly woman who has stage-III or -IV POP who does not desire to preserve coital ability is a candidate for colpocleisis (TABLE). Advantages include:

  • a short operating time
  • few complications
  • amenability of local anesthesia
  • short hospitalization
  • speedy recovery
  • high success rate
  • low rate of regret.2-5

Because it precludes coital activity, however, colpocleisis may cause problems with self-image. It also may lead to de novo or worsening urinary incontinence and complicate or delay the diagnosis of cervical and endometrial pathology.

This article explores these issues through a case-based discussion of colpocleisis, including a detailed description of surgical technique.

TABLE

Requirements for colpocleisis

Both of the following must be present
  • No desire for or likelihood of future coital activity
  • Stage-III or -IV pelvic organ prolapse
Plus at least one of the following
  • Severe coronary artery disease
  • Severe pulmonary disease
  • Severe dementia
  • Advanced-stage cancer
  • Multiple surgical failures

Why colpocleisis?

Colpocleisis, as noted, entails suturing the inside walls of the vagina together. It is controversial because of its impact on coital activity. With careful patient selection, however, colpocleisis is considered a valid option for frail and elderly women who have POP and do not desire or foresee the possibility of future vaginal intercourse. Such women may represent a surprising percentage of the elderly population. A community-based survey found that 78% of married women 70 to 79 years old are not sexually active,6 and a study from The Netherlands found a prevalence of symptomatic POP of 11.4% among white women 45 to 85 years old.7

The fundamental reason for choosing an obliterative procedure such as colpocleisis over total pelvic reconstruction is to treat the prolapse with the least invasive technique in the shortest time. Hysterectomy, which often adds 30 to 80 minutes to the procedure, should therefore be performed only in patients who have a suspicious finding upon initial evaluation. For the same reason, partial colpocleisis—performed using the LeFort technique with limited dissection—has become the most popular obliterative approach. We try to avoid a total colpocleisis procedure—also known as colpectomy—in which the entire vaginal epithelium is stripped, because it is feasible only when the uterus is already absent or scheduled to be removed concomitantly.

 

 

(Note: The term vaginectomy should be reserved for gynecologic oncology procedures performed to remove vaginal cancer. Vaginectomy entails full-thickness excision of the vaginal walls, including the fibromuscular layer, as opposed to excision of the epithelial layer only, as in colpocleisis. In this article, we present the LeFort method, a partial colpocleisis technique, because we believe it is more easily adapted by the general gynecologist.8)

CASE 1 RESOLVED

After detailed counseling, which includes family members, the patient opts to undergo colpocleisis. The procedure takes 45 minutes. She is discharged on postoperative Day 1, and reports substantially improved quality of life.

CASE 2: Recurrent prolapse and problems with a pessary

A 72-year-old multiparous, widowed woman experiences recurrent stage-III isolated apical prolapse. She has already undergone two reconstructive procedures, and was discouraged from undergoing a third because of her chronic obstructive lung disease. She tried to use a Gellhorn-type pessary, which required a doctor’s intervention to insert and remove. Frustrated by the many office visits involved in having the pessary checked, she now demands surgical therapy. Another gynecologist has offered to repair the prolapse using mesh, but the patient has concerns about the safety and efficacy of the procedure because it is a relatively new approach.

In addition to the recurrent prolapse, she loses urine with stress and urge. She often has a postvoid residual volume >100 cc; urodynamic assessment confirms mixed urinary incontinence. The patient does not foresee any change in her social status (unmarried, sexually inactive).

Is colpocleisis a reasonable option?

Although the pessary is a helpful conservative alternative for women who are either unable or unwilling to undergo complex surgical pelvic repair and is considered first-line treatment by a majority of urogynecologists, it sometimes becomes more difficult to maintain than the patient is willing to tolerate.9 When a woman cannot remove and reinsert the device herself, the pessary requires a lifelong commitment to doctor’s visits every 2 or 3 months. This commitment is especially problematic for patients who become unable to drive or who lack social support.

Maintenance of the pessary becomes more frustrating as the patient becomes more dependent. Many gynecologists have seen a patient who developed a serious complication such as vesicovaginal or rectovaginal fistula because of a neglected pessary.10

In Case 2, the patient appears to be a potential candidate for colpocleisis, given her age and single status. Although pelvic floor repair appears to be safe in older women, any perioperative complication in a patient 70 years of age or older doubles the risk of discharge to a care facility.11,12 Women who have already undergone several surgeries or who have advanced medical problems such as coronary artery disease or cancer should be counseled thoroughly about the safety and efficacy of colpocleisis.

As for self-image, colpocleisis eliminates prolapse and reduces the genital hiatus. If the patient understands that colpocleisis is obliterative for the vagina but may improve the external appearance of the genital area, she may be more accepting of the procedure. One recent prospective, multicenter study found that only 2% of women thought their body looked worse 1 year after colpocleisis; 60% thought their body looked better.5

When reviewing treatment options, inform the patient that the pessary is a palliative option, whereas surgical therapy aims to be definitive.

CASE 2 RESOLVED

After comprehensive counseling, the patient elects to undergo colpocleisis, along with placement of a midurethral sling. She is discharged 1 day after surgery, and reports substantially improved urinary function, including bladder emptying, and quality of life. She says she would recommend the procedure to any woman who has a similar condition.

CASE 3: Pessary-related complications, incontinence, and underlying medical conditions

A 92-year-old multiparous widow, whose stage-IV uterovaginal prolapse has been managed by a pessary, develops vaginal ulcers in both anterior and posterior walls. After removal of the pessary and 4 weeks of treatment with vaginal estrogen, a smaller pessary is inserted, but she again develops ulcers and bleeding.

The patient’s medical condition is complicated by hypertension and generalized arthritis. She has urodynamically confirmed mixed urinary incontinence. She lives with her daughter and does not want to be placed in a nursing home.

What treatment options should you offer to her?

Because of this patient’s advanced age, poor health, and pessary-related problems, she is an ideal candidate for colpocleisis, provided she consents to the procedure after thorough counseling about its benefits and limitations.

Preoperative concerns

A thorough history, physical examination, and normal Pap test are necessary. If a suspicious pelvic mass or uterine bleeding is present, transvaginal ultrasonography (US) is crucial. In-office endometrial sampling also is necessary in any woman who has unexplained vaginal bleeding. More invasive procedures such as dilatation and curettage and hysteroscopy are needed only when the biopsy is inadequate or endometrial thickness exceeds 4 mm on transvaginal US.13

 

 

All elderly women who have high-risk medical problems must be cleared for surgery, with the necessary cardiac and pulmonary workup completed before the procedure.

Because colpocleisis is an extraperitoneal procedure, we have adapted use of over-the-counter enema products on the day before surgery in lieu of mechanical bowel preparation, which may lead to dehydration in very elderly women.

Coordinated consultation between the surgeon and anesthesiologist is necessary to determine the type of anesthesia to be used. Sedation and local anesthesia can be adequate for extremely high-risk women.14,15 Antibiotic prophylaxis is conventional for all patients.

Surgical technique

The LeFort method involves denudation and approximation of the midportions of the anterior and posterior vaginal walls.8 This operation creates a longitudinal vaginal septum with bilateral channels on each side, which serve as conduits for any secretion or bleeding from the apical vagina (FIGURE 1A AND B). Aggressive perineorraphy is also needed to shorten the genital hiatus. The following description incorporates perineorraphy into the LeFort technique.


FIGURE 1 Principles of LeFort colpocleisis

The depiction here is not anatomically precise: The vagina is illustrated as a rectangular prism to clarify the relationship between tissues.

Patient positioning

Place the patient in the dorsal lithotomy position, using stirrups to support the entire leg up to the knee. Let the patient’s buttocks overhang the edge of the table by 1 to 2 inches. A slight Trendelenburg position is imperative, especially when operating on the anterior compartment of the vagina. The bladder should be only partially emptied because the leakage of urine from the bladder makes it easier to identify inadvertent cystotomy. Infiltration of local anesthetic solution to develop the surgical planes is acceptable.

Initiating the procedure

Remove a rectangular piece of vaginal epithelium from the anterior vaginal wall, beginning 2 to 3 cm distal to the vaginal apex (or cervix, if the uterus is present) and ending immediately proximal to the urethrovesical junction to leave space for midurethral sling placement. Remove a similarly sized piece of epithelium from the posterior vaginal wall. This posterior rectangle is an almost geometric projection of the anterior rectangle, but is somewhat longer (2 to 3 cm) (FIGURE 1).

When removing the vaginal epithelium, it may be helpful to use the skills developed for anterior and posterior colporraphy. Our operation begins with a 5- to 6-cm transverse incision at the anterior vaginal apex, which creates the proximal side of the anterior rectangle described above (FIGURE 2A).

As you develop the plane between the epithelium and fibromuscular layer, make a midline sagittal incision and extend it to the urethrovesical junction (FIGURE 2B). Dissect the epithelium off the fibromuscular layer approximately 3 cm bilaterally, then make a transverse incision at the urethrovesical junction. Finally, remove the anterior rectangle in two pieces by cutting along the lateral sides (FIGURE 2C AND D). Remove the posterior rectangle using the same technique, but also excise a triangular piece of skin from the posterior fourchette for the perineorraphy portion of the procedure (FIGURE 2E).


FIGURE 2 LeFort technique, step by step

Begin with a 5–6 cm transverse incision at the anterior vaginal apex.

Dissect the epithelium off the fibromuscular layer, with a midline sagittal incision extending to the urethrovesical junction.

After dissection is completed, make a transverse incision at the urethrovesical junction, and remove the anterior rectangle in two pieces by cutting along the lateral sides.

Denude the posterior rectangle using the same technique. In addition, excise a triangular piece of skin from the perineum.

The posterior rectangle is ready for removal.

Suturing

Suture the apical sides of the anterior and posterior rectangles together using a continuous running technique (FIGURE 2F). Then approximate the lateral sides bilaterally using continuous sutures.

To ensure adherence of the anterior and posterior rectangles, stitch the raw surfaces together in three rows (FIGURE 2G). Do not include the distal 2 cm of the posterior vagina because you will need to leave room for perineorraphy.

Using several sutures, reapproximate the torn perineal fibromuscular structures in the midline to perform perineorraphy (FIGURE 2H). Close the distal vagina, beginning at the midpoint of the anterior transverse side, which lies at the urethrovesical junction (FIGURE 2I). Continue this suture on the posterior vagina and then the perineal body, sagittally, creating a small invagination in the distal vagina (FIGURE 2J).


FIGURE 2 LeFort technique, step by step

Suture all but the distal sides of the rectangles between the anterior and posterior vaginal walls.

Also stitch together the raw surfaces in three rows in an imbricating fashion.

Perform perineorraphy.

Close the distal vagina, starting at the midpoint of the anterior transverse side. If indicated, place a midurethral sling.

 

 

Final appearance.

Sling procedure

We place a midurethral sling as part of most colpocleisis operations. It is best to do this after the colpocleisis but before the perineorraphy.

In our cases, cystoscopy with simultaneous intravenous indigo carmine injection is standard before perineorraphy, even when a sling procedure is not planned. This safeguard ensures ureteral patency, which can be compromised (although rarely) in these procedures. Cutting and replacement of one of the sutures that approximate the raw tissues typically resolve the problem.16

Special considerations

Here are additional key points about colpocleisis, based on our experience:

  • If an ulcer lies within the area designated to be denuded, some debridement to freshen up the surface will suffice. An ulcer is not an indication to deviate from the standard procedure.
  • A modification developed by Goodall and Power may allow coitus by removing only a triangular piece of epithelium from each wall, leaving more room for the channels.17
  • We have been unable to find any report of uterine or cervical cancer after colpocleisis, despite a MEDLINE search of the literature in English. Even so, the lateral channels created by the LeFort procedure allow any bleeding to escape the vagina, and may therefore enable recognition of malignancy. When noninvasive imaging techniques such as US or magnetic resonance are inadequate, vaginoscopy and hysteroscopy may be accomplished via these channels.
  • When colpocleisis is performed in a hysterectomized woman, no lateral channel is necessary. Therefore, it is appropriate to do total colpocleisis.18,19
  • When a patient with POP has a rectovaginal or vesicovaginal fistula caused by a neglected pessary, the addition of LeFort colpocleisis to the fistula repair may provide an effective treatment for both problems.10

Surgical outcomes

Success rate

Evidence concerning colpocleisis comes from case series, some of which are more than 30 years old. Although the definition of success is not clear in some series, the reported success rate has always exceeded 90% over the past three decades.2,18-22 Moreover, some of these reports involve as many as 30 years of follow-up.

Perioperative complication

In a recent review of the literature, the procedure-related mortality rate was 0.025%.2 When the authors focused only on studies published since 1980, major complications due to the patient’s underlying cardiovascular and pulmonary condition were seen in 2% of cases. Major surgical complications such as pyelonephritis and bleeding requiring transfusion occurred in 4% of cases, and less severe complications occurred in 15%.

In a study that included women who underwent concomitant vaginal hysterectomy, hysterectomy prolonged the surgery by 52 minutes, with a 5% rate of laparotomy as a result of intraoperative bleeding.22

Quality of life

In our series of 40 colpocleisis cases, we noted no instance in which a patient regretted the procedure.18 Others have also reported a low rate of regret—the highest being 9%.3-5,19-21

Using validated questionnaires, FitzGerald and colleagues found significant improvement in mental and physical quality of life, as well as urinary, colorectal, and bulge-related pelvic floor symptoms, 1 year after colpocleisis.5

De novo or worsening urinary incontinence is one of the drawbacks of colpocleisis. However, the same risk is present in approximately 40% of women who undergo surgical reconstructive procedures for POP without a continence operation.23 Because preoperative urinary retention is common in women who have POP, the decision to add a potentially harmful continence procedure is complicated in colpocleisis candidates. A small case series reported that the success rate ranged from 90% to 94% in women who underwent a midurethral tension-free sling procedure for the treatment of urinary incontinence at the time of colpocleisis.5

Preoperative urodynamic studies to detect urethral intrinsic deficiency and detrusor dysfunction are prudent, and detailed counseling of the patient about urinary control is vital. We perform a midurethral sling procedure in most of our colpocleisis cases, and have had pleasing results.

CASE 3 RESOLVED

The patient decides to undergo partial colpocleisis using the LeFort procedure, along with placement of a midurethral sling, for a total operative time of 75 minutes. She is discharged 1 day later and reports substantial improvement in urinary function and quality of life.

References

1. Luber KM, Boero S, Choe JY. The demographics of pelvic floor disorders: current observations and future projections. Am J Obstet Gynecol. 2001;184:1496-1503.

2. FitzGerald MP, Richter HE, Siddique S, Thompson P, Zyczynski H, Weber A. For the Pelvic Floor Disorders Network. Colpocleisis: a review. Int Urogynecol J Pelvic Floor Dysfunct. 2006;17:261-271.

3. Wheeler TL, Jr, Richter HE, Burgio KL, et al. Regret, satisfaction, and symptom improvement: analysis of the impact of partial colpocleisis for the management of severe pelvic organ prolapse. Am J Obstet Gynecol. 2005;193:2067-2070.

4. Hullfish KL, Bovbjerg VE, Steers WD. Colpocleisis for pelvic organ prolapse: patient goals, quality of life, and satisfaction. Obstet Gynecol. 2007;110(2 Pt 1):341-345.

5. FitzGerald MP, Richter HE, Bradley CS, et al. For the Pelvic Floor Disorders Network. Pelvic support, pelvic symptoms, and patient satisfaction after colpocleisis. Int Urogynecol J Pelvic Floor Dysfunct. 2008;19:1603-1609.

6. Patel D, Gillespie B, Foxman B. Sexual behavior of older women: results of a random-digit-dialing survey of 2,000 women in the United States. Sex Transm Dis. 2003;30:216-220.

7. Slieker-ten Hove MC, Pool-Goudzwaard AL, Eijkemans MJ, Steegers-Theunissen RP, Burger CW, Vierhout ME. Symptomatic pelvic organ prolapse and possible risk factors in a general population. Am J Obstet Gynecol. 2009;200:184.e1-184.e7.

8. Berlin F. Three cases of complete prolapsus uteri operated upon according to the method of Leon LeFort. Am J Obstet Gynecol. 1881;14:866-868.

9. Cundiff GW, Weidner AC, Visco AG, Bump RC, Addison WA. A survey of pessary use by members of the American Urogynecologic Society. Obstet Gynecol. 2000;95(6 Pt 1):931-935.

10. Esin S, Harmanli OH. Large vesicovaginal fistula in women with pelvic organ prolapse: the role of colpocleisis revisited. Int Urogynecol J Pelvic Floor Dysfunct. 2008;19:1711-1713.

11. Gerten KA, Markland AD, Lloyd LK, Richter HE. Prolapse and incontinence surgery in older women. J Urol. 2008;179:2111-2118.

12. Manku K, Bacchetti P, Leung JM. Prognostic significance of postoperative in-hospital complications in elderly patients. I. Long-term survival. Anesth Analg. 2003;96:583-589.

13. American College of Obstetricians and Gynecologists. ACOG Committee Opinion No. 426: The role of transvaginal ultrasonography in the evaluation of postmenopausal bleeding. Obstet Gynecol. 2009;113(2 Pt 1):462-464.

14. Moore RD, Miklos JR. Colpocleisis and tension-free vaginal tape sling for severe uterine and vaginal prolapse and stress urinary incontinence under local anesthesia. J Am Assoc Gynecol Laparosc. 2003;10:276-280.

15. Buchsbaum GM, Albushies DT, Schoenecker E, Duecy EE, Glantz JC. Local anesthesia with sedation for vaginal reconstructive surgery. Int Urogynecol J Pelvic Floor Dysfunct. 2006;17:211-214.

16. Gustilo-Ashby AM, Jelovsek JE, Barber MD, Yoo EH, Paraiso MF, Walters MD. The incidence of ureteral obstruction and the value of intraoperative cystoscopy during vaginal surgery for pelvic organ prolapse. Am J Obstet Gynecol. 2006;194:1478-1485.

17. Goodall JR, Power RMH. A modification of the Le Fort operation for increasing its scope. Am J Obstet Gynecol. 1937;34:968-976.

18. Harmanli OH, Dandolu V, Chatwani AJ, Grody MT. Total colpocleisis for severe pelvic organ prolapse. J Reprod Med. 2003;48:703-706.

19. DeLancey JOL, Morley GW. Total colpocleisis for vaginal eversion. Am J Obstet Gynecol. 1997;176:1228-1232.

20. Goldman J, Ovadia J, Feldberg D. The Neugebauer-Le Fort operation: a review of 118 partial colpocleises. Eur J Obstet Gynecol Reprod Biol. 1981;12:31-35.

21. Ubachs JM, van Sante TJ, Schellekens LA. Partial colpocleisis by a modification of Le Fort’s operation. Obstet Gynecol. 1973;42:415-420.

22. Von Pechmann WS, Mutone MD, Fyffe J, Hale DS. Total colpocleisis with high levator plication for the treatment of advanced pelvic organ prolapse. Am J Obstet Gynecol. 2003;189:121-126.

23. Albo ME, Richter HE, Brubaker L, et al. For Urinary Incontinence Treatment Network. Burch colposuspension versus fascial sling to reduce urinary stress incontinence. N Engl J Med. 2007;356:2143-2155.

References

1. Luber KM, Boero S, Choe JY. The demographics of pelvic floor disorders: current observations and future projections. Am J Obstet Gynecol. 2001;184:1496-1503.

2. FitzGerald MP, Richter HE, Siddique S, Thompson P, Zyczynski H, Weber A. For the Pelvic Floor Disorders Network. Colpocleisis: a review. Int Urogynecol J Pelvic Floor Dysfunct. 2006;17:261-271.

3. Wheeler TL, Jr, Richter HE, Burgio KL, et al. Regret, satisfaction, and symptom improvement: analysis of the impact of partial colpocleisis for the management of severe pelvic organ prolapse. Am J Obstet Gynecol. 2005;193:2067-2070.

4. Hullfish KL, Bovbjerg VE, Steers WD. Colpocleisis for pelvic organ prolapse: patient goals, quality of life, and satisfaction. Obstet Gynecol. 2007;110(2 Pt 1):341-345.

5. FitzGerald MP, Richter HE, Bradley CS, et al. For the Pelvic Floor Disorders Network. Pelvic support, pelvic symptoms, and patient satisfaction after colpocleisis. Int Urogynecol J Pelvic Floor Dysfunct. 2008;19:1603-1609.

6. Patel D, Gillespie B, Foxman B. Sexual behavior of older women: results of a random-digit-dialing survey of 2,000 women in the United States. Sex Transm Dis. 2003;30:216-220.

7. Slieker-ten Hove MC, Pool-Goudzwaard AL, Eijkemans MJ, Steegers-Theunissen RP, Burger CW, Vierhout ME. Symptomatic pelvic organ prolapse and possible risk factors in a general population. Am J Obstet Gynecol. 2009;200:184.e1-184.e7.

8. Berlin F. Three cases of complete prolapsus uteri operated upon according to the method of Leon LeFort. Am J Obstet Gynecol. 1881;14:866-868.

9. Cundiff GW, Weidner AC, Visco AG, Bump RC, Addison WA. A survey of pessary use by members of the American Urogynecologic Society. Obstet Gynecol. 2000;95(6 Pt 1):931-935.

10. Esin S, Harmanli OH. Large vesicovaginal fistula in women with pelvic organ prolapse: the role of colpocleisis revisited. Int Urogynecol J Pelvic Floor Dysfunct. 2008;19:1711-1713.

11. Gerten KA, Markland AD, Lloyd LK, Richter HE. Prolapse and incontinence surgery in older women. J Urol. 2008;179:2111-2118.

12. Manku K, Bacchetti P, Leung JM. Prognostic significance of postoperative in-hospital complications in elderly patients. I. Long-term survival. Anesth Analg. 2003;96:583-589.

13. American College of Obstetricians and Gynecologists. ACOG Committee Opinion No. 426: The role of transvaginal ultrasonography in the evaluation of postmenopausal bleeding. Obstet Gynecol. 2009;113(2 Pt 1):462-464.

14. Moore RD, Miklos JR. Colpocleisis and tension-free vaginal tape sling for severe uterine and vaginal prolapse and stress urinary incontinence under local anesthesia. J Am Assoc Gynecol Laparosc. 2003;10:276-280.

15. Buchsbaum GM, Albushies DT, Schoenecker E, Duecy EE, Glantz JC. Local anesthesia with sedation for vaginal reconstructive surgery. Int Urogynecol J Pelvic Floor Dysfunct. 2006;17:211-214.

16. Gustilo-Ashby AM, Jelovsek JE, Barber MD, Yoo EH, Paraiso MF, Walters MD. The incidence of ureteral obstruction and the value of intraoperative cystoscopy during vaginal surgery for pelvic organ prolapse. Am J Obstet Gynecol. 2006;194:1478-1485.

17. Goodall JR, Power RMH. A modification of the Le Fort operation for increasing its scope. Am J Obstet Gynecol. 1937;34:968-976.

18. Harmanli OH, Dandolu V, Chatwani AJ, Grody MT. Total colpocleisis for severe pelvic organ prolapse. J Reprod Med. 2003;48:703-706.

19. DeLancey JOL, Morley GW. Total colpocleisis for vaginal eversion. Am J Obstet Gynecol. 1997;176:1228-1232.

20. Goldman J, Ovadia J, Feldberg D. The Neugebauer-Le Fort operation: a review of 118 partial colpocleises. Eur J Obstet Gynecol Reprod Biol. 1981;12:31-35.

21. Ubachs JM, van Sante TJ, Schellekens LA. Partial colpocleisis by a modification of Le Fort’s operation. Obstet Gynecol. 1973;42:415-420.

22. Von Pechmann WS, Mutone MD, Fyffe J, Hale DS. Total colpocleisis with high levator plication for the treatment of advanced pelvic organ prolapse. Am J Obstet Gynecol. 2003;189:121-126.

23. Albo ME, Richter HE, Brubaker L, et al. For Urinary Incontinence Treatment Network. Burch colposuspension versus fascial sling to reduce urinary stress incontinence. N Engl J Med. 2007;356:2143-2155.

Issue
OBG Management - 21(06)
Issue
OBG Management - 21(06)
Page Number
19-28
Page Number
19-28
Publications
Publications
Article Type
Display Headline
Colpocleisis: A simple, effective, and underutilized procedure
Display Headline
Colpocleisis: A simple, effective, and underutilized procedure
Legacy Keywords
Oz Harmanli MD; colpocleisis; pelvic organ prolapse; POP; prolapse; sexual intercourse; reconstructive surgery; elderly; coitus; coital activity; coronary artery disease; pulmonary disease; dementia; vagina; vaginal intercourse; obliterative; reconstruction; LeFort technique; vaginectomy; LeFort; pessary; genital hiatus; midurethral sling; transvaginal ultrasonography; dilatation and curettage; hysteroscopy; LeFort colpocleisis; vaginal epithelium; cystoscopy; malignancy; cancer; hysterectomy
Legacy Keywords
Oz Harmanli MD; colpocleisis; pelvic organ prolapse; POP; prolapse; sexual intercourse; reconstructive surgery; elderly; coitus; coital activity; coronary artery disease; pulmonary disease; dementia; vagina; vaginal intercourse; obliterative; reconstruction; LeFort technique; vaginectomy; LeFort; pessary; genital hiatus; midurethral sling; transvaginal ultrasonography; dilatation and curettage; hysteroscopy; LeFort colpocleisis; vaginal epithelium; cystoscopy; malignancy; cancer; hysterectomy
Sections
Article Source

PURLs Copyright

Inside the Article
Article PDF Media

The Child With a Limp

Article Type
Changed
Mon, 05/06/2019 - 12:02
Display Headline
The Child With a Limp

[email protected]

You suspect that a patient you see has a limp that may indicate a more serious condition. What is the best strategy to evaluate this child? How do you know when to treat and when to refer the patient to a specialist? And finally, which tests are most useful and which others are likely to add little to the clinical assessment, except additional cost?

The etiology of a child's limp can range from simple and benign to a serious condition. When such a patient presents, focus on the child's history and physical examination. A good history, for example, can help to narrow down the long list of differential diagnoses and potential etiologies.

It is important to take parents' concerns seriously. There are essential questions to ask parents and patients. For example, is there pain? Is the child sick? Who noticed the limp first? Was the onset gradual or sudden? How long has the child had a limp? Is the limp getting better or worse, or is it staying the same?

When performing the physical examination, have the child walk a long distance, not just within the confines of the exam room. Watch the child walk and/or run from different viewpoints, including the front, back, and side. Also, have the child undress so lower extremities are exposed.

During the examination, try to determine the type of limp. Common forms include antalgic (painful), Trendelenburg (associated with weakness), and limps associated with a short limb, spasticity and/or stiffness, or poor balance. Another tip is to observe the child after you ask him or her to pick up an object off the floor. If the child keeps the spine stiff, it may indicate a spinal etiology for the limp.

Try to find the point of maximal tenderness during a tabletop examination. Flex each joint through its full range. During this part of the exam, also look for any atrophy, rashes, swelling, or discoloration. Consider whether the problem can be localized. Also, remember that knee pain is hip pain until proven otherwise! Keep in mind that slipped capital femoral epiphysis can present as knee pain, so check hip internal rotation. Do not forget to do the Gowers' test in boys (have the child stand from a sitting position on the floor) because if there is muscle weakness, it may be associated with Duchenne's muscular dystrophy, which occurs primarily in boys.

Limps generally can be divided into three age categories to help narrow the list of possible etiologies. For example, fractures and infection are common causes in children less than 4 years old. Infection becomes less common, and acute and/or overuse injuries and hip disorders (for example, Perthes disease, transient synovitis) become more common, in children between 4 years and 10 years old. Overuse and acute injuries are especially common among children older than 10 years.

Some tests are more useful than others in the child with a limp. For example, plain radiographs of the affected limb—including one joint above and below—can be useful. Ultrasound of the hip also can help if there is concern about the possibility of a septic hip; this imaging helps to detect the presence of an effusion. In a child with an acute, nontraumatic limp, laboratory assays including complete blood count with differential, erythrocyte sedimentation rate, and C-reaction protein test are recommended prior to referral.

In contrast, MRIs and bone scans should be ordered by the specialist who is going to treat the child based on the findings.

If the diagnosis is unclear after the initial examination, reevaluate the child on a weekly basis until the problem resolves or the diagnosis is established.

In general, pediatricians can observe a child whose limp is improving. Also, observe a limping child who can still play and perform all activities of daily living without interference. In addition, bilateral symptoms suggest a benign condition. Remember, idiopathic toe walking should be bilateral. Reassure parents that growing pains will not make a child limp.

Refer the child to a specialist when the limp does not improve over time. In addition, consider referral if the patient has constitutional symptoms associated with a new-onset, nontraumatic limp.

A child with a painful limp generally will need further evaluation unless there is an obvious cause. Remember that a limp associated with constant pain, even while the child is at rest and/or at nighttime, is worrisome, and a specialist may be able to help with diagnosis and management. And always be concerned about the child who loses the ability to walk. Also, don't forget to consider child abuse in the infant or toddler with multiple injuries.

Article PDF
Author and Disclosure Information

Publications
Sections
Author and Disclosure Information

Author and Disclosure Information

Article PDF
Article PDF

[email protected]

You suspect that a patient you see has a limp that may indicate a more serious condition. What is the best strategy to evaluate this child? How do you know when to treat and when to refer the patient to a specialist? And finally, which tests are most useful and which others are likely to add little to the clinical assessment, except additional cost?

The etiology of a child's limp can range from simple and benign to a serious condition. When such a patient presents, focus on the child's history and physical examination. A good history, for example, can help to narrow down the long list of differential diagnoses and potential etiologies.

It is important to take parents' concerns seriously. There are essential questions to ask parents and patients. For example, is there pain? Is the child sick? Who noticed the limp first? Was the onset gradual or sudden? How long has the child had a limp? Is the limp getting better or worse, or is it staying the same?

When performing the physical examination, have the child walk a long distance, not just within the confines of the exam room. Watch the child walk and/or run from different viewpoints, including the front, back, and side. Also, have the child undress so lower extremities are exposed.

During the examination, try to determine the type of limp. Common forms include antalgic (painful), Trendelenburg (associated with weakness), and limps associated with a short limb, spasticity and/or stiffness, or poor balance. Another tip is to observe the child after you ask him or her to pick up an object off the floor. If the child keeps the spine stiff, it may indicate a spinal etiology for the limp.

Try to find the point of maximal tenderness during a tabletop examination. Flex each joint through its full range. During this part of the exam, also look for any atrophy, rashes, swelling, or discoloration. Consider whether the problem can be localized. Also, remember that knee pain is hip pain until proven otherwise! Keep in mind that slipped capital femoral epiphysis can present as knee pain, so check hip internal rotation. Do not forget to do the Gowers' test in boys (have the child stand from a sitting position on the floor) because if there is muscle weakness, it may be associated with Duchenne's muscular dystrophy, which occurs primarily in boys.

Limps generally can be divided into three age categories to help narrow the list of possible etiologies. For example, fractures and infection are common causes in children less than 4 years old. Infection becomes less common, and acute and/or overuse injuries and hip disorders (for example, Perthes disease, transient synovitis) become more common, in children between 4 years and 10 years old. Overuse and acute injuries are especially common among children older than 10 years.

Some tests are more useful than others in the child with a limp. For example, plain radiographs of the affected limb—including one joint above and below—can be useful. Ultrasound of the hip also can help if there is concern about the possibility of a septic hip; this imaging helps to detect the presence of an effusion. In a child with an acute, nontraumatic limp, laboratory assays including complete blood count with differential, erythrocyte sedimentation rate, and C-reaction protein test are recommended prior to referral.

In contrast, MRIs and bone scans should be ordered by the specialist who is going to treat the child based on the findings.

If the diagnosis is unclear after the initial examination, reevaluate the child on a weekly basis until the problem resolves or the diagnosis is established.

In general, pediatricians can observe a child whose limp is improving. Also, observe a limping child who can still play and perform all activities of daily living without interference. In addition, bilateral symptoms suggest a benign condition. Remember, idiopathic toe walking should be bilateral. Reassure parents that growing pains will not make a child limp.

Refer the child to a specialist when the limp does not improve over time. In addition, consider referral if the patient has constitutional symptoms associated with a new-onset, nontraumatic limp.

A child with a painful limp generally will need further evaluation unless there is an obvious cause. Remember that a limp associated with constant pain, even while the child is at rest and/or at nighttime, is worrisome, and a specialist may be able to help with diagnosis and management. And always be concerned about the child who loses the ability to walk. Also, don't forget to consider child abuse in the infant or toddler with multiple injuries.

[email protected]

You suspect that a patient you see has a limp that may indicate a more serious condition. What is the best strategy to evaluate this child? How do you know when to treat and when to refer the patient to a specialist? And finally, which tests are most useful and which others are likely to add little to the clinical assessment, except additional cost?

The etiology of a child's limp can range from simple and benign to a serious condition. When such a patient presents, focus on the child's history and physical examination. A good history, for example, can help to narrow down the long list of differential diagnoses and potential etiologies.

It is important to take parents' concerns seriously. There are essential questions to ask parents and patients. For example, is there pain? Is the child sick? Who noticed the limp first? Was the onset gradual or sudden? How long has the child had a limp? Is the limp getting better or worse, or is it staying the same?

When performing the physical examination, have the child walk a long distance, not just within the confines of the exam room. Watch the child walk and/or run from different viewpoints, including the front, back, and side. Also, have the child undress so lower extremities are exposed.

During the examination, try to determine the type of limp. Common forms include antalgic (painful), Trendelenburg (associated with weakness), and limps associated with a short limb, spasticity and/or stiffness, or poor balance. Another tip is to observe the child after you ask him or her to pick up an object off the floor. If the child keeps the spine stiff, it may indicate a spinal etiology for the limp.

Try to find the point of maximal tenderness during a tabletop examination. Flex each joint through its full range. During this part of the exam, also look for any atrophy, rashes, swelling, or discoloration. Consider whether the problem can be localized. Also, remember that knee pain is hip pain until proven otherwise! Keep in mind that slipped capital femoral epiphysis can present as knee pain, so check hip internal rotation. Do not forget to do the Gowers' test in boys (have the child stand from a sitting position on the floor) because if there is muscle weakness, it may be associated with Duchenne's muscular dystrophy, which occurs primarily in boys.

Limps generally can be divided into three age categories to help narrow the list of possible etiologies. For example, fractures and infection are common causes in children less than 4 years old. Infection becomes less common, and acute and/or overuse injuries and hip disorders (for example, Perthes disease, transient synovitis) become more common, in children between 4 years and 10 years old. Overuse and acute injuries are especially common among children older than 10 years.

Some tests are more useful than others in the child with a limp. For example, plain radiographs of the affected limb—including one joint above and below—can be useful. Ultrasound of the hip also can help if there is concern about the possibility of a septic hip; this imaging helps to detect the presence of an effusion. In a child with an acute, nontraumatic limp, laboratory assays including complete blood count with differential, erythrocyte sedimentation rate, and C-reaction protein test are recommended prior to referral.

In contrast, MRIs and bone scans should be ordered by the specialist who is going to treat the child based on the findings.

If the diagnosis is unclear after the initial examination, reevaluate the child on a weekly basis until the problem resolves or the diagnosis is established.

In general, pediatricians can observe a child whose limp is improving. Also, observe a limping child who can still play and perform all activities of daily living without interference. In addition, bilateral symptoms suggest a benign condition. Remember, idiopathic toe walking should be bilateral. Reassure parents that growing pains will not make a child limp.

Refer the child to a specialist when the limp does not improve over time. In addition, consider referral if the patient has constitutional symptoms associated with a new-onset, nontraumatic limp.

A child with a painful limp generally will need further evaluation unless there is an obvious cause. Remember that a limp associated with constant pain, even while the child is at rest and/or at nighttime, is worrisome, and a specialist may be able to help with diagnosis and management. And always be concerned about the child who loses the ability to walk. Also, don't forget to consider child abuse in the infant or toddler with multiple injuries.

Publications
Publications
Article Type
Display Headline
The Child With a Limp
Display Headline
The Child With a Limp
Sections
Article Source

PURLs Copyright

Inside the Article

Article PDF Media

Ischemic Stroke After Hip Operation

Article Type
Changed
Sun, 05/28/2017 - 21:44
Display Headline
Predictors of ischemic stroke after hip operation: A population‐based study

In the United States, hip operations (internal fixation of fracture or total hip arthroplasty [THA]) are the most common noncardiac major surgical procedures performed in patients age 65 years and older (45.2 procedures per 100,000 persons per year).1 This number of procedures is projected to increase substantially in the coming decades.

Little is known about the clinical predictors of postoperative stroke in patients undergoing hip surgical procedures. Further, recent results of the Perioperative Ischemic Evaluation (POISE) trial have shown that measures taken to reduce cardiac complications postoperatively may adversely affect the risk of stroke.2 The POISE study showed decreases in myocardial infarction and coronary revascularization but accompanying increases in stroke and death with use of ‐blockers in patients undergoing noncardiac surgery.

Prevention of adverse events is one of the top priorities of the U.S. health care system today.35 Risk stratification and therapeutic optimization of underlying chronic diseases may be important in decreasing perioperative risk and improving postoperative outcomes.

Our objective was to determine the rate of postoperative ischemic stroke in all residents of Olmsted County, MN, who underwent hip operation between 1988 and 2002 and to identify clinical predictors of postoperative stroke.

Subjects and Methods

Olmsted County is one of the few places in the world where comprehensive population‐based studies of disease etiology and outcomes are feasible. This feasibility is due to the Rochester Epidemiology Project, a medical records linkage system that provides access to the records of all medical care in the community.1 All medical diagnoses made for a resident of Olmsted County are entered on a master sheet in the patient's medical record, which is then entered into a central computer index.

Hip operations were identified using the Surgical Information Recording System data warehouse, where detailed data are stored as International Classification of Diseases, 9th edition (ICD‐9) codes for all surgical procedures performed from January 1, 1988, forward. A total of 2028 THAs and hip fracture repairs (ICD‐9 codes 81.51, 81.52, 81.53, 79.15, and 79.25) performed between 1988 and 2002 in Olmsted County were identified. Of the hip procedures, 142 were excluded (Figure 1). The final analysis cohort contained 1886 hip operations1195 hip fracture repairs and 691 THAs.

Figure 1
Flowchart showing subjects included in cohort of residents of Olmsted County, MN, and methods of identification and types of strokes identified. Fx, fracture.

The population‐based cohort was assembled and the data were abstracted from complete inpatient and outpatient records from admission for surgical treatment up to 1 year after surgery. Only those patients who had given prior authorization for research were included in the study cohort. The Mayo Clinic Institutional Review Board approved the study.

Case Ascertainment

We used several screening procedures to completely enumerate all postoperative strokes in our study population (Figure 1). The Mayo Clinic administrative database was used to identify all cases with relevant cerebrovascular disease (ICD‐9 codes 430.0‐437.9, 368.12, 781.4, and 784.3) within 1 year after hip operation. The Rochester Stroke Registry identified incident cases of ischemic stroke in Olmsted County from 1988 through 1994. The clinic's administrative database was also used to identify brain imaging studies (brain computed tomography, magnetic resonance imaging, or carotid ultrasonography) between the day of the procedure and 1 year postoperatively. A neurologist reviewed each image and the associated medical record identified during the screening process in detail for the constellation of signs and symptoms consistent with the diagnosis of stroke. Death certificates and autopsy reports were also reviewed to identify persons with the diagnosis of stroke. The outcome (stroke) was masked to the nurse abstractor who reviewed charts for predictors of postoperative stroke (eg, atrial fibrillation, coronary artery disease [CAD], history of stroke, medication use). The exposed or unexposed status of the patients to the predictors of stroke was masked to the physician (A.S.P.) who screened electronic medical records for the outcome measure (stroke).

Cerebral infarction or ischemic stroke was defined as the acute onset of a neurologic deficit that persisted for longer than 24 hours and corresponded to an arterial vascular territory of the cerebral hemispheres, brainstem, or cerebellum, with or without computed tomographic or magnetic resonance imaging documentation. Transient ischemic attack was defined as an episode of focal neurologic symptoms with abrupt onset and rapid resolution, lasting less than 24 hours, and due to altered circulation to a limited region of the brain.

Only patients with ischemic strokes clinically documented by a neurologist were included in the analysis.

Primary Outcomes

Outcomes were the cumulative probability of ischemic stroke and predictors of stroke in the first 12 months after surgical treatment of the hip.

Statistical Analysis

Continuous variables are presented as mean (standard deviation [SD]); categorical variables are presented as number and percentage. Two‐sample t tests or Wilcoxon rank sum tests were used to test for differences between THAs and hip fracture repairs in demographic characteristics, past medical history, and baseline clinical data composed of continuous variables; 2 or Fisher exact tests were used for categorical variables. No patient was lost to follow‐up during the 1 year after the initial surgery. However, the data of patients who died or had a second hip procedure within that period were censored.

The rate of ischemic stroke within 1 year after the incident hip procedure was calculated using the Kaplan‐Meier method. Second hip procedures within that period were counted as additional cases. Rates were calculated for the overall group, as well as for the univariate risk factors of operative procedure type, age, sex, past medical history of stroke, hypertension, atrial fibrillation, CAD, chronic obstructive pulmonary disease (COPD), diabetes mellitus, and chronic renal insufficiency. Use of ‐blockers, hydroxymethylglutaryl‐coenzyme A (HMG‐CoA) reductase inhibitors, or aspirin at hospital admission was also considered. Cox proportional hazards regression models were used to evaluate the risk of ischemic stroke for each of these univariate risk factors. Multivariable Cox proportional hazards models were constructed with adjustments for operative procedure type, age, sex, and comorbid conditions such as atrial fibrillation and hypertension. These covariates were added in a stepwise selection to identify factors significantly associated with the outcome. To account for patients who had a second hip procedure within 1 year of their first operation, we calculated all Cox proportional hazards regression results using the robust sandwich estimate of the covariance matrix. The proportional hazards assumption for all Cox models was evaluated with the methods proposed by Therneau and Grambsch;6 no violations of this assumption were identified. The rate of postoperative stroke after adjusting for the competing risk of death was calculated using the approach of Gooley et al.7 All statistical tests were 2‐sided, and a P value was considered significant if it was less than 0.05. Statistical analyses were performed using statistical software (SAS version 9.1.3; SAS Institute, Inc., Cary, NC).

Results

Among the patients with the 1886 hip procedures, 67 ischemic strokes were identified within 1 year after the index surgical procedure10 (1.4%) among the 691 THAs and 57 (4.8%) among the 1195 hip fracture repairs. Baseline characteristics are summarized in Table 1. Compared with the THA group, patients in the hip fracture repair group were more likely to be older and female. Additionally, such comorbid conditions as a history of stroke, diabetes mellitus, congestive heart failure, atrial fibrillation, or dementia were more prevalent in the hip fracture repair group.

Baseline Characteristics of Study Population
CharacteristicsSurgical ProcedureTotal (n = 1,886)P Value*
THA (n = 691)Fracture Repair (n = 1,195)
  • NOTE: Continuous variables are represented as mean (SD); categorical variables are represented as number and percentage.

  • Abbreviations: ASA, American Society of Anesthesiologists; BMI, body mass index; CHF, congestive heart failure; THA, total hip arthroplasty.

  • P values are from Kruskal‐Wallis tests for continuous variables and from either 2 or Fisher exact tests for categorical variables.

  • Fifteen cases had no BMI data.

  • One case had no ASA risk classification data.

Age, years74.9 (6.59)84.2 (7.49)80.8 (8.46)<0.001
Sex, male258 (37.3)234 (19.6)492 (26.1)<0.001
Race, White690 (100)1,187 (99.3)1,877 (99.5)0.17
BMI27.7 (5.36)23.3 (4.93)24.9 (5.52)<0.001
History    
Hypertension424 (61.4)695 (58.2)1,119 (59.3)0.17
Diabetes57 (8.2)141 (11.8)198 (10.5)0.02
Stroke50 (7.2)334 (27.9)384 (20.4)<0.001
CHF100 (14.5)321 (26.9)421 (22.3)<0.001
Atrial fibrillation72 (10.4)241 (20.2)313 (16.6)<0.001
Dementia16 (2.3)407 (34.1)423 (22.4)<0.001
ASA risk classification   <0.001
1 or 2343 (49.6)172 (14.4)515 (27.3) 
3, 4, or 5348 (50.4)1,022 (85.6)1,370 (72.7) 
Medication on admission    
Aspirin168 (24.3)369 (30.9)537 (28.5)0.002
‐Blocker134 (19.4)184 (15.4)318 (16.9)0.03
Insulin12 (1.7)48 (4)60 (3.2)0.007
Length of stay, days7.3 (3.9)10.0 (7.61)9.0 (6.63)<0.001

Univariate analyses assessing the rate and risk of postoperative ischemic stroke are shown in Table 2. The rate of stroke was significantly greater among hip fracture repairs than THAs 30 days postoperatively and 1 year postoperatively (1.5% vs. 0.6% and 5.5% vs. 1.5%, respectively; P < 0.001) (Figure 2). In our study we found an annual incidence rate of ischemic stroke of 4093 per 100,000 person‐years (95% confidence interval [CI], 3172‐5198 per 100,000 person‐years). Accounting for death as a competing risk for stroke had little impact on the rate of stroke overall or within the 2 surgical groups (results not shown). Univariate Cox proportional hazards models showed that neither sex nor history of hypertension, diabetes mellitus, COPD, chronic renal insufficiency, or CAD or use of HMG‐CoA reductase inhibitors or ‐blockers were significant predictors of ischemic stroke. However, other clinical risk factors, such as a history of atrial fibrillation (hazard ratio [HR], 2.16; P = 0.005), hip fracture repair vs. THA (HR, 3.80; P < 0.001), increased age (HR, 2.20; P = 0.017), aspirin use (HR, 1.8; P = 0.014), and history of previous stroke (HR, 4.18; P < 0.001), were significantly associated with an increased risk of stroke (Table 2).

Figure 2
Kaplan‐Meier curves of cumulative probability of ischemic stroke after hip fracture repair vs. total hip arthroplasty (THA). Error bars indicate 95% confidence intervals; P < 0.001; hazard ratio = 3.8.
Univariate Estimates and Predictors of Postoperative Ischemic Stroke After Hip Operation
VariableNumber of PatientsNumber of EventsRate (%)Hazard RatioP Value
30‐Day (95% CI)1‐Year (95% CI)
  • Abbreviations: CAD, coronary artery disease; CI, confidence interval; COPD, chronic obstructive pulmonary disease; HMG‐CoA, hydroxymethyglutaryl coenzyme A; THA, total hip arthroplasty.

Overall1886671.2 (0.7‐1.7)3.9 (3‐4.8)  
Type of operative procedure      
THA691100.6 (0.0‐1.1)1.5 (0.6‐2.4)  
Hip fracture repair1195571.5 (0.8‐2.2)5.5 (4.1‐6.9)3.80 (1.94‐7.44)<0.001
Age at operation, years      
<75528111.0 (0.1‐1.8)2.1 (0.9‐3.3)  
751358561.3 (0.7‐1.9)4.7 (3.5‐5.8)2.20 (1.15‐4.21)0.02
Sex      
Female1394541.3 (0.7‐1.9)4.2 (3.1‐5.3)  
Male492130.8 (0.0‐1.7)2.9 (1.3‐4.4)0.69 (0.38‐1.27)0.24
History of stroke      
No1502340.7 (0.3‐1.2)2.4 (1.6‐3.3)  
Yes384333.0 (1.2‐4.7)9.9 (6.6‐13)4.18 (2.59‐6.74)<0.001
History of hypertension      
No767230.8 (0.2‐1.4)3.4 (2.0‐4.7)  
Yes1119441.5 (0.7‐2.2)4.2 (3.0‐5.5)1.29 (0.78‐2.14)0.32
History of atrial fibrillation      
No1573481.0 (0.5‐1.5)3.3 (2.4‐4.2)  
Yes313191.9 (0.4‐3.5)7.0 (3.9‐9.9)2.16 (1.27‐3.67)0.005
History of CAD      
No1224401.1 (0.5‐1.6)3.5 (2.4‐4.5)  
Yes662271.4 (0.5‐2.3)4.7 (2.9‐6.4)1.34 (0.82‐2.19)0.24
History of COPD      
No1606621.4 (0.8‐2.0)4.2 (3.1‐5.2)  
Yes28050 (0.0‐0.0)2.2 (0.3‐4.1)0.49 (0.20‐1.22)0.13
History of diabetes mellitus      
No1688561.1 (0.6‐1.7)3.6 (2.7‐4.5)  
Yes198111.5 (0‐3.3)6.3 (2.6‐9.9)1.75 (0.92‐3.34)0.09
History of renal insufficiency      
No1718581.0 (0.5‐1.5)3.7 (2.7‐4.6)  
Yes16893.0 (0.4‐5.5)5.8 (2‐9.5)1.77 (0.88‐3.57)0.11
Aspirin use      
No1349390.7 (0.2‐1.1)3.2 (2.2‐4.2)  
Yes537282.5 (0.1‐3.8)5.7 (3.6‐7.7)1.86 (1.13‐3.06)0.01
‐Blocker use      
No1568521.1 (0.6‐1.6)3.6 (2.7‐4.6)  
Yes318151.6 (0.2‐3.0)5.1 (2.6‐7.6)1.42 (0.81‐2.52)0.22
HMG‐CoA reductase inhibitor use      
No1736631.2 (0.7‐1.7)4.0 (3.0‐4.9)  
Yes (statin/other lipid lowering drugs)14841.4 (0‐3.2)2.8 (0.1‐5.4)0.70 (0.26‐1.94)0.50

Because age was associated with the type of surgical procedure (87% of hip fracture repair patients were 75 years or older compared with 45% of THA patients), the effect of hip fracture repair on ischemic stroke was adjusted for age. For similar reasons, sex was also examined as an adjusting factor. Adjustment for age and sex resulted in only a slight attenuation of the HR for hip fracture repair vs. THA, from 3.8 to 3.4. A further analysis also adjusted for history of hypertension and history of atrial fibrillation, both comorbidities commonly associated with ischemic stroke. After adjustment for age, sex, history of hypertension, and history of atrial fibrillation, the risk of ischemic stroke was still significantly greater in the hip fracture repair group than in the THA group (HR, 2.8; 95% CI, 1.4‐5.7; P = 0.005).

To determine the most important predictors of postoperative ischemic stroke, multivariable analysis was conducted with stepwise selection. Potential risk factors included the following: operative procedure type (hip fracture repair vs. THA), age, sex, and history of stroke, hypertension, atrial fibrillation, CAD, COPD, diabetes mellitus, and chronic renal insufficiency, as well as use of ‐blockers, HMG‐CoA reductase inhibitors, and aspirin on hospital admission. Among all these factors, history of stroke (HR, 3.27; P < 0.001) and hip fracture repair vs. THA (HR, 2.74; P = 0.004) were confirmed to be significant predictors of postoperative ischemic stroke; the other factors did not significantly affect the model (Figure 2).

Comment

Our findings contrast those of previous studies that focused on perioperative ischemic stroke rates for specific surgical procedures,2, 8, 9 but do seem concordant with published results for early event rates of cerebrovascular accident or transient ischemic attack (1%) following hip fracture.10 The data from our study suggest that perioperative stroke cumulative probability is relatively high for hip procedures at both 30 days (1.2%) and 1 year (3.9%) after the index surgical procedure compared with general procedures. Subjects with a history of stroke who were undergoing hip operation had a postoperative stroke risk of 3.0% at 30 days and 9.9% at 1 year.

The incidence of stroke was greater in the hip fracture repair group (1.5% at 30 days and 5.5% at 1 year) than in the elective THA group (0.6% at 30 days and 1.5% at 1 year). The increased 1‐year mortality for patients undergoing hip surgery compared with the general population is in part due to cerebrovascular disease,10 and, therefore, the 1‐year stroke incidence is important.

After adjustment for age, sex, and comorbidities (hypertension and atrial fibrillation), the risk of postoperative ischemic stroke was 2.71 times greater in the hip fracture repair group than in the THA group (P = 0.006). These data are important in counseling and caring for patients undergoing different types of hip procedures.

From 1985 through 1989, for the age group (75‐84 years old) that best fits the demographics of our cohort, both men and women had limited variation over time in annual incidence rates of stroke (2149‐1074 strokes per 100,000 population per year) for Olmsted County, MN.11 In our study we found an annual incidence rate of ischemic stroke of 4,093 per 100,000 person‐years (95% CI, 3172‐5198 per 100,000 person‐years). The lower limit of the 95% CI is higher than the rates reported for Olmsted County, suggesting that having hip surgery increases the 1‐year risk of ischemic stroke.

Previous studies have shown that the risk factor most consistently correlated to perioperative ischemic stroke is a history of stroke.9 In our study, history of stroke and type of hip fracture surgery were confirmed to be the strongest predictors of postoperative stroke. History of hypertension, atrial fibrillation, CAD, COPD, diabetes, or chronic renal insufficiency was not correlated to perioperative ischemic stroke.

Nonmodifiable risk factors, such as advanced age, serve as markers of stroke risk and help identify high‐risk populations that may require aggressive intervention. After age adjustment of hip fracture repair, age was no longer significantly associated with postoperative stroke.

Cerebrovascular disease appears to be a marker for CAD, and, therefore, patients with a history of stroke usually have a Revised Cardiac Risk Index that may suggest the use of ‐blockers. According to the recent results of the POISE trial, use of ‐blockers could lead to increased stroke incidence.2 Our results showed no significant correlation between stroke risk and ‐blocker use, but our study period was from 1988 to 2002, when titration of ‐blocker dose to heart rates of 55 to 60 beats per minute was not common practice.

Several studies have confirmed the value of aspirin in decreasing the rate of vascular outcomes after diagnosis of transient ischemic attack or stroke.12 In our study, aspirin use on hospital admission was found in the univariate analysis to be associated with an increased risk of stroke, but this finding was not confirmed after adjustments for age, sex, and comorbid conditions. Aspirin use on admission was not a significant predictor of postoperative stroke, most likely because aspirin use can be considered a marker of increased cardiovascular risk and we adjusted for these comorbid conditions.

The limitations of this study are inherent in its retrospective design. First, we identified all incident cases of stroke after hip operation by reviewing medical records and then abstracting data from those records. We may have missed some mild strokes if they were misclassified as peripheral vestibular neuropathy, migraine, or even seizure. Less likely is that we missed strokes within the first 30 days after the procedure because that is the period in which patients with hip operation are either hospitalized or sent for rehabilitation in skilled nursing facilities. It is known that institutionalization leads to better surveillance and more complete ascertainment of any medical event.

The event rate of postoperative stroke at 30 days after hip operation was low. Therefore, we did not have the statistical power to comment meaningfully on predictors of stroke at 30 days after the hip procedure. Any nonrespondent or volunteer bias was addressed by using data from the Rochester Epidemiology Project, which allowed us to identify all Olmsted County residents who underwent hip operation between 1988 and 2002. The diagnostic suspicion bias was also accounted for in our study design because different physicians provided care and outcome measurement.

Our results apply for the patients who underwent hip operation between 1988 and 2002. The noncardiac surgery guidelines have been revised between 1988 and 2002, and we did not perform a stratified analysis by index year. The next step in our study will be to extend our data collection to 2008 and look at time trends.

Conclusion

In this population‐based historical cohort study, patients undergoing hip operation had a 3.9% cumulative probability of ischemic stroke during the first postoperative year. History of stroke and type of hip procedure (ie, hip fracture repair) were the strongest predictors of this complication. Because history of stroke is such a strong predictor of postoperative stroke, the perioperative management of these patients should probably be tailored, with closely observed blood pressure management and antihypertensive medication adjustment, to avoid compromising cerebral perfusion. Also, to avoid postoperative hypercoagulability that increases the risk of stroke, these patients may need to begin receiving antiplatelets as soon as is surgically acceptable.1315

References
  1. Melton LJ.History of the Rochester Epidemiology Project.Mayo Clin Proc.1996;71(3):266274.
  2. POISE Study Group;Devereaux PJ,Yang H,Yusuf S,Guyatt G,Leslie K,Villar JC, et al.Effects of extended‐release metoprolol succinate in patients undergoing non‐cardiac surgery (POISE trial): a randomised controlled trial.Lancet.2008;371(9627):18391847.
  3. Thom T,Haase N,Rosamond W,Howard VJ,Rumsfeld J,Manolio T, et al;American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics—2006 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee.Circulation.2006;113(6):e85e151.
  4. Shojania KG, Duncan BW, McDonald KM, Wachter RM, Markowitz AJ, eds.Making health care safer: a critical analysis of patient safety practices. Evidence Report/Technology Assessment No.43.AHRQ publication no. 01‐E058.Rockville, MD:Agency for Healthcare Research and Quality (AHRQ),U.S. Department of Health and Human Services;2001.668 p.
  5. McDonald CJ,Weiner M,Hui SL.Deaths due to medical errors are exaggerated in Institute of Medicine report.JAMA.2000;284(1):9395.
  6. Therneau TM,Grambsch PM.Modeling survival data: extending the Cox model.New York:Springer;2000.
  7. Gooley TA,Leisenring W,Crowley J,Storer BE.Estimation of failure probabilities in the presence of competing risks: new representations of old estimators.Stat Med.1999;18(6):695706.
  8. Larsen SF,Zaric D,Boysen G.Postoperative cerebrovascular accidents in general surgery.Acta Anaesthesiol Scand.1988;32(8):698701.
  9. Landercasper J,Merz BJ,Cogbill TH,Strutt PJ,Cochrane RH,Olson RA, et al.Perioperative stroke risk in 173 consecutive patients with a past history of stroke.Arch Surg.1990;125(8):986989.
  10. Lawrence VA,Hilsenbeck SG,Noveck H,Poses RM,Carson JL.Medical complications and outcomes after hip fracture repair.Arch Intern Med.2002;162(18):2053–2057.
  11. Brown RD,Whisnant JP,Sicks JD,O'Fallon WM,Wiebers DO.Stroke incidence, prevalence, and survival: secular trends in Rochester, Minnesota, through 1989.Stroke.1996;27(3):373380.
  12. CAST (Chinese Acute Stroke Trial) Collaborative Group.Randomised placebo‐controlled trial of early aspirin use in 20,000 patients with acute ischaemic stroke.Lancet.1997;349(9066):16411649.
  13. Dixon B,Santamaria J,Campbell D.Coagulation activation and organ dysfunction following cardiac surgery.Chest.2005;128(1):229236.
  14. Páramo JA,Rifón J,Llorens R,Casares J,Paloma MJ,Rocha E.Intra‐ and postoperative fibrinolysis in patients undergoing cardiopulmonary bypass surgery.Haemostasis.1991;21(1):5864.
  15. Selim M.Perioperative stroke.N Engl J Med.2007;356(7):706713.
Article PDF
Issue
Journal of Hospital Medicine - 4(5)
Page Number
298-303
Legacy Keywords
arthroplasty, hip, hip fracture, ischemia, stroke
Sections
Article PDF
Article PDF

In the United States, hip operations (internal fixation of fracture or total hip arthroplasty [THA]) are the most common noncardiac major surgical procedures performed in patients age 65 years and older (45.2 procedures per 100,000 persons per year).1 This number of procedures is projected to increase substantially in the coming decades.

Little is known about the clinical predictors of postoperative stroke in patients undergoing hip surgical procedures. Further, recent results of the Perioperative Ischemic Evaluation (POISE) trial have shown that measures taken to reduce cardiac complications postoperatively may adversely affect the risk of stroke.2 The POISE study showed decreases in myocardial infarction and coronary revascularization but accompanying increases in stroke and death with use of ‐blockers in patients undergoing noncardiac surgery.

Prevention of adverse events is one of the top priorities of the U.S. health care system today.35 Risk stratification and therapeutic optimization of underlying chronic diseases may be important in decreasing perioperative risk and improving postoperative outcomes.

Our objective was to determine the rate of postoperative ischemic stroke in all residents of Olmsted County, MN, who underwent hip operation between 1988 and 2002 and to identify clinical predictors of postoperative stroke.

Subjects and Methods

Olmsted County is one of the few places in the world where comprehensive population‐based studies of disease etiology and outcomes are feasible. This feasibility is due to the Rochester Epidemiology Project, a medical records linkage system that provides access to the records of all medical care in the community.1 All medical diagnoses made for a resident of Olmsted County are entered on a master sheet in the patient's medical record, which is then entered into a central computer index.

Hip operations were identified using the Surgical Information Recording System data warehouse, where detailed data are stored as International Classification of Diseases, 9th edition (ICD‐9) codes for all surgical procedures performed from January 1, 1988, forward. A total of 2028 THAs and hip fracture repairs (ICD‐9 codes 81.51, 81.52, 81.53, 79.15, and 79.25) performed between 1988 and 2002 in Olmsted County were identified. Of the hip procedures, 142 were excluded (Figure 1). The final analysis cohort contained 1886 hip operations1195 hip fracture repairs and 691 THAs.

Figure 1
Flowchart showing subjects included in cohort of residents of Olmsted County, MN, and methods of identification and types of strokes identified. Fx, fracture.

The population‐based cohort was assembled and the data were abstracted from complete inpatient and outpatient records from admission for surgical treatment up to 1 year after surgery. Only those patients who had given prior authorization for research were included in the study cohort. The Mayo Clinic Institutional Review Board approved the study.

Case Ascertainment

We used several screening procedures to completely enumerate all postoperative strokes in our study population (Figure 1). The Mayo Clinic administrative database was used to identify all cases with relevant cerebrovascular disease (ICD‐9 codes 430.0‐437.9, 368.12, 781.4, and 784.3) within 1 year after hip operation. The Rochester Stroke Registry identified incident cases of ischemic stroke in Olmsted County from 1988 through 1994. The clinic's administrative database was also used to identify brain imaging studies (brain computed tomography, magnetic resonance imaging, or carotid ultrasonography) between the day of the procedure and 1 year postoperatively. A neurologist reviewed each image and the associated medical record identified during the screening process in detail for the constellation of signs and symptoms consistent with the diagnosis of stroke. Death certificates and autopsy reports were also reviewed to identify persons with the diagnosis of stroke. The outcome (stroke) was masked to the nurse abstractor who reviewed charts for predictors of postoperative stroke (eg, atrial fibrillation, coronary artery disease [CAD], history of stroke, medication use). The exposed or unexposed status of the patients to the predictors of stroke was masked to the physician (A.S.P.) who screened electronic medical records for the outcome measure (stroke).

Cerebral infarction or ischemic stroke was defined as the acute onset of a neurologic deficit that persisted for longer than 24 hours and corresponded to an arterial vascular territory of the cerebral hemispheres, brainstem, or cerebellum, with or without computed tomographic or magnetic resonance imaging documentation. Transient ischemic attack was defined as an episode of focal neurologic symptoms with abrupt onset and rapid resolution, lasting less than 24 hours, and due to altered circulation to a limited region of the brain.

Only patients with ischemic strokes clinically documented by a neurologist were included in the analysis.

Primary Outcomes

Outcomes were the cumulative probability of ischemic stroke and predictors of stroke in the first 12 months after surgical treatment of the hip.

Statistical Analysis

Continuous variables are presented as mean (standard deviation [SD]); categorical variables are presented as number and percentage. Two‐sample t tests or Wilcoxon rank sum tests were used to test for differences between THAs and hip fracture repairs in demographic characteristics, past medical history, and baseline clinical data composed of continuous variables; 2 or Fisher exact tests were used for categorical variables. No patient was lost to follow‐up during the 1 year after the initial surgery. However, the data of patients who died or had a second hip procedure within that period were censored.

The rate of ischemic stroke within 1 year after the incident hip procedure was calculated using the Kaplan‐Meier method. Second hip procedures within that period were counted as additional cases. Rates were calculated for the overall group, as well as for the univariate risk factors of operative procedure type, age, sex, past medical history of stroke, hypertension, atrial fibrillation, CAD, chronic obstructive pulmonary disease (COPD), diabetes mellitus, and chronic renal insufficiency. Use of ‐blockers, hydroxymethylglutaryl‐coenzyme A (HMG‐CoA) reductase inhibitors, or aspirin at hospital admission was also considered. Cox proportional hazards regression models were used to evaluate the risk of ischemic stroke for each of these univariate risk factors. Multivariable Cox proportional hazards models were constructed with adjustments for operative procedure type, age, sex, and comorbid conditions such as atrial fibrillation and hypertension. These covariates were added in a stepwise selection to identify factors significantly associated with the outcome. To account for patients who had a second hip procedure within 1 year of their first operation, we calculated all Cox proportional hazards regression results using the robust sandwich estimate of the covariance matrix. The proportional hazards assumption for all Cox models was evaluated with the methods proposed by Therneau and Grambsch;6 no violations of this assumption were identified. The rate of postoperative stroke after adjusting for the competing risk of death was calculated using the approach of Gooley et al.7 All statistical tests were 2‐sided, and a P value was considered significant if it was less than 0.05. Statistical analyses were performed using statistical software (SAS version 9.1.3; SAS Institute, Inc., Cary, NC).

Results

Among the patients with the 1886 hip procedures, 67 ischemic strokes were identified within 1 year after the index surgical procedure10 (1.4%) among the 691 THAs and 57 (4.8%) among the 1195 hip fracture repairs. Baseline characteristics are summarized in Table 1. Compared with the THA group, patients in the hip fracture repair group were more likely to be older and female. Additionally, such comorbid conditions as a history of stroke, diabetes mellitus, congestive heart failure, atrial fibrillation, or dementia were more prevalent in the hip fracture repair group.

Baseline Characteristics of Study Population
CharacteristicsSurgical ProcedureTotal (n = 1,886)P Value*
THA (n = 691)Fracture Repair (n = 1,195)
  • NOTE: Continuous variables are represented as mean (SD); categorical variables are represented as number and percentage.

  • Abbreviations: ASA, American Society of Anesthesiologists; BMI, body mass index; CHF, congestive heart failure; THA, total hip arthroplasty.

  • P values are from Kruskal‐Wallis tests for continuous variables and from either 2 or Fisher exact tests for categorical variables.

  • Fifteen cases had no BMI data.

  • One case had no ASA risk classification data.

Age, years74.9 (6.59)84.2 (7.49)80.8 (8.46)<0.001
Sex, male258 (37.3)234 (19.6)492 (26.1)<0.001
Race, White690 (100)1,187 (99.3)1,877 (99.5)0.17
BMI27.7 (5.36)23.3 (4.93)24.9 (5.52)<0.001
History    
Hypertension424 (61.4)695 (58.2)1,119 (59.3)0.17
Diabetes57 (8.2)141 (11.8)198 (10.5)0.02
Stroke50 (7.2)334 (27.9)384 (20.4)<0.001
CHF100 (14.5)321 (26.9)421 (22.3)<0.001
Atrial fibrillation72 (10.4)241 (20.2)313 (16.6)<0.001
Dementia16 (2.3)407 (34.1)423 (22.4)<0.001
ASA risk classification   <0.001
1 or 2343 (49.6)172 (14.4)515 (27.3) 
3, 4, or 5348 (50.4)1,022 (85.6)1,370 (72.7) 
Medication on admission    
Aspirin168 (24.3)369 (30.9)537 (28.5)0.002
‐Blocker134 (19.4)184 (15.4)318 (16.9)0.03
Insulin12 (1.7)48 (4)60 (3.2)0.007
Length of stay, days7.3 (3.9)10.0 (7.61)9.0 (6.63)<0.001

Univariate analyses assessing the rate and risk of postoperative ischemic stroke are shown in Table 2. The rate of stroke was significantly greater among hip fracture repairs than THAs 30 days postoperatively and 1 year postoperatively (1.5% vs. 0.6% and 5.5% vs. 1.5%, respectively; P < 0.001) (Figure 2). In our study we found an annual incidence rate of ischemic stroke of 4093 per 100,000 person‐years (95% confidence interval [CI], 3172‐5198 per 100,000 person‐years). Accounting for death as a competing risk for stroke had little impact on the rate of stroke overall or within the 2 surgical groups (results not shown). Univariate Cox proportional hazards models showed that neither sex nor history of hypertension, diabetes mellitus, COPD, chronic renal insufficiency, or CAD or use of HMG‐CoA reductase inhibitors or ‐blockers were significant predictors of ischemic stroke. However, other clinical risk factors, such as a history of atrial fibrillation (hazard ratio [HR], 2.16; P = 0.005), hip fracture repair vs. THA (HR, 3.80; P < 0.001), increased age (HR, 2.20; P = 0.017), aspirin use (HR, 1.8; P = 0.014), and history of previous stroke (HR, 4.18; P < 0.001), were significantly associated with an increased risk of stroke (Table 2).

Figure 2
Kaplan‐Meier curves of cumulative probability of ischemic stroke after hip fracture repair vs. total hip arthroplasty (THA). Error bars indicate 95% confidence intervals; P < 0.001; hazard ratio = 3.8.
Univariate Estimates and Predictors of Postoperative Ischemic Stroke After Hip Operation
VariableNumber of PatientsNumber of EventsRate (%)Hazard RatioP Value
30‐Day (95% CI)1‐Year (95% CI)
  • Abbreviations: CAD, coronary artery disease; CI, confidence interval; COPD, chronic obstructive pulmonary disease; HMG‐CoA, hydroxymethyglutaryl coenzyme A; THA, total hip arthroplasty.

Overall1886671.2 (0.7‐1.7)3.9 (3‐4.8)  
Type of operative procedure      
THA691100.6 (0.0‐1.1)1.5 (0.6‐2.4)  
Hip fracture repair1195571.5 (0.8‐2.2)5.5 (4.1‐6.9)3.80 (1.94‐7.44)<0.001
Age at operation, years      
<75528111.0 (0.1‐1.8)2.1 (0.9‐3.3)  
751358561.3 (0.7‐1.9)4.7 (3.5‐5.8)2.20 (1.15‐4.21)0.02
Sex      
Female1394541.3 (0.7‐1.9)4.2 (3.1‐5.3)  
Male492130.8 (0.0‐1.7)2.9 (1.3‐4.4)0.69 (0.38‐1.27)0.24
History of stroke      
No1502340.7 (0.3‐1.2)2.4 (1.6‐3.3)  
Yes384333.0 (1.2‐4.7)9.9 (6.6‐13)4.18 (2.59‐6.74)<0.001
History of hypertension      
No767230.8 (0.2‐1.4)3.4 (2.0‐4.7)  
Yes1119441.5 (0.7‐2.2)4.2 (3.0‐5.5)1.29 (0.78‐2.14)0.32
History of atrial fibrillation      
No1573481.0 (0.5‐1.5)3.3 (2.4‐4.2)  
Yes313191.9 (0.4‐3.5)7.0 (3.9‐9.9)2.16 (1.27‐3.67)0.005
History of CAD      
No1224401.1 (0.5‐1.6)3.5 (2.4‐4.5)  
Yes662271.4 (0.5‐2.3)4.7 (2.9‐6.4)1.34 (0.82‐2.19)0.24
History of COPD      
No1606621.4 (0.8‐2.0)4.2 (3.1‐5.2)  
Yes28050 (0.0‐0.0)2.2 (0.3‐4.1)0.49 (0.20‐1.22)0.13
History of diabetes mellitus      
No1688561.1 (0.6‐1.7)3.6 (2.7‐4.5)  
Yes198111.5 (0‐3.3)6.3 (2.6‐9.9)1.75 (0.92‐3.34)0.09
History of renal insufficiency      
No1718581.0 (0.5‐1.5)3.7 (2.7‐4.6)  
Yes16893.0 (0.4‐5.5)5.8 (2‐9.5)1.77 (0.88‐3.57)0.11
Aspirin use      
No1349390.7 (0.2‐1.1)3.2 (2.2‐4.2)  
Yes537282.5 (0.1‐3.8)5.7 (3.6‐7.7)1.86 (1.13‐3.06)0.01
‐Blocker use      
No1568521.1 (0.6‐1.6)3.6 (2.7‐4.6)  
Yes318151.6 (0.2‐3.0)5.1 (2.6‐7.6)1.42 (0.81‐2.52)0.22
HMG‐CoA reductase inhibitor use      
No1736631.2 (0.7‐1.7)4.0 (3.0‐4.9)  
Yes (statin/other lipid lowering drugs)14841.4 (0‐3.2)2.8 (0.1‐5.4)0.70 (0.26‐1.94)0.50

Because age was associated with the type of surgical procedure (87% of hip fracture repair patients were 75 years or older compared with 45% of THA patients), the effect of hip fracture repair on ischemic stroke was adjusted for age. For similar reasons, sex was also examined as an adjusting factor. Adjustment for age and sex resulted in only a slight attenuation of the HR for hip fracture repair vs. THA, from 3.8 to 3.4. A further analysis also adjusted for history of hypertension and history of atrial fibrillation, both comorbidities commonly associated with ischemic stroke. After adjustment for age, sex, history of hypertension, and history of atrial fibrillation, the risk of ischemic stroke was still significantly greater in the hip fracture repair group than in the THA group (HR, 2.8; 95% CI, 1.4‐5.7; P = 0.005).

To determine the most important predictors of postoperative ischemic stroke, multivariable analysis was conducted with stepwise selection. Potential risk factors included the following: operative procedure type (hip fracture repair vs. THA), age, sex, and history of stroke, hypertension, atrial fibrillation, CAD, COPD, diabetes mellitus, and chronic renal insufficiency, as well as use of ‐blockers, HMG‐CoA reductase inhibitors, and aspirin on hospital admission. Among all these factors, history of stroke (HR, 3.27; P < 0.001) and hip fracture repair vs. THA (HR, 2.74; P = 0.004) were confirmed to be significant predictors of postoperative ischemic stroke; the other factors did not significantly affect the model (Figure 2).

Comment

Our findings contrast those of previous studies that focused on perioperative ischemic stroke rates for specific surgical procedures,2, 8, 9 but do seem concordant with published results for early event rates of cerebrovascular accident or transient ischemic attack (1%) following hip fracture.10 The data from our study suggest that perioperative stroke cumulative probability is relatively high for hip procedures at both 30 days (1.2%) and 1 year (3.9%) after the index surgical procedure compared with general procedures. Subjects with a history of stroke who were undergoing hip operation had a postoperative stroke risk of 3.0% at 30 days and 9.9% at 1 year.

The incidence of stroke was greater in the hip fracture repair group (1.5% at 30 days and 5.5% at 1 year) than in the elective THA group (0.6% at 30 days and 1.5% at 1 year). The increased 1‐year mortality for patients undergoing hip surgery compared with the general population is in part due to cerebrovascular disease,10 and, therefore, the 1‐year stroke incidence is important.

After adjustment for age, sex, and comorbidities (hypertension and atrial fibrillation), the risk of postoperative ischemic stroke was 2.71 times greater in the hip fracture repair group than in the THA group (P = 0.006). These data are important in counseling and caring for patients undergoing different types of hip procedures.

From 1985 through 1989, for the age group (75‐84 years old) that best fits the demographics of our cohort, both men and women had limited variation over time in annual incidence rates of stroke (2149‐1074 strokes per 100,000 population per year) for Olmsted County, MN.11 In our study we found an annual incidence rate of ischemic stroke of 4,093 per 100,000 person‐years (95% CI, 3172‐5198 per 100,000 person‐years). The lower limit of the 95% CI is higher than the rates reported for Olmsted County, suggesting that having hip surgery increases the 1‐year risk of ischemic stroke.

Previous studies have shown that the risk factor most consistently correlated to perioperative ischemic stroke is a history of stroke.9 In our study, history of stroke and type of hip fracture surgery were confirmed to be the strongest predictors of postoperative stroke. History of hypertension, atrial fibrillation, CAD, COPD, diabetes, or chronic renal insufficiency was not correlated to perioperative ischemic stroke.

Nonmodifiable risk factors, such as advanced age, serve as markers of stroke risk and help identify high‐risk populations that may require aggressive intervention. After age adjustment of hip fracture repair, age was no longer significantly associated with postoperative stroke.

Cerebrovascular disease appears to be a marker for CAD, and, therefore, patients with a history of stroke usually have a Revised Cardiac Risk Index that may suggest the use of ‐blockers. According to the recent results of the POISE trial, use of ‐blockers could lead to increased stroke incidence.2 Our results showed no significant correlation between stroke risk and ‐blocker use, but our study period was from 1988 to 2002, when titration of ‐blocker dose to heart rates of 55 to 60 beats per minute was not common practice.

Several studies have confirmed the value of aspirin in decreasing the rate of vascular outcomes after diagnosis of transient ischemic attack or stroke.12 In our study, aspirin use on hospital admission was found in the univariate analysis to be associated with an increased risk of stroke, but this finding was not confirmed after adjustments for age, sex, and comorbid conditions. Aspirin use on admission was not a significant predictor of postoperative stroke, most likely because aspirin use can be considered a marker of increased cardiovascular risk and we adjusted for these comorbid conditions.

The limitations of this study are inherent in its retrospective design. First, we identified all incident cases of stroke after hip operation by reviewing medical records and then abstracting data from those records. We may have missed some mild strokes if they were misclassified as peripheral vestibular neuropathy, migraine, or even seizure. Less likely is that we missed strokes within the first 30 days after the procedure because that is the period in which patients with hip operation are either hospitalized or sent for rehabilitation in skilled nursing facilities. It is known that institutionalization leads to better surveillance and more complete ascertainment of any medical event.

The event rate of postoperative stroke at 30 days after hip operation was low. Therefore, we did not have the statistical power to comment meaningfully on predictors of stroke at 30 days after the hip procedure. Any nonrespondent or volunteer bias was addressed by using data from the Rochester Epidemiology Project, which allowed us to identify all Olmsted County residents who underwent hip operation between 1988 and 2002. The diagnostic suspicion bias was also accounted for in our study design because different physicians provided care and outcome measurement.

Our results apply for the patients who underwent hip operation between 1988 and 2002. The noncardiac surgery guidelines have been revised between 1988 and 2002, and we did not perform a stratified analysis by index year. The next step in our study will be to extend our data collection to 2008 and look at time trends.

Conclusion

In this population‐based historical cohort study, patients undergoing hip operation had a 3.9% cumulative probability of ischemic stroke during the first postoperative year. History of stroke and type of hip procedure (ie, hip fracture repair) were the strongest predictors of this complication. Because history of stroke is such a strong predictor of postoperative stroke, the perioperative management of these patients should probably be tailored, with closely observed blood pressure management and antihypertensive medication adjustment, to avoid compromising cerebral perfusion. Also, to avoid postoperative hypercoagulability that increases the risk of stroke, these patients may need to begin receiving antiplatelets as soon as is surgically acceptable.1315

In the United States, hip operations (internal fixation of fracture or total hip arthroplasty [THA]) are the most common noncardiac major surgical procedures performed in patients age 65 years and older (45.2 procedures per 100,000 persons per year).1 This number of procedures is projected to increase substantially in the coming decades.

Little is known about the clinical predictors of postoperative stroke in patients undergoing hip surgical procedures. Further, recent results of the Perioperative Ischemic Evaluation (POISE) trial have shown that measures taken to reduce cardiac complications postoperatively may adversely affect the risk of stroke.2 The POISE study showed decreases in myocardial infarction and coronary revascularization but accompanying increases in stroke and death with use of ‐blockers in patients undergoing noncardiac surgery.

Prevention of adverse events is one of the top priorities of the U.S. health care system today.35 Risk stratification and therapeutic optimization of underlying chronic diseases may be important in decreasing perioperative risk and improving postoperative outcomes.

Our objective was to determine the rate of postoperative ischemic stroke in all residents of Olmsted County, MN, who underwent hip operation between 1988 and 2002 and to identify clinical predictors of postoperative stroke.

Subjects and Methods

Olmsted County is one of the few places in the world where comprehensive population‐based studies of disease etiology and outcomes are feasible. This feasibility is due to the Rochester Epidemiology Project, a medical records linkage system that provides access to the records of all medical care in the community.1 All medical diagnoses made for a resident of Olmsted County are entered on a master sheet in the patient's medical record, which is then entered into a central computer index.

Hip operations were identified using the Surgical Information Recording System data warehouse, where detailed data are stored as International Classification of Diseases, 9th edition (ICD‐9) codes for all surgical procedures performed from January 1, 1988, forward. A total of 2028 THAs and hip fracture repairs (ICD‐9 codes 81.51, 81.52, 81.53, 79.15, and 79.25) performed between 1988 and 2002 in Olmsted County were identified. Of the hip procedures, 142 were excluded (Figure 1). The final analysis cohort contained 1886 hip operations1195 hip fracture repairs and 691 THAs.

Figure 1
Flowchart showing subjects included in cohort of residents of Olmsted County, MN, and methods of identification and types of strokes identified. Fx, fracture.

The population‐based cohort was assembled and the data were abstracted from complete inpatient and outpatient records from admission for surgical treatment up to 1 year after surgery. Only those patients who had given prior authorization for research were included in the study cohort. The Mayo Clinic Institutional Review Board approved the study.

Case Ascertainment

We used several screening procedures to completely enumerate all postoperative strokes in our study population (Figure 1). The Mayo Clinic administrative database was used to identify all cases with relevant cerebrovascular disease (ICD‐9 codes 430.0‐437.9, 368.12, 781.4, and 784.3) within 1 year after hip operation. The Rochester Stroke Registry identified incident cases of ischemic stroke in Olmsted County from 1988 through 1994. The clinic's administrative database was also used to identify brain imaging studies (brain computed tomography, magnetic resonance imaging, or carotid ultrasonography) between the day of the procedure and 1 year postoperatively. A neurologist reviewed each image and the associated medical record identified during the screening process in detail for the constellation of signs and symptoms consistent with the diagnosis of stroke. Death certificates and autopsy reports were also reviewed to identify persons with the diagnosis of stroke. The outcome (stroke) was masked to the nurse abstractor who reviewed charts for predictors of postoperative stroke (eg, atrial fibrillation, coronary artery disease [CAD], history of stroke, medication use). The exposed or unexposed status of the patients to the predictors of stroke was masked to the physician (A.S.P.) who screened electronic medical records for the outcome measure (stroke).

Cerebral infarction or ischemic stroke was defined as the acute onset of a neurologic deficit that persisted for longer than 24 hours and corresponded to an arterial vascular territory of the cerebral hemispheres, brainstem, or cerebellum, with or without computed tomographic or magnetic resonance imaging documentation. Transient ischemic attack was defined as an episode of focal neurologic symptoms with abrupt onset and rapid resolution, lasting less than 24 hours, and due to altered circulation to a limited region of the brain.

Only patients with ischemic strokes clinically documented by a neurologist were included in the analysis.

Primary Outcomes

Outcomes were the cumulative probability of ischemic stroke and predictors of stroke in the first 12 months after surgical treatment of the hip.

Statistical Analysis

Continuous variables are presented as mean (standard deviation [SD]); categorical variables are presented as number and percentage. Two‐sample t tests or Wilcoxon rank sum tests were used to test for differences between THAs and hip fracture repairs in demographic characteristics, past medical history, and baseline clinical data composed of continuous variables; 2 or Fisher exact tests were used for categorical variables. No patient was lost to follow‐up during the 1 year after the initial surgery. However, the data of patients who died or had a second hip procedure within that period were censored.

The rate of ischemic stroke within 1 year after the incident hip procedure was calculated using the Kaplan‐Meier method. Second hip procedures within that period were counted as additional cases. Rates were calculated for the overall group, as well as for the univariate risk factors of operative procedure type, age, sex, past medical history of stroke, hypertension, atrial fibrillation, CAD, chronic obstructive pulmonary disease (COPD), diabetes mellitus, and chronic renal insufficiency. Use of ‐blockers, hydroxymethylglutaryl‐coenzyme A (HMG‐CoA) reductase inhibitors, or aspirin at hospital admission was also considered. Cox proportional hazards regression models were used to evaluate the risk of ischemic stroke for each of these univariate risk factors. Multivariable Cox proportional hazards models were constructed with adjustments for operative procedure type, age, sex, and comorbid conditions such as atrial fibrillation and hypertension. These covariates were added in a stepwise selection to identify factors significantly associated with the outcome. To account for patients who had a second hip procedure within 1 year of their first operation, we calculated all Cox proportional hazards regression results using the robust sandwich estimate of the covariance matrix. The proportional hazards assumption for all Cox models was evaluated with the methods proposed by Therneau and Grambsch;6 no violations of this assumption were identified. The rate of postoperative stroke after adjusting for the competing risk of death was calculated using the approach of Gooley et al.7 All statistical tests were 2‐sided, and a P value was considered significant if it was less than 0.05. Statistical analyses were performed using statistical software (SAS version 9.1.3; SAS Institute, Inc., Cary, NC).

Results

Among the patients with the 1886 hip procedures, 67 ischemic strokes were identified within 1 year after the index surgical procedure10 (1.4%) among the 691 THAs and 57 (4.8%) among the 1195 hip fracture repairs. Baseline characteristics are summarized in Table 1. Compared with the THA group, patients in the hip fracture repair group were more likely to be older and female. Additionally, such comorbid conditions as a history of stroke, diabetes mellitus, congestive heart failure, atrial fibrillation, or dementia were more prevalent in the hip fracture repair group.

Baseline Characteristics of Study Population
CharacteristicsSurgical ProcedureTotal (n = 1,886)P Value*
THA (n = 691)Fracture Repair (n = 1,195)
  • NOTE: Continuous variables are represented as mean (SD); categorical variables are represented as number and percentage.

  • Abbreviations: ASA, American Society of Anesthesiologists; BMI, body mass index; CHF, congestive heart failure; THA, total hip arthroplasty.

  • P values are from Kruskal‐Wallis tests for continuous variables and from either 2 or Fisher exact tests for categorical variables.

  • Fifteen cases had no BMI data.

  • One case had no ASA risk classification data.

Age, years74.9 (6.59)84.2 (7.49)80.8 (8.46)<0.001
Sex, male258 (37.3)234 (19.6)492 (26.1)<0.001
Race, White690 (100)1,187 (99.3)1,877 (99.5)0.17
BMI27.7 (5.36)23.3 (4.93)24.9 (5.52)<0.001
History    
Hypertension424 (61.4)695 (58.2)1,119 (59.3)0.17
Diabetes57 (8.2)141 (11.8)198 (10.5)0.02
Stroke50 (7.2)334 (27.9)384 (20.4)<0.001
CHF100 (14.5)321 (26.9)421 (22.3)<0.001
Atrial fibrillation72 (10.4)241 (20.2)313 (16.6)<0.001
Dementia16 (2.3)407 (34.1)423 (22.4)<0.001
ASA risk classification   <0.001
1 or 2343 (49.6)172 (14.4)515 (27.3) 
3, 4, or 5348 (50.4)1,022 (85.6)1,370 (72.7) 
Medication on admission    
Aspirin168 (24.3)369 (30.9)537 (28.5)0.002
‐Blocker134 (19.4)184 (15.4)318 (16.9)0.03
Insulin12 (1.7)48 (4)60 (3.2)0.007
Length of stay, days7.3 (3.9)10.0 (7.61)9.0 (6.63)<0.001

Univariate analyses assessing the rate and risk of postoperative ischemic stroke are shown in Table 2. The rate of stroke was significantly greater among hip fracture repairs than THAs 30 days postoperatively and 1 year postoperatively (1.5% vs. 0.6% and 5.5% vs. 1.5%, respectively; P < 0.001) (Figure 2). In our study we found an annual incidence rate of ischemic stroke of 4093 per 100,000 person‐years (95% confidence interval [CI], 3172‐5198 per 100,000 person‐years). Accounting for death as a competing risk for stroke had little impact on the rate of stroke overall or within the 2 surgical groups (results not shown). Univariate Cox proportional hazards models showed that neither sex nor history of hypertension, diabetes mellitus, COPD, chronic renal insufficiency, or CAD or use of HMG‐CoA reductase inhibitors or ‐blockers were significant predictors of ischemic stroke. However, other clinical risk factors, such as a history of atrial fibrillation (hazard ratio [HR], 2.16; P = 0.005), hip fracture repair vs. THA (HR, 3.80; P < 0.001), increased age (HR, 2.20; P = 0.017), aspirin use (HR, 1.8; P = 0.014), and history of previous stroke (HR, 4.18; P < 0.001), were significantly associated with an increased risk of stroke (Table 2).

Figure 2
Kaplan‐Meier curves of cumulative probability of ischemic stroke after hip fracture repair vs. total hip arthroplasty (THA). Error bars indicate 95% confidence intervals; P < 0.001; hazard ratio = 3.8.
Univariate Estimates and Predictors of Postoperative Ischemic Stroke After Hip Operation
VariableNumber of PatientsNumber of EventsRate (%)Hazard RatioP Value
30‐Day (95% CI)1‐Year (95% CI)
  • Abbreviations: CAD, coronary artery disease; CI, confidence interval; COPD, chronic obstructive pulmonary disease; HMG‐CoA, hydroxymethyglutaryl coenzyme A; THA, total hip arthroplasty.

Overall1886671.2 (0.7‐1.7)3.9 (3‐4.8)  
Type of operative procedure      
THA691100.6 (0.0‐1.1)1.5 (0.6‐2.4)  
Hip fracture repair1195571.5 (0.8‐2.2)5.5 (4.1‐6.9)3.80 (1.94‐7.44)<0.001
Age at operation, years      
<75528111.0 (0.1‐1.8)2.1 (0.9‐3.3)  
751358561.3 (0.7‐1.9)4.7 (3.5‐5.8)2.20 (1.15‐4.21)0.02
Sex      
Female1394541.3 (0.7‐1.9)4.2 (3.1‐5.3)  
Male492130.8 (0.0‐1.7)2.9 (1.3‐4.4)0.69 (0.38‐1.27)0.24
History of stroke      
No1502340.7 (0.3‐1.2)2.4 (1.6‐3.3)  
Yes384333.0 (1.2‐4.7)9.9 (6.6‐13)4.18 (2.59‐6.74)<0.001
History of hypertension      
No767230.8 (0.2‐1.4)3.4 (2.0‐4.7)  
Yes1119441.5 (0.7‐2.2)4.2 (3.0‐5.5)1.29 (0.78‐2.14)0.32
History of atrial fibrillation      
No1573481.0 (0.5‐1.5)3.3 (2.4‐4.2)  
Yes313191.9 (0.4‐3.5)7.0 (3.9‐9.9)2.16 (1.27‐3.67)0.005
History of CAD      
No1224401.1 (0.5‐1.6)3.5 (2.4‐4.5)  
Yes662271.4 (0.5‐2.3)4.7 (2.9‐6.4)1.34 (0.82‐2.19)0.24
History of COPD      
No1606621.4 (0.8‐2.0)4.2 (3.1‐5.2)  
Yes28050 (0.0‐0.0)2.2 (0.3‐4.1)0.49 (0.20‐1.22)0.13
History of diabetes mellitus      
No1688561.1 (0.6‐1.7)3.6 (2.7‐4.5)  
Yes198111.5 (0‐3.3)6.3 (2.6‐9.9)1.75 (0.92‐3.34)0.09
History of renal insufficiency      
No1718581.0 (0.5‐1.5)3.7 (2.7‐4.6)  
Yes16893.0 (0.4‐5.5)5.8 (2‐9.5)1.77 (0.88‐3.57)0.11
Aspirin use      
No1349390.7 (0.2‐1.1)3.2 (2.2‐4.2)  
Yes537282.5 (0.1‐3.8)5.7 (3.6‐7.7)1.86 (1.13‐3.06)0.01
‐Blocker use      
No1568521.1 (0.6‐1.6)3.6 (2.7‐4.6)  
Yes318151.6 (0.2‐3.0)5.1 (2.6‐7.6)1.42 (0.81‐2.52)0.22
HMG‐CoA reductase inhibitor use      
No1736631.2 (0.7‐1.7)4.0 (3.0‐4.9)  
Yes (statin/other lipid lowering drugs)14841.4 (0‐3.2)2.8 (0.1‐5.4)0.70 (0.26‐1.94)0.50

Because age was associated with the type of surgical procedure (87% of hip fracture repair patients were 75 years or older compared with 45% of THA patients), the effect of hip fracture repair on ischemic stroke was adjusted for age. For similar reasons, sex was also examined as an adjusting factor. Adjustment for age and sex resulted in only a slight attenuation of the HR for hip fracture repair vs. THA, from 3.8 to 3.4. A further analysis also adjusted for history of hypertension and history of atrial fibrillation, both comorbidities commonly associated with ischemic stroke. After adjustment for age, sex, history of hypertension, and history of atrial fibrillation, the risk of ischemic stroke was still significantly greater in the hip fracture repair group than in the THA group (HR, 2.8; 95% CI, 1.4‐5.7; P = 0.005).

To determine the most important predictors of postoperative ischemic stroke, multivariable analysis was conducted with stepwise selection. Potential risk factors included the following: operative procedure type (hip fracture repair vs. THA), age, sex, and history of stroke, hypertension, atrial fibrillation, CAD, COPD, diabetes mellitus, and chronic renal insufficiency, as well as use of ‐blockers, HMG‐CoA reductase inhibitors, and aspirin on hospital admission. Among all these factors, history of stroke (HR, 3.27; P < 0.001) and hip fracture repair vs. THA (HR, 2.74; P = 0.004) were confirmed to be significant predictors of postoperative ischemic stroke; the other factors did not significantly affect the model (Figure 2).

Comment

Our findings contrast those of previous studies that focused on perioperative ischemic stroke rates for specific surgical procedures,2, 8, 9 but do seem concordant with published results for early event rates of cerebrovascular accident or transient ischemic attack (1%) following hip fracture.10 The data from our study suggest that perioperative stroke cumulative probability is relatively high for hip procedures at both 30 days (1.2%) and 1 year (3.9%) after the index surgical procedure compared with general procedures. Subjects with a history of stroke who were undergoing hip operation had a postoperative stroke risk of 3.0% at 30 days and 9.9% at 1 year.

The incidence of stroke was greater in the hip fracture repair group (1.5% at 30 days and 5.5% at 1 year) than in the elective THA group (0.6% at 30 days and 1.5% at 1 year). The increased 1‐year mortality for patients undergoing hip surgery compared with the general population is in part due to cerebrovascular disease,10 and, therefore, the 1‐year stroke incidence is important.

After adjustment for age, sex, and comorbidities (hypertension and atrial fibrillation), the risk of postoperative ischemic stroke was 2.71 times greater in the hip fracture repair group than in the THA group (P = 0.006). These data are important in counseling and caring for patients undergoing different types of hip procedures.

From 1985 through 1989, for the age group (75‐84 years old) that best fits the demographics of our cohort, both men and women had limited variation over time in annual incidence rates of stroke (2149‐1074 strokes per 100,000 population per year) for Olmsted County, MN.11 In our study we found an annual incidence rate of ischemic stroke of 4,093 per 100,000 person‐years (95% CI, 3172‐5198 per 100,000 person‐years). The lower limit of the 95% CI is higher than the rates reported for Olmsted County, suggesting that having hip surgery increases the 1‐year risk of ischemic stroke.

Previous studies have shown that the risk factor most consistently correlated to perioperative ischemic stroke is a history of stroke.9 In our study, history of stroke and type of hip fracture surgery were confirmed to be the strongest predictors of postoperative stroke. History of hypertension, atrial fibrillation, CAD, COPD, diabetes, or chronic renal insufficiency was not correlated to perioperative ischemic stroke.

Nonmodifiable risk factors, such as advanced age, serve as markers of stroke risk and help identify high‐risk populations that may require aggressive intervention. After age adjustment of hip fracture repair, age was no longer significantly associated with postoperative stroke.

Cerebrovascular disease appears to be a marker for CAD, and, therefore, patients with a history of stroke usually have a Revised Cardiac Risk Index that may suggest the use of ‐blockers. According to the recent results of the POISE trial, use of ‐blockers could lead to increased stroke incidence.2 Our results showed no significant correlation between stroke risk and ‐blocker use, but our study period was from 1988 to 2002, when titration of ‐blocker dose to heart rates of 55 to 60 beats per minute was not common practice.

Several studies have confirmed the value of aspirin in decreasing the rate of vascular outcomes after diagnosis of transient ischemic attack or stroke.12 In our study, aspirin use on hospital admission was found in the univariate analysis to be associated with an increased risk of stroke, but this finding was not confirmed after adjustments for age, sex, and comorbid conditions. Aspirin use on admission was not a significant predictor of postoperative stroke, most likely because aspirin use can be considered a marker of increased cardiovascular risk and we adjusted for these comorbid conditions.

The limitations of this study are inherent in its retrospective design. First, we identified all incident cases of stroke after hip operation by reviewing medical records and then abstracting data from those records. We may have missed some mild strokes if they were misclassified as peripheral vestibular neuropathy, migraine, or even seizure. Less likely is that we missed strokes within the first 30 days after the procedure because that is the period in which patients with hip operation are either hospitalized or sent for rehabilitation in skilled nursing facilities. It is known that institutionalization leads to better surveillance and more complete ascertainment of any medical event.

The event rate of postoperative stroke at 30 days after hip operation was low. Therefore, we did not have the statistical power to comment meaningfully on predictors of stroke at 30 days after the hip procedure. Any nonrespondent or volunteer bias was addressed by using data from the Rochester Epidemiology Project, which allowed us to identify all Olmsted County residents who underwent hip operation between 1988 and 2002. The diagnostic suspicion bias was also accounted for in our study design because different physicians provided care and outcome measurement.

Our results apply for the patients who underwent hip operation between 1988 and 2002. The noncardiac surgery guidelines have been revised between 1988 and 2002, and we did not perform a stratified analysis by index year. The next step in our study will be to extend our data collection to 2008 and look at time trends.

Conclusion

In this population‐based historical cohort study, patients undergoing hip operation had a 3.9% cumulative probability of ischemic stroke during the first postoperative year. History of stroke and type of hip procedure (ie, hip fracture repair) were the strongest predictors of this complication. Because history of stroke is such a strong predictor of postoperative stroke, the perioperative management of these patients should probably be tailored, with closely observed blood pressure management and antihypertensive medication adjustment, to avoid compromising cerebral perfusion. Also, to avoid postoperative hypercoagulability that increases the risk of stroke, these patients may need to begin receiving antiplatelets as soon as is surgically acceptable.1315

References
  1. Melton LJ.History of the Rochester Epidemiology Project.Mayo Clin Proc.1996;71(3):266274.
  2. POISE Study Group;Devereaux PJ,Yang H,Yusuf S,Guyatt G,Leslie K,Villar JC, et al.Effects of extended‐release metoprolol succinate in patients undergoing non‐cardiac surgery (POISE trial): a randomised controlled trial.Lancet.2008;371(9627):18391847.
  3. Thom T,Haase N,Rosamond W,Howard VJ,Rumsfeld J,Manolio T, et al;American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics—2006 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee.Circulation.2006;113(6):e85e151.
  4. Shojania KG, Duncan BW, McDonald KM, Wachter RM, Markowitz AJ, eds.Making health care safer: a critical analysis of patient safety practices. Evidence Report/Technology Assessment No.43.AHRQ publication no. 01‐E058.Rockville, MD:Agency for Healthcare Research and Quality (AHRQ),U.S. Department of Health and Human Services;2001.668 p.
  5. McDonald CJ,Weiner M,Hui SL.Deaths due to medical errors are exaggerated in Institute of Medicine report.JAMA.2000;284(1):9395.
  6. Therneau TM,Grambsch PM.Modeling survival data: extending the Cox model.New York:Springer;2000.
  7. Gooley TA,Leisenring W,Crowley J,Storer BE.Estimation of failure probabilities in the presence of competing risks: new representations of old estimators.Stat Med.1999;18(6):695706.
  8. Larsen SF,Zaric D,Boysen G.Postoperative cerebrovascular accidents in general surgery.Acta Anaesthesiol Scand.1988;32(8):698701.
  9. Landercasper J,Merz BJ,Cogbill TH,Strutt PJ,Cochrane RH,Olson RA, et al.Perioperative stroke risk in 173 consecutive patients with a past history of stroke.Arch Surg.1990;125(8):986989.
  10. Lawrence VA,Hilsenbeck SG,Noveck H,Poses RM,Carson JL.Medical complications and outcomes after hip fracture repair.Arch Intern Med.2002;162(18):2053–2057.
  11. Brown RD,Whisnant JP,Sicks JD,O'Fallon WM,Wiebers DO.Stroke incidence, prevalence, and survival: secular trends in Rochester, Minnesota, through 1989.Stroke.1996;27(3):373380.
  12. CAST (Chinese Acute Stroke Trial) Collaborative Group.Randomised placebo‐controlled trial of early aspirin use in 20,000 patients with acute ischaemic stroke.Lancet.1997;349(9066):16411649.
  13. Dixon B,Santamaria J,Campbell D.Coagulation activation and organ dysfunction following cardiac surgery.Chest.2005;128(1):229236.
  14. Páramo JA,Rifón J,Llorens R,Casares J,Paloma MJ,Rocha E.Intra‐ and postoperative fibrinolysis in patients undergoing cardiopulmonary bypass surgery.Haemostasis.1991;21(1):5864.
  15. Selim M.Perioperative stroke.N Engl J Med.2007;356(7):706713.
References
  1. Melton LJ.History of the Rochester Epidemiology Project.Mayo Clin Proc.1996;71(3):266274.
  2. POISE Study Group;Devereaux PJ,Yang H,Yusuf S,Guyatt G,Leslie K,Villar JC, et al.Effects of extended‐release metoprolol succinate in patients undergoing non‐cardiac surgery (POISE trial): a randomised controlled trial.Lancet.2008;371(9627):18391847.
  3. Thom T,Haase N,Rosamond W,Howard VJ,Rumsfeld J,Manolio T, et al;American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics—2006 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee.Circulation.2006;113(6):e85e151.
  4. Shojania KG, Duncan BW, McDonald KM, Wachter RM, Markowitz AJ, eds.Making health care safer: a critical analysis of patient safety practices. Evidence Report/Technology Assessment No.43.AHRQ publication no. 01‐E058.Rockville, MD:Agency for Healthcare Research and Quality (AHRQ),U.S. Department of Health and Human Services;2001.668 p.
  5. McDonald CJ,Weiner M,Hui SL.Deaths due to medical errors are exaggerated in Institute of Medicine report.JAMA.2000;284(1):9395.
  6. Therneau TM,Grambsch PM.Modeling survival data: extending the Cox model.New York:Springer;2000.
  7. Gooley TA,Leisenring W,Crowley J,Storer BE.Estimation of failure probabilities in the presence of competing risks: new representations of old estimators.Stat Med.1999;18(6):695706.
  8. Larsen SF,Zaric D,Boysen G.Postoperative cerebrovascular accidents in general surgery.Acta Anaesthesiol Scand.1988;32(8):698701.
  9. Landercasper J,Merz BJ,Cogbill TH,Strutt PJ,Cochrane RH,Olson RA, et al.Perioperative stroke risk in 173 consecutive patients with a past history of stroke.Arch Surg.1990;125(8):986989.
  10. Lawrence VA,Hilsenbeck SG,Noveck H,Poses RM,Carson JL.Medical complications and outcomes after hip fracture repair.Arch Intern Med.2002;162(18):2053–2057.
  11. Brown RD,Whisnant JP,Sicks JD,O'Fallon WM,Wiebers DO.Stroke incidence, prevalence, and survival: secular trends in Rochester, Minnesota, through 1989.Stroke.1996;27(3):373380.
  12. CAST (Chinese Acute Stroke Trial) Collaborative Group.Randomised placebo‐controlled trial of early aspirin use in 20,000 patients with acute ischaemic stroke.Lancet.1997;349(9066):16411649.
  13. Dixon B,Santamaria J,Campbell D.Coagulation activation and organ dysfunction following cardiac surgery.Chest.2005;128(1):229236.
  14. Páramo JA,Rifón J,Llorens R,Casares J,Paloma MJ,Rocha E.Intra‐ and postoperative fibrinolysis in patients undergoing cardiopulmonary bypass surgery.Haemostasis.1991;21(1):5864.
  15. Selim M.Perioperative stroke.N Engl J Med.2007;356(7):706713.
Issue
Journal of Hospital Medicine - 4(5)
Issue
Journal of Hospital Medicine - 4(5)
Page Number
298-303
Page Number
298-303
Article Type
Display Headline
Predictors of ischemic stroke after hip operation: A population‐based study
Display Headline
Predictors of ischemic stroke after hip operation: A population‐based study
Legacy Keywords
arthroplasty, hip, hip fracture, ischemia, stroke
Legacy Keywords
arthroplasty, hip, hip fracture, ischemia, stroke
Sections
Article Source

Copyright © 2009 Society of Hospital Medicine

Disallow All Ads
Correspondence Location
Division of Hospital Internal Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Article PDF Media