Launch of rare-cancer trial spurs many more

Article Type
Changed
Tue, 07/21/2020 - 14:14
Display Headline
Launch of rare-cancer trial spurs many more

MILAN – An ongoing phase III trial launched in 2012 that is testing whether adjuvant therapy aids women following removal of high-risk uterine leiomyosarcomas has also blazed a path for the International Rare Cancer Initiative, which has launched two other trials in rare cancers and is planning to start several more.

The advanced uterine leiomyosarcoma trial, which is testing an adjuvant regimen of up to four courses of gemcitabine (Gemzar) plus docetaxel (Taxotere) followed by doxorubicin (Adriamycin) for four courses should "answer the adjuvant chemotherapy question" for these patients, Dr. Martee L. Hensley said at Sarcoma and GIST 2014, hosted by the European Society for Medical Oncology.

The trial, known as Gynecologic Oncology Group (GOG) 0277, was the first study organized by the International Rare Cancer Initiative (IRCI) to activate. The study involves more than 200 U.S. centers and will open in many more European centers once regulatory approvals occur, said Dr. Hensley, professor of medicine at Weill Cornell Medical College and a gynecologic medical oncologist at Memorial Sloan- Kettering Cancer Center, New York.

Mitchel Zoler/Frontline Medical News
Dr. Martee L. Hensley

Oncologists diagnose about 1,200 uterine sarcomas annually in the United States, most of which are uterine-limited and histologically high grade. "Successful conduct of this study in this rare but high-risk disease will establish the standard of care for managing women who have undergone complete resection," she said in an interview.

"Conducting prospective randomized trials in rare cancers is a significant challenge. International collaboration is considered a key factor in success" by speeding patient accrual, identifying research questions of international importance, and designing a trial that is internationally accepted and generalizable, Dr. Hensley said. In 2011, five cancer organizations formed the IRCI: the U.S. National Cancer Institute, the European Organization for the Research and Treatment of Cancer, Cancer Research UK, the U.K. National Cancer Research Network, and the French Institut National du Cancer.

The IRCI defines rare cancers as generally having an incidence below 2 cases per 100,000 population, and it is charged to develop intervention trials for these cancers, especially randomized trials.

"Creation of the IRCI has provided some needed infrastructure and has been critical to the success of GOG 0277," Dr. Hensley said. "But one could also say that GOG 0277 is also key to the IRCI’s success. The work we have done for GOG 0277 will inform the design and conduct of future international studies" in rare cancers.

The IRCI includes nine committees, each of which develops trials for different rare-cancer types. These include the gynecologic sarcoma committee that Dr. Hensley serves on and which helped organize GOG 0277, and other committees for small bowel adenocarcinoma, salivary gland cancer, thymoma, ocular melanoma, relapsed or metastatic anal cancer, rare brain cancer, desmoplastic small-round-cell tumor, and penile cancer. The committees include representatives appointed by the founding organizations, which also appoint the members of the IRCI board, the body that determines which committees to form, explained Nicola Keat, a staffer at Cancer Research UK in London who serves as the IRCI coordinator.

The gynecologic sarcoma committee decided that the question of whether adjuvant chemotherapy following complete resection helps patients with uterus-limited, high-grade leiomyosarcoma had "primary importance," said Dr. Hensley. "We recognized that the IRCI provided an ideal opportunity."

The gynecologic sarcoma group also plans to open a prospective study of doxorubicin for chemotherapy-naive patients with advanced, high-grade undifferentiated sarcoma of the uterus, a rare and aggressive cancer with no standard treatment. The study would also assess whether cabozantinib (Cometriq) can further prolong progression-free survival, compared with placebo, in patients with stable disease or an objective response to doxorubicin. In addition, the committee would like to launch a trial of aromatase inhibition for patients with low-grade endometrial stromal sarcoma through the IRCI, she said.

Following the launch of GOG 0277, the IRCI opened enrollment of patients into a trial focused on advanced uveal melanoma at U.S. centers, with U.K. recruitment anticipated to start later this year, Ms. Keat said in an interview. A third IRCI-organized trial, for patients with advanced anal cancer, recently opened for enrollment at participating U.K. centers, she added.

GOG 0277 began in June 2012 and aims to enroll 216 patients. As of February 2014, it had accrued seven patients, but Dr. Hensley said she believed the study was on track to its targeted finish date in 2018, as patients will soon start to enroll in Europe. "We expect the study to open in the U.K. in the next couple of months," Ms. Keat said in late March.

 

 

Dr. Hensley said that her spouse is a Sanofi employee. Ms. Keat had no disclosures.

[email protected]

On Twitter @mitchelzoler

Meeting/Event
Author and Disclosure Information

Publications
Topics
Legacy Keywords
adjuvant therapy, uterine leiomyosarcoma, rare cancer, gemcitabine, docetaxel, doxorubicin, chemotherapy, Dr. Martee L. Hensley,
Author and Disclosure Information

Author and Disclosure Information

Meeting/Event
Meeting/Event

MILAN – An ongoing phase III trial launched in 2012 that is testing whether adjuvant therapy aids women following removal of high-risk uterine leiomyosarcomas has also blazed a path for the International Rare Cancer Initiative, which has launched two other trials in rare cancers and is planning to start several more.

The advanced uterine leiomyosarcoma trial, which is testing an adjuvant regimen of up to four courses of gemcitabine (Gemzar) plus docetaxel (Taxotere) followed by doxorubicin (Adriamycin) for four courses should "answer the adjuvant chemotherapy question" for these patients, Dr. Martee L. Hensley said at Sarcoma and GIST 2014, hosted by the European Society for Medical Oncology.

The trial, known as Gynecologic Oncology Group (GOG) 0277, was the first study organized by the International Rare Cancer Initiative (IRCI) to activate. The study involves more than 200 U.S. centers and will open in many more European centers once regulatory approvals occur, said Dr. Hensley, professor of medicine at Weill Cornell Medical College and a gynecologic medical oncologist at Memorial Sloan- Kettering Cancer Center, New York.

Mitchel Zoler/Frontline Medical News
Dr. Martee L. Hensley

Oncologists diagnose about 1,200 uterine sarcomas annually in the United States, most of which are uterine-limited and histologically high grade. "Successful conduct of this study in this rare but high-risk disease will establish the standard of care for managing women who have undergone complete resection," she said in an interview.

"Conducting prospective randomized trials in rare cancers is a significant challenge. International collaboration is considered a key factor in success" by speeding patient accrual, identifying research questions of international importance, and designing a trial that is internationally accepted and generalizable, Dr. Hensley said. In 2011, five cancer organizations formed the IRCI: the U.S. National Cancer Institute, the European Organization for the Research and Treatment of Cancer, Cancer Research UK, the U.K. National Cancer Research Network, and the French Institut National du Cancer.

The IRCI defines rare cancers as generally having an incidence below 2 cases per 100,000 population, and it is charged to develop intervention trials for these cancers, especially randomized trials.

"Creation of the IRCI has provided some needed infrastructure and has been critical to the success of GOG 0277," Dr. Hensley said. "But one could also say that GOG 0277 is also key to the IRCI’s success. The work we have done for GOG 0277 will inform the design and conduct of future international studies" in rare cancers.

The IRCI includes nine committees, each of which develops trials for different rare-cancer types. These include the gynecologic sarcoma committee that Dr. Hensley serves on and which helped organize GOG 0277, and other committees for small bowel adenocarcinoma, salivary gland cancer, thymoma, ocular melanoma, relapsed or metastatic anal cancer, rare brain cancer, desmoplastic small-round-cell tumor, and penile cancer. The committees include representatives appointed by the founding organizations, which also appoint the members of the IRCI board, the body that determines which committees to form, explained Nicola Keat, a staffer at Cancer Research UK in London who serves as the IRCI coordinator.

The gynecologic sarcoma committee decided that the question of whether adjuvant chemotherapy following complete resection helps patients with uterus-limited, high-grade leiomyosarcoma had "primary importance," said Dr. Hensley. "We recognized that the IRCI provided an ideal opportunity."

The gynecologic sarcoma group also plans to open a prospective study of doxorubicin for chemotherapy-naive patients with advanced, high-grade undifferentiated sarcoma of the uterus, a rare and aggressive cancer with no standard treatment. The study would also assess whether cabozantinib (Cometriq) can further prolong progression-free survival, compared with placebo, in patients with stable disease or an objective response to doxorubicin. In addition, the committee would like to launch a trial of aromatase inhibition for patients with low-grade endometrial stromal sarcoma through the IRCI, she said.

Following the launch of GOG 0277, the IRCI opened enrollment of patients into a trial focused on advanced uveal melanoma at U.S. centers, with U.K. recruitment anticipated to start later this year, Ms. Keat said in an interview. A third IRCI-organized trial, for patients with advanced anal cancer, recently opened for enrollment at participating U.K. centers, she added.

GOG 0277 began in June 2012 and aims to enroll 216 patients. As of February 2014, it had accrued seven patients, but Dr. Hensley said she believed the study was on track to its targeted finish date in 2018, as patients will soon start to enroll in Europe. "We expect the study to open in the U.K. in the next couple of months," Ms. Keat said in late March.

 

 

Dr. Hensley said that her spouse is a Sanofi employee. Ms. Keat had no disclosures.

[email protected]

On Twitter @mitchelzoler

MILAN – An ongoing phase III trial launched in 2012 that is testing whether adjuvant therapy aids women following removal of high-risk uterine leiomyosarcomas has also blazed a path for the International Rare Cancer Initiative, which has launched two other trials in rare cancers and is planning to start several more.

The advanced uterine leiomyosarcoma trial, which is testing an adjuvant regimen of up to four courses of gemcitabine (Gemzar) plus docetaxel (Taxotere) followed by doxorubicin (Adriamycin) for four courses should "answer the adjuvant chemotherapy question" for these patients, Dr. Martee L. Hensley said at Sarcoma and GIST 2014, hosted by the European Society for Medical Oncology.

The trial, known as Gynecologic Oncology Group (GOG) 0277, was the first study organized by the International Rare Cancer Initiative (IRCI) to activate. The study involves more than 200 U.S. centers and will open in many more European centers once regulatory approvals occur, said Dr. Hensley, professor of medicine at Weill Cornell Medical College and a gynecologic medical oncologist at Memorial Sloan- Kettering Cancer Center, New York.

Mitchel Zoler/Frontline Medical News
Dr. Martee L. Hensley

Oncologists diagnose about 1,200 uterine sarcomas annually in the United States, most of which are uterine-limited and histologically high grade. "Successful conduct of this study in this rare but high-risk disease will establish the standard of care for managing women who have undergone complete resection," she said in an interview.

"Conducting prospective randomized trials in rare cancers is a significant challenge. International collaboration is considered a key factor in success" by speeding patient accrual, identifying research questions of international importance, and designing a trial that is internationally accepted and generalizable, Dr. Hensley said. In 2011, five cancer organizations formed the IRCI: the U.S. National Cancer Institute, the European Organization for the Research and Treatment of Cancer, Cancer Research UK, the U.K. National Cancer Research Network, and the French Institut National du Cancer.

The IRCI defines rare cancers as generally having an incidence below 2 cases per 100,000 population, and it is charged to develop intervention trials for these cancers, especially randomized trials.

"Creation of the IRCI has provided some needed infrastructure and has been critical to the success of GOG 0277," Dr. Hensley said. "But one could also say that GOG 0277 is also key to the IRCI’s success. The work we have done for GOG 0277 will inform the design and conduct of future international studies" in rare cancers.

The IRCI includes nine committees, each of which develops trials for different rare-cancer types. These include the gynecologic sarcoma committee that Dr. Hensley serves on and which helped organize GOG 0277, and other committees for small bowel adenocarcinoma, salivary gland cancer, thymoma, ocular melanoma, relapsed or metastatic anal cancer, rare brain cancer, desmoplastic small-round-cell tumor, and penile cancer. The committees include representatives appointed by the founding organizations, which also appoint the members of the IRCI board, the body that determines which committees to form, explained Nicola Keat, a staffer at Cancer Research UK in London who serves as the IRCI coordinator.

The gynecologic sarcoma committee decided that the question of whether adjuvant chemotherapy following complete resection helps patients with uterus-limited, high-grade leiomyosarcoma had "primary importance," said Dr. Hensley. "We recognized that the IRCI provided an ideal opportunity."

The gynecologic sarcoma group also plans to open a prospective study of doxorubicin for chemotherapy-naive patients with advanced, high-grade undifferentiated sarcoma of the uterus, a rare and aggressive cancer with no standard treatment. The study would also assess whether cabozantinib (Cometriq) can further prolong progression-free survival, compared with placebo, in patients with stable disease or an objective response to doxorubicin. In addition, the committee would like to launch a trial of aromatase inhibition for patients with low-grade endometrial stromal sarcoma through the IRCI, she said.

Following the launch of GOG 0277, the IRCI opened enrollment of patients into a trial focused on advanced uveal melanoma at U.S. centers, with U.K. recruitment anticipated to start later this year, Ms. Keat said in an interview. A third IRCI-organized trial, for patients with advanced anal cancer, recently opened for enrollment at participating U.K. centers, she added.

GOG 0277 began in June 2012 and aims to enroll 216 patients. As of February 2014, it had accrued seven patients, but Dr. Hensley said she believed the study was on track to its targeted finish date in 2018, as patients will soon start to enroll in Europe. "We expect the study to open in the U.K. in the next couple of months," Ms. Keat said in late March.

 

 

Dr. Hensley said that her spouse is a Sanofi employee. Ms. Keat had no disclosures.

[email protected]

On Twitter @mitchelzoler

Publications
Publications
Topics
Article Type
Display Headline
Launch of rare-cancer trial spurs many more
Display Headline
Launch of rare-cancer trial spurs many more
Legacy Keywords
adjuvant therapy, uterine leiomyosarcoma, rare cancer, gemcitabine, docetaxel, doxorubicin, chemotherapy, Dr. Martee L. Hensley,
Legacy Keywords
adjuvant therapy, uterine leiomyosarcoma, rare cancer, gemcitabine, docetaxel, doxorubicin, chemotherapy, Dr. Martee L. Hensley,
Article Source

EXPERT ANALYSIS FROM SARCOMA AND GIST 2014

PURLs Copyright

Inside the Article

Pulsed Dye Laser for the Treatment of Macular Amyloidosis: A Case Report

Article Type
Changed
Thu, 01/10/2019 - 13:14
Display Headline
Pulsed Dye Laser for the Treatment of Macular Amyloidosis: A Case Report

Article PDF
Author and Disclosure Information

Maya Barsky, MD; Robert L. Buka, MD, JD

Issue
Cutis - 93(4)
Publications
Topics
Page Number
189-192
Legacy Keywords
macular amyloidosis, laser treatment, cutaneous hyperpigmentation, topical keratolytics, light-based therapies, physical treatment modalities
Author and Disclosure Information

Maya Barsky, MD; Robert L. Buka, MD, JD

Author and Disclosure Information

Maya Barsky, MD; Robert L. Buka, MD, JD

Article PDF
Article PDF
Related Articles

Issue
Cutis - 93(4)
Issue
Cutis - 93(4)
Page Number
189-192
Page Number
189-192
Publications
Publications
Topics
Article Type
Display Headline
Pulsed Dye Laser for the Treatment of Macular Amyloidosis: A Case Report
Display Headline
Pulsed Dye Laser for the Treatment of Macular Amyloidosis: A Case Report
Legacy Keywords
macular amyloidosis, laser treatment, cutaneous hyperpigmentation, topical keratolytics, light-based therapies, physical treatment modalities
Legacy Keywords
macular amyloidosis, laser treatment, cutaneous hyperpigmentation, topical keratolytics, light-based therapies, physical treatment modalities
Article Source

PURLs Copyright

Inside the Article

Article PDF Media

Cutaneous Manifestations of Injectable Drug Use: Hidden Secrets

Article Type
Changed
Thu, 01/10/2019 - 13:14
Display Headline
Cutaneous Manifestations of Injectable Drug Use: Hidden Secrets

Article PDF
Author and Disclosure Information

Wioletta Barańska-Rybak, DSc; Izabela Błażewicz, MD; Monika Kąkol, MD; Mirosław Roter, MD; Roman Nowicki, DSc

Issue
Cutis - 93(4)
Publications
Page Number
185-187
Legacy Keywords
injectable drugs. drug use, skin and soft tissue infections, skin popping, muscle popping, subcutaneous injection of drugs
Sections
Author and Disclosure Information

Wioletta Barańska-Rybak, DSc; Izabela Błażewicz, MD; Monika Kąkol, MD; Mirosław Roter, MD; Roman Nowicki, DSc

Author and Disclosure Information

Wioletta Barańska-Rybak, DSc; Izabela Błażewicz, MD; Monika Kąkol, MD; Mirosław Roter, MD; Roman Nowicki, DSc

Article PDF
Article PDF
Related Articles

Issue
Cutis - 93(4)
Issue
Cutis - 93(4)
Page Number
185-187
Page Number
185-187
Publications
Publications
Article Type
Display Headline
Cutaneous Manifestations of Injectable Drug Use: Hidden Secrets
Display Headline
Cutaneous Manifestations of Injectable Drug Use: Hidden Secrets
Legacy Keywords
injectable drugs. drug use, skin and soft tissue infections, skin popping, muscle popping, subcutaneous injection of drugs
Legacy Keywords
injectable drugs. drug use, skin and soft tissue infections, skin popping, muscle popping, subcutaneous injection of drugs
Sections
Article Source

PURLs Copyright

Inside the Article

Article PDF Media

Giant Cell Tumor of the Tendon Sheath

Article Type
Changed
Thu, 01/10/2019 - 13:14
Display Headline
Giant Cell Tumor of the Tendon Sheath

Article PDF
Author and Disclosure Information

Ronda S. Farah, MD; Heather M. Holahan, BA; Brian L. Swick, MD

Issue
Cutis - 93(4)
Publications
Topics
Page Number
174, 181-182
Legacy Keywords
giant cell tumor of the tendon sheath, GCTTS, benign cutaneous neoplasm, hand lesions, giant cell tumor
Sections
Author and Disclosure Information

Ronda S. Farah, MD; Heather M. Holahan, BA; Brian L. Swick, MD

Author and Disclosure Information

Ronda S. Farah, MD; Heather M. Holahan, BA; Brian L. Swick, MD

Article PDF
Article PDF
Related Articles

Issue
Cutis - 93(4)
Issue
Cutis - 93(4)
Page Number
174, 181-182
Page Number
174, 181-182
Publications
Publications
Topics
Article Type
Display Headline
Giant Cell Tumor of the Tendon Sheath
Display Headline
Giant Cell Tumor of the Tendon Sheath
Legacy Keywords
giant cell tumor of the tendon sheath, GCTTS, benign cutaneous neoplasm, hand lesions, giant cell tumor
Legacy Keywords
giant cell tumor of the tendon sheath, GCTTS, benign cutaneous neoplasm, hand lesions, giant cell tumor
Sections
Article Source

PURLs Copyright

Inside the Article

Article PDF Media

Product gets orphan designation for AML

Article Type
Changed
Fri, 04/04/2014 - 05:00
Display Headline
Product gets orphan designation for AML

AML cells

The US Food and Drug Administration (FDA) has granted orphan designation for eryaspase to treat acute myeloid leukemia (AML).

Eryaspase, also known as ERY-ASP or GRASPA, is L-asparaginase encapsulated in red blood cells.

These donor-derived, enzyme-loaded red blood cells function as bioreactors to eliminate circulating asparagine and “starve”

leukemic cells, thereby inducing their death.

Research has suggested this delivery system provides improved pharmacodynamics. It protects L-aspariginase from circulating proteolytic enzymes and prevents early liver or renal clearance.

The system also appears to reduce the risk of adverse events.

Eryaspase is currently under investigation in a phase 3 trial for acute lymphoblastic leukemia (ALL) and a phase 2b trial for AML in Europe. A phase 1 study in adult ALL is being launched in the US.

Eryaspase now has orphan designation for ALL, AML and pancreatic cancer, both in Europe and the US.

In the US, orphan designation is generally granted for drugs or biologics intended to treat disorders of high unmet medical need that affect fewer than 200,000 people.

This designation conveys special incentives to the product’s sponsor, including 7 years of US market exclusivity for the drug or biologic upon FDA approval, a prescription drug user fee waiver, and certain tax credits.

Publications
Topics

AML cells

The US Food and Drug Administration (FDA) has granted orphan designation for eryaspase to treat acute myeloid leukemia (AML).

Eryaspase, also known as ERY-ASP or GRASPA, is L-asparaginase encapsulated in red blood cells.

These donor-derived, enzyme-loaded red blood cells function as bioreactors to eliminate circulating asparagine and “starve”

leukemic cells, thereby inducing their death.

Research has suggested this delivery system provides improved pharmacodynamics. It protects L-aspariginase from circulating proteolytic enzymes and prevents early liver or renal clearance.

The system also appears to reduce the risk of adverse events.

Eryaspase is currently under investigation in a phase 3 trial for acute lymphoblastic leukemia (ALL) and a phase 2b trial for AML in Europe. A phase 1 study in adult ALL is being launched in the US.

Eryaspase now has orphan designation for ALL, AML and pancreatic cancer, both in Europe and the US.

In the US, orphan designation is generally granted for drugs or biologics intended to treat disorders of high unmet medical need that affect fewer than 200,000 people.

This designation conveys special incentives to the product’s sponsor, including 7 years of US market exclusivity for the drug or biologic upon FDA approval, a prescription drug user fee waiver, and certain tax credits.

AML cells

The US Food and Drug Administration (FDA) has granted orphan designation for eryaspase to treat acute myeloid leukemia (AML).

Eryaspase, also known as ERY-ASP or GRASPA, is L-asparaginase encapsulated in red blood cells.

These donor-derived, enzyme-loaded red blood cells function as bioreactors to eliminate circulating asparagine and “starve”

leukemic cells, thereby inducing their death.

Research has suggested this delivery system provides improved pharmacodynamics. It protects L-aspariginase from circulating proteolytic enzymes and prevents early liver or renal clearance.

The system also appears to reduce the risk of adverse events.

Eryaspase is currently under investigation in a phase 3 trial for acute lymphoblastic leukemia (ALL) and a phase 2b trial for AML in Europe. A phase 1 study in adult ALL is being launched in the US.

Eryaspase now has orphan designation for ALL, AML and pancreatic cancer, both in Europe and the US.

In the US, orphan designation is generally granted for drugs or biologics intended to treat disorders of high unmet medical need that affect fewer than 200,000 people.

This designation conveys special incentives to the product’s sponsor, including 7 years of US market exclusivity for the drug or biologic upon FDA approval, a prescription drug user fee waiver, and certain tax credits.

Publications
Publications
Topics
Article Type
Display Headline
Product gets orphan designation for AML
Display Headline
Product gets orphan designation for AML
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica

Group uncovers inconsistent reporting of AEs, deaths

Article Type
Changed
Fri, 04/04/2014 - 05:00
Display Headline
Group uncovers inconsistent reporting of AEs, deaths

Mark Helfand, MD

OHSU School of Medicine

A new analysis indicates that researchers sometimes exclude unfavorable trial data, whether reporting results in medical journals or on ClinicalTrials.gov.

A group of investigators analyzed trials in which data was reported both on the government website and in journals. And they found that discrepancies between the 2 sources were common.

Adverse events (AEs) were more likely to be reported on ClinicalTrials.gov and excluded from reports in  journals.

But deaths seemed to be underreported or inconsistently reported on ClinicalTrials.gov when compared to journals.

“This is the most comprehensive study of ClinicalTrials.gov to date,” said study author Mark Helfand, MD, of Oregon Health & Science University.

“It shows that patients and clinicians could use [the site] to find information that is not available in the published literature, particularly to get more complete information about the harms of various treatment options. It also shows that, to best serve the public, death rates and some other items in ClinicalTrials.gov should be audited to keep them up to date.”

Dr Helfand and his colleagues reported these findings in Annals of Internal Medicine.

The researchers evaluated 110 trials that were completed by January 1, 2009, and reported on ClinicalTrials.gov. The team looked only at trials completed by 2009 to allow for the results to be later published in medical journals. Most of the trials were industry-sponsored.

Analyses revealed a number of discrepancies between data on ClinicalTrials.gov and in medical journals. For instance, 80% (n=88) of the trials had inconsistencies in secondary outcome measures.

In 15% (n=16) of trials, there were inconsistencies in the description of the primary outcome. And in 20% (n=22) of trials, there were inconsistencies in the primary outcome value. Still, in most cases, these discrepancies were small and did not affect the statistical significance of the results.

There were inconsistencies in AE reporting as well. Of the 84 trials in which a serious AE was reported on ClinicalTrials.gov, 11 published papers did not mention serious AEs, 5 reported that there were no serious AEs, and 21 reported a different

number of serious AEs.

So of the trials that had inconsistent AE reporting, 87% had more serious AEs listed on ClinicalTrials.gov than in the journal.

On the other hand, deaths seemed to be underreported on ClinicalTrials.gov compared to journals. For instance, in 17% of trials that did not report deaths on ClinicalTrials.gov, deaths were reported in the journal article.

Prior studies have indicated ClinicalTrials.gov does not have a uniform way of reporting deaths, and that may lead to inconsistencies.

Publications
Topics

Mark Helfand, MD

OHSU School of Medicine

A new analysis indicates that researchers sometimes exclude unfavorable trial data, whether reporting results in medical journals or on ClinicalTrials.gov.

A group of investigators analyzed trials in which data was reported both on the government website and in journals. And they found that discrepancies between the 2 sources were common.

Adverse events (AEs) were more likely to be reported on ClinicalTrials.gov and excluded from reports in  journals.

But deaths seemed to be underreported or inconsistently reported on ClinicalTrials.gov when compared to journals.

“This is the most comprehensive study of ClinicalTrials.gov to date,” said study author Mark Helfand, MD, of Oregon Health & Science University.

“It shows that patients and clinicians could use [the site] to find information that is not available in the published literature, particularly to get more complete information about the harms of various treatment options. It also shows that, to best serve the public, death rates and some other items in ClinicalTrials.gov should be audited to keep them up to date.”

Dr Helfand and his colleagues reported these findings in Annals of Internal Medicine.

The researchers evaluated 110 trials that were completed by January 1, 2009, and reported on ClinicalTrials.gov. The team looked only at trials completed by 2009 to allow for the results to be later published in medical journals. Most of the trials were industry-sponsored.

Analyses revealed a number of discrepancies between data on ClinicalTrials.gov and in medical journals. For instance, 80% (n=88) of the trials had inconsistencies in secondary outcome measures.

In 15% (n=16) of trials, there were inconsistencies in the description of the primary outcome. And in 20% (n=22) of trials, there were inconsistencies in the primary outcome value. Still, in most cases, these discrepancies were small and did not affect the statistical significance of the results.

There were inconsistencies in AE reporting as well. Of the 84 trials in which a serious AE was reported on ClinicalTrials.gov, 11 published papers did not mention serious AEs, 5 reported that there were no serious AEs, and 21 reported a different

number of serious AEs.

So of the trials that had inconsistent AE reporting, 87% had more serious AEs listed on ClinicalTrials.gov than in the journal.

On the other hand, deaths seemed to be underreported on ClinicalTrials.gov compared to journals. For instance, in 17% of trials that did not report deaths on ClinicalTrials.gov, deaths were reported in the journal article.

Prior studies have indicated ClinicalTrials.gov does not have a uniform way of reporting deaths, and that may lead to inconsistencies.

Mark Helfand, MD

OHSU School of Medicine

A new analysis indicates that researchers sometimes exclude unfavorable trial data, whether reporting results in medical journals or on ClinicalTrials.gov.

A group of investigators analyzed trials in which data was reported both on the government website and in journals. And they found that discrepancies between the 2 sources were common.

Adverse events (AEs) were more likely to be reported on ClinicalTrials.gov and excluded from reports in  journals.

But deaths seemed to be underreported or inconsistently reported on ClinicalTrials.gov when compared to journals.

“This is the most comprehensive study of ClinicalTrials.gov to date,” said study author Mark Helfand, MD, of Oregon Health & Science University.

“It shows that patients and clinicians could use [the site] to find information that is not available in the published literature, particularly to get more complete information about the harms of various treatment options. It also shows that, to best serve the public, death rates and some other items in ClinicalTrials.gov should be audited to keep them up to date.”

Dr Helfand and his colleagues reported these findings in Annals of Internal Medicine.

The researchers evaluated 110 trials that were completed by January 1, 2009, and reported on ClinicalTrials.gov. The team looked only at trials completed by 2009 to allow for the results to be later published in medical journals. Most of the trials were industry-sponsored.

Analyses revealed a number of discrepancies between data on ClinicalTrials.gov and in medical journals. For instance, 80% (n=88) of the trials had inconsistencies in secondary outcome measures.

In 15% (n=16) of trials, there were inconsistencies in the description of the primary outcome. And in 20% (n=22) of trials, there were inconsistencies in the primary outcome value. Still, in most cases, these discrepancies were small and did not affect the statistical significance of the results.

There were inconsistencies in AE reporting as well. Of the 84 trials in which a serious AE was reported on ClinicalTrials.gov, 11 published papers did not mention serious AEs, 5 reported that there were no serious AEs, and 21 reported a different

number of serious AEs.

So of the trials that had inconsistent AE reporting, 87% had more serious AEs listed on ClinicalTrials.gov than in the journal.

On the other hand, deaths seemed to be underreported on ClinicalTrials.gov compared to journals. For instance, in 17% of trials that did not report deaths on ClinicalTrials.gov, deaths were reported in the journal article.

Prior studies have indicated ClinicalTrials.gov does not have a uniform way of reporting deaths, and that may lead to inconsistencies.

Publications
Publications
Topics
Article Type
Display Headline
Group uncovers inconsistent reporting of AEs, deaths
Display Headline
Group uncovers inconsistent reporting of AEs, deaths
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica

How MRP-14 triggers thrombosis

Article Type
Changed
Fri, 04/04/2014 - 05:00
Display Headline
How MRP-14 triggers thrombosis

Thrombus from a coronary

artery; platelets loaded with

MRP-14 shown in yellow.

Journal of Clinical Investigation

Investigators say they’ve discovered how myeloid related protein-14 (MRP-14) generates thrombi that can trigger myocardial infarction (MI) or stroke.

Previous research showed that MRP-14 is elevated in platelets from patients who present with acute MI.

In the current study, researchers found that platelet-derived MRP-14 directly regulates thrombosis, and CD36 is required for this process.

The team therefore believes we could target this platelet-dependent pathway to treat atherothrombotic disorders.

“This is exciting because we have now closed the loop of our original finding that MRP-14 is a heart attack gene,” said investigator Daniel I. Simon, MD, of the University Hospitals Harrington Heart & Vascular Institute in Cleveland, Ohio.

“We now describe a whole new pathway that shows clotting platelets have MRP-14 inside them, that platelets secrete MRP-14, and that MRP-14 binds to a platelet receptor called CD36 to activate platelets.”

Dr Simon and his colleagues recounted these findings in The Journal of Clinical Investigation.

The research alternated between the cardiac catheterization lab (where researchers were investigating MI patients) to the basic research lab (where the investigators were probing mechanisms of disease).

The clinical portion of this research yielded thrombi—extracted from an occluded heart artery—that were loaded with platelets containing MRP-14.

“It is remarkable that this abundant platelet protein promoting thrombosis could have gone undetected until now,” Dr Simon said.

In experiments on MRP-14-deficient mice, he and his colleagues observed MRP-14 in action. One key finding was that, while MRP-14 is required for pathologic thrombosis, it does not appear to be involved in the natural, primary hemostasis response to prevent bleeding.

“The practical significance of this research is that it may provide a new target to develop more effective and safer antithrombotic agents,” Dr Simon said.

“If we could develop an agent that affects pathologic clotting and not hemostasis, that would be a home run. You would have a safer medication to treat pathologic clotting in heart attack and stroke.”

Publications
Topics

Thrombus from a coronary

artery; platelets loaded with

MRP-14 shown in yellow.

Journal of Clinical Investigation

Investigators say they’ve discovered how myeloid related protein-14 (MRP-14) generates thrombi that can trigger myocardial infarction (MI) or stroke.

Previous research showed that MRP-14 is elevated in platelets from patients who present with acute MI.

In the current study, researchers found that platelet-derived MRP-14 directly regulates thrombosis, and CD36 is required for this process.

The team therefore believes we could target this platelet-dependent pathway to treat atherothrombotic disorders.

“This is exciting because we have now closed the loop of our original finding that MRP-14 is a heart attack gene,” said investigator Daniel I. Simon, MD, of the University Hospitals Harrington Heart & Vascular Institute in Cleveland, Ohio.

“We now describe a whole new pathway that shows clotting platelets have MRP-14 inside them, that platelets secrete MRP-14, and that MRP-14 binds to a platelet receptor called CD36 to activate platelets.”

Dr Simon and his colleagues recounted these findings in The Journal of Clinical Investigation.

The research alternated between the cardiac catheterization lab (where researchers were investigating MI patients) to the basic research lab (where the investigators were probing mechanisms of disease).

The clinical portion of this research yielded thrombi—extracted from an occluded heart artery—that were loaded with platelets containing MRP-14.

“It is remarkable that this abundant platelet protein promoting thrombosis could have gone undetected until now,” Dr Simon said.

In experiments on MRP-14-deficient mice, he and his colleagues observed MRP-14 in action. One key finding was that, while MRP-14 is required for pathologic thrombosis, it does not appear to be involved in the natural, primary hemostasis response to prevent bleeding.

“The practical significance of this research is that it may provide a new target to develop more effective and safer antithrombotic agents,” Dr Simon said.

“If we could develop an agent that affects pathologic clotting and not hemostasis, that would be a home run. You would have a safer medication to treat pathologic clotting in heart attack and stroke.”

Thrombus from a coronary

artery; platelets loaded with

MRP-14 shown in yellow.

Journal of Clinical Investigation

Investigators say they’ve discovered how myeloid related protein-14 (MRP-14) generates thrombi that can trigger myocardial infarction (MI) or stroke.

Previous research showed that MRP-14 is elevated in platelets from patients who present with acute MI.

In the current study, researchers found that platelet-derived MRP-14 directly regulates thrombosis, and CD36 is required for this process.

The team therefore believes we could target this platelet-dependent pathway to treat atherothrombotic disorders.

“This is exciting because we have now closed the loop of our original finding that MRP-14 is a heart attack gene,” said investigator Daniel I. Simon, MD, of the University Hospitals Harrington Heart & Vascular Institute in Cleveland, Ohio.

“We now describe a whole new pathway that shows clotting platelets have MRP-14 inside them, that platelets secrete MRP-14, and that MRP-14 binds to a platelet receptor called CD36 to activate platelets.”

Dr Simon and his colleagues recounted these findings in The Journal of Clinical Investigation.

The research alternated between the cardiac catheterization lab (where researchers were investigating MI patients) to the basic research lab (where the investigators were probing mechanisms of disease).

The clinical portion of this research yielded thrombi—extracted from an occluded heart artery—that were loaded with platelets containing MRP-14.

“It is remarkable that this abundant platelet protein promoting thrombosis could have gone undetected until now,” Dr Simon said.

In experiments on MRP-14-deficient mice, he and his colleagues observed MRP-14 in action. One key finding was that, while MRP-14 is required for pathologic thrombosis, it does not appear to be involved in the natural, primary hemostasis response to prevent bleeding.

“The practical significance of this research is that it may provide a new target to develop more effective and safer antithrombotic agents,” Dr Simon said.

“If we could develop an agent that affects pathologic clotting and not hemostasis, that would be a home run. You would have a safer medication to treat pathologic clotting in heart attack and stroke.”

Publications
Publications
Topics
Article Type
Display Headline
How MRP-14 triggers thrombosis
Display Headline
How MRP-14 triggers thrombosis
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica

Healthcare Utilization after Sepsis

Article Type
Changed
Sun, 05/21/2017 - 14:04
Display Headline
Hospital readmission and healthcare utilization following sepsis in community settings

Sepsis, the systemic inflammatory response to infection, is a major public health concern.[1] Worldwide, sepsis affects millions of hospitalized patients each year.[2] In the United States, it is the single most expensive cause of hospitalization.[3, 4, 5, 6] Multiple studies suggest that sepsis hospitalizations are also increasing in frequency.[3, 6, 7, 8, 9, 10]

Improved sepsis care has dramatically reduced in‐hospital mortality.[11, 12, 13] However, the result is a growing number of sepsis survivors discharged with new disability.[1, 9, 14, 15, 16] Despite being a common cause of hospitalization, little is known about how to improve postsepsis care.[15, 17, 18, 19] This contrasts with other, often less common, hospital conditions for which many studies evaluating readmission and postdischarge care are available.[20, 21, 22, 23] Identifying the factors contributing to high utilization could lend critical insight to designing interventions that improve long‐term sepsis outcomes.[24]

We conducted a retrospective study of sepsis patients discharged in 2010 at Kaiser Permanente Northern California (KPNC) to describe their posthospital trajectories. In this diverse community‐hospitalbased population, we sought to identify the patient‐level factors that impact the posthospital healthcare utilization of sepsis survivors.

METHODS

This study was approved by the KPNC institutional review board.

Setting

We conducted a retrospective study of sepsis patients aged 18 years admitted to KPNC hospitals in 2010 whose hospitalizations included an overnight stay, began in a KPNC hospital, and was not for peripartum care. We identified sepsis based on International Classification of Disease, 9th Edition principal diagnosis codes used at KPNC, which capture a similar population to that from the Angus definition (see Supporting Appendix, Table 1, in the online version of this article).[7, 25, 26] We denoted each patient's first sepsis hospitalization as the index event.

Baseline Patient and Hospital Characteristics of Patients With Sepsis Hospitalizations, Stratified by Predicted Hospital Mortality Quartiles
 Predicted Hospital Mortality Quartiles (n=1,586 for Each Group)
Overall1234
  • NOTE: Data are presented as mean (standard deviation) or number (frequency). Abbreviations: COPS2: Comorbidity Point Score, version 2; ICU: intensive care unit; LAPS2: Laboratory Acute Physiology Score, version 2.

Baseline     
Age, y, mean71.915.762.317.871.214.275.612.778.612.2
By age category     
<45 years410 (6.5)290 (18.3)71 (4.5)25 (1.6)24 (1.5)
4564 years1,425 (22.5)539 (34.0)407 (25.7)292 (18.4)187 (11.8)
6584 years3,036 (47.9)601 (37.9)814 (51.3)832 (52.5)789 (49.8)
85 years1,473 (23.2)156 (9.8)294 (18.5)437 (27.6)586 (37.0)
Male2,973 (46.9)686 (43.3)792 (49.9)750 (47.3)745 (47.0)
Comorbidity     
COPS2 score51432627544164456245
Charlson score2.01.51.31.22.11.42.41.52.41.5
Hospitalization     
LAPS2 severity score10742662190201142315928
Admitted via emergency department6,176 (97.4)1,522 (96.0)1,537 (96.9)1,539 (97.0)1,578 (99.5)
Direct ICU admission1,730 (27.3)169 (10.7)309 (19.5)482 (30.4)770 (48.6)
ICU transfer, at any time2,206 (34.8)279 (17.6)474 (29.9)603 (38.0)850 (53.6)
Hospital mortality     
Predicted, %10.513.81.00.13.40.18.32.329.415.8
Observed865 (13.6)26 (1.6)86 (5.4)197 (12.4)556 (35.1)
Hospital length of stay, d5.86.44.43.85.45.76.68.06.66.9

We linked hospital episodes with existing KPNC inpatient databases to describe patient characteristics.[27, 28, 29, 30] We categorized patients by age (45, 4564, 6584, and 85 years) and used Charlson comorbidity scores and Comorbidity Point Scores 2 (COPS2) to quantify comorbid illness burden.[28, 30, 31, 32] We quantified acute severity of illness using the Laboratory Acute Physiology Scores 2 (LAPS2), which incorporates 15 laboratory values, 5 vital signs, and mental status prior to hospital admission (including emergency department data).[30] Both the COPS2 and LAPS2 are independently associated with hospital mortality.[30, 31] We also generated a summary predicted risk of hospital mortality based on a validated risk model and stratified patients by quartiles.[30] We determined whether patients were admitted to the intensive care unit (ICU).[29]

Outcomes

We used patients' health insurance administrative data to quantify postsepsis utilization. Within the KPNC integrated healthcare delivery system, uniform information systems capture all healthcare utilization of insured members including services received at non‐KPNC facilities.[28, 30] We collected utilization data from the year preceding index hospitalization (presepsis) and for the year after discharge date or until death (postsepsis). We ascertained mortality after discharge from KPNC medical records as well as state and national death record files.

We grouped services into facility‐based or outpatient categories. Facility‐based services included inpatient admission, subacute nursing facility or long‐term acute care, and emergency department visits. We grouped outpatient services as hospice, home health, outpatient surgery, clinic, or other (eg, laboratory). We excluded patients whose utilization records were not available over the full presepsis interval. Among these 1211 patients (12.5% of total), the median length of records prior to index hospitalization was 67 days, with a mean value of 117 days.

Statistical Analysis

Our primary outcomes of interest were hospital readmission and utilization in the year after sepsis. We defined a hospital readmission as any inpatient stay after the index hospitalization grouped within 1‐, 3‐, 6‐, and 12‐month intervals. We designated those within 30 days as an early readmission. We grouped readmission principal diagnoses, where available, by the 17 Healthcare Cost and Utilization Project (HCUP) Clinical Classifications Software multilevel categories with sepsis in the infectious category.[33, 34] In secondary analysis, we also designated other infectious diagnoses not included in the standard HCUP infection category (eg, pneumonia, meningitis, cellulitis) as infection (see Supporting Appendix in the online version of this article).

We quantified outpatient utilization based on the number of episodes recorded. For facility‐based utilization, we calculated patient length of stay intervals. Because patients surviving their index hospitalization might not survive the entire year after discharge, we also calculated utilization adjusted for patients' living days by dividing the total facility length of stay by the number of living days after discharge.

Continuous data are represented as mean (standard deviation [SD]) and categorical data as number (%). We compared groups with analysis of variance or 2 testing. We estimated survival with Kaplan‐Meier analysis (95% confidence interval) and compared groups with log‐rank testing. We compared pre‐ and postsepsis healthcare utilization with paired t tests.

To identify factors associated with early readmission after sepsis, we used a competing risks regression model.[35] The dependent variable was time to readmission and the competing hazard was death within 30 days without early readmission; patients without early readmission or death were censored at 30 days. The independent variables included age, gender, comorbid disease burden (COPS2), acute severity of illness (LAPS2), any use of intensive care, total index length of stay, and percentage of living days prior to sepsis hospitalization spent utilizing facility‐based care. We also used logistic regression to quantify the association between these variables and high postsepsis utilization; we defined high utilization as 15% of living days postsepsis spent in facility‐based care. For each model, we quantified the relative contribution of each predictor variable to model performance based on differences in log likelihoods.[35, 36] We conducted analyses using STATA/SE version 11.2 (StataCorp, College Station, TX) and considered a P value of <0.05 to be significant.

RESULTS

Cohort Characteristics

Our study cohort included 6344 patients with index sepsis hospitalizations in 2010 (Table 1). Mean age was 72 (SD 16) years including 1835 (28.9%) patients aged <65 years. During index hospitalizations, higher predicted mortality was associated with increased age, comorbid disease burden, and severity of illness (P<0.01 for each). ICU utilization increased across predicted mortality strata; for example, 10.7% of patients in the lowest quartile were admitted directly to the ICU compared with 48.6% in the highest quartile. In the highest quartile, observed mortality was 35.1%.

One‐Year Survival

A total of 5479 (86.4%) patients survived their index sepsis hospitalization. Overall survival after living discharge was 90.5% (range, 89.6%91.2%) at 30 days and 71.3% (range, 70.1%72.5%) at 1 year. However, postsepsis survival was strongly modified by age (Figure 1). For example, 1‐year survival was 94.1% (range, 91.2%96.0%) for <45 year olds and 54.4% (range, 51.5%57.2%) for 85 year olds (P<0.01). Survival was also modified by predicted mortality, however, not by ICU admission during index hospitalization (P=0.18) (see Supporting Appendix, Figure 1, in the online version of this article).

Figure 1
Kaplan‐Meier survival curves following living discharge after sepsis hospitalization, stratified by age categories.

Hospital Readmission

Overall, 978 (17.9%) patients had early readmission after index discharge (Table 2); nearly half were readmitted at least once in the year following discharge. Rehospitalization frequency was slightly lower when including patients with incomplete presepsis data (see Supporting Appendix, Table 2, in the online version of this article). The frequency of hospital readmission varied based on patient age and severity of illness. For example, 22.3% of patients in the highest predicted mortality quartile had early readmission compared with 11.6% in the lowest. The median time from discharge to early readmission was 11 days. Principal diagnoses were available for 78.6% of all readmissions (see Supporting Appendix, Table 3, in the online version of this article). Between 28.3% and 42.7% of those readmissions were for infectious diagnoses (including sepsis).

Frequency of Readmissions After Surviving Index Sepsis Hospitalization, Stratified by Predicted Mortality Quartiles
 Predicted Mortality Quartile
ReadmissionOverall1234
Within 30 days978 (17.9)158 (11.6)242 (17.7)274 (20.0)304 (22.3)
Within 90 days1,643 (30.1)276 (20.2)421 (30.8)463 (33.9)483 (35.4)
Within 180 days2,061 (37.7)368 (26.9)540 (39.5)584 (42.7)569 (41.7)
Within 365 days2,618 (47.9)498 (36.4)712 (52.1)723 (52.9)685 (50.2)
Factors Associated With Early Readmission and High Postsepsis Facility‐Based Utilization
VariableHazard Ratio for Early ReadmissionOdds Ratio for High Utilization
HR (95% CI)Relative ContributionOR (95% CI)Relative Contribution
  • NOTE: High postsepsis utilization defined as 15% of living days spent in the hospital, subacute nursing facility, or long‐term acute care. Hazard ratios are based on competing risk regression, and odds ratios are based on logistic regression including all listed variables. Relative contribution to model performance was quantified by evaluating the differences in log likelihoods based on serial inclusion or exclusion of each variable.

  • Abbreviations: CI, confidence interval; COPS2: Comorbidity Point Score, version 2; HR, hazard ratio; LAPS2: Laboratory Acute Physiology Score, version 2; OR, odds ratio.

  • P<0.01.

  • P<0.05.

Age category 1.2% 11.1%
<45 years1.00 [reference] 1.00 [reference] 
4564 years0.86 (0.64‐1.16) 2.22 (1.30‐3.83)a 
6584 years0.92 (0.69‐1.21) 3.66 (2.17‐6.18)a 
85 years0.95 (0.70‐1.28) 4.98 (2.92‐8.50)a 
Male0.99 (0.88‐1.13)0.0%0.86 (0.74‐1.00)0.1%
Severity of illness (LAPS2)1.08 (1.04‐1.12)a12.4%1.22 (1.17‐1.27)a11.3%
Comorbid illness (COPS2)1.16 (1.12‐1.19)a73.9%1.13 (1.09‐1.17)a5.9%
Intensive care1.21 (1.05‐1.40)a5.2%1.02 (0.85‐1.21)0.0%
Hospital length of stay, day1.01 (1.001.02)b6.6%1.04 (1.03‐1.06)a6.9%
Prior utilization, per 10%0.98 (0.95‐1.02)0.7%1.74 (1.61‐1.88)a64.2%

Healthcare Utilization

The unadjusted difference between pre‐ and postsepsis healthcare utilization among survivors was statistically significant for most categories but of modest clinical significance (see Supporting Appendix, Table 4, in the online version of this article). For example, the mean number of presepsis hospitalizations was 0.9 (1.4) compared to 1.0 (1.5) postsepsis (P<0.01). After adjusting for postsepsis living days, the difference in utilization was more pronounced (Figure 2). Overall, there was roughly a 3‐fold increase in the mean percentage of living days spent in facility‐based care between patients' pre‐ and postsepsis phases (5.3% vs 15.0%, P<0.01). Again, the difference was strongly modified by age. For patients aged <45 years, the difference was not statistically significant (2.4% vs 2.9%, P=0.32), whereas for those aged 65 years, it was highly significant (6.2% vs 18.5%, P<0.01).

Figure 2
Percentage of living days spent in facility‐based care, including inpatient hospitalization, subacute nursing facility, and long‐term acute care before and after index sepsis hospitalization.

Factors associated with early readmission included severity of illness, comorbid disease burden, index hospital length of stay, and intensive care (Table 3). However, the dominant factor explaining variation in the risk of early readmission was patients' prior comorbid disease burden (73.9%), followed by acute severity of illness (12.4%), total hospital length of stay (6.6%), and the need for intensive care (5.2%). Severity of illness and age were also significantly associated with higher odds of high postsepsis utilization; however, the dominant factor contributing to this risk was a history of high presepsis utilization (64.2%).

DISCUSSION

In this population‐based study in a community healthcare system, the impact of sepsis extended well beyond the initial hospitalization. One in 6 sepsis survivors was readmitted within 30 days, and roughly half were readmitted within 1 year. Fewer than half of rehospitalizations were for sepsis. Patients had a 3‐fold increase in the percentage of living days spent in hospitals or care facilities after sepsis hospitalization. Although age and acute severity of illness strongly modified healthcare utilization and mortality after sepsis, the dominant factors contributing to early readmission and high utilization ratescomorbid disease burden and presepsis healthcare utilizationwere present prior to hospitalization.

Sepsis is the single most expensive cause of US hospitalizations.[3, 4, 5] Despite its prevalence, there are little contemporary data identifying factors that impact healthcare utilization among sepsis survivors.[9, 16, 17, 19, 24, 36, 37] Recently, Prescott and others found that in Medicare beneficiaries, following severe sepsis, healthcare utilization was markedly increased.[17] More than one‐quarter of survivors were readmitted within 30 days, and 63.8% were readmitted within a year. Severe sepsis survivors also spent an average of 26% of their living days in a healthcare facility, a nearly 4‐fold increase compared to their presepsis phase. The current study included a population with a broader age and severity range; however, in a similar subgroup of patients, for those aged 65 years within the highest predicted mortality quartile, the frequency of readmission was similar. These findings are concordant with those from prior studies.[17, 19, 36, 37]

Among sepsis survivors, most readmissions were not for sepsis or infectious diagnoses, which is a novel finding with implications for designing approaches to reduce rehospitalization. The pattern in sepsis is similar to that seen in other common and costly hospital conditions.[17, 20, 23, 38, 39, 40] For example, between 18% and 25% of Medicare beneficiaries hospitalized for heart failure, acute myocardial infarction, or pneumonia were readmitted within 30 days; fewer than one‐third had the same diagnosis.[20] The timing of readmission in our sepsis cohort was also similar to that seen in other conditions.[20] For example, the median time of early readmission in this study was 11 days; it was between 10 and 12 days for patients with heart failure, pneumonia, and myocardial infarction.[20]

Krumholz and others suggest that the pattern of early rehospitalization after common acute conditions reflects a posthospital syndromean acquired, transient period of vulnerabilitythat could be the byproduct of common hospital factors.[20, 41] Such universal impairments might result from new physical and neurocognitive disability, nutritional deficiency, and sleep deprivation or delirium, among others.[41] If this construct were also true in sepsis, it could have important implications on the design of postsepsis care. However, prior studies suggest that sepsis patients may be particularly vulnerable to the sequelae of hospitalization.[2, 42, 43, 44, 45]

Among Medicare beneficiaries, Iwashyna and others reported that hospitalizations for severe sepsis resulted in significant increases in physical limitations and moderate to severe cognitive impairment.[1, 14, 46] Encephalopathy, sleep deprivation, and delirium are also frequently seen in sepsis patients.[47, 48] Furthermore, sepsis patients frequently need intensive care, which is also associated with increased patient disability and injury.[16, 46, 49, 50] We found that severity of illness and the need for intensive care were both predictive of the need for early readmission following sepsis. We also confirmed the results of prior studies suggesting that sepsis outcomes are strongly modified by age.[16, 19, 43, 51]

However, we found that the dominant factors contributing to patients' health trajectories were conditions present prior to admission. This finding is in accord with prior suggestions that acute severity of illness only partially predicts patients facing adverse posthospital sequelae.[23, 41, 52] Among sepsis patients, prior work demonstrates that inadequate consideration for presepsis level of function and utilization can result in an overestimation of the impact of sepsis on postdischarge health.[52, 53] Further, we found that the need for intensive care was not independently associated with an increased risk of high postsepsis utilization after adjusting for illness severity, a finding also seen in prior studies.[17, 23, 38, 51]

Taken together, our findings might suggest that an optimal approach to posthospital care in sepsis should focus on treatment approaches that address disease‐specific problems within the much larger context of common hospital risks. However, further study is necessary to clearly define the mechanisms by which age, severity of illness, and intensive care affect subsequent healthcare utilization. Furthermore, sepsis patients are a heterogeneous population in terms of severity of illness, site and pathogen of infection, and underlying comorbidity whose posthospital course remains incompletely characterized, limiting our ability to draw strong inferences.

These results should be interpreted in light of the study's limitations. First, our cohort included patients with healthcare insurance within a community‐based healthcare system. Care within the KPNC system, which bears similarities with accountable care organizations, is enhanced through service integration and a comprehensive health information system. Although prior studies suggest that these characteristics result in improved population‐based care, it is unclear whether there is a similar impact in hospital‐based conditions such as sepsis.[54, 55] Furthermore, care within an integrated system may impact posthospital utilization patterns and could limit generalizability. However, prior studies demonstrate the similarity of KPNC members to other patients in the same region in terms of age, socioeconomics, overall health behaviors, and racial/ethnic diversity.[56] Second, our study did not characterize organ dysfunction based on diagnosis coding, a common feature of sepsis studies that lack detailed physiologic severity data.[4, 5, 6, 8, 26] Instead, we focused on using granular laboratory and vital signs data to ensure accurate risk adjustment using a validated system developed in >400,000 hospitalizations.[30] Although this method may hamper comparisons with existing studies, traditional methods of grading severity by diagnosis codes can be vulnerable to biases resulting in wide variability.[10, 23, 26, 57, 58] Nonetheless, it is likely that characterizing preexisting and acute organ dysfunction will improve risk stratification in the heterogeneous sepsis population. Third, this study did not include data regarding patients' functional status, which has been shown to strongly predict patient outcomes following hospitalization. Fourth, this study did not address the cost of care following sepsis hospitalizations.[19, 59] Finally, our study excluded patients with incomplete utilization records, a choice designed to avoid the spurious inferences that can result from such comparisons.[53]

In summary, we found that sepsis exacted a considerable toll on patients in the hospital and in the year following discharge. Sepsis patients were frequently rehospitalized within a month of discharge, and on average had a 3‐fold increase in their subsequent time spent in healthcare facilities. Although age, severity of illness, and the need for ICU care impacted postsepsis utilization, the dominant contributing factorscomorbid disease burden or presepsis utilizationwere present prior to sepsis hospitalization. Early readmission patterns in sepsis appeared similar to those seen in other important hospital conditions, suggesting a role for shared posthospital, rather than just postsepsis, care approaches.

Disclosures

The funding for this study was provided by The Permanente Medical Group, Inc. and Kaiser Foundation Hospitals. The authors have no conflict of interests to disclose relevant to this article.

Files
References
  1. Angus DC. The lingering consequences of sepsis: a hidden public health disaster? JAMA. 2010;304(16):18331834.
  2. Dellinger RP, Levy MM, Rhodes A, et al.; Surviving Sepsis Campaign Guidelines Committee including the Pediatric Subgroup. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2012. Crit Care Med. 2013;41(2):580637.
  3. Pfuntner A, Wier LM, Steiner C. Costs for hospital stays in the United States, 2010. HCUP statistical brief #16. January 2013. Rockville, MD: Agency for Healthcare Research and Quality; 2013. Available at: http://www.hcup‐us.ahrq.gov/reports/statbriefs/sb146.pdf. Accessed October 1, 2013.
  4. Martin GS, Mannino DM, Eaton S, Moss M. The epidemiology of sepsis in the United States from 1979 through 2000. N Engl J Med. 2003;348(16):15461554.
  5. Angus DC, Linde‐Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med. 2001;29(7):13031310.
  6. Dombrovskiy VY, Martin AA, Sunderram J, Paz HL. Rapid increase in hospitalization and mortality rates for severe sepsis in the United States: a trend analysis from 1993 to 2003. Crit Care Med. 2007;35(5):12441250.
  7. Elixhauser A, Friedman B, Stranges E. Septicemia in U.S. hospitals, 2009. HCUP statistical brief #122. October 2011. Rockville, MD: Agency for Healthcare Research and Quality; 2011. Available at: http://www.hcup‐us.ahrq.gov/reports/statbriefs/sb122.pdf. Accessed October 1, 2013.
  8. Lagu T, Rothberg MB, Shieh MS, Pekow PS, Steingrub JS, Lindenauer PK. Hospitalizations, costs, and outcomes of severe sepsis in the United States 2003 to 2007. Crit Care Med. 2012;40(3):754761.
  9. Iwashyna TJ, Cooke CR, Wunsch H, Kahn JM. Population burden of long‐term survivorship after severe sepsis in older Americans. J Am Geriatr Soc. 2012;60(6):10701077.
  10. Gaieski DF, Edwards JM, Kallan MJ, Carr BG. Benchmarking the incidence and mortality of severe sepsis in the United States. Crit Care Med. 2013;41(5):11671174.
  11. Levy MM, Artigas A, Phillips GS, et al. Outcomes of the Surviving Sepsis Campaign in intensive care units in the USA and Europe: a prospective cohort study. Lancet Infect Dis. 2012;12(12):919924.
  12. Townsend SR, Schorr C, Levy MM, Dellinger RP. Reducing mortality in severe sepsis: the Surviving Sepsis Campaign. Clin Chest Med. 2008;29(4):721733, x.
  13. Rivers E, Nguyen B, Havstad S, et al.; Early Goal‐Directed Therapy Collaborative Group. Early goal‐directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001;345(19):13681377.
  14. Iwashyna TJ, Ely EW, Smith DM, Langa KM. Long‐term cognitive impairment and functional disability among survivors of severe sepsis. JAMA. 2010;304(16):17871794.
  15. Winters BD, Eberlein M, Leung J, Needham DM, Pronovost PJ, Sevransky JE. Long‐term mortality and quality of life in sepsis: a systematic review. Crit Care Med. 2010;38(5):12761283.
  16. Cuthbertson BH, Elders A, Hall S, et al.; the Scottish Critical Care Trials Group and the Scottish Intensive Care Society Audit Group. Mortality and quality of life in the five years after severe sepsis. Crit Care. 2013;17(2):R70.
  17. Prescott HC, Langa KM, Liu V, Escobar GJ, Iwashyna TJ. Post‐Discharge Health Care Use Is Markedly Higher in Survivors of Severe Sepsis. Am J Respir Crit Care Med 2013;187:A1573.
  18. Perl TM, Dvorak L, Hwang T, Wenzel RP. Long‐term survival and function after suspected gram‐negative sepsis. JAMA. 1995;274(4):338345.
  19. Weycker D, Akhras KS, Edelsberg J, Angus DC, Oster G. Long‐term mortality and medical care charges in patients with severe sepsis. Crit Care Med. 2003;31(9):23162323.
  20. Dharmarajan K, Hsieh AF, Lin Z, et al. Diagnoses and timing of 30‐day readmissions after hospitalization for heart failure, acute myocardial infarction, or pneumonia. JAMA. 2013;309(4):355363.
  21. Gwadry‐Sridhar FH, Flintoft V, Lee DS, Lee H, Guyatt GH. A systematic review and meta‐analysis of studies comparing readmission rates and mortality rates in patients with heart failure. Arch Intern Med. 2004;164(21):23152320.
  22. Gheorghiade M, Braunwald E. Hospitalizations for heart failure in the United States—a sign of hope. JAMA. 2011;306(15):17051706.
  23. Kansagara D, Englander H, Salanitro A, et al. Risk prediction models for hospital readmission: a systematic review. JAMA. 2011;306(15):16881698.
  24. Iwashyna TJ, Odden AJ. Sepsis after Scotland: enough with the averages, show us the effect modifiers. Crit Care. 2013;17(3):148.
  25. Whippy A, Skeath M, Crawford B, et al. Kaiser Permanente's performance improvement system, part 3: multisite improvements in care for patients with sepsis. Jt Comm J Qual Patient Saf. 2011;37(11): 483493.
  26. Iwashyna TJ, Odden A, Rohde J, et al. Identifying patients with severe sepsis using administrative claims: patient‐level validation of the Angus implementation of the International Consensus Conference Definition of Severe Sepsis [published online ahead of print September 18, 2012]. Med Care. doi: 10.1097/MLR.0b013e318268ac86. Epub ahead of print.
  27. Selby JV. Linking automated databases for research in managed care settings. Ann Intern Med. 1997;127(8 pt 2):719724.
  28. Escobar GJ, Greene JD, Scheirer P, Gardner MN, Draper D, Kipnis P. Risk‐adjusting hospital inpatient mortality using automated inpatient, outpatient, and laboratory databases. Med Care. 2008;46(3):232239.
  29. Liu V, Turk BJ, Ragins AI, Kipnis P, Escobar GJ. An electronic Simplified Acute Physiology Score‐based risk adjustment score for critical illness in an integrated healthcare system. Crit Care Med. 2013;41(1):4148.
  30. Escobar GJ, Gardner MN, Greene JD, Draper D, Kipnis P. Risk‐adjusting hospital mortality using a comprehensive electronic record in an integrated health care delivery system. Med Care. 2013;51(5):446453.
  31. Escobar GJ, LaGuardia JC, Turk BJ, Ragins A, Kipnis P, Draper D. Early detection of impending physiologic deterioration among patients who are not in intensive care: development of predictive models using data from an automated electronic medical record. J Hosp Med. 2012;7(5):388395.
  32. Walraven C, Escobar GJ, Greene JD, Forster AJ. The Kaiser Permanente inpatient risk adjustment methodology was valid in an external patient population. J Clin Epidemiol. 2009;63(7):798803.
  33. Cowen ME, Dusseau DJ, Toth BG, Guisinger C, Zodet MW, Shyr Y. Casemix adjustment of managed care claims data using the clinical classification for health policy research method. Med Care. 1998;36(7):11081113.
  34. Agency for Healthcare Research and Quality Healthcare Cost and Utilization Project. Clinical Classifications Software (CCS) for ICD‐9‐CM Fact Sheet. Available at: http://www.hcup‐us.ahrq.gov/toolssoftware/ccs/ccsfactsheet.jsp. Accessed January 20, 2013.
  35. Fine JP, Gray RJ. A proportional hazards model for the subdistribution of a competing risk. J Am Stat Assoc. 1997;94(446):496509.
  36. Braun L, Riedel AA, Cooper LM. Severe sepsis in managed care: analysis of incidence, one‐year mortality, and associated costs of care. J Manag Care Pharm. 2004;10(6):521530.
  37. Lee H, Doig CJ, Ghali WA, Donaldson C, Johnson D, Manns B. Detailed cost analysis of care for survivors of severe sepsis. Crit Care Med. 2004;32(4):981985.
  38. Rico Crescencio JC, Leu M, Balaventakesh B, Loganathan R, et al. Readmissions among patients with severe sepsis/septic shock among inner‐city minority New Yorkers. Chest. 2012;142:286A.
  39. Czaja AS, Zimmerman JJ, Nathens AB. Readmission and late mortality after pediatric severe sepsis. Pediatrics. 2009;123(3):849857.
  40. Jencks SF, Williams MV, Coleman EA. Rehospitalizations among patients in the Medicare fee‐for‐service program. N Engl J Med. 2009;360(14):14181428.
  41. Krumholz HM. Post‐hospital syndrome—an acquired, transient condition of generalized risk. N Engl J Med. 2013;368(2):100102.
  42. Bone RC, Balk RA, Cerra FB, et al. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. Chest. 1992;101(6):16441655.
  43. Martin GS, Mannino DM, Moss M. The effect of age on the development and outcome of adult sepsis. Crit Care Med. 2006;34(1):1521.
  44. Pinsky MR, Matuschak GM. Multiple systems organ failure: failure of host defense homeostasis. Crit Care Clin. 1989;5(2):199220.
  45. Remick DG. Pathophysiology of sepsis. Am J Pathol. 2007;170(5):14351444.
  46. Angus DC, Carlet J. Surviving intensive care: a report from the 2002 Brussels Roundtable. Intensive Care Med. 2003;29(3):368377.
  47. Siami S, Annane D, Sharshar T. The encephalopathy in sepsis. Crit Care Clin. 2008;24(1):6782, viii.
  48. Gofton TE, Young GB. Sepsis‐associated encephalopathy. Nat Rev Neurol. 2012;8(10):557566.
  49. Needham DM, Davidson J, Cohen H, et al. Improving long‐term outcomes after discharge from intensive care unit: report from a stakeholders' conference. Crit Care Med. 2012;40(2):502509.
  50. Liu V, Turk BJ, Rizk NW, Kipnis P, Escobar GJ. The association between sepsis and potential medical injury among hospitalized patients. Chest. 2012;142(3):606613.
  51. Wunsch H, Guerra C, Barnato AE, Angus DC, Li G, Linde‐Zwirble WT. Three‐year outcomes for Medicare beneficiaries who survive intensive care. JAMA. 2010;303(9):849856.
  52. Clermont G, Angus DC, Linde‐Zwirble WT, Griffin MF, Fine MJ, Pinsky MR. Does acute organ dysfunction predict patient‐centered outcomes? Chest. 2002;121(6):19631971.
  53. Iwashyna TJ, Netzer G, Langa KM, Cigolle C. Spurious inferences about long‐term outcomes: the case of severe sepsis and geriatric conditions. Am J Respir Crit Care Med. 2012;185(8):835841.
  54. Yeh RW, Sidney S, Chandra M, Sorel M, Selby JV, Go AS. Population trends in the incidence and outcomes of acute myocardial infarction. N Engl J Med. 2010;362(23):21552165.
  55. Reed M, Huang J, Graetz I, et al., Outpatient electronic health records and the clinical care and outcomes of patients with diabetes mellitus. Ann Intern Med. 2012;157(7):482489.
  56. Gordon NP. Similarity of the adult Kaiser Permanente membership in Northern California to the insured and general population in Northern California: statistics from the 2009 California Health Interview Survey. Internal Division of Research Report. Oakland, CA: Kaiser Permanente Division of Research; January 24, 2012. Available at: http://www.dor.kaiser.org/external/chis_non_kp_2009. Accessed January 20, 2013.
  57. Lindenauer PK, Lagu T, Shieh MS, Pekow PS, Rothberg MB. Association of diagnostic coding with trends in hospitalizations and mortality of patients with pneumonia, 2003–2009. JAMA. 2012;307(13):14051413.
  58. Sarrazin MS, Rosenthal GE. Finding pure and simple truths with administrative data. JAMA. 2012;307(13):14331435.
  59. Kahn JM, Rubenfeld GD, Rohrbach J, Fuchs BD. Cost savings attributable to reductions in intensive care unit length of stay for mechanically ventilated patients. Med Care. 2008;46(12):12261233.
Article PDF
Issue
Journal of Hospital Medicine - 9(8)
Page Number
502-507
Sections
Files
Files
Article PDF
Article PDF

Sepsis, the systemic inflammatory response to infection, is a major public health concern.[1] Worldwide, sepsis affects millions of hospitalized patients each year.[2] In the United States, it is the single most expensive cause of hospitalization.[3, 4, 5, 6] Multiple studies suggest that sepsis hospitalizations are also increasing in frequency.[3, 6, 7, 8, 9, 10]

Improved sepsis care has dramatically reduced in‐hospital mortality.[11, 12, 13] However, the result is a growing number of sepsis survivors discharged with new disability.[1, 9, 14, 15, 16] Despite being a common cause of hospitalization, little is known about how to improve postsepsis care.[15, 17, 18, 19] This contrasts with other, often less common, hospital conditions for which many studies evaluating readmission and postdischarge care are available.[20, 21, 22, 23] Identifying the factors contributing to high utilization could lend critical insight to designing interventions that improve long‐term sepsis outcomes.[24]

We conducted a retrospective study of sepsis patients discharged in 2010 at Kaiser Permanente Northern California (KPNC) to describe their posthospital trajectories. In this diverse community‐hospitalbased population, we sought to identify the patient‐level factors that impact the posthospital healthcare utilization of sepsis survivors.

METHODS

This study was approved by the KPNC institutional review board.

Setting

We conducted a retrospective study of sepsis patients aged 18 years admitted to KPNC hospitals in 2010 whose hospitalizations included an overnight stay, began in a KPNC hospital, and was not for peripartum care. We identified sepsis based on International Classification of Disease, 9th Edition principal diagnosis codes used at KPNC, which capture a similar population to that from the Angus definition (see Supporting Appendix, Table 1, in the online version of this article).[7, 25, 26] We denoted each patient's first sepsis hospitalization as the index event.

Baseline Patient and Hospital Characteristics of Patients With Sepsis Hospitalizations, Stratified by Predicted Hospital Mortality Quartiles
 Predicted Hospital Mortality Quartiles (n=1,586 for Each Group)
Overall1234
  • NOTE: Data are presented as mean (standard deviation) or number (frequency). Abbreviations: COPS2: Comorbidity Point Score, version 2; ICU: intensive care unit; LAPS2: Laboratory Acute Physiology Score, version 2.

Baseline     
Age, y, mean71.915.762.317.871.214.275.612.778.612.2
By age category     
<45 years410 (6.5)290 (18.3)71 (4.5)25 (1.6)24 (1.5)
4564 years1,425 (22.5)539 (34.0)407 (25.7)292 (18.4)187 (11.8)
6584 years3,036 (47.9)601 (37.9)814 (51.3)832 (52.5)789 (49.8)
85 years1,473 (23.2)156 (9.8)294 (18.5)437 (27.6)586 (37.0)
Male2,973 (46.9)686 (43.3)792 (49.9)750 (47.3)745 (47.0)
Comorbidity     
COPS2 score51432627544164456245
Charlson score2.01.51.31.22.11.42.41.52.41.5
Hospitalization     
LAPS2 severity score10742662190201142315928
Admitted via emergency department6,176 (97.4)1,522 (96.0)1,537 (96.9)1,539 (97.0)1,578 (99.5)
Direct ICU admission1,730 (27.3)169 (10.7)309 (19.5)482 (30.4)770 (48.6)
ICU transfer, at any time2,206 (34.8)279 (17.6)474 (29.9)603 (38.0)850 (53.6)
Hospital mortality     
Predicted, %10.513.81.00.13.40.18.32.329.415.8
Observed865 (13.6)26 (1.6)86 (5.4)197 (12.4)556 (35.1)
Hospital length of stay, d5.86.44.43.85.45.76.68.06.66.9

We linked hospital episodes with existing KPNC inpatient databases to describe patient characteristics.[27, 28, 29, 30] We categorized patients by age (45, 4564, 6584, and 85 years) and used Charlson comorbidity scores and Comorbidity Point Scores 2 (COPS2) to quantify comorbid illness burden.[28, 30, 31, 32] We quantified acute severity of illness using the Laboratory Acute Physiology Scores 2 (LAPS2), which incorporates 15 laboratory values, 5 vital signs, and mental status prior to hospital admission (including emergency department data).[30] Both the COPS2 and LAPS2 are independently associated with hospital mortality.[30, 31] We also generated a summary predicted risk of hospital mortality based on a validated risk model and stratified patients by quartiles.[30] We determined whether patients were admitted to the intensive care unit (ICU).[29]

Outcomes

We used patients' health insurance administrative data to quantify postsepsis utilization. Within the KPNC integrated healthcare delivery system, uniform information systems capture all healthcare utilization of insured members including services received at non‐KPNC facilities.[28, 30] We collected utilization data from the year preceding index hospitalization (presepsis) and for the year after discharge date or until death (postsepsis). We ascertained mortality after discharge from KPNC medical records as well as state and national death record files.

We grouped services into facility‐based or outpatient categories. Facility‐based services included inpatient admission, subacute nursing facility or long‐term acute care, and emergency department visits. We grouped outpatient services as hospice, home health, outpatient surgery, clinic, or other (eg, laboratory). We excluded patients whose utilization records were not available over the full presepsis interval. Among these 1211 patients (12.5% of total), the median length of records prior to index hospitalization was 67 days, with a mean value of 117 days.

Statistical Analysis

Our primary outcomes of interest were hospital readmission and utilization in the year after sepsis. We defined a hospital readmission as any inpatient stay after the index hospitalization grouped within 1‐, 3‐, 6‐, and 12‐month intervals. We designated those within 30 days as an early readmission. We grouped readmission principal diagnoses, where available, by the 17 Healthcare Cost and Utilization Project (HCUP) Clinical Classifications Software multilevel categories with sepsis in the infectious category.[33, 34] In secondary analysis, we also designated other infectious diagnoses not included in the standard HCUP infection category (eg, pneumonia, meningitis, cellulitis) as infection (see Supporting Appendix in the online version of this article).

We quantified outpatient utilization based on the number of episodes recorded. For facility‐based utilization, we calculated patient length of stay intervals. Because patients surviving their index hospitalization might not survive the entire year after discharge, we also calculated utilization adjusted for patients' living days by dividing the total facility length of stay by the number of living days after discharge.

Continuous data are represented as mean (standard deviation [SD]) and categorical data as number (%). We compared groups with analysis of variance or 2 testing. We estimated survival with Kaplan‐Meier analysis (95% confidence interval) and compared groups with log‐rank testing. We compared pre‐ and postsepsis healthcare utilization with paired t tests.

To identify factors associated with early readmission after sepsis, we used a competing risks regression model.[35] The dependent variable was time to readmission and the competing hazard was death within 30 days without early readmission; patients without early readmission or death were censored at 30 days. The independent variables included age, gender, comorbid disease burden (COPS2), acute severity of illness (LAPS2), any use of intensive care, total index length of stay, and percentage of living days prior to sepsis hospitalization spent utilizing facility‐based care. We also used logistic regression to quantify the association between these variables and high postsepsis utilization; we defined high utilization as 15% of living days postsepsis spent in facility‐based care. For each model, we quantified the relative contribution of each predictor variable to model performance based on differences in log likelihoods.[35, 36] We conducted analyses using STATA/SE version 11.2 (StataCorp, College Station, TX) and considered a P value of <0.05 to be significant.

RESULTS

Cohort Characteristics

Our study cohort included 6344 patients with index sepsis hospitalizations in 2010 (Table 1). Mean age was 72 (SD 16) years including 1835 (28.9%) patients aged <65 years. During index hospitalizations, higher predicted mortality was associated with increased age, comorbid disease burden, and severity of illness (P<0.01 for each). ICU utilization increased across predicted mortality strata; for example, 10.7% of patients in the lowest quartile were admitted directly to the ICU compared with 48.6% in the highest quartile. In the highest quartile, observed mortality was 35.1%.

One‐Year Survival

A total of 5479 (86.4%) patients survived their index sepsis hospitalization. Overall survival after living discharge was 90.5% (range, 89.6%91.2%) at 30 days and 71.3% (range, 70.1%72.5%) at 1 year. However, postsepsis survival was strongly modified by age (Figure 1). For example, 1‐year survival was 94.1% (range, 91.2%96.0%) for <45 year olds and 54.4% (range, 51.5%57.2%) for 85 year olds (P<0.01). Survival was also modified by predicted mortality, however, not by ICU admission during index hospitalization (P=0.18) (see Supporting Appendix, Figure 1, in the online version of this article).

Figure 1
Kaplan‐Meier survival curves following living discharge after sepsis hospitalization, stratified by age categories.

Hospital Readmission

Overall, 978 (17.9%) patients had early readmission after index discharge (Table 2); nearly half were readmitted at least once in the year following discharge. Rehospitalization frequency was slightly lower when including patients with incomplete presepsis data (see Supporting Appendix, Table 2, in the online version of this article). The frequency of hospital readmission varied based on patient age and severity of illness. For example, 22.3% of patients in the highest predicted mortality quartile had early readmission compared with 11.6% in the lowest. The median time from discharge to early readmission was 11 days. Principal diagnoses were available for 78.6% of all readmissions (see Supporting Appendix, Table 3, in the online version of this article). Between 28.3% and 42.7% of those readmissions were for infectious diagnoses (including sepsis).

Frequency of Readmissions After Surviving Index Sepsis Hospitalization, Stratified by Predicted Mortality Quartiles
 Predicted Mortality Quartile
ReadmissionOverall1234
Within 30 days978 (17.9)158 (11.6)242 (17.7)274 (20.0)304 (22.3)
Within 90 days1,643 (30.1)276 (20.2)421 (30.8)463 (33.9)483 (35.4)
Within 180 days2,061 (37.7)368 (26.9)540 (39.5)584 (42.7)569 (41.7)
Within 365 days2,618 (47.9)498 (36.4)712 (52.1)723 (52.9)685 (50.2)
Factors Associated With Early Readmission and High Postsepsis Facility‐Based Utilization
VariableHazard Ratio for Early ReadmissionOdds Ratio for High Utilization
HR (95% CI)Relative ContributionOR (95% CI)Relative Contribution
  • NOTE: High postsepsis utilization defined as 15% of living days spent in the hospital, subacute nursing facility, or long‐term acute care. Hazard ratios are based on competing risk regression, and odds ratios are based on logistic regression including all listed variables. Relative contribution to model performance was quantified by evaluating the differences in log likelihoods based on serial inclusion or exclusion of each variable.

  • Abbreviations: CI, confidence interval; COPS2: Comorbidity Point Score, version 2; HR, hazard ratio; LAPS2: Laboratory Acute Physiology Score, version 2; OR, odds ratio.

  • P<0.01.

  • P<0.05.

Age category 1.2% 11.1%
<45 years1.00 [reference] 1.00 [reference] 
4564 years0.86 (0.64‐1.16) 2.22 (1.30‐3.83)a 
6584 years0.92 (0.69‐1.21) 3.66 (2.17‐6.18)a 
85 years0.95 (0.70‐1.28) 4.98 (2.92‐8.50)a 
Male0.99 (0.88‐1.13)0.0%0.86 (0.74‐1.00)0.1%
Severity of illness (LAPS2)1.08 (1.04‐1.12)a12.4%1.22 (1.17‐1.27)a11.3%
Comorbid illness (COPS2)1.16 (1.12‐1.19)a73.9%1.13 (1.09‐1.17)a5.9%
Intensive care1.21 (1.05‐1.40)a5.2%1.02 (0.85‐1.21)0.0%
Hospital length of stay, day1.01 (1.001.02)b6.6%1.04 (1.03‐1.06)a6.9%
Prior utilization, per 10%0.98 (0.95‐1.02)0.7%1.74 (1.61‐1.88)a64.2%

Healthcare Utilization

The unadjusted difference between pre‐ and postsepsis healthcare utilization among survivors was statistically significant for most categories but of modest clinical significance (see Supporting Appendix, Table 4, in the online version of this article). For example, the mean number of presepsis hospitalizations was 0.9 (1.4) compared to 1.0 (1.5) postsepsis (P<0.01). After adjusting for postsepsis living days, the difference in utilization was more pronounced (Figure 2). Overall, there was roughly a 3‐fold increase in the mean percentage of living days spent in facility‐based care between patients' pre‐ and postsepsis phases (5.3% vs 15.0%, P<0.01). Again, the difference was strongly modified by age. For patients aged <45 years, the difference was not statistically significant (2.4% vs 2.9%, P=0.32), whereas for those aged 65 years, it was highly significant (6.2% vs 18.5%, P<0.01).

Figure 2
Percentage of living days spent in facility‐based care, including inpatient hospitalization, subacute nursing facility, and long‐term acute care before and after index sepsis hospitalization.

Factors associated with early readmission included severity of illness, comorbid disease burden, index hospital length of stay, and intensive care (Table 3). However, the dominant factor explaining variation in the risk of early readmission was patients' prior comorbid disease burden (73.9%), followed by acute severity of illness (12.4%), total hospital length of stay (6.6%), and the need for intensive care (5.2%). Severity of illness and age were also significantly associated with higher odds of high postsepsis utilization; however, the dominant factor contributing to this risk was a history of high presepsis utilization (64.2%).

DISCUSSION

In this population‐based study in a community healthcare system, the impact of sepsis extended well beyond the initial hospitalization. One in 6 sepsis survivors was readmitted within 30 days, and roughly half were readmitted within 1 year. Fewer than half of rehospitalizations were for sepsis. Patients had a 3‐fold increase in the percentage of living days spent in hospitals or care facilities after sepsis hospitalization. Although age and acute severity of illness strongly modified healthcare utilization and mortality after sepsis, the dominant factors contributing to early readmission and high utilization ratescomorbid disease burden and presepsis healthcare utilizationwere present prior to hospitalization.

Sepsis is the single most expensive cause of US hospitalizations.[3, 4, 5] Despite its prevalence, there are little contemporary data identifying factors that impact healthcare utilization among sepsis survivors.[9, 16, 17, 19, 24, 36, 37] Recently, Prescott and others found that in Medicare beneficiaries, following severe sepsis, healthcare utilization was markedly increased.[17] More than one‐quarter of survivors were readmitted within 30 days, and 63.8% were readmitted within a year. Severe sepsis survivors also spent an average of 26% of their living days in a healthcare facility, a nearly 4‐fold increase compared to their presepsis phase. The current study included a population with a broader age and severity range; however, in a similar subgroup of patients, for those aged 65 years within the highest predicted mortality quartile, the frequency of readmission was similar. These findings are concordant with those from prior studies.[17, 19, 36, 37]

Among sepsis survivors, most readmissions were not for sepsis or infectious diagnoses, which is a novel finding with implications for designing approaches to reduce rehospitalization. The pattern in sepsis is similar to that seen in other common and costly hospital conditions.[17, 20, 23, 38, 39, 40] For example, between 18% and 25% of Medicare beneficiaries hospitalized for heart failure, acute myocardial infarction, or pneumonia were readmitted within 30 days; fewer than one‐third had the same diagnosis.[20] The timing of readmission in our sepsis cohort was also similar to that seen in other conditions.[20] For example, the median time of early readmission in this study was 11 days; it was between 10 and 12 days for patients with heart failure, pneumonia, and myocardial infarction.[20]

Krumholz and others suggest that the pattern of early rehospitalization after common acute conditions reflects a posthospital syndromean acquired, transient period of vulnerabilitythat could be the byproduct of common hospital factors.[20, 41] Such universal impairments might result from new physical and neurocognitive disability, nutritional deficiency, and sleep deprivation or delirium, among others.[41] If this construct were also true in sepsis, it could have important implications on the design of postsepsis care. However, prior studies suggest that sepsis patients may be particularly vulnerable to the sequelae of hospitalization.[2, 42, 43, 44, 45]

Among Medicare beneficiaries, Iwashyna and others reported that hospitalizations for severe sepsis resulted in significant increases in physical limitations and moderate to severe cognitive impairment.[1, 14, 46] Encephalopathy, sleep deprivation, and delirium are also frequently seen in sepsis patients.[47, 48] Furthermore, sepsis patients frequently need intensive care, which is also associated with increased patient disability and injury.[16, 46, 49, 50] We found that severity of illness and the need for intensive care were both predictive of the need for early readmission following sepsis. We also confirmed the results of prior studies suggesting that sepsis outcomes are strongly modified by age.[16, 19, 43, 51]

However, we found that the dominant factors contributing to patients' health trajectories were conditions present prior to admission. This finding is in accord with prior suggestions that acute severity of illness only partially predicts patients facing adverse posthospital sequelae.[23, 41, 52] Among sepsis patients, prior work demonstrates that inadequate consideration for presepsis level of function and utilization can result in an overestimation of the impact of sepsis on postdischarge health.[52, 53] Further, we found that the need for intensive care was not independently associated with an increased risk of high postsepsis utilization after adjusting for illness severity, a finding also seen in prior studies.[17, 23, 38, 51]

Taken together, our findings might suggest that an optimal approach to posthospital care in sepsis should focus on treatment approaches that address disease‐specific problems within the much larger context of common hospital risks. However, further study is necessary to clearly define the mechanisms by which age, severity of illness, and intensive care affect subsequent healthcare utilization. Furthermore, sepsis patients are a heterogeneous population in terms of severity of illness, site and pathogen of infection, and underlying comorbidity whose posthospital course remains incompletely characterized, limiting our ability to draw strong inferences.

These results should be interpreted in light of the study's limitations. First, our cohort included patients with healthcare insurance within a community‐based healthcare system. Care within the KPNC system, which bears similarities with accountable care organizations, is enhanced through service integration and a comprehensive health information system. Although prior studies suggest that these characteristics result in improved population‐based care, it is unclear whether there is a similar impact in hospital‐based conditions such as sepsis.[54, 55] Furthermore, care within an integrated system may impact posthospital utilization patterns and could limit generalizability. However, prior studies demonstrate the similarity of KPNC members to other patients in the same region in terms of age, socioeconomics, overall health behaviors, and racial/ethnic diversity.[56] Second, our study did not characterize organ dysfunction based on diagnosis coding, a common feature of sepsis studies that lack detailed physiologic severity data.[4, 5, 6, 8, 26] Instead, we focused on using granular laboratory and vital signs data to ensure accurate risk adjustment using a validated system developed in >400,000 hospitalizations.[30] Although this method may hamper comparisons with existing studies, traditional methods of grading severity by diagnosis codes can be vulnerable to biases resulting in wide variability.[10, 23, 26, 57, 58] Nonetheless, it is likely that characterizing preexisting and acute organ dysfunction will improve risk stratification in the heterogeneous sepsis population. Third, this study did not include data regarding patients' functional status, which has been shown to strongly predict patient outcomes following hospitalization. Fourth, this study did not address the cost of care following sepsis hospitalizations.[19, 59] Finally, our study excluded patients with incomplete utilization records, a choice designed to avoid the spurious inferences that can result from such comparisons.[53]

In summary, we found that sepsis exacted a considerable toll on patients in the hospital and in the year following discharge. Sepsis patients were frequently rehospitalized within a month of discharge, and on average had a 3‐fold increase in their subsequent time spent in healthcare facilities. Although age, severity of illness, and the need for ICU care impacted postsepsis utilization, the dominant contributing factorscomorbid disease burden or presepsis utilizationwere present prior to sepsis hospitalization. Early readmission patterns in sepsis appeared similar to those seen in other important hospital conditions, suggesting a role for shared posthospital, rather than just postsepsis, care approaches.

Disclosures

The funding for this study was provided by The Permanente Medical Group, Inc. and Kaiser Foundation Hospitals. The authors have no conflict of interests to disclose relevant to this article.

Sepsis, the systemic inflammatory response to infection, is a major public health concern.[1] Worldwide, sepsis affects millions of hospitalized patients each year.[2] In the United States, it is the single most expensive cause of hospitalization.[3, 4, 5, 6] Multiple studies suggest that sepsis hospitalizations are also increasing in frequency.[3, 6, 7, 8, 9, 10]

Improved sepsis care has dramatically reduced in‐hospital mortality.[11, 12, 13] However, the result is a growing number of sepsis survivors discharged with new disability.[1, 9, 14, 15, 16] Despite being a common cause of hospitalization, little is known about how to improve postsepsis care.[15, 17, 18, 19] This contrasts with other, often less common, hospital conditions for which many studies evaluating readmission and postdischarge care are available.[20, 21, 22, 23] Identifying the factors contributing to high utilization could lend critical insight to designing interventions that improve long‐term sepsis outcomes.[24]

We conducted a retrospective study of sepsis patients discharged in 2010 at Kaiser Permanente Northern California (KPNC) to describe their posthospital trajectories. In this diverse community‐hospitalbased population, we sought to identify the patient‐level factors that impact the posthospital healthcare utilization of sepsis survivors.

METHODS

This study was approved by the KPNC institutional review board.

Setting

We conducted a retrospective study of sepsis patients aged 18 years admitted to KPNC hospitals in 2010 whose hospitalizations included an overnight stay, began in a KPNC hospital, and was not for peripartum care. We identified sepsis based on International Classification of Disease, 9th Edition principal diagnosis codes used at KPNC, which capture a similar population to that from the Angus definition (see Supporting Appendix, Table 1, in the online version of this article).[7, 25, 26] We denoted each patient's first sepsis hospitalization as the index event.

Baseline Patient and Hospital Characteristics of Patients With Sepsis Hospitalizations, Stratified by Predicted Hospital Mortality Quartiles
 Predicted Hospital Mortality Quartiles (n=1,586 for Each Group)
Overall1234
  • NOTE: Data are presented as mean (standard deviation) or number (frequency). Abbreviations: COPS2: Comorbidity Point Score, version 2; ICU: intensive care unit; LAPS2: Laboratory Acute Physiology Score, version 2.

Baseline     
Age, y, mean71.915.762.317.871.214.275.612.778.612.2
By age category     
<45 years410 (6.5)290 (18.3)71 (4.5)25 (1.6)24 (1.5)
4564 years1,425 (22.5)539 (34.0)407 (25.7)292 (18.4)187 (11.8)
6584 years3,036 (47.9)601 (37.9)814 (51.3)832 (52.5)789 (49.8)
85 years1,473 (23.2)156 (9.8)294 (18.5)437 (27.6)586 (37.0)
Male2,973 (46.9)686 (43.3)792 (49.9)750 (47.3)745 (47.0)
Comorbidity     
COPS2 score51432627544164456245
Charlson score2.01.51.31.22.11.42.41.52.41.5
Hospitalization     
LAPS2 severity score10742662190201142315928
Admitted via emergency department6,176 (97.4)1,522 (96.0)1,537 (96.9)1,539 (97.0)1,578 (99.5)
Direct ICU admission1,730 (27.3)169 (10.7)309 (19.5)482 (30.4)770 (48.6)
ICU transfer, at any time2,206 (34.8)279 (17.6)474 (29.9)603 (38.0)850 (53.6)
Hospital mortality     
Predicted, %10.513.81.00.13.40.18.32.329.415.8
Observed865 (13.6)26 (1.6)86 (5.4)197 (12.4)556 (35.1)
Hospital length of stay, d5.86.44.43.85.45.76.68.06.66.9

We linked hospital episodes with existing KPNC inpatient databases to describe patient characteristics.[27, 28, 29, 30] We categorized patients by age (45, 4564, 6584, and 85 years) and used Charlson comorbidity scores and Comorbidity Point Scores 2 (COPS2) to quantify comorbid illness burden.[28, 30, 31, 32] We quantified acute severity of illness using the Laboratory Acute Physiology Scores 2 (LAPS2), which incorporates 15 laboratory values, 5 vital signs, and mental status prior to hospital admission (including emergency department data).[30] Both the COPS2 and LAPS2 are independently associated with hospital mortality.[30, 31] We also generated a summary predicted risk of hospital mortality based on a validated risk model and stratified patients by quartiles.[30] We determined whether patients were admitted to the intensive care unit (ICU).[29]

Outcomes

We used patients' health insurance administrative data to quantify postsepsis utilization. Within the KPNC integrated healthcare delivery system, uniform information systems capture all healthcare utilization of insured members including services received at non‐KPNC facilities.[28, 30] We collected utilization data from the year preceding index hospitalization (presepsis) and for the year after discharge date or until death (postsepsis). We ascertained mortality after discharge from KPNC medical records as well as state and national death record files.

We grouped services into facility‐based or outpatient categories. Facility‐based services included inpatient admission, subacute nursing facility or long‐term acute care, and emergency department visits. We grouped outpatient services as hospice, home health, outpatient surgery, clinic, or other (eg, laboratory). We excluded patients whose utilization records were not available over the full presepsis interval. Among these 1211 patients (12.5% of total), the median length of records prior to index hospitalization was 67 days, with a mean value of 117 days.

Statistical Analysis

Our primary outcomes of interest were hospital readmission and utilization in the year after sepsis. We defined a hospital readmission as any inpatient stay after the index hospitalization grouped within 1‐, 3‐, 6‐, and 12‐month intervals. We designated those within 30 days as an early readmission. We grouped readmission principal diagnoses, where available, by the 17 Healthcare Cost and Utilization Project (HCUP) Clinical Classifications Software multilevel categories with sepsis in the infectious category.[33, 34] In secondary analysis, we also designated other infectious diagnoses not included in the standard HCUP infection category (eg, pneumonia, meningitis, cellulitis) as infection (see Supporting Appendix in the online version of this article).

We quantified outpatient utilization based on the number of episodes recorded. For facility‐based utilization, we calculated patient length of stay intervals. Because patients surviving their index hospitalization might not survive the entire year after discharge, we also calculated utilization adjusted for patients' living days by dividing the total facility length of stay by the number of living days after discharge.

Continuous data are represented as mean (standard deviation [SD]) and categorical data as number (%). We compared groups with analysis of variance or 2 testing. We estimated survival with Kaplan‐Meier analysis (95% confidence interval) and compared groups with log‐rank testing. We compared pre‐ and postsepsis healthcare utilization with paired t tests.

To identify factors associated with early readmission after sepsis, we used a competing risks regression model.[35] The dependent variable was time to readmission and the competing hazard was death within 30 days without early readmission; patients without early readmission or death were censored at 30 days. The independent variables included age, gender, comorbid disease burden (COPS2), acute severity of illness (LAPS2), any use of intensive care, total index length of stay, and percentage of living days prior to sepsis hospitalization spent utilizing facility‐based care. We also used logistic regression to quantify the association between these variables and high postsepsis utilization; we defined high utilization as 15% of living days postsepsis spent in facility‐based care. For each model, we quantified the relative contribution of each predictor variable to model performance based on differences in log likelihoods.[35, 36] We conducted analyses using STATA/SE version 11.2 (StataCorp, College Station, TX) and considered a P value of <0.05 to be significant.

RESULTS

Cohort Characteristics

Our study cohort included 6344 patients with index sepsis hospitalizations in 2010 (Table 1). Mean age was 72 (SD 16) years including 1835 (28.9%) patients aged <65 years. During index hospitalizations, higher predicted mortality was associated with increased age, comorbid disease burden, and severity of illness (P<0.01 for each). ICU utilization increased across predicted mortality strata; for example, 10.7% of patients in the lowest quartile were admitted directly to the ICU compared with 48.6% in the highest quartile. In the highest quartile, observed mortality was 35.1%.

One‐Year Survival

A total of 5479 (86.4%) patients survived their index sepsis hospitalization. Overall survival after living discharge was 90.5% (range, 89.6%91.2%) at 30 days and 71.3% (range, 70.1%72.5%) at 1 year. However, postsepsis survival was strongly modified by age (Figure 1). For example, 1‐year survival was 94.1% (range, 91.2%96.0%) for <45 year olds and 54.4% (range, 51.5%57.2%) for 85 year olds (P<0.01). Survival was also modified by predicted mortality, however, not by ICU admission during index hospitalization (P=0.18) (see Supporting Appendix, Figure 1, in the online version of this article).

Figure 1
Kaplan‐Meier survival curves following living discharge after sepsis hospitalization, stratified by age categories.

Hospital Readmission

Overall, 978 (17.9%) patients had early readmission after index discharge (Table 2); nearly half were readmitted at least once in the year following discharge. Rehospitalization frequency was slightly lower when including patients with incomplete presepsis data (see Supporting Appendix, Table 2, in the online version of this article). The frequency of hospital readmission varied based on patient age and severity of illness. For example, 22.3% of patients in the highest predicted mortality quartile had early readmission compared with 11.6% in the lowest. The median time from discharge to early readmission was 11 days. Principal diagnoses were available for 78.6% of all readmissions (see Supporting Appendix, Table 3, in the online version of this article). Between 28.3% and 42.7% of those readmissions were for infectious diagnoses (including sepsis).

Frequency of Readmissions After Surviving Index Sepsis Hospitalization, Stratified by Predicted Mortality Quartiles
 Predicted Mortality Quartile
ReadmissionOverall1234
Within 30 days978 (17.9)158 (11.6)242 (17.7)274 (20.0)304 (22.3)
Within 90 days1,643 (30.1)276 (20.2)421 (30.8)463 (33.9)483 (35.4)
Within 180 days2,061 (37.7)368 (26.9)540 (39.5)584 (42.7)569 (41.7)
Within 365 days2,618 (47.9)498 (36.4)712 (52.1)723 (52.9)685 (50.2)
Factors Associated With Early Readmission and High Postsepsis Facility‐Based Utilization
VariableHazard Ratio for Early ReadmissionOdds Ratio for High Utilization
HR (95% CI)Relative ContributionOR (95% CI)Relative Contribution
  • NOTE: High postsepsis utilization defined as 15% of living days spent in the hospital, subacute nursing facility, or long‐term acute care. Hazard ratios are based on competing risk regression, and odds ratios are based on logistic regression including all listed variables. Relative contribution to model performance was quantified by evaluating the differences in log likelihoods based on serial inclusion or exclusion of each variable.

  • Abbreviations: CI, confidence interval; COPS2: Comorbidity Point Score, version 2; HR, hazard ratio; LAPS2: Laboratory Acute Physiology Score, version 2; OR, odds ratio.

  • P<0.01.

  • P<0.05.

Age category 1.2% 11.1%
<45 years1.00 [reference] 1.00 [reference] 
4564 years0.86 (0.64‐1.16) 2.22 (1.30‐3.83)a 
6584 years0.92 (0.69‐1.21) 3.66 (2.17‐6.18)a 
85 years0.95 (0.70‐1.28) 4.98 (2.92‐8.50)a 
Male0.99 (0.88‐1.13)0.0%0.86 (0.74‐1.00)0.1%
Severity of illness (LAPS2)1.08 (1.04‐1.12)a12.4%1.22 (1.17‐1.27)a11.3%
Comorbid illness (COPS2)1.16 (1.12‐1.19)a73.9%1.13 (1.09‐1.17)a5.9%
Intensive care1.21 (1.05‐1.40)a5.2%1.02 (0.85‐1.21)0.0%
Hospital length of stay, day1.01 (1.001.02)b6.6%1.04 (1.03‐1.06)a6.9%
Prior utilization, per 10%0.98 (0.95‐1.02)0.7%1.74 (1.61‐1.88)a64.2%

Healthcare Utilization

The unadjusted difference between pre‐ and postsepsis healthcare utilization among survivors was statistically significant for most categories but of modest clinical significance (see Supporting Appendix, Table 4, in the online version of this article). For example, the mean number of presepsis hospitalizations was 0.9 (1.4) compared to 1.0 (1.5) postsepsis (P<0.01). After adjusting for postsepsis living days, the difference in utilization was more pronounced (Figure 2). Overall, there was roughly a 3‐fold increase in the mean percentage of living days spent in facility‐based care between patients' pre‐ and postsepsis phases (5.3% vs 15.0%, P<0.01). Again, the difference was strongly modified by age. For patients aged <45 years, the difference was not statistically significant (2.4% vs 2.9%, P=0.32), whereas for those aged 65 years, it was highly significant (6.2% vs 18.5%, P<0.01).

Figure 2
Percentage of living days spent in facility‐based care, including inpatient hospitalization, subacute nursing facility, and long‐term acute care before and after index sepsis hospitalization.

Factors associated with early readmission included severity of illness, comorbid disease burden, index hospital length of stay, and intensive care (Table 3). However, the dominant factor explaining variation in the risk of early readmission was patients' prior comorbid disease burden (73.9%), followed by acute severity of illness (12.4%), total hospital length of stay (6.6%), and the need for intensive care (5.2%). Severity of illness and age were also significantly associated with higher odds of high postsepsis utilization; however, the dominant factor contributing to this risk was a history of high presepsis utilization (64.2%).

DISCUSSION

In this population‐based study in a community healthcare system, the impact of sepsis extended well beyond the initial hospitalization. One in 6 sepsis survivors was readmitted within 30 days, and roughly half were readmitted within 1 year. Fewer than half of rehospitalizations were for sepsis. Patients had a 3‐fold increase in the percentage of living days spent in hospitals or care facilities after sepsis hospitalization. Although age and acute severity of illness strongly modified healthcare utilization and mortality after sepsis, the dominant factors contributing to early readmission and high utilization ratescomorbid disease burden and presepsis healthcare utilizationwere present prior to hospitalization.

Sepsis is the single most expensive cause of US hospitalizations.[3, 4, 5] Despite its prevalence, there are little contemporary data identifying factors that impact healthcare utilization among sepsis survivors.[9, 16, 17, 19, 24, 36, 37] Recently, Prescott and others found that in Medicare beneficiaries, following severe sepsis, healthcare utilization was markedly increased.[17] More than one‐quarter of survivors were readmitted within 30 days, and 63.8% were readmitted within a year. Severe sepsis survivors also spent an average of 26% of their living days in a healthcare facility, a nearly 4‐fold increase compared to their presepsis phase. The current study included a population with a broader age and severity range; however, in a similar subgroup of patients, for those aged 65 years within the highest predicted mortality quartile, the frequency of readmission was similar. These findings are concordant with those from prior studies.[17, 19, 36, 37]

Among sepsis survivors, most readmissions were not for sepsis or infectious diagnoses, which is a novel finding with implications for designing approaches to reduce rehospitalization. The pattern in sepsis is similar to that seen in other common and costly hospital conditions.[17, 20, 23, 38, 39, 40] For example, between 18% and 25% of Medicare beneficiaries hospitalized for heart failure, acute myocardial infarction, or pneumonia were readmitted within 30 days; fewer than one‐third had the same diagnosis.[20] The timing of readmission in our sepsis cohort was also similar to that seen in other conditions.[20] For example, the median time of early readmission in this study was 11 days; it was between 10 and 12 days for patients with heart failure, pneumonia, and myocardial infarction.[20]

Krumholz and others suggest that the pattern of early rehospitalization after common acute conditions reflects a posthospital syndromean acquired, transient period of vulnerabilitythat could be the byproduct of common hospital factors.[20, 41] Such universal impairments might result from new physical and neurocognitive disability, nutritional deficiency, and sleep deprivation or delirium, among others.[41] If this construct were also true in sepsis, it could have important implications on the design of postsepsis care. However, prior studies suggest that sepsis patients may be particularly vulnerable to the sequelae of hospitalization.[2, 42, 43, 44, 45]

Among Medicare beneficiaries, Iwashyna and others reported that hospitalizations for severe sepsis resulted in significant increases in physical limitations and moderate to severe cognitive impairment.[1, 14, 46] Encephalopathy, sleep deprivation, and delirium are also frequently seen in sepsis patients.[47, 48] Furthermore, sepsis patients frequently need intensive care, which is also associated with increased patient disability and injury.[16, 46, 49, 50] We found that severity of illness and the need for intensive care were both predictive of the need for early readmission following sepsis. We also confirmed the results of prior studies suggesting that sepsis outcomes are strongly modified by age.[16, 19, 43, 51]

However, we found that the dominant factors contributing to patients' health trajectories were conditions present prior to admission. This finding is in accord with prior suggestions that acute severity of illness only partially predicts patients facing adverse posthospital sequelae.[23, 41, 52] Among sepsis patients, prior work demonstrates that inadequate consideration for presepsis level of function and utilization can result in an overestimation of the impact of sepsis on postdischarge health.[52, 53] Further, we found that the need for intensive care was not independently associated with an increased risk of high postsepsis utilization after adjusting for illness severity, a finding also seen in prior studies.[17, 23, 38, 51]

Taken together, our findings might suggest that an optimal approach to posthospital care in sepsis should focus on treatment approaches that address disease‐specific problems within the much larger context of common hospital risks. However, further study is necessary to clearly define the mechanisms by which age, severity of illness, and intensive care affect subsequent healthcare utilization. Furthermore, sepsis patients are a heterogeneous population in terms of severity of illness, site and pathogen of infection, and underlying comorbidity whose posthospital course remains incompletely characterized, limiting our ability to draw strong inferences.

These results should be interpreted in light of the study's limitations. First, our cohort included patients with healthcare insurance within a community‐based healthcare system. Care within the KPNC system, which bears similarities with accountable care organizations, is enhanced through service integration and a comprehensive health information system. Although prior studies suggest that these characteristics result in improved population‐based care, it is unclear whether there is a similar impact in hospital‐based conditions such as sepsis.[54, 55] Furthermore, care within an integrated system may impact posthospital utilization patterns and could limit generalizability. However, prior studies demonstrate the similarity of KPNC members to other patients in the same region in terms of age, socioeconomics, overall health behaviors, and racial/ethnic diversity.[56] Second, our study did not characterize organ dysfunction based on diagnosis coding, a common feature of sepsis studies that lack detailed physiologic severity data.[4, 5, 6, 8, 26] Instead, we focused on using granular laboratory and vital signs data to ensure accurate risk adjustment using a validated system developed in >400,000 hospitalizations.[30] Although this method may hamper comparisons with existing studies, traditional methods of grading severity by diagnosis codes can be vulnerable to biases resulting in wide variability.[10, 23, 26, 57, 58] Nonetheless, it is likely that characterizing preexisting and acute organ dysfunction will improve risk stratification in the heterogeneous sepsis population. Third, this study did not include data regarding patients' functional status, which has been shown to strongly predict patient outcomes following hospitalization. Fourth, this study did not address the cost of care following sepsis hospitalizations.[19, 59] Finally, our study excluded patients with incomplete utilization records, a choice designed to avoid the spurious inferences that can result from such comparisons.[53]

In summary, we found that sepsis exacted a considerable toll on patients in the hospital and in the year following discharge. Sepsis patients were frequently rehospitalized within a month of discharge, and on average had a 3‐fold increase in their subsequent time spent in healthcare facilities. Although age, severity of illness, and the need for ICU care impacted postsepsis utilization, the dominant contributing factorscomorbid disease burden or presepsis utilizationwere present prior to sepsis hospitalization. Early readmission patterns in sepsis appeared similar to those seen in other important hospital conditions, suggesting a role for shared posthospital, rather than just postsepsis, care approaches.

Disclosures

The funding for this study was provided by The Permanente Medical Group, Inc. and Kaiser Foundation Hospitals. The authors have no conflict of interests to disclose relevant to this article.

References
  1. Angus DC. The lingering consequences of sepsis: a hidden public health disaster? JAMA. 2010;304(16):18331834.
  2. Dellinger RP, Levy MM, Rhodes A, et al.; Surviving Sepsis Campaign Guidelines Committee including the Pediatric Subgroup. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2012. Crit Care Med. 2013;41(2):580637.
  3. Pfuntner A, Wier LM, Steiner C. Costs for hospital stays in the United States, 2010. HCUP statistical brief #16. January 2013. Rockville, MD: Agency for Healthcare Research and Quality; 2013. Available at: http://www.hcup‐us.ahrq.gov/reports/statbriefs/sb146.pdf. Accessed October 1, 2013.
  4. Martin GS, Mannino DM, Eaton S, Moss M. The epidemiology of sepsis in the United States from 1979 through 2000. N Engl J Med. 2003;348(16):15461554.
  5. Angus DC, Linde‐Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med. 2001;29(7):13031310.
  6. Dombrovskiy VY, Martin AA, Sunderram J, Paz HL. Rapid increase in hospitalization and mortality rates for severe sepsis in the United States: a trend analysis from 1993 to 2003. Crit Care Med. 2007;35(5):12441250.
  7. Elixhauser A, Friedman B, Stranges E. Septicemia in U.S. hospitals, 2009. HCUP statistical brief #122. October 2011. Rockville, MD: Agency for Healthcare Research and Quality; 2011. Available at: http://www.hcup‐us.ahrq.gov/reports/statbriefs/sb122.pdf. Accessed October 1, 2013.
  8. Lagu T, Rothberg MB, Shieh MS, Pekow PS, Steingrub JS, Lindenauer PK. Hospitalizations, costs, and outcomes of severe sepsis in the United States 2003 to 2007. Crit Care Med. 2012;40(3):754761.
  9. Iwashyna TJ, Cooke CR, Wunsch H, Kahn JM. Population burden of long‐term survivorship after severe sepsis in older Americans. J Am Geriatr Soc. 2012;60(6):10701077.
  10. Gaieski DF, Edwards JM, Kallan MJ, Carr BG. Benchmarking the incidence and mortality of severe sepsis in the United States. Crit Care Med. 2013;41(5):11671174.
  11. Levy MM, Artigas A, Phillips GS, et al. Outcomes of the Surviving Sepsis Campaign in intensive care units in the USA and Europe: a prospective cohort study. Lancet Infect Dis. 2012;12(12):919924.
  12. Townsend SR, Schorr C, Levy MM, Dellinger RP. Reducing mortality in severe sepsis: the Surviving Sepsis Campaign. Clin Chest Med. 2008;29(4):721733, x.
  13. Rivers E, Nguyen B, Havstad S, et al.; Early Goal‐Directed Therapy Collaborative Group. Early goal‐directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001;345(19):13681377.
  14. Iwashyna TJ, Ely EW, Smith DM, Langa KM. Long‐term cognitive impairment and functional disability among survivors of severe sepsis. JAMA. 2010;304(16):17871794.
  15. Winters BD, Eberlein M, Leung J, Needham DM, Pronovost PJ, Sevransky JE. Long‐term mortality and quality of life in sepsis: a systematic review. Crit Care Med. 2010;38(5):12761283.
  16. Cuthbertson BH, Elders A, Hall S, et al.; the Scottish Critical Care Trials Group and the Scottish Intensive Care Society Audit Group. Mortality and quality of life in the five years after severe sepsis. Crit Care. 2013;17(2):R70.
  17. Prescott HC, Langa KM, Liu V, Escobar GJ, Iwashyna TJ. Post‐Discharge Health Care Use Is Markedly Higher in Survivors of Severe Sepsis. Am J Respir Crit Care Med 2013;187:A1573.
  18. Perl TM, Dvorak L, Hwang T, Wenzel RP. Long‐term survival and function after suspected gram‐negative sepsis. JAMA. 1995;274(4):338345.
  19. Weycker D, Akhras KS, Edelsberg J, Angus DC, Oster G. Long‐term mortality and medical care charges in patients with severe sepsis. Crit Care Med. 2003;31(9):23162323.
  20. Dharmarajan K, Hsieh AF, Lin Z, et al. Diagnoses and timing of 30‐day readmissions after hospitalization for heart failure, acute myocardial infarction, or pneumonia. JAMA. 2013;309(4):355363.
  21. Gwadry‐Sridhar FH, Flintoft V, Lee DS, Lee H, Guyatt GH. A systematic review and meta‐analysis of studies comparing readmission rates and mortality rates in patients with heart failure. Arch Intern Med. 2004;164(21):23152320.
  22. Gheorghiade M, Braunwald E. Hospitalizations for heart failure in the United States—a sign of hope. JAMA. 2011;306(15):17051706.
  23. Kansagara D, Englander H, Salanitro A, et al. Risk prediction models for hospital readmission: a systematic review. JAMA. 2011;306(15):16881698.
  24. Iwashyna TJ, Odden AJ. Sepsis after Scotland: enough with the averages, show us the effect modifiers. Crit Care. 2013;17(3):148.
  25. Whippy A, Skeath M, Crawford B, et al. Kaiser Permanente's performance improvement system, part 3: multisite improvements in care for patients with sepsis. Jt Comm J Qual Patient Saf. 2011;37(11): 483493.
  26. Iwashyna TJ, Odden A, Rohde J, et al. Identifying patients with severe sepsis using administrative claims: patient‐level validation of the Angus implementation of the International Consensus Conference Definition of Severe Sepsis [published online ahead of print September 18, 2012]. Med Care. doi: 10.1097/MLR.0b013e318268ac86. Epub ahead of print.
  27. Selby JV. Linking automated databases for research in managed care settings. Ann Intern Med. 1997;127(8 pt 2):719724.
  28. Escobar GJ, Greene JD, Scheirer P, Gardner MN, Draper D, Kipnis P. Risk‐adjusting hospital inpatient mortality using automated inpatient, outpatient, and laboratory databases. Med Care. 2008;46(3):232239.
  29. Liu V, Turk BJ, Ragins AI, Kipnis P, Escobar GJ. An electronic Simplified Acute Physiology Score‐based risk adjustment score for critical illness in an integrated healthcare system. Crit Care Med. 2013;41(1):4148.
  30. Escobar GJ, Gardner MN, Greene JD, Draper D, Kipnis P. Risk‐adjusting hospital mortality using a comprehensive electronic record in an integrated health care delivery system. Med Care. 2013;51(5):446453.
  31. Escobar GJ, LaGuardia JC, Turk BJ, Ragins A, Kipnis P, Draper D. Early detection of impending physiologic deterioration among patients who are not in intensive care: development of predictive models using data from an automated electronic medical record. J Hosp Med. 2012;7(5):388395.
  32. Walraven C, Escobar GJ, Greene JD, Forster AJ. The Kaiser Permanente inpatient risk adjustment methodology was valid in an external patient population. J Clin Epidemiol. 2009;63(7):798803.
  33. Cowen ME, Dusseau DJ, Toth BG, Guisinger C, Zodet MW, Shyr Y. Casemix adjustment of managed care claims data using the clinical classification for health policy research method. Med Care. 1998;36(7):11081113.
  34. Agency for Healthcare Research and Quality Healthcare Cost and Utilization Project. Clinical Classifications Software (CCS) for ICD‐9‐CM Fact Sheet. Available at: http://www.hcup‐us.ahrq.gov/toolssoftware/ccs/ccsfactsheet.jsp. Accessed January 20, 2013.
  35. Fine JP, Gray RJ. A proportional hazards model for the subdistribution of a competing risk. J Am Stat Assoc. 1997;94(446):496509.
  36. Braun L, Riedel AA, Cooper LM. Severe sepsis in managed care: analysis of incidence, one‐year mortality, and associated costs of care. J Manag Care Pharm. 2004;10(6):521530.
  37. Lee H, Doig CJ, Ghali WA, Donaldson C, Johnson D, Manns B. Detailed cost analysis of care for survivors of severe sepsis. Crit Care Med. 2004;32(4):981985.
  38. Rico Crescencio JC, Leu M, Balaventakesh B, Loganathan R, et al. Readmissions among patients with severe sepsis/septic shock among inner‐city minority New Yorkers. Chest. 2012;142:286A.
  39. Czaja AS, Zimmerman JJ, Nathens AB. Readmission and late mortality after pediatric severe sepsis. Pediatrics. 2009;123(3):849857.
  40. Jencks SF, Williams MV, Coleman EA. Rehospitalizations among patients in the Medicare fee‐for‐service program. N Engl J Med. 2009;360(14):14181428.
  41. Krumholz HM. Post‐hospital syndrome—an acquired, transient condition of generalized risk. N Engl J Med. 2013;368(2):100102.
  42. Bone RC, Balk RA, Cerra FB, et al. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. Chest. 1992;101(6):16441655.
  43. Martin GS, Mannino DM, Moss M. The effect of age on the development and outcome of adult sepsis. Crit Care Med. 2006;34(1):1521.
  44. Pinsky MR, Matuschak GM. Multiple systems organ failure: failure of host defense homeostasis. Crit Care Clin. 1989;5(2):199220.
  45. Remick DG. Pathophysiology of sepsis. Am J Pathol. 2007;170(5):14351444.
  46. Angus DC, Carlet J. Surviving intensive care: a report from the 2002 Brussels Roundtable. Intensive Care Med. 2003;29(3):368377.
  47. Siami S, Annane D, Sharshar T. The encephalopathy in sepsis. Crit Care Clin. 2008;24(1):6782, viii.
  48. Gofton TE, Young GB. Sepsis‐associated encephalopathy. Nat Rev Neurol. 2012;8(10):557566.
  49. Needham DM, Davidson J, Cohen H, et al. Improving long‐term outcomes after discharge from intensive care unit: report from a stakeholders' conference. Crit Care Med. 2012;40(2):502509.
  50. Liu V, Turk BJ, Rizk NW, Kipnis P, Escobar GJ. The association between sepsis and potential medical injury among hospitalized patients. Chest. 2012;142(3):606613.
  51. Wunsch H, Guerra C, Barnato AE, Angus DC, Li G, Linde‐Zwirble WT. Three‐year outcomes for Medicare beneficiaries who survive intensive care. JAMA. 2010;303(9):849856.
  52. Clermont G, Angus DC, Linde‐Zwirble WT, Griffin MF, Fine MJ, Pinsky MR. Does acute organ dysfunction predict patient‐centered outcomes? Chest. 2002;121(6):19631971.
  53. Iwashyna TJ, Netzer G, Langa KM, Cigolle C. Spurious inferences about long‐term outcomes: the case of severe sepsis and geriatric conditions. Am J Respir Crit Care Med. 2012;185(8):835841.
  54. Yeh RW, Sidney S, Chandra M, Sorel M, Selby JV, Go AS. Population trends in the incidence and outcomes of acute myocardial infarction. N Engl J Med. 2010;362(23):21552165.
  55. Reed M, Huang J, Graetz I, et al., Outpatient electronic health records and the clinical care and outcomes of patients with diabetes mellitus. Ann Intern Med. 2012;157(7):482489.
  56. Gordon NP. Similarity of the adult Kaiser Permanente membership in Northern California to the insured and general population in Northern California: statistics from the 2009 California Health Interview Survey. Internal Division of Research Report. Oakland, CA: Kaiser Permanente Division of Research; January 24, 2012. Available at: http://www.dor.kaiser.org/external/chis_non_kp_2009. Accessed January 20, 2013.
  57. Lindenauer PK, Lagu T, Shieh MS, Pekow PS, Rothberg MB. Association of diagnostic coding with trends in hospitalizations and mortality of patients with pneumonia, 2003–2009. JAMA. 2012;307(13):14051413.
  58. Sarrazin MS, Rosenthal GE. Finding pure and simple truths with administrative data. JAMA. 2012;307(13):14331435.
  59. Kahn JM, Rubenfeld GD, Rohrbach J, Fuchs BD. Cost savings attributable to reductions in intensive care unit length of stay for mechanically ventilated patients. Med Care. 2008;46(12):12261233.
References
  1. Angus DC. The lingering consequences of sepsis: a hidden public health disaster? JAMA. 2010;304(16):18331834.
  2. Dellinger RP, Levy MM, Rhodes A, et al.; Surviving Sepsis Campaign Guidelines Committee including the Pediatric Subgroup. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2012. Crit Care Med. 2013;41(2):580637.
  3. Pfuntner A, Wier LM, Steiner C. Costs for hospital stays in the United States, 2010. HCUP statistical brief #16. January 2013. Rockville, MD: Agency for Healthcare Research and Quality; 2013. Available at: http://www.hcup‐us.ahrq.gov/reports/statbriefs/sb146.pdf. Accessed October 1, 2013.
  4. Martin GS, Mannino DM, Eaton S, Moss M. The epidemiology of sepsis in the United States from 1979 through 2000. N Engl J Med. 2003;348(16):15461554.
  5. Angus DC, Linde‐Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med. 2001;29(7):13031310.
  6. Dombrovskiy VY, Martin AA, Sunderram J, Paz HL. Rapid increase in hospitalization and mortality rates for severe sepsis in the United States: a trend analysis from 1993 to 2003. Crit Care Med. 2007;35(5):12441250.
  7. Elixhauser A, Friedman B, Stranges E. Septicemia in U.S. hospitals, 2009. HCUP statistical brief #122. October 2011. Rockville, MD: Agency for Healthcare Research and Quality; 2011. Available at: http://www.hcup‐us.ahrq.gov/reports/statbriefs/sb122.pdf. Accessed October 1, 2013.
  8. Lagu T, Rothberg MB, Shieh MS, Pekow PS, Steingrub JS, Lindenauer PK. Hospitalizations, costs, and outcomes of severe sepsis in the United States 2003 to 2007. Crit Care Med. 2012;40(3):754761.
  9. Iwashyna TJ, Cooke CR, Wunsch H, Kahn JM. Population burden of long‐term survivorship after severe sepsis in older Americans. J Am Geriatr Soc. 2012;60(6):10701077.
  10. Gaieski DF, Edwards JM, Kallan MJ, Carr BG. Benchmarking the incidence and mortality of severe sepsis in the United States. Crit Care Med. 2013;41(5):11671174.
  11. Levy MM, Artigas A, Phillips GS, et al. Outcomes of the Surviving Sepsis Campaign in intensive care units in the USA and Europe: a prospective cohort study. Lancet Infect Dis. 2012;12(12):919924.
  12. Townsend SR, Schorr C, Levy MM, Dellinger RP. Reducing mortality in severe sepsis: the Surviving Sepsis Campaign. Clin Chest Med. 2008;29(4):721733, x.
  13. Rivers E, Nguyen B, Havstad S, et al.; Early Goal‐Directed Therapy Collaborative Group. Early goal‐directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001;345(19):13681377.
  14. Iwashyna TJ, Ely EW, Smith DM, Langa KM. Long‐term cognitive impairment and functional disability among survivors of severe sepsis. JAMA. 2010;304(16):17871794.
  15. Winters BD, Eberlein M, Leung J, Needham DM, Pronovost PJ, Sevransky JE. Long‐term mortality and quality of life in sepsis: a systematic review. Crit Care Med. 2010;38(5):12761283.
  16. Cuthbertson BH, Elders A, Hall S, et al.; the Scottish Critical Care Trials Group and the Scottish Intensive Care Society Audit Group. Mortality and quality of life in the five years after severe sepsis. Crit Care. 2013;17(2):R70.
  17. Prescott HC, Langa KM, Liu V, Escobar GJ, Iwashyna TJ. Post‐Discharge Health Care Use Is Markedly Higher in Survivors of Severe Sepsis. Am J Respir Crit Care Med 2013;187:A1573.
  18. Perl TM, Dvorak L, Hwang T, Wenzel RP. Long‐term survival and function after suspected gram‐negative sepsis. JAMA. 1995;274(4):338345.
  19. Weycker D, Akhras KS, Edelsberg J, Angus DC, Oster G. Long‐term mortality and medical care charges in patients with severe sepsis. Crit Care Med. 2003;31(9):23162323.
  20. Dharmarajan K, Hsieh AF, Lin Z, et al. Diagnoses and timing of 30‐day readmissions after hospitalization for heart failure, acute myocardial infarction, or pneumonia. JAMA. 2013;309(4):355363.
  21. Gwadry‐Sridhar FH, Flintoft V, Lee DS, Lee H, Guyatt GH. A systematic review and meta‐analysis of studies comparing readmission rates and mortality rates in patients with heart failure. Arch Intern Med. 2004;164(21):23152320.
  22. Gheorghiade M, Braunwald E. Hospitalizations for heart failure in the United States—a sign of hope. JAMA. 2011;306(15):17051706.
  23. Kansagara D, Englander H, Salanitro A, et al. Risk prediction models for hospital readmission: a systematic review. JAMA. 2011;306(15):16881698.
  24. Iwashyna TJ, Odden AJ. Sepsis after Scotland: enough with the averages, show us the effect modifiers. Crit Care. 2013;17(3):148.
  25. Whippy A, Skeath M, Crawford B, et al. Kaiser Permanente's performance improvement system, part 3: multisite improvements in care for patients with sepsis. Jt Comm J Qual Patient Saf. 2011;37(11): 483493.
  26. Iwashyna TJ, Odden A, Rohde J, et al. Identifying patients with severe sepsis using administrative claims: patient‐level validation of the Angus implementation of the International Consensus Conference Definition of Severe Sepsis [published online ahead of print September 18, 2012]. Med Care. doi: 10.1097/MLR.0b013e318268ac86. Epub ahead of print.
  27. Selby JV. Linking automated databases for research in managed care settings. Ann Intern Med. 1997;127(8 pt 2):719724.
  28. Escobar GJ, Greene JD, Scheirer P, Gardner MN, Draper D, Kipnis P. Risk‐adjusting hospital inpatient mortality using automated inpatient, outpatient, and laboratory databases. Med Care. 2008;46(3):232239.
  29. Liu V, Turk BJ, Ragins AI, Kipnis P, Escobar GJ. An electronic Simplified Acute Physiology Score‐based risk adjustment score for critical illness in an integrated healthcare system. Crit Care Med. 2013;41(1):4148.
  30. Escobar GJ, Gardner MN, Greene JD, Draper D, Kipnis P. Risk‐adjusting hospital mortality using a comprehensive electronic record in an integrated health care delivery system. Med Care. 2013;51(5):446453.
  31. Escobar GJ, LaGuardia JC, Turk BJ, Ragins A, Kipnis P, Draper D. Early detection of impending physiologic deterioration among patients who are not in intensive care: development of predictive models using data from an automated electronic medical record. J Hosp Med. 2012;7(5):388395.
  32. Walraven C, Escobar GJ, Greene JD, Forster AJ. The Kaiser Permanente inpatient risk adjustment methodology was valid in an external patient population. J Clin Epidemiol. 2009;63(7):798803.
  33. Cowen ME, Dusseau DJ, Toth BG, Guisinger C, Zodet MW, Shyr Y. Casemix adjustment of managed care claims data using the clinical classification for health policy research method. Med Care. 1998;36(7):11081113.
  34. Agency for Healthcare Research and Quality Healthcare Cost and Utilization Project. Clinical Classifications Software (CCS) for ICD‐9‐CM Fact Sheet. Available at: http://www.hcup‐us.ahrq.gov/toolssoftware/ccs/ccsfactsheet.jsp. Accessed January 20, 2013.
  35. Fine JP, Gray RJ. A proportional hazards model for the subdistribution of a competing risk. J Am Stat Assoc. 1997;94(446):496509.
  36. Braun L, Riedel AA, Cooper LM. Severe sepsis in managed care: analysis of incidence, one‐year mortality, and associated costs of care. J Manag Care Pharm. 2004;10(6):521530.
  37. Lee H, Doig CJ, Ghali WA, Donaldson C, Johnson D, Manns B. Detailed cost analysis of care for survivors of severe sepsis. Crit Care Med. 2004;32(4):981985.
  38. Rico Crescencio JC, Leu M, Balaventakesh B, Loganathan R, et al. Readmissions among patients with severe sepsis/septic shock among inner‐city minority New Yorkers. Chest. 2012;142:286A.
  39. Czaja AS, Zimmerman JJ, Nathens AB. Readmission and late mortality after pediatric severe sepsis. Pediatrics. 2009;123(3):849857.
  40. Jencks SF, Williams MV, Coleman EA. Rehospitalizations among patients in the Medicare fee‐for‐service program. N Engl J Med. 2009;360(14):14181428.
  41. Krumholz HM. Post‐hospital syndrome—an acquired, transient condition of generalized risk. N Engl J Med. 2013;368(2):100102.
  42. Bone RC, Balk RA, Cerra FB, et al. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. Chest. 1992;101(6):16441655.
  43. Martin GS, Mannino DM, Moss M. The effect of age on the development and outcome of adult sepsis. Crit Care Med. 2006;34(1):1521.
  44. Pinsky MR, Matuschak GM. Multiple systems organ failure: failure of host defense homeostasis. Crit Care Clin. 1989;5(2):199220.
  45. Remick DG. Pathophysiology of sepsis. Am J Pathol. 2007;170(5):14351444.
  46. Angus DC, Carlet J. Surviving intensive care: a report from the 2002 Brussels Roundtable. Intensive Care Med. 2003;29(3):368377.
  47. Siami S, Annane D, Sharshar T. The encephalopathy in sepsis. Crit Care Clin. 2008;24(1):6782, viii.
  48. Gofton TE, Young GB. Sepsis‐associated encephalopathy. Nat Rev Neurol. 2012;8(10):557566.
  49. Needham DM, Davidson J, Cohen H, et al. Improving long‐term outcomes after discharge from intensive care unit: report from a stakeholders' conference. Crit Care Med. 2012;40(2):502509.
  50. Liu V, Turk BJ, Rizk NW, Kipnis P, Escobar GJ. The association between sepsis and potential medical injury among hospitalized patients. Chest. 2012;142(3):606613.
  51. Wunsch H, Guerra C, Barnato AE, Angus DC, Li G, Linde‐Zwirble WT. Three‐year outcomes for Medicare beneficiaries who survive intensive care. JAMA. 2010;303(9):849856.
  52. Clermont G, Angus DC, Linde‐Zwirble WT, Griffin MF, Fine MJ, Pinsky MR. Does acute organ dysfunction predict patient‐centered outcomes? Chest. 2002;121(6):19631971.
  53. Iwashyna TJ, Netzer G, Langa KM, Cigolle C. Spurious inferences about long‐term outcomes: the case of severe sepsis and geriatric conditions. Am J Respir Crit Care Med. 2012;185(8):835841.
  54. Yeh RW, Sidney S, Chandra M, Sorel M, Selby JV, Go AS. Population trends in the incidence and outcomes of acute myocardial infarction. N Engl J Med. 2010;362(23):21552165.
  55. Reed M, Huang J, Graetz I, et al., Outpatient electronic health records and the clinical care and outcomes of patients with diabetes mellitus. Ann Intern Med. 2012;157(7):482489.
  56. Gordon NP. Similarity of the adult Kaiser Permanente membership in Northern California to the insured and general population in Northern California: statistics from the 2009 California Health Interview Survey. Internal Division of Research Report. Oakland, CA: Kaiser Permanente Division of Research; January 24, 2012. Available at: http://www.dor.kaiser.org/external/chis_non_kp_2009. Accessed January 20, 2013.
  57. Lindenauer PK, Lagu T, Shieh MS, Pekow PS, Rothberg MB. Association of diagnostic coding with trends in hospitalizations and mortality of patients with pneumonia, 2003–2009. JAMA. 2012;307(13):14051413.
  58. Sarrazin MS, Rosenthal GE. Finding pure and simple truths with administrative data. JAMA. 2012;307(13):14331435.
  59. Kahn JM, Rubenfeld GD, Rohrbach J, Fuchs BD. Cost savings attributable to reductions in intensive care unit length of stay for mechanically ventilated patients. Med Care. 2008;46(12):12261233.
Issue
Journal of Hospital Medicine - 9(8)
Issue
Journal of Hospital Medicine - 9(8)
Page Number
502-507
Page Number
502-507
Article Type
Display Headline
Hospital readmission and healthcare utilization following sepsis in community settings
Display Headline
Hospital readmission and healthcare utilization following sepsis in community settings
Sections
Article Source

© 2014 Society of Hospital Medicine

Disallow All Ads
Correspondence Location
Address for correspondence and reprint requests: Vincent Liu, MD, 2000 Broadway, Oakland, CA 94612; Telephone: 510‐627‐3621; Fax: 510‐627‐2573; E‐mail: [email protected]
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Article PDF Media
Media Files

Predicting Recurrence Risk

Article Type
Changed
Sun, 05/21/2017 - 14:07
Display Headline
Development and validation of a recurrent Clostridium difficile risk‐prediction model

Clostridium difficile infection (CDI) is a serious and costly condition whose volume in US hospitals has doubled over the last decade.[1, 2, 3] Along with this rise in incidence, its severity has also increased. Although in the United States there has been a doubling in age‐adjusted case fatality, in the same time period Canadian studies reported a high and increasing CDI‐associated case fatality in the setting of an outbreak of a novel epidemic hypervirulent strain BI/NAP1/027.[2, 4, 5, 6] The costs of CDI range widely ($2500 to $13,000 per hospitalization), with cumulative annual cost to the US healthcare system estimated at nearly $5 billion.[7, 8, 9]

One of the drivers of these clinical and economic outcomes is CDI recurrence (rCDI). In 2 recent randomized controlled trials, up to 25% of patients with an initial CDI (iCDI) episode developed rCDI.[10, 11] There are few data that quantify the impact of rCDI on quality of life and survival. However, patients often are readmitted to the hospital with rCDI, and physicians who treat patients with multiple episodes of rCDI can attest to the devastating toll it takes on the lives of the patients and their families (personal communications from numerous patients to E.R.D.).[12] Reducing the incidence of rCDI may significantly improve the course of this disease.

The advent of such new treatments as fidaxomicin aimed at rCDI is promising.[10, 11] However, evidence for its efficacy so far is limited to treatment‐naive iCDI patients, thus challenging clinicians to identify patients at high risk for rCDI at iCDI onset. To address this challenge, we set out to develop a bedside prediction model for rCDI based on the factors present and routinely available at the onset of iCDI.

METHODS

Study Design and Data Source

We conducted a retrospective single‐center cohort study to examine the factors present at the onset of iCDI that impact the incidence of rCDI among hospitalized patients. Patients were included in the study if they were adults (18 years) hospitalized at Barnes‐Jewish Hospital (BJH), St. Louis, Missouri, between January 1, 2003 and December 31, 2009, and who had a positive toxin assay for C difficile in the setting of unformed stools and no history of CDI in the previous 60 days (as defined by positive toxin assay). Patients were excluded if they either died during or were discharged to hospice from the iCDI hospitalization. Cases of iCDI were categorized according to published surveillance definitions as community onset‐healthcare facility associated (CO‐HCFA), healthcare facility onset, and community associated.[13] Notably, the CO‐HCFA category included surveillance definitions for both CO‐HCFA and indeterminate cases. We defined rCDI as a repeat positive toxin within 42 days following the end of iCDI treatment. This period of risk for rCDI was chosen because the current surveillance definition for rCDI is a new episode of CDI occurring within 8 weeks from the last episode of CDI, with the assumption the patient would receive 10 to 14 days of CDI treatment at the beginning of the 8‐week period.[14] Medical charts were reviewed for all readmissions during the recurrence risk period to identify patients diagnosed with rCDI by methods other than toxin assay. A study enrollment flow chart is shown in Figure 1.

Figure 1
Study enrollment flowchart. Abbreviations: CDI, Clostridium difficile infection.

Demographic and clinical data were derived from the BJH medical informatics databases and the BJH electronic medical records (see Supporting Appendix Table 1 in the online version of this article). Comorbidities were grouped using the Charlson‐Deyo categories.[15] All variables were limited to data that are consistent throughout a hospitalization (eg, race or age) or were present within 48 hours of iCDI (eg, medications).

Model Development and Validation

First, we examined risk factors for rCDI present at the time of the iCDI diagnosis and initiation of iCDI therapy. We used principal‐component analyses, corresponding analyses, and cluster analyses to reduce the data dimensions by combining variables reflecting the same underlying construct.[16] Several antibiotic categories were created. The high‐risk category included cephalosporins, clindamycin, and aminopenicillins.[17] Other categories examined separately were fluoroquinolones, intravenous vancomycin, and antibiotics considered low risk (all other drugs not encompassed in the prior categories). Proton pump inhibitor and histamine 2 receptor‐blockers were combined into a single variable of gastric acid suppressors.

We developed a logistic regression model to identify a set of variables that best predicted the risk of rCDI. Variables with P 0.20 on univariate analyses were included in multivariable models. Backward elimination was used to determine the final model (P 0.1 for removal). The model's discrimination was examined via the C statistic and calibration through Brier score.[16] A C statistic value of 0.5 implies that the model is no better than chance, whereas the value of 1.0 means that the model is perfect in differentiating cases from noncases. A Brier score closer to zero indicates better model calibration, or how closely the predicted probabilities for rCDI match the actual observed probabilities. We validated the model using the bootstrap method with 500 iterations. To explore its properties as a decision tool to help make the decision to initiate an intervention to prevent rCDI, we tested the model's sensitivity, specificity, and positive and negative predictive values at various thresholds of prior probability of rCDI.

RESULTS

Among the 4196 patients with iCDI enrolled in the study, 425 (10.1%) developed at least 1 recurrence within 42 days of the end of iCDI treatment (Table 1). Compared to patients without a recurrence, in univariate analysis those with an rCDI episode were older and had a greater comorbidity burden. In particular, diabetes mellitus (odds ratio 1.34; 95% confidence interval [CI], 1.08‐1.66) and cerebrovascular disease (odds ratio 1.47; 95% CI, 1.04‐2.08) were significantly more prevalent in the rCDI group. The index CDI episode for patients with rCDI was approximately twice as likely to fit the surveillance definition for CO‐HCFA than the index episode for those without a recurrence (odds ratio 2.24; 95% CI, 1.80‐2.79). Commensurately, patients with rCDI also had greater odds for experiencing multiple recent hospitalizations than those without rCDI. Neither type of CDI treatment (oral metronidazole vs oral vancomycin vs both), nor duration, was significantly associated with recurrence.

Patient Characteristics and Treatments at Hospital Admission Involving the iCDI Episode
Patient CharacteristicsPatients Who Developed rCDI, N = 425Patients Who Did Not Develop rCDI, n = 3771)Odds Ratio (95% CI)P Value
  • NOTE: Abbreviations: AIDS, acquired immune deficiency syndrome; BJH, Barnes‐Jewish Hospital; CA, community acquired; CI, confidence interval; CO, community onset; HCFA, healthcare facility associated; HCFO, healthcare facility onset; HIV, human immunodeficiency virus; iCDI, initial Clostridium difficile infection; ICU, intensive care unit; IV, intravenous; rCDI, recurrent Clostridium difficile infection; WBC, white blood cells.

  • Results presented as per 10‐year increase in age.

  • Comorbidities diagnosed within previous 1 year (identified by International Classification of Diseases, 9th Revision, Clinical Modification diagnosis codes).

  • Case status for 6 patients was unknown: 1 among those who developed rCDI and 5 among those who did not.

  • The following threshold values were defined high and low levels: albumin <2.5 g/dL, WBC low <3.8*103/mm3, WBC high >9.8*103/mm3, hemoglobin <10.0 g/dL, creatinine>1.5 g/dL, creatinine clearance <70 mL/min.

  • High‐risk antibiotics included all cephalosporins, clindamycin, and aminopenicillins.

Demographics    
Age, y, median (range)a64.8(18.398.2)61.6(18.0102.4)1.10 (1.041.16)<0.001
Female210 (49)1822 (48)1.05 (0.861.28)0.67
Nonwhite race149 (35)1149 (31)1.23 (1.001.52)0.05
Comorbiditiesb    
Myocardial infarction40 (9)328 (9)1.10 (0.771.54)0.62
Congestive heart failure108 (25)854 (23)1.17 (0.931.47)0.19
Peripheral vascular disease34 (8)269 (7)1.13 (0.781.64)0.51
Cerebrovascular disease41 (10)256 (7)1.47 (1.042.08)0.03
Chronic renal failure21 (5)190 (5)0.98 (0.621.56)0.94
Dementia5 (1)23 (1)1.94 (0.735.14)0.18
Chronic obstructive pulmonary disease116 (27)911 (24)1.18 (0.941.48)0.15
Rheumatologic disease18 (4)146 (4)1.10 (0.671.81)0.71
Peptic ulcer disease20 (5)154 (4)1.16 (0.721.87)0.54
Mild liver disease17 (4)201 (5)0.74 (0.451.23)0.25
Moderate‐to‐severe liver disease12 (3)134 (4)0.79 (0.431.44)0.44
Diabetes, any135 (32)974 (26)1.34 (1.081.66)0.009
Paraplegia or hemiplegia12 (3)77 (2)1.38 (0.742.55)0.31
Any malignancy (excluding leukemia/lymphoma)83 (20)770 (20)0.95 (0.741.22)0.67
Leukemia or lymphoma78 (18)660 (18)1.06 (0.821.38)0.66
Metastatic solid tumor56 (13)449 (12)1.12 (0.841.51)0.44
HIV/AIDS10 (2)66 (2)1.36 (0.692.67)0.38
Charlson composite score    
02223 (53)2179 (58)Ref 
35117 (28)921 (24)1.24 (0.981.57)0.07
685(20)671 (18)1.24 (0.951.61)0.11
Case statusc    
HCFO/HCFA203 (48)2331 (62)Ref 
CA or unknown57 (13)595 (16)1.10 (0.811.50)0.54
CO/HCFA, indeterminate, or non‐ BJHHCFA165 (39)845 (22)2.24 (1.802.79)<0.001
Prior hospitalizations    
Admitted from another healthcare facility109 (26)1018 (27)0.93 (0.741.17)0.55
No. of inpatient admissions in previous 60 days   <0.001
0200 (47)2310 (61)Ref 
1150 (35)1020 (27)1.70 (1.362.13)<0.001
2+75 (18)441 (12)1.96 (1.482.61)<0.001
Baseline laboratory datad    
Low albumin at iCDI50 (12)548 (15)0.78 (0.581.07)0.312
Low WBC at iCDI64 (15)635 (17)0.88 (0.661.16)0.36
High WBC at iCDI247 (58)2027 (54)1.20 (0.981.46)0.08
Low hemoglobin at iCDI218 (51)1985 (53)0.95 (0.781.16)0.61
High creatinine at iCDI99 (23)862 (23)1.02 (0.811.30)0.83
Low creatinine clearance at iCDI218 (51)1635 (43)1.38 (1.131.68)0.002
ICU admission at iCDI32 (8)562 (15)0.47 (0.320.68)<0.001
Medications    
New gastric acid suppressor at iCDI54 (13)255 (7)2.01 (1.472.74)<0.001
Any antibiotic at iCDI314 (74)2727 (72)1.08 (0.861.36)0.49
High‐risk antibiotics at iCDIe174 (41)1489 (40)1.06 (0.871.30)0.56
Fluoroquinolone at iCDI120 (28)860 (23)1.33 (1.061.67)0.01
Low‐risk antibiotics at iCDI95 (22)1058 (28)0.74 (0.580.94)0.01
IV vancomycin at iCDI130 (31)1321 (35)0.82 (0.671.02)0.07

Seven factors present at the onset of iCDI were found to predict a recurrence in multivariable analysis (Table 2). Older age, CO‐HCFA status of iCDI, and 2 or more hospitalizations in the prior 60 days increased the risk of rCDI. Concomitant exposures to gastric acid suppressors, fluoroquinolone antibiotics, and high‐risk antibiotics were also significantly associated with a recurrence. Being in the intensive care unit (ICU) at the onset of iCDI was protective against rCDI in the multivariable model. This model had a C statistic of 0.642 and a Brier score of 0.089. After cross‐validation with 500 bootstrapping iterations, the model exhibited a moderately good fit (Figure 2). The prediction was particularly accurate in the lower risk ranges, with slight divergence in the risk strata over 20%. The validated model had a C statistic of 0.630 and Brier score of 0.089.

Factors Found to PredictrCDI in the Multivariable Logistic Regression Model
Prediction FactorsAdjusted Odds Ratio95% CI
  • NOTE: Abbreviations: CDI, Clostridium difficile infection; CI, confidence interval; CO, community onset; HCFA, healthcare facility associated; HO, hospital onset; iCDI, initial Clostridium difficile infection; ICU, intensive care unit.

  • Results presented as per 10‐year increase in age.

  • High‐risk antibiotics included all cephalosporins, clindamycin, and penicillins/aminopenicillins.

Agea1.081.021.14
CO‐HCFA CDI (ref: HO‐CDI)1.711.322.22
2+ hospitalizations in prior 60 days (ref: 0 hospitalizations)1.491.082.06
New gastric acid suppression at the onset of iCDI1.591.132.23
High‐risk antibiotic at the onset of iCDIbb1.251.011.55
Fluoroquinolone at the onset of iCDI1.311.041.65
ICU at the onset of iCDI0.490.340.72
Figure 2
Model fit, bootstrap.

The sensitivity, specificity, and positive and negative predictive values of the model at various probability thresholds of rCDI are presented in Table 3. Thus, when the probability of rCDI was low, the model exhibited high sensitivity and low specificity. The situation was reversed as the probability of rCDI approached 30% (very low sensitivity and high specificity). The model's performance was optimal when the rCDI risk matched that in the current cohort, or 10.1%, with a sensitivity of 56% and specificity of 65%. However, when the rCDI risk dropped to 5%, the specificity dropped to below 30%. The sensitivity dropped to below 30% when rCDI risk rose to 15% (Table 3). Across the entire range of the probabilities tested, the negative predictive value of the model was persistently 90% or higher.

Comparison of the rCDI Risk Prediction Model's Sensitivity, Specificity, and Positive and Negative Predicted Values at Different Thresholds of Model Prior Probability of rCDI
Model Predicted Probability CutpointSensitivitySpecificityPPVNPVPositive Likelihood RatioNegative Likelihood Ratio
  • NOTE: Abbreviations: NPV, negative predictive value; PPV, positive predictive value; rCDI, recurrent Clostridium difficile infection.

  • Probability of rCDI in the current cohort.

  • Negative likelihood ratio is undefined when sensitivity is 1.00 Same holds true for positive likelihood ratio in the face of specificity of 1.00.

0.0251.000.000.101.001.0Undef
0.0500.960.090.110.951.050.44
0.101a0.560.650.150.931.600.68
0.1510.270.860.180.911.930.85
0.3030.011.000.400.90Undef0.99

DISCUSSION

We have demonstrated that in a cohort of hospitalized patients with iCDI, 10% developed at least 1 episode of rCDI within 42 days of the end of iCDI treatment. The factors present at iCDI onset that predicted recurrence were age, CO‐HCFA CDI, prior hospitalization, high‐risk antibiotic and fluoroquinolone use, and gastric acid suppression. Although the model's performance was only moderate, its negative predictive value was 90% or higher across the entire range of rCDI probabilities tested. This means that the absence of this combination of risk factors in a patient with iCDI diminishes the probability of a rCDI episode to 10% or below, depending on the prior population risk for rCDI.

Prior investigators have developed prediction rules for rCDI. Hebert et al., using methodology similar to ours, constructed a model to predict the risk of rCDI among patients hospitalized with iCDI.[17] For example, the recurrence rate in their study was 23% compared to our 10%. This is likely due to the differing definitions of both iCDI and rCDI between the 2 studies. Although our definitions of hospital‐associated C difficile‐associated diarrhea (CDAD) conformed to the recommended surveillance definitions,[13] Hebert and colleagues used different definitions.[18] If this is so, the higher rate of rCDI in their study may have reflected these differences in surveillance definition, rather than the true prevalence of recurrent CDAD.

Several other studies have relied on either specialized laboratory tests alone or in combination with clinical factors. Stewart et al., in a small single‐center cohort study, reported the presence of the binary toxin to be the only independent predictor of rCDI.[19] Others have found lower antitoxin immunoglobulin levels at various times following the onset of iCDI to be predictive of a recurrence.[20, 21] A disadvantage of using these specialized tests as tools for clinical prediction is that they are not widely available in clinical practice. Even if these tests are available, their results are likely to return only after iCDI treatment has commenced. To make risk stratification more generalizable, we specifically focused on common data available in all clinical settings at the onset of iCDI.

We chose to restrict our risk stratification to factors present at the onset of iCDI for several reasons. First, earlier identification of patients at increased risk for rCDI may encourage clinicians to minimize subsequent exposures to non‐CDI antimicrobials and gastric acid suppressors. Second, newer anticlostridial therapies in development appear to target specifically CDI recurrence. The first anti‐CDI drug to be approved in 2 decades, fidaxomicin, has been shown to reduce the risk of a recurrence by nearly one‐half compared to vancomycin.[10, 11] Although in practice it is tempting to reserve this treatment for those patients who have multiple recurrences, there is no convincing evidence to date that the drug is similarly effective at reducing further recurrences in this population.[22, 23] Currently, the only population in which fidaxomicin treatment has been shown to reduce the risk of rCDI contains patients with at most 1 prior episode, whose first anti‐CDI exposure was to fidaxomicin.[10, 11] Thus, the intent of our model was to insure appropriate use of these new technologies from the perspective of both under‐ and overtreatment.

In general, most of the factors included in our model are neither novel nor surprising, including concurrent antibiotics and gastric acid suppression.[24, 25, 26, 27, 28, 29, 30] What is interesting about these exposures, however, is the fact that we measured them only at the onset of the iCDI episode. This implies that it is not merely the continuation of these medications after onset, but even exposure to them prior to the initial bout of CDI, that may promote a recurrence. This finding should give pause to the widespread practice of routinely prescribing gastric acid suppression to many hospitalized patients. It should also prompt a reexamination of antimicrobial choices for patients admitted for the treatment of infectious diseases in favor of those deemed at low risk for CDI whenever possible.

A relatively novel risk factor emerging from our model is the designation of the iCDI episode as CO‐HCFA.[30] A likely explanation for this relationship is that CO‐HCFA identifies a population of patients who are more ill, as evidenced by their prior hospitalization history. However, because recent hospitalizations themselves emerged as an independent predictor of rCDI in our model, CO‐HCFA designation clearly incorporates other factors important to this outcome.

Our data on illness severity are divergent from prior results. Previous work has found that increasing severity of illness is positively associated with the risk of a recurrence.[21, 31] In contrast, we found that the need for the ICU at the onset of iCDI appeared protective from rCDI. There are several explanations for this finding, the most likely being the competing mortality risk. Although we excluded from the study those patients who did not survive their iCDI hospitalizations, patients who received care in an ICU were more likely to die in the rCDI risk period than patients who did not receive care in an ICU (data not shown). Another potential explanation for this observation is that patients who develop iCDI while in the ICU may generally get more aggressive care than those contracting it on other wards, resulting in a lower risk for recurrence.

The recurrence rate in the current study is at the lower limit of what has been reported previously either in the meta‐analysis by Garey (13%50%) or in recent randomized controlled trials (25%).[10, 11, 25] This is likely due to our case identification pathway, and ascertainment bias is a potential limitation of our study. Patients with mild recurrent CDI diagnosed and treated as outpatients were not captured in our study unless their toxin assay was performed by the BJH laboratory (approximately 15% of specimens submitted to the BJH microbiology laboratory come from outpatients or affiliated outpatient or skilled nursing facilities). Similarly, recurrences diagnosed at other inpatient facilities were not captured in our study unless they were transferred to BJH for care. On the other hand, rCDI in randomized trials may be subject to a detection bias, because enrolled patients are prospectively monitored for and instructed to seek testing for recurrent diarrhea.

Our study also has limitations inherent to observational data such as confounding. We adjusted for all the available relevant potential confounders in the regression model. However, the possibility of residual confounding remains. Because our cohort was too small for a split‐cohort model validation, we employed a bootstrap method to cross‐validate our results. However, the model requires further validation in a prospective cohort in the future. The biggest limitation of our model, however, is its generalizability, because the data reflect patients and treatment patterns at an urban academic medical center, and may not mirror those of institutions with different characteristics or patients with iCDI diagnosed and managed completely in the outpatient setting.

In summary, we have developed a model to predict iCDI patients' risk of recurrence. The advantage of our model is the availability of all the factors at the onset of iCDI, when treatment decisions need to be made. Although far from perfect in its ability to discriminate those who will from those who will not develop a recurrence, it should serve as a beginning step in the direction of appropriately aggressive care that may result not only in diminishing the pool of this infection, but also in containing its spiraling costs. The cost‐benefit balance of these decisions needs to be examined explicitly, not only in terms of the financial cost of over‐ or undertreatment, but with respect to the implications of such overtreatment on development of resistance to newer anticlostridial agents.

Disclosures

This study was funded by Cubist Pharmaceuticals, Jersey City, New Jersey. The data in the article were presented in part as a poster presentation at IDWeek 2012, San Diego, California, October 1721, 2012. The authors report no conflicts of interest.

Files
References
  1. McDonald LC, Owings M, Jernigan DB. Clostridium difficile infection in patients discharged from US short‐stay hospitals, 1996–2003. Emerge Infect Dis. 2006;12:409415.
  2. Zilberberg MD, Shorr AF, Kollef MH. Increase in adult Clostridium difficile‐related hospitalizations and case‐fatality rate, United States, 2000–2005. Emerg Infect Dis. 2008;14:929931.
  3. Lucado J, Gould C, Elixhauser A. Clostridium difficile infections (CDI) in hospital stays, 2009. HCUP statistical brief #124. Rockville, MD: Agency for Healthcare Research and Quality; 2012. Available at: http://www.hcup‐us.ahrq.gov/reports/statbriefs/sb124.pdf. Accessed July 19, 2013.
  4. Loo VG, Poirier L, Miller MA, et al. A predominantly clonal multi‐institutional outbreak of Clostridium difficile‐associated diarrhea with high morbidity and mortality. N Engl J Med. 2005;353:24422449.
  5. Pepin J, Valiquette L, Alary ME, et al. Clostridium difficile‐associated diarrhea in a region of Quebec from 1991 to 2003: a changing pattern of disease severity. CMAJ. 2004;171:466472.
  6. McDonald LC, Killgore GE, Thompson A, et al. An epidemic, toxin gene‐variant strain of Clostridium difficile. N Engl J Med. 2005;353(23):24332441.
  7. Dubberke ER, Reske KA, Olsen MA, McDonald LC, Fraser VJ. Short‐ and long‐term attributable costs of Clostridium difficile‐associated disease in nonsurgical inpatients. Clin Infect Dis. 2008;46(4):497504.
  8. O'Brien JA, Lahue BJ, Caro JJ, Davidson DM. The emerging infectious challenge of Clostridium difficile‐associated disease in Massachusetts hospitals: clinical and economic consequences. Infect Control Hosp Epidemiol. 2007;28:12191227.
  9. Dubberke ER, Olsen MA. Burden of Clostridium difficile on the healthcare system. Clin Infect Dis. 2012;55(suppl 2):S88S92.
  10. Cornely OA, Crook DW, Esposito R, et al. Fidaxomicin versus vancomycin for infection with Clostridium difficile in Europe, Canada, and the USA: a double‐blind, non‐inferiority, randomised controlled trial. Lancet Infect Dis. 2012;12(4):281289.
  11. Louie TJ, Miller MA, Mullane KM, et al. Fidaxomicin versus vancomycin for Clostridium difficile infection. N Engl J Med. 2011;364:422431.
  12. McFarland LV, Surawicz CM, Rubin M, Fekety R, Elmer GW, Greenberg RN. Recurrent Clostridium difficile disease: epidemiology and clinical characteristics. Infect Control Hosp Epidemiol. 1999;20:4350.
  13. Cohen SH, Gerding DN, Johnson S, et al. Clinical practice guidelines for Clostridium difficile infection in adults: 2010 update by the Society for Healthcare Epidemiology of America (SHEA) and the Infectious Diseases Society of America (IDSA). Infect Control Hosp Epidemiol. 2010;31:431455.
  14. McDonald LC, Coignard B, Dubberke E, Song X, Horan T, Kutty PK; Ad Hoc Clostridium difficile Surveillance Working Group. Recommendations for surveillance of Clostridium difficile‐associated disease. Infect Control Hosp Epidemiol. 2007;28:140145.
  15. Deyo RA, Cherkin DC, Ciol MA. Adapting a clinical comorbidity index for use with ICD‐9‐CM administrative databases. J Clin Epidemiol. 1992;45:613619.
  16. D'Agostino RB, Griffith JL, Schmidt CH, Terrin N. Measures for evaluating model performance. Proceedings of the Biometrics Section. Alexandria, VA: American Statistical Association, Biometrics Section; 1997:253–258.
  17. Dubberke ER, Yan Y, Reske KA, et al. Development and validation of a Clostridium difficile infection risk prediction model. Infect Control Hosp Epidemiol. 2011;32:360366.
  18. Hebert C, Du H, Peterson LR, Robicsek A. Electronic health record‐based detection of risk factors for Clostridium difficile infection relapse. Infect Control Hosp Epidemiol. 2013;34:407414.
  19. Stewart DB, Berg A, Hegarty J. Predicting recurrence of C. difficile colitis using bacterial virulence factors: binary toxin is the key. J Gastrointest Surg. 2013;17:118125.
  20. Kyne L, Warny M, Qamar A, Kelly CP. Association between antibody response to toxin A and protection against recurrent Clostridium difficile diarrhoea. Lancet. 2001;357:189193.
  21. Hu MY, Katchar K, Kyne L, et al. Prospective derivation and validation of a clinical prediction rule for recurrent Clostridium difficile infection. Gastroenterology. 2009;136:12061214.
  22. Orenstein R. Fidaxomicin failures in recurrent Clostridium difficile infection: a problem of timing. Clin Infect Dis. 2012;55:613614.
  23. Johnson S, Gerding DN. Fidaxomicin “chaser” regimen following vancomycin for patients with multiple Clostridium difficile recurrences. Clin Infect Dis. 2013;56:309310.
  24. Eyre DW, Walker AS, Wylie D, et al. Predictors of first recurrence of Clostridium difficile infection: implications for initial management. Clin Infect Dis. 2012;55(suppl 2):S77S87.
  25. Garey KW, Sethi S, Yadav Y, DuPont HL. Meta‐analysis to assess risk factors for recurrent Clostridium difficile infection. J Hosp Infect. 2008;70:298304.
  26. Fekety R, McFarland LV, Surawicz CM, Greenberg RN, Elmer GW, Mulligan ME. Recurrent Clostridium difficile diarrhea: characteristics of and risk factors for patients enrolled in a prospective, randomized, double‐blinded trial. Clin Infect Dis. 1997;24:324333.
  27. Cadle RM, Mansouri MD, Logan N, Kudva DR, Musher DM. Association of proton‐pump inhibitors with outcomes in Clostridium difficile colitis. Am J Health Syst Pharm. 2007;64:23592363.
  28. Kim JW, Lee KL, Jeong JB, et al. Proton pump inhibitors as a risk factor for recurrence of Clostridium‐difficile‐associated diarrhea. World J Gastroenterol. 2010;16:35733577.
  29. Kim YG, Graham DY, Jang BI. Proton pump inhibitor use and recurrent Clostridium difficile‐associated disease: a case‐control analysis matched by propensity score. J Clin Gastroenterol. 2012;46:397400.
  30. Kwok CS, Arthur AK, Anibueze CI, Singh S, Cavallazzi R, Loke YK. Risk of Clostridium difficile infection with acid suppressing drugs and antibiotics: meta‐analysis. Am J Gastroenterol. 2012;107(7):10111019.
  31. Do AN, Fridkin SK, Yechouron A, et al. Risk factors for early recurrent Clostridium difficile‐associated diarrhea. Clin Infect Dis. 1998;26:954959.
Article PDF
Issue
Journal of Hospital Medicine - 9(7)
Page Number
418-423
Sections
Files
Files
Article PDF
Article PDF

Clostridium difficile infection (CDI) is a serious and costly condition whose volume in US hospitals has doubled over the last decade.[1, 2, 3] Along with this rise in incidence, its severity has also increased. Although in the United States there has been a doubling in age‐adjusted case fatality, in the same time period Canadian studies reported a high and increasing CDI‐associated case fatality in the setting of an outbreak of a novel epidemic hypervirulent strain BI/NAP1/027.[2, 4, 5, 6] The costs of CDI range widely ($2500 to $13,000 per hospitalization), with cumulative annual cost to the US healthcare system estimated at nearly $5 billion.[7, 8, 9]

One of the drivers of these clinical and economic outcomes is CDI recurrence (rCDI). In 2 recent randomized controlled trials, up to 25% of patients with an initial CDI (iCDI) episode developed rCDI.[10, 11] There are few data that quantify the impact of rCDI on quality of life and survival. However, patients often are readmitted to the hospital with rCDI, and physicians who treat patients with multiple episodes of rCDI can attest to the devastating toll it takes on the lives of the patients and their families (personal communications from numerous patients to E.R.D.).[12] Reducing the incidence of rCDI may significantly improve the course of this disease.

The advent of such new treatments as fidaxomicin aimed at rCDI is promising.[10, 11] However, evidence for its efficacy so far is limited to treatment‐naive iCDI patients, thus challenging clinicians to identify patients at high risk for rCDI at iCDI onset. To address this challenge, we set out to develop a bedside prediction model for rCDI based on the factors present and routinely available at the onset of iCDI.

METHODS

Study Design and Data Source

We conducted a retrospective single‐center cohort study to examine the factors present at the onset of iCDI that impact the incidence of rCDI among hospitalized patients. Patients were included in the study if they were adults (18 years) hospitalized at Barnes‐Jewish Hospital (BJH), St. Louis, Missouri, between January 1, 2003 and December 31, 2009, and who had a positive toxin assay for C difficile in the setting of unformed stools and no history of CDI in the previous 60 days (as defined by positive toxin assay). Patients were excluded if they either died during or were discharged to hospice from the iCDI hospitalization. Cases of iCDI were categorized according to published surveillance definitions as community onset‐healthcare facility associated (CO‐HCFA), healthcare facility onset, and community associated.[13] Notably, the CO‐HCFA category included surveillance definitions for both CO‐HCFA and indeterminate cases. We defined rCDI as a repeat positive toxin within 42 days following the end of iCDI treatment. This period of risk for rCDI was chosen because the current surveillance definition for rCDI is a new episode of CDI occurring within 8 weeks from the last episode of CDI, with the assumption the patient would receive 10 to 14 days of CDI treatment at the beginning of the 8‐week period.[14] Medical charts were reviewed for all readmissions during the recurrence risk period to identify patients diagnosed with rCDI by methods other than toxin assay. A study enrollment flow chart is shown in Figure 1.

Figure 1
Study enrollment flowchart. Abbreviations: CDI, Clostridium difficile infection.

Demographic and clinical data were derived from the BJH medical informatics databases and the BJH electronic medical records (see Supporting Appendix Table 1 in the online version of this article). Comorbidities were grouped using the Charlson‐Deyo categories.[15] All variables were limited to data that are consistent throughout a hospitalization (eg, race or age) or were present within 48 hours of iCDI (eg, medications).

Model Development and Validation

First, we examined risk factors for rCDI present at the time of the iCDI diagnosis and initiation of iCDI therapy. We used principal‐component analyses, corresponding analyses, and cluster analyses to reduce the data dimensions by combining variables reflecting the same underlying construct.[16] Several antibiotic categories were created. The high‐risk category included cephalosporins, clindamycin, and aminopenicillins.[17] Other categories examined separately were fluoroquinolones, intravenous vancomycin, and antibiotics considered low risk (all other drugs not encompassed in the prior categories). Proton pump inhibitor and histamine 2 receptor‐blockers were combined into a single variable of gastric acid suppressors.

We developed a logistic regression model to identify a set of variables that best predicted the risk of rCDI. Variables with P 0.20 on univariate analyses were included in multivariable models. Backward elimination was used to determine the final model (P 0.1 for removal). The model's discrimination was examined via the C statistic and calibration through Brier score.[16] A C statistic value of 0.5 implies that the model is no better than chance, whereas the value of 1.0 means that the model is perfect in differentiating cases from noncases. A Brier score closer to zero indicates better model calibration, or how closely the predicted probabilities for rCDI match the actual observed probabilities. We validated the model using the bootstrap method with 500 iterations. To explore its properties as a decision tool to help make the decision to initiate an intervention to prevent rCDI, we tested the model's sensitivity, specificity, and positive and negative predictive values at various thresholds of prior probability of rCDI.

RESULTS

Among the 4196 patients with iCDI enrolled in the study, 425 (10.1%) developed at least 1 recurrence within 42 days of the end of iCDI treatment (Table 1). Compared to patients without a recurrence, in univariate analysis those with an rCDI episode were older and had a greater comorbidity burden. In particular, diabetes mellitus (odds ratio 1.34; 95% confidence interval [CI], 1.08‐1.66) and cerebrovascular disease (odds ratio 1.47; 95% CI, 1.04‐2.08) were significantly more prevalent in the rCDI group. The index CDI episode for patients with rCDI was approximately twice as likely to fit the surveillance definition for CO‐HCFA than the index episode for those without a recurrence (odds ratio 2.24; 95% CI, 1.80‐2.79). Commensurately, patients with rCDI also had greater odds for experiencing multiple recent hospitalizations than those without rCDI. Neither type of CDI treatment (oral metronidazole vs oral vancomycin vs both), nor duration, was significantly associated with recurrence.

Patient Characteristics and Treatments at Hospital Admission Involving the iCDI Episode
Patient CharacteristicsPatients Who Developed rCDI, N = 425Patients Who Did Not Develop rCDI, n = 3771)Odds Ratio (95% CI)P Value
  • NOTE: Abbreviations: AIDS, acquired immune deficiency syndrome; BJH, Barnes‐Jewish Hospital; CA, community acquired; CI, confidence interval; CO, community onset; HCFA, healthcare facility associated; HCFO, healthcare facility onset; HIV, human immunodeficiency virus; iCDI, initial Clostridium difficile infection; ICU, intensive care unit; IV, intravenous; rCDI, recurrent Clostridium difficile infection; WBC, white blood cells.

  • Results presented as per 10‐year increase in age.

  • Comorbidities diagnosed within previous 1 year (identified by International Classification of Diseases, 9th Revision, Clinical Modification diagnosis codes).

  • Case status for 6 patients was unknown: 1 among those who developed rCDI and 5 among those who did not.

  • The following threshold values were defined high and low levels: albumin <2.5 g/dL, WBC low <3.8*103/mm3, WBC high >9.8*103/mm3, hemoglobin <10.0 g/dL, creatinine>1.5 g/dL, creatinine clearance <70 mL/min.

  • High‐risk antibiotics included all cephalosporins, clindamycin, and aminopenicillins.

Demographics    
Age, y, median (range)a64.8(18.398.2)61.6(18.0102.4)1.10 (1.041.16)<0.001
Female210 (49)1822 (48)1.05 (0.861.28)0.67
Nonwhite race149 (35)1149 (31)1.23 (1.001.52)0.05
Comorbiditiesb    
Myocardial infarction40 (9)328 (9)1.10 (0.771.54)0.62
Congestive heart failure108 (25)854 (23)1.17 (0.931.47)0.19
Peripheral vascular disease34 (8)269 (7)1.13 (0.781.64)0.51
Cerebrovascular disease41 (10)256 (7)1.47 (1.042.08)0.03
Chronic renal failure21 (5)190 (5)0.98 (0.621.56)0.94
Dementia5 (1)23 (1)1.94 (0.735.14)0.18
Chronic obstructive pulmonary disease116 (27)911 (24)1.18 (0.941.48)0.15
Rheumatologic disease18 (4)146 (4)1.10 (0.671.81)0.71
Peptic ulcer disease20 (5)154 (4)1.16 (0.721.87)0.54
Mild liver disease17 (4)201 (5)0.74 (0.451.23)0.25
Moderate‐to‐severe liver disease12 (3)134 (4)0.79 (0.431.44)0.44
Diabetes, any135 (32)974 (26)1.34 (1.081.66)0.009
Paraplegia or hemiplegia12 (3)77 (2)1.38 (0.742.55)0.31
Any malignancy (excluding leukemia/lymphoma)83 (20)770 (20)0.95 (0.741.22)0.67
Leukemia or lymphoma78 (18)660 (18)1.06 (0.821.38)0.66
Metastatic solid tumor56 (13)449 (12)1.12 (0.841.51)0.44
HIV/AIDS10 (2)66 (2)1.36 (0.692.67)0.38
Charlson composite score    
02223 (53)2179 (58)Ref 
35117 (28)921 (24)1.24 (0.981.57)0.07
685(20)671 (18)1.24 (0.951.61)0.11
Case statusc    
HCFO/HCFA203 (48)2331 (62)Ref 
CA or unknown57 (13)595 (16)1.10 (0.811.50)0.54
CO/HCFA, indeterminate, or non‐ BJHHCFA165 (39)845 (22)2.24 (1.802.79)<0.001
Prior hospitalizations    
Admitted from another healthcare facility109 (26)1018 (27)0.93 (0.741.17)0.55
No. of inpatient admissions in previous 60 days   <0.001
0200 (47)2310 (61)Ref 
1150 (35)1020 (27)1.70 (1.362.13)<0.001
2+75 (18)441 (12)1.96 (1.482.61)<0.001
Baseline laboratory datad    
Low albumin at iCDI50 (12)548 (15)0.78 (0.581.07)0.312
Low WBC at iCDI64 (15)635 (17)0.88 (0.661.16)0.36
High WBC at iCDI247 (58)2027 (54)1.20 (0.981.46)0.08
Low hemoglobin at iCDI218 (51)1985 (53)0.95 (0.781.16)0.61
High creatinine at iCDI99 (23)862 (23)1.02 (0.811.30)0.83
Low creatinine clearance at iCDI218 (51)1635 (43)1.38 (1.131.68)0.002
ICU admission at iCDI32 (8)562 (15)0.47 (0.320.68)<0.001
Medications    
New gastric acid suppressor at iCDI54 (13)255 (7)2.01 (1.472.74)<0.001
Any antibiotic at iCDI314 (74)2727 (72)1.08 (0.861.36)0.49
High‐risk antibiotics at iCDIe174 (41)1489 (40)1.06 (0.871.30)0.56
Fluoroquinolone at iCDI120 (28)860 (23)1.33 (1.061.67)0.01
Low‐risk antibiotics at iCDI95 (22)1058 (28)0.74 (0.580.94)0.01
IV vancomycin at iCDI130 (31)1321 (35)0.82 (0.671.02)0.07

Seven factors present at the onset of iCDI were found to predict a recurrence in multivariable analysis (Table 2). Older age, CO‐HCFA status of iCDI, and 2 or more hospitalizations in the prior 60 days increased the risk of rCDI. Concomitant exposures to gastric acid suppressors, fluoroquinolone antibiotics, and high‐risk antibiotics were also significantly associated with a recurrence. Being in the intensive care unit (ICU) at the onset of iCDI was protective against rCDI in the multivariable model. This model had a C statistic of 0.642 and a Brier score of 0.089. After cross‐validation with 500 bootstrapping iterations, the model exhibited a moderately good fit (Figure 2). The prediction was particularly accurate in the lower risk ranges, with slight divergence in the risk strata over 20%. The validated model had a C statistic of 0.630 and Brier score of 0.089.

Factors Found to PredictrCDI in the Multivariable Logistic Regression Model
Prediction FactorsAdjusted Odds Ratio95% CI
  • NOTE: Abbreviations: CDI, Clostridium difficile infection; CI, confidence interval; CO, community onset; HCFA, healthcare facility associated; HO, hospital onset; iCDI, initial Clostridium difficile infection; ICU, intensive care unit.

  • Results presented as per 10‐year increase in age.

  • High‐risk antibiotics included all cephalosporins, clindamycin, and penicillins/aminopenicillins.

Agea1.081.021.14
CO‐HCFA CDI (ref: HO‐CDI)1.711.322.22
2+ hospitalizations in prior 60 days (ref: 0 hospitalizations)1.491.082.06
New gastric acid suppression at the onset of iCDI1.591.132.23
High‐risk antibiotic at the onset of iCDIbb1.251.011.55
Fluoroquinolone at the onset of iCDI1.311.041.65
ICU at the onset of iCDI0.490.340.72
Figure 2
Model fit, bootstrap.

The sensitivity, specificity, and positive and negative predictive values of the model at various probability thresholds of rCDI are presented in Table 3. Thus, when the probability of rCDI was low, the model exhibited high sensitivity and low specificity. The situation was reversed as the probability of rCDI approached 30% (very low sensitivity and high specificity). The model's performance was optimal when the rCDI risk matched that in the current cohort, or 10.1%, with a sensitivity of 56% and specificity of 65%. However, when the rCDI risk dropped to 5%, the specificity dropped to below 30%. The sensitivity dropped to below 30% when rCDI risk rose to 15% (Table 3). Across the entire range of the probabilities tested, the negative predictive value of the model was persistently 90% or higher.

Comparison of the rCDI Risk Prediction Model's Sensitivity, Specificity, and Positive and Negative Predicted Values at Different Thresholds of Model Prior Probability of rCDI
Model Predicted Probability CutpointSensitivitySpecificityPPVNPVPositive Likelihood RatioNegative Likelihood Ratio
  • NOTE: Abbreviations: NPV, negative predictive value; PPV, positive predictive value; rCDI, recurrent Clostridium difficile infection.

  • Probability of rCDI in the current cohort.

  • Negative likelihood ratio is undefined when sensitivity is 1.00 Same holds true for positive likelihood ratio in the face of specificity of 1.00.

0.0251.000.000.101.001.0Undef
0.0500.960.090.110.951.050.44
0.101a0.560.650.150.931.600.68
0.1510.270.860.180.911.930.85
0.3030.011.000.400.90Undef0.99

DISCUSSION

We have demonstrated that in a cohort of hospitalized patients with iCDI, 10% developed at least 1 episode of rCDI within 42 days of the end of iCDI treatment. The factors present at iCDI onset that predicted recurrence were age, CO‐HCFA CDI, prior hospitalization, high‐risk antibiotic and fluoroquinolone use, and gastric acid suppression. Although the model's performance was only moderate, its negative predictive value was 90% or higher across the entire range of rCDI probabilities tested. This means that the absence of this combination of risk factors in a patient with iCDI diminishes the probability of a rCDI episode to 10% or below, depending on the prior population risk for rCDI.

Prior investigators have developed prediction rules for rCDI. Hebert et al., using methodology similar to ours, constructed a model to predict the risk of rCDI among patients hospitalized with iCDI.[17] For example, the recurrence rate in their study was 23% compared to our 10%. This is likely due to the differing definitions of both iCDI and rCDI between the 2 studies. Although our definitions of hospital‐associated C difficile‐associated diarrhea (CDAD) conformed to the recommended surveillance definitions,[13] Hebert and colleagues used different definitions.[18] If this is so, the higher rate of rCDI in their study may have reflected these differences in surveillance definition, rather than the true prevalence of recurrent CDAD.

Several other studies have relied on either specialized laboratory tests alone or in combination with clinical factors. Stewart et al., in a small single‐center cohort study, reported the presence of the binary toxin to be the only independent predictor of rCDI.[19] Others have found lower antitoxin immunoglobulin levels at various times following the onset of iCDI to be predictive of a recurrence.[20, 21] A disadvantage of using these specialized tests as tools for clinical prediction is that they are not widely available in clinical practice. Even if these tests are available, their results are likely to return only after iCDI treatment has commenced. To make risk stratification more generalizable, we specifically focused on common data available in all clinical settings at the onset of iCDI.

We chose to restrict our risk stratification to factors present at the onset of iCDI for several reasons. First, earlier identification of patients at increased risk for rCDI may encourage clinicians to minimize subsequent exposures to non‐CDI antimicrobials and gastric acid suppressors. Second, newer anticlostridial therapies in development appear to target specifically CDI recurrence. The first anti‐CDI drug to be approved in 2 decades, fidaxomicin, has been shown to reduce the risk of a recurrence by nearly one‐half compared to vancomycin.[10, 11] Although in practice it is tempting to reserve this treatment for those patients who have multiple recurrences, there is no convincing evidence to date that the drug is similarly effective at reducing further recurrences in this population.[22, 23] Currently, the only population in which fidaxomicin treatment has been shown to reduce the risk of rCDI contains patients with at most 1 prior episode, whose first anti‐CDI exposure was to fidaxomicin.[10, 11] Thus, the intent of our model was to insure appropriate use of these new technologies from the perspective of both under‐ and overtreatment.

In general, most of the factors included in our model are neither novel nor surprising, including concurrent antibiotics and gastric acid suppression.[24, 25, 26, 27, 28, 29, 30] What is interesting about these exposures, however, is the fact that we measured them only at the onset of the iCDI episode. This implies that it is not merely the continuation of these medications after onset, but even exposure to them prior to the initial bout of CDI, that may promote a recurrence. This finding should give pause to the widespread practice of routinely prescribing gastric acid suppression to many hospitalized patients. It should also prompt a reexamination of antimicrobial choices for patients admitted for the treatment of infectious diseases in favor of those deemed at low risk for CDI whenever possible.

A relatively novel risk factor emerging from our model is the designation of the iCDI episode as CO‐HCFA.[30] A likely explanation for this relationship is that CO‐HCFA identifies a population of patients who are more ill, as evidenced by their prior hospitalization history. However, because recent hospitalizations themselves emerged as an independent predictor of rCDI in our model, CO‐HCFA designation clearly incorporates other factors important to this outcome.

Our data on illness severity are divergent from prior results. Previous work has found that increasing severity of illness is positively associated with the risk of a recurrence.[21, 31] In contrast, we found that the need for the ICU at the onset of iCDI appeared protective from rCDI. There are several explanations for this finding, the most likely being the competing mortality risk. Although we excluded from the study those patients who did not survive their iCDI hospitalizations, patients who received care in an ICU were more likely to die in the rCDI risk period than patients who did not receive care in an ICU (data not shown). Another potential explanation for this observation is that patients who develop iCDI while in the ICU may generally get more aggressive care than those contracting it on other wards, resulting in a lower risk for recurrence.

The recurrence rate in the current study is at the lower limit of what has been reported previously either in the meta‐analysis by Garey (13%50%) or in recent randomized controlled trials (25%).[10, 11, 25] This is likely due to our case identification pathway, and ascertainment bias is a potential limitation of our study. Patients with mild recurrent CDI diagnosed and treated as outpatients were not captured in our study unless their toxin assay was performed by the BJH laboratory (approximately 15% of specimens submitted to the BJH microbiology laboratory come from outpatients or affiliated outpatient or skilled nursing facilities). Similarly, recurrences diagnosed at other inpatient facilities were not captured in our study unless they were transferred to BJH for care. On the other hand, rCDI in randomized trials may be subject to a detection bias, because enrolled patients are prospectively monitored for and instructed to seek testing for recurrent diarrhea.

Our study also has limitations inherent to observational data such as confounding. We adjusted for all the available relevant potential confounders in the regression model. However, the possibility of residual confounding remains. Because our cohort was too small for a split‐cohort model validation, we employed a bootstrap method to cross‐validate our results. However, the model requires further validation in a prospective cohort in the future. The biggest limitation of our model, however, is its generalizability, because the data reflect patients and treatment patterns at an urban academic medical center, and may not mirror those of institutions with different characteristics or patients with iCDI diagnosed and managed completely in the outpatient setting.

In summary, we have developed a model to predict iCDI patients' risk of recurrence. The advantage of our model is the availability of all the factors at the onset of iCDI, when treatment decisions need to be made. Although far from perfect in its ability to discriminate those who will from those who will not develop a recurrence, it should serve as a beginning step in the direction of appropriately aggressive care that may result not only in diminishing the pool of this infection, but also in containing its spiraling costs. The cost‐benefit balance of these decisions needs to be examined explicitly, not only in terms of the financial cost of over‐ or undertreatment, but with respect to the implications of such overtreatment on development of resistance to newer anticlostridial agents.

Disclosures

This study was funded by Cubist Pharmaceuticals, Jersey City, New Jersey. The data in the article were presented in part as a poster presentation at IDWeek 2012, San Diego, California, October 1721, 2012. The authors report no conflicts of interest.

Clostridium difficile infection (CDI) is a serious and costly condition whose volume in US hospitals has doubled over the last decade.[1, 2, 3] Along with this rise in incidence, its severity has also increased. Although in the United States there has been a doubling in age‐adjusted case fatality, in the same time period Canadian studies reported a high and increasing CDI‐associated case fatality in the setting of an outbreak of a novel epidemic hypervirulent strain BI/NAP1/027.[2, 4, 5, 6] The costs of CDI range widely ($2500 to $13,000 per hospitalization), with cumulative annual cost to the US healthcare system estimated at nearly $5 billion.[7, 8, 9]

One of the drivers of these clinical and economic outcomes is CDI recurrence (rCDI). In 2 recent randomized controlled trials, up to 25% of patients with an initial CDI (iCDI) episode developed rCDI.[10, 11] There are few data that quantify the impact of rCDI on quality of life and survival. However, patients often are readmitted to the hospital with rCDI, and physicians who treat patients with multiple episodes of rCDI can attest to the devastating toll it takes on the lives of the patients and their families (personal communications from numerous patients to E.R.D.).[12] Reducing the incidence of rCDI may significantly improve the course of this disease.

The advent of such new treatments as fidaxomicin aimed at rCDI is promising.[10, 11] However, evidence for its efficacy so far is limited to treatment‐naive iCDI patients, thus challenging clinicians to identify patients at high risk for rCDI at iCDI onset. To address this challenge, we set out to develop a bedside prediction model for rCDI based on the factors present and routinely available at the onset of iCDI.

METHODS

Study Design and Data Source

We conducted a retrospective single‐center cohort study to examine the factors present at the onset of iCDI that impact the incidence of rCDI among hospitalized patients. Patients were included in the study if they were adults (18 years) hospitalized at Barnes‐Jewish Hospital (BJH), St. Louis, Missouri, between January 1, 2003 and December 31, 2009, and who had a positive toxin assay for C difficile in the setting of unformed stools and no history of CDI in the previous 60 days (as defined by positive toxin assay). Patients were excluded if they either died during or were discharged to hospice from the iCDI hospitalization. Cases of iCDI were categorized according to published surveillance definitions as community onset‐healthcare facility associated (CO‐HCFA), healthcare facility onset, and community associated.[13] Notably, the CO‐HCFA category included surveillance definitions for both CO‐HCFA and indeterminate cases. We defined rCDI as a repeat positive toxin within 42 days following the end of iCDI treatment. This period of risk for rCDI was chosen because the current surveillance definition for rCDI is a new episode of CDI occurring within 8 weeks from the last episode of CDI, with the assumption the patient would receive 10 to 14 days of CDI treatment at the beginning of the 8‐week period.[14] Medical charts were reviewed for all readmissions during the recurrence risk period to identify patients diagnosed with rCDI by methods other than toxin assay. A study enrollment flow chart is shown in Figure 1.

Figure 1
Study enrollment flowchart. Abbreviations: CDI, Clostridium difficile infection.

Demographic and clinical data were derived from the BJH medical informatics databases and the BJH electronic medical records (see Supporting Appendix Table 1 in the online version of this article). Comorbidities were grouped using the Charlson‐Deyo categories.[15] All variables were limited to data that are consistent throughout a hospitalization (eg, race or age) or were present within 48 hours of iCDI (eg, medications).

Model Development and Validation

First, we examined risk factors for rCDI present at the time of the iCDI diagnosis and initiation of iCDI therapy. We used principal‐component analyses, corresponding analyses, and cluster analyses to reduce the data dimensions by combining variables reflecting the same underlying construct.[16] Several antibiotic categories were created. The high‐risk category included cephalosporins, clindamycin, and aminopenicillins.[17] Other categories examined separately were fluoroquinolones, intravenous vancomycin, and antibiotics considered low risk (all other drugs not encompassed in the prior categories). Proton pump inhibitor and histamine 2 receptor‐blockers were combined into a single variable of gastric acid suppressors.

We developed a logistic regression model to identify a set of variables that best predicted the risk of rCDI. Variables with P 0.20 on univariate analyses were included in multivariable models. Backward elimination was used to determine the final model (P 0.1 for removal). The model's discrimination was examined via the C statistic and calibration through Brier score.[16] A C statistic value of 0.5 implies that the model is no better than chance, whereas the value of 1.0 means that the model is perfect in differentiating cases from noncases. A Brier score closer to zero indicates better model calibration, or how closely the predicted probabilities for rCDI match the actual observed probabilities. We validated the model using the bootstrap method with 500 iterations. To explore its properties as a decision tool to help make the decision to initiate an intervention to prevent rCDI, we tested the model's sensitivity, specificity, and positive and negative predictive values at various thresholds of prior probability of rCDI.

RESULTS

Among the 4196 patients with iCDI enrolled in the study, 425 (10.1%) developed at least 1 recurrence within 42 days of the end of iCDI treatment (Table 1). Compared to patients without a recurrence, in univariate analysis those with an rCDI episode were older and had a greater comorbidity burden. In particular, diabetes mellitus (odds ratio 1.34; 95% confidence interval [CI], 1.08‐1.66) and cerebrovascular disease (odds ratio 1.47; 95% CI, 1.04‐2.08) were significantly more prevalent in the rCDI group. The index CDI episode for patients with rCDI was approximately twice as likely to fit the surveillance definition for CO‐HCFA than the index episode for those without a recurrence (odds ratio 2.24; 95% CI, 1.80‐2.79). Commensurately, patients with rCDI also had greater odds for experiencing multiple recent hospitalizations than those without rCDI. Neither type of CDI treatment (oral metronidazole vs oral vancomycin vs both), nor duration, was significantly associated with recurrence.

Patient Characteristics and Treatments at Hospital Admission Involving the iCDI Episode
Patient CharacteristicsPatients Who Developed rCDI, N = 425Patients Who Did Not Develop rCDI, n = 3771)Odds Ratio (95% CI)P Value
  • NOTE: Abbreviations: AIDS, acquired immune deficiency syndrome; BJH, Barnes‐Jewish Hospital; CA, community acquired; CI, confidence interval; CO, community onset; HCFA, healthcare facility associated; HCFO, healthcare facility onset; HIV, human immunodeficiency virus; iCDI, initial Clostridium difficile infection; ICU, intensive care unit; IV, intravenous; rCDI, recurrent Clostridium difficile infection; WBC, white blood cells.

  • Results presented as per 10‐year increase in age.

  • Comorbidities diagnosed within previous 1 year (identified by International Classification of Diseases, 9th Revision, Clinical Modification diagnosis codes).

  • Case status for 6 patients was unknown: 1 among those who developed rCDI and 5 among those who did not.

  • The following threshold values were defined high and low levels: albumin <2.5 g/dL, WBC low <3.8*103/mm3, WBC high >9.8*103/mm3, hemoglobin <10.0 g/dL, creatinine>1.5 g/dL, creatinine clearance <70 mL/min.

  • High‐risk antibiotics included all cephalosporins, clindamycin, and aminopenicillins.

Demographics    
Age, y, median (range)a64.8(18.398.2)61.6(18.0102.4)1.10 (1.041.16)<0.001
Female210 (49)1822 (48)1.05 (0.861.28)0.67
Nonwhite race149 (35)1149 (31)1.23 (1.001.52)0.05
Comorbiditiesb    
Myocardial infarction40 (9)328 (9)1.10 (0.771.54)0.62
Congestive heart failure108 (25)854 (23)1.17 (0.931.47)0.19
Peripheral vascular disease34 (8)269 (7)1.13 (0.781.64)0.51
Cerebrovascular disease41 (10)256 (7)1.47 (1.042.08)0.03
Chronic renal failure21 (5)190 (5)0.98 (0.621.56)0.94
Dementia5 (1)23 (1)1.94 (0.735.14)0.18
Chronic obstructive pulmonary disease116 (27)911 (24)1.18 (0.941.48)0.15
Rheumatologic disease18 (4)146 (4)1.10 (0.671.81)0.71
Peptic ulcer disease20 (5)154 (4)1.16 (0.721.87)0.54
Mild liver disease17 (4)201 (5)0.74 (0.451.23)0.25
Moderate‐to‐severe liver disease12 (3)134 (4)0.79 (0.431.44)0.44
Diabetes, any135 (32)974 (26)1.34 (1.081.66)0.009
Paraplegia or hemiplegia12 (3)77 (2)1.38 (0.742.55)0.31
Any malignancy (excluding leukemia/lymphoma)83 (20)770 (20)0.95 (0.741.22)0.67
Leukemia or lymphoma78 (18)660 (18)1.06 (0.821.38)0.66
Metastatic solid tumor56 (13)449 (12)1.12 (0.841.51)0.44
HIV/AIDS10 (2)66 (2)1.36 (0.692.67)0.38
Charlson composite score    
02223 (53)2179 (58)Ref 
35117 (28)921 (24)1.24 (0.981.57)0.07
685(20)671 (18)1.24 (0.951.61)0.11
Case statusc    
HCFO/HCFA203 (48)2331 (62)Ref 
CA or unknown57 (13)595 (16)1.10 (0.811.50)0.54
CO/HCFA, indeterminate, or non‐ BJHHCFA165 (39)845 (22)2.24 (1.802.79)<0.001
Prior hospitalizations    
Admitted from another healthcare facility109 (26)1018 (27)0.93 (0.741.17)0.55
No. of inpatient admissions in previous 60 days   <0.001
0200 (47)2310 (61)Ref 
1150 (35)1020 (27)1.70 (1.362.13)<0.001
2+75 (18)441 (12)1.96 (1.482.61)<0.001
Baseline laboratory datad    
Low albumin at iCDI50 (12)548 (15)0.78 (0.581.07)0.312
Low WBC at iCDI64 (15)635 (17)0.88 (0.661.16)0.36
High WBC at iCDI247 (58)2027 (54)1.20 (0.981.46)0.08
Low hemoglobin at iCDI218 (51)1985 (53)0.95 (0.781.16)0.61
High creatinine at iCDI99 (23)862 (23)1.02 (0.811.30)0.83
Low creatinine clearance at iCDI218 (51)1635 (43)1.38 (1.131.68)0.002
ICU admission at iCDI32 (8)562 (15)0.47 (0.320.68)<0.001
Medications    
New gastric acid suppressor at iCDI54 (13)255 (7)2.01 (1.472.74)<0.001
Any antibiotic at iCDI314 (74)2727 (72)1.08 (0.861.36)0.49
High‐risk antibiotics at iCDIe174 (41)1489 (40)1.06 (0.871.30)0.56
Fluoroquinolone at iCDI120 (28)860 (23)1.33 (1.061.67)0.01
Low‐risk antibiotics at iCDI95 (22)1058 (28)0.74 (0.580.94)0.01
IV vancomycin at iCDI130 (31)1321 (35)0.82 (0.671.02)0.07

Seven factors present at the onset of iCDI were found to predict a recurrence in multivariable analysis (Table 2). Older age, CO‐HCFA status of iCDI, and 2 or more hospitalizations in the prior 60 days increased the risk of rCDI. Concomitant exposures to gastric acid suppressors, fluoroquinolone antibiotics, and high‐risk antibiotics were also significantly associated with a recurrence. Being in the intensive care unit (ICU) at the onset of iCDI was protective against rCDI in the multivariable model. This model had a C statistic of 0.642 and a Brier score of 0.089. After cross‐validation with 500 bootstrapping iterations, the model exhibited a moderately good fit (Figure 2). The prediction was particularly accurate in the lower risk ranges, with slight divergence in the risk strata over 20%. The validated model had a C statistic of 0.630 and Brier score of 0.089.

Factors Found to PredictrCDI in the Multivariable Logistic Regression Model
Prediction FactorsAdjusted Odds Ratio95% CI
  • NOTE: Abbreviations: CDI, Clostridium difficile infection; CI, confidence interval; CO, community onset; HCFA, healthcare facility associated; HO, hospital onset; iCDI, initial Clostridium difficile infection; ICU, intensive care unit.

  • Results presented as per 10‐year increase in age.

  • High‐risk antibiotics included all cephalosporins, clindamycin, and penicillins/aminopenicillins.

Agea1.081.021.14
CO‐HCFA CDI (ref: HO‐CDI)1.711.322.22
2+ hospitalizations in prior 60 days (ref: 0 hospitalizations)1.491.082.06
New gastric acid suppression at the onset of iCDI1.591.132.23
High‐risk antibiotic at the onset of iCDIbb1.251.011.55
Fluoroquinolone at the onset of iCDI1.311.041.65
ICU at the onset of iCDI0.490.340.72
Figure 2
Model fit, bootstrap.

The sensitivity, specificity, and positive and negative predictive values of the model at various probability thresholds of rCDI are presented in Table 3. Thus, when the probability of rCDI was low, the model exhibited high sensitivity and low specificity. The situation was reversed as the probability of rCDI approached 30% (very low sensitivity and high specificity). The model's performance was optimal when the rCDI risk matched that in the current cohort, or 10.1%, with a sensitivity of 56% and specificity of 65%. However, when the rCDI risk dropped to 5%, the specificity dropped to below 30%. The sensitivity dropped to below 30% when rCDI risk rose to 15% (Table 3). Across the entire range of the probabilities tested, the negative predictive value of the model was persistently 90% or higher.

Comparison of the rCDI Risk Prediction Model's Sensitivity, Specificity, and Positive and Negative Predicted Values at Different Thresholds of Model Prior Probability of rCDI
Model Predicted Probability CutpointSensitivitySpecificityPPVNPVPositive Likelihood RatioNegative Likelihood Ratio
  • NOTE: Abbreviations: NPV, negative predictive value; PPV, positive predictive value; rCDI, recurrent Clostridium difficile infection.

  • Probability of rCDI in the current cohort.

  • Negative likelihood ratio is undefined when sensitivity is 1.00 Same holds true for positive likelihood ratio in the face of specificity of 1.00.

0.0251.000.000.101.001.0Undef
0.0500.960.090.110.951.050.44
0.101a0.560.650.150.931.600.68
0.1510.270.860.180.911.930.85
0.3030.011.000.400.90Undef0.99

DISCUSSION

We have demonstrated that in a cohort of hospitalized patients with iCDI, 10% developed at least 1 episode of rCDI within 42 days of the end of iCDI treatment. The factors present at iCDI onset that predicted recurrence were age, CO‐HCFA CDI, prior hospitalization, high‐risk antibiotic and fluoroquinolone use, and gastric acid suppression. Although the model's performance was only moderate, its negative predictive value was 90% or higher across the entire range of rCDI probabilities tested. This means that the absence of this combination of risk factors in a patient with iCDI diminishes the probability of a rCDI episode to 10% or below, depending on the prior population risk for rCDI.

Prior investigators have developed prediction rules for rCDI. Hebert et al., using methodology similar to ours, constructed a model to predict the risk of rCDI among patients hospitalized with iCDI.[17] For example, the recurrence rate in their study was 23% compared to our 10%. This is likely due to the differing definitions of both iCDI and rCDI between the 2 studies. Although our definitions of hospital‐associated C difficile‐associated diarrhea (CDAD) conformed to the recommended surveillance definitions,[13] Hebert and colleagues used different definitions.[18] If this is so, the higher rate of rCDI in their study may have reflected these differences in surveillance definition, rather than the true prevalence of recurrent CDAD.

Several other studies have relied on either specialized laboratory tests alone or in combination with clinical factors. Stewart et al., in a small single‐center cohort study, reported the presence of the binary toxin to be the only independent predictor of rCDI.[19] Others have found lower antitoxin immunoglobulin levels at various times following the onset of iCDI to be predictive of a recurrence.[20, 21] A disadvantage of using these specialized tests as tools for clinical prediction is that they are not widely available in clinical practice. Even if these tests are available, their results are likely to return only after iCDI treatment has commenced. To make risk stratification more generalizable, we specifically focused on common data available in all clinical settings at the onset of iCDI.

We chose to restrict our risk stratification to factors present at the onset of iCDI for several reasons. First, earlier identification of patients at increased risk for rCDI may encourage clinicians to minimize subsequent exposures to non‐CDI antimicrobials and gastric acid suppressors. Second, newer anticlostridial therapies in development appear to target specifically CDI recurrence. The first anti‐CDI drug to be approved in 2 decades, fidaxomicin, has been shown to reduce the risk of a recurrence by nearly one‐half compared to vancomycin.[10, 11] Although in practice it is tempting to reserve this treatment for those patients who have multiple recurrences, there is no convincing evidence to date that the drug is similarly effective at reducing further recurrences in this population.[22, 23] Currently, the only population in which fidaxomicin treatment has been shown to reduce the risk of rCDI contains patients with at most 1 prior episode, whose first anti‐CDI exposure was to fidaxomicin.[10, 11] Thus, the intent of our model was to insure appropriate use of these new technologies from the perspective of both under‐ and overtreatment.

In general, most of the factors included in our model are neither novel nor surprising, including concurrent antibiotics and gastric acid suppression.[24, 25, 26, 27, 28, 29, 30] What is interesting about these exposures, however, is the fact that we measured them only at the onset of the iCDI episode. This implies that it is not merely the continuation of these medications after onset, but even exposure to them prior to the initial bout of CDI, that may promote a recurrence. This finding should give pause to the widespread practice of routinely prescribing gastric acid suppression to many hospitalized patients. It should also prompt a reexamination of antimicrobial choices for patients admitted for the treatment of infectious diseases in favor of those deemed at low risk for CDI whenever possible.

A relatively novel risk factor emerging from our model is the designation of the iCDI episode as CO‐HCFA.[30] A likely explanation for this relationship is that CO‐HCFA identifies a population of patients who are more ill, as evidenced by their prior hospitalization history. However, because recent hospitalizations themselves emerged as an independent predictor of rCDI in our model, CO‐HCFA designation clearly incorporates other factors important to this outcome.

Our data on illness severity are divergent from prior results. Previous work has found that increasing severity of illness is positively associated with the risk of a recurrence.[21, 31] In contrast, we found that the need for the ICU at the onset of iCDI appeared protective from rCDI. There are several explanations for this finding, the most likely being the competing mortality risk. Although we excluded from the study those patients who did not survive their iCDI hospitalizations, patients who received care in an ICU were more likely to die in the rCDI risk period than patients who did not receive care in an ICU (data not shown). Another potential explanation for this observation is that patients who develop iCDI while in the ICU may generally get more aggressive care than those contracting it on other wards, resulting in a lower risk for recurrence.

The recurrence rate in the current study is at the lower limit of what has been reported previously either in the meta‐analysis by Garey (13%50%) or in recent randomized controlled trials (25%).[10, 11, 25] This is likely due to our case identification pathway, and ascertainment bias is a potential limitation of our study. Patients with mild recurrent CDI diagnosed and treated as outpatients were not captured in our study unless their toxin assay was performed by the BJH laboratory (approximately 15% of specimens submitted to the BJH microbiology laboratory come from outpatients or affiliated outpatient or skilled nursing facilities). Similarly, recurrences diagnosed at other inpatient facilities were not captured in our study unless they were transferred to BJH for care. On the other hand, rCDI in randomized trials may be subject to a detection bias, because enrolled patients are prospectively monitored for and instructed to seek testing for recurrent diarrhea.

Our study also has limitations inherent to observational data such as confounding. We adjusted for all the available relevant potential confounders in the regression model. However, the possibility of residual confounding remains. Because our cohort was too small for a split‐cohort model validation, we employed a bootstrap method to cross‐validate our results. However, the model requires further validation in a prospective cohort in the future. The biggest limitation of our model, however, is its generalizability, because the data reflect patients and treatment patterns at an urban academic medical center, and may not mirror those of institutions with different characteristics or patients with iCDI diagnosed and managed completely in the outpatient setting.

In summary, we have developed a model to predict iCDI patients' risk of recurrence. The advantage of our model is the availability of all the factors at the onset of iCDI, when treatment decisions need to be made. Although far from perfect in its ability to discriminate those who will from those who will not develop a recurrence, it should serve as a beginning step in the direction of appropriately aggressive care that may result not only in diminishing the pool of this infection, but also in containing its spiraling costs. The cost‐benefit balance of these decisions needs to be examined explicitly, not only in terms of the financial cost of over‐ or undertreatment, but with respect to the implications of such overtreatment on development of resistance to newer anticlostridial agents.

Disclosures

This study was funded by Cubist Pharmaceuticals, Jersey City, New Jersey. The data in the article were presented in part as a poster presentation at IDWeek 2012, San Diego, California, October 1721, 2012. The authors report no conflicts of interest.

References
  1. McDonald LC, Owings M, Jernigan DB. Clostridium difficile infection in patients discharged from US short‐stay hospitals, 1996–2003. Emerge Infect Dis. 2006;12:409415.
  2. Zilberberg MD, Shorr AF, Kollef MH. Increase in adult Clostridium difficile‐related hospitalizations and case‐fatality rate, United States, 2000–2005. Emerg Infect Dis. 2008;14:929931.
  3. Lucado J, Gould C, Elixhauser A. Clostridium difficile infections (CDI) in hospital stays, 2009. HCUP statistical brief #124. Rockville, MD: Agency for Healthcare Research and Quality; 2012. Available at: http://www.hcup‐us.ahrq.gov/reports/statbriefs/sb124.pdf. Accessed July 19, 2013.
  4. Loo VG, Poirier L, Miller MA, et al. A predominantly clonal multi‐institutional outbreak of Clostridium difficile‐associated diarrhea with high morbidity and mortality. N Engl J Med. 2005;353:24422449.
  5. Pepin J, Valiquette L, Alary ME, et al. Clostridium difficile‐associated diarrhea in a region of Quebec from 1991 to 2003: a changing pattern of disease severity. CMAJ. 2004;171:466472.
  6. McDonald LC, Killgore GE, Thompson A, et al. An epidemic, toxin gene‐variant strain of Clostridium difficile. N Engl J Med. 2005;353(23):24332441.
  7. Dubberke ER, Reske KA, Olsen MA, McDonald LC, Fraser VJ. Short‐ and long‐term attributable costs of Clostridium difficile‐associated disease in nonsurgical inpatients. Clin Infect Dis. 2008;46(4):497504.
  8. O'Brien JA, Lahue BJ, Caro JJ, Davidson DM. The emerging infectious challenge of Clostridium difficile‐associated disease in Massachusetts hospitals: clinical and economic consequences. Infect Control Hosp Epidemiol. 2007;28:12191227.
  9. Dubberke ER, Olsen MA. Burden of Clostridium difficile on the healthcare system. Clin Infect Dis. 2012;55(suppl 2):S88S92.
  10. Cornely OA, Crook DW, Esposito R, et al. Fidaxomicin versus vancomycin for infection with Clostridium difficile in Europe, Canada, and the USA: a double‐blind, non‐inferiority, randomised controlled trial. Lancet Infect Dis. 2012;12(4):281289.
  11. Louie TJ, Miller MA, Mullane KM, et al. Fidaxomicin versus vancomycin for Clostridium difficile infection. N Engl J Med. 2011;364:422431.
  12. McFarland LV, Surawicz CM, Rubin M, Fekety R, Elmer GW, Greenberg RN. Recurrent Clostridium difficile disease: epidemiology and clinical characteristics. Infect Control Hosp Epidemiol. 1999;20:4350.
  13. Cohen SH, Gerding DN, Johnson S, et al. Clinical practice guidelines for Clostridium difficile infection in adults: 2010 update by the Society for Healthcare Epidemiology of America (SHEA) and the Infectious Diseases Society of America (IDSA). Infect Control Hosp Epidemiol. 2010;31:431455.
  14. McDonald LC, Coignard B, Dubberke E, Song X, Horan T, Kutty PK; Ad Hoc Clostridium difficile Surveillance Working Group. Recommendations for surveillance of Clostridium difficile‐associated disease. Infect Control Hosp Epidemiol. 2007;28:140145.
  15. Deyo RA, Cherkin DC, Ciol MA. Adapting a clinical comorbidity index for use with ICD‐9‐CM administrative databases. J Clin Epidemiol. 1992;45:613619.
  16. D'Agostino RB, Griffith JL, Schmidt CH, Terrin N. Measures for evaluating model performance. Proceedings of the Biometrics Section. Alexandria, VA: American Statistical Association, Biometrics Section; 1997:253–258.
  17. Dubberke ER, Yan Y, Reske KA, et al. Development and validation of a Clostridium difficile infection risk prediction model. Infect Control Hosp Epidemiol. 2011;32:360366.
  18. Hebert C, Du H, Peterson LR, Robicsek A. Electronic health record‐based detection of risk factors for Clostridium difficile infection relapse. Infect Control Hosp Epidemiol. 2013;34:407414.
  19. Stewart DB, Berg A, Hegarty J. Predicting recurrence of C. difficile colitis using bacterial virulence factors: binary toxin is the key. J Gastrointest Surg. 2013;17:118125.
  20. Kyne L, Warny M, Qamar A, Kelly CP. Association between antibody response to toxin A and protection against recurrent Clostridium difficile diarrhoea. Lancet. 2001;357:189193.
  21. Hu MY, Katchar K, Kyne L, et al. Prospective derivation and validation of a clinical prediction rule for recurrent Clostridium difficile infection. Gastroenterology. 2009;136:12061214.
  22. Orenstein R. Fidaxomicin failures in recurrent Clostridium difficile infection: a problem of timing. Clin Infect Dis. 2012;55:613614.
  23. Johnson S, Gerding DN. Fidaxomicin “chaser” regimen following vancomycin for patients with multiple Clostridium difficile recurrences. Clin Infect Dis. 2013;56:309310.
  24. Eyre DW, Walker AS, Wylie D, et al. Predictors of first recurrence of Clostridium difficile infection: implications for initial management. Clin Infect Dis. 2012;55(suppl 2):S77S87.
  25. Garey KW, Sethi S, Yadav Y, DuPont HL. Meta‐analysis to assess risk factors for recurrent Clostridium difficile infection. J Hosp Infect. 2008;70:298304.
  26. Fekety R, McFarland LV, Surawicz CM, Greenberg RN, Elmer GW, Mulligan ME. Recurrent Clostridium difficile diarrhea: characteristics of and risk factors for patients enrolled in a prospective, randomized, double‐blinded trial. Clin Infect Dis. 1997;24:324333.
  27. Cadle RM, Mansouri MD, Logan N, Kudva DR, Musher DM. Association of proton‐pump inhibitors with outcomes in Clostridium difficile colitis. Am J Health Syst Pharm. 2007;64:23592363.
  28. Kim JW, Lee KL, Jeong JB, et al. Proton pump inhibitors as a risk factor for recurrence of Clostridium‐difficile‐associated diarrhea. World J Gastroenterol. 2010;16:35733577.
  29. Kim YG, Graham DY, Jang BI. Proton pump inhibitor use and recurrent Clostridium difficile‐associated disease: a case‐control analysis matched by propensity score. J Clin Gastroenterol. 2012;46:397400.
  30. Kwok CS, Arthur AK, Anibueze CI, Singh S, Cavallazzi R, Loke YK. Risk of Clostridium difficile infection with acid suppressing drugs and antibiotics: meta‐analysis. Am J Gastroenterol. 2012;107(7):10111019.
  31. Do AN, Fridkin SK, Yechouron A, et al. Risk factors for early recurrent Clostridium difficile‐associated diarrhea. Clin Infect Dis. 1998;26:954959.
References
  1. McDonald LC, Owings M, Jernigan DB. Clostridium difficile infection in patients discharged from US short‐stay hospitals, 1996–2003. Emerge Infect Dis. 2006;12:409415.
  2. Zilberberg MD, Shorr AF, Kollef MH. Increase in adult Clostridium difficile‐related hospitalizations and case‐fatality rate, United States, 2000–2005. Emerg Infect Dis. 2008;14:929931.
  3. Lucado J, Gould C, Elixhauser A. Clostridium difficile infections (CDI) in hospital stays, 2009. HCUP statistical brief #124. Rockville, MD: Agency for Healthcare Research and Quality; 2012. Available at: http://www.hcup‐us.ahrq.gov/reports/statbriefs/sb124.pdf. Accessed July 19, 2013.
  4. Loo VG, Poirier L, Miller MA, et al. A predominantly clonal multi‐institutional outbreak of Clostridium difficile‐associated diarrhea with high morbidity and mortality. N Engl J Med. 2005;353:24422449.
  5. Pepin J, Valiquette L, Alary ME, et al. Clostridium difficile‐associated diarrhea in a region of Quebec from 1991 to 2003: a changing pattern of disease severity. CMAJ. 2004;171:466472.
  6. McDonald LC, Killgore GE, Thompson A, et al. An epidemic, toxin gene‐variant strain of Clostridium difficile. N Engl J Med. 2005;353(23):24332441.
  7. Dubberke ER, Reske KA, Olsen MA, McDonald LC, Fraser VJ. Short‐ and long‐term attributable costs of Clostridium difficile‐associated disease in nonsurgical inpatients. Clin Infect Dis. 2008;46(4):497504.
  8. O'Brien JA, Lahue BJ, Caro JJ, Davidson DM. The emerging infectious challenge of Clostridium difficile‐associated disease in Massachusetts hospitals: clinical and economic consequences. Infect Control Hosp Epidemiol. 2007;28:12191227.
  9. Dubberke ER, Olsen MA. Burden of Clostridium difficile on the healthcare system. Clin Infect Dis. 2012;55(suppl 2):S88S92.
  10. Cornely OA, Crook DW, Esposito R, et al. Fidaxomicin versus vancomycin for infection with Clostridium difficile in Europe, Canada, and the USA: a double‐blind, non‐inferiority, randomised controlled trial. Lancet Infect Dis. 2012;12(4):281289.
  11. Louie TJ, Miller MA, Mullane KM, et al. Fidaxomicin versus vancomycin for Clostridium difficile infection. N Engl J Med. 2011;364:422431.
  12. McFarland LV, Surawicz CM, Rubin M, Fekety R, Elmer GW, Greenberg RN. Recurrent Clostridium difficile disease: epidemiology and clinical characteristics. Infect Control Hosp Epidemiol. 1999;20:4350.
  13. Cohen SH, Gerding DN, Johnson S, et al. Clinical practice guidelines for Clostridium difficile infection in adults: 2010 update by the Society for Healthcare Epidemiology of America (SHEA) and the Infectious Diseases Society of America (IDSA). Infect Control Hosp Epidemiol. 2010;31:431455.
  14. McDonald LC, Coignard B, Dubberke E, Song X, Horan T, Kutty PK; Ad Hoc Clostridium difficile Surveillance Working Group. Recommendations for surveillance of Clostridium difficile‐associated disease. Infect Control Hosp Epidemiol. 2007;28:140145.
  15. Deyo RA, Cherkin DC, Ciol MA. Adapting a clinical comorbidity index for use with ICD‐9‐CM administrative databases. J Clin Epidemiol. 1992;45:613619.
  16. D'Agostino RB, Griffith JL, Schmidt CH, Terrin N. Measures for evaluating model performance. Proceedings of the Biometrics Section. Alexandria, VA: American Statistical Association, Biometrics Section; 1997:253–258.
  17. Dubberke ER, Yan Y, Reske KA, et al. Development and validation of a Clostridium difficile infection risk prediction model. Infect Control Hosp Epidemiol. 2011;32:360366.
  18. Hebert C, Du H, Peterson LR, Robicsek A. Electronic health record‐based detection of risk factors for Clostridium difficile infection relapse. Infect Control Hosp Epidemiol. 2013;34:407414.
  19. Stewart DB, Berg A, Hegarty J. Predicting recurrence of C. difficile colitis using bacterial virulence factors: binary toxin is the key. J Gastrointest Surg. 2013;17:118125.
  20. Kyne L, Warny M, Qamar A, Kelly CP. Association between antibody response to toxin A and protection against recurrent Clostridium difficile diarrhoea. Lancet. 2001;357:189193.
  21. Hu MY, Katchar K, Kyne L, et al. Prospective derivation and validation of a clinical prediction rule for recurrent Clostridium difficile infection. Gastroenterology. 2009;136:12061214.
  22. Orenstein R. Fidaxomicin failures in recurrent Clostridium difficile infection: a problem of timing. Clin Infect Dis. 2012;55:613614.
  23. Johnson S, Gerding DN. Fidaxomicin “chaser” regimen following vancomycin for patients with multiple Clostridium difficile recurrences. Clin Infect Dis. 2013;56:309310.
  24. Eyre DW, Walker AS, Wylie D, et al. Predictors of first recurrence of Clostridium difficile infection: implications for initial management. Clin Infect Dis. 2012;55(suppl 2):S77S87.
  25. Garey KW, Sethi S, Yadav Y, DuPont HL. Meta‐analysis to assess risk factors for recurrent Clostridium difficile infection. J Hosp Infect. 2008;70:298304.
  26. Fekety R, McFarland LV, Surawicz CM, Greenberg RN, Elmer GW, Mulligan ME. Recurrent Clostridium difficile diarrhea: characteristics of and risk factors for patients enrolled in a prospective, randomized, double‐blinded trial. Clin Infect Dis. 1997;24:324333.
  27. Cadle RM, Mansouri MD, Logan N, Kudva DR, Musher DM. Association of proton‐pump inhibitors with outcomes in Clostridium difficile colitis. Am J Health Syst Pharm. 2007;64:23592363.
  28. Kim JW, Lee KL, Jeong JB, et al. Proton pump inhibitors as a risk factor for recurrence of Clostridium‐difficile‐associated diarrhea. World J Gastroenterol. 2010;16:35733577.
  29. Kim YG, Graham DY, Jang BI. Proton pump inhibitor use and recurrent Clostridium difficile‐associated disease: a case‐control analysis matched by propensity score. J Clin Gastroenterol. 2012;46:397400.
  30. Kwok CS, Arthur AK, Anibueze CI, Singh S, Cavallazzi R, Loke YK. Risk of Clostridium difficile infection with acid suppressing drugs and antibiotics: meta‐analysis. Am J Gastroenterol. 2012;107(7):10111019.
  31. Do AN, Fridkin SK, Yechouron A, et al. Risk factors for early recurrent Clostridium difficile‐associated diarrhea. Clin Infect Dis. 1998;26:954959.
Issue
Journal of Hospital Medicine - 9(7)
Issue
Journal of Hospital Medicine - 9(7)
Page Number
418-423
Page Number
418-423
Article Type
Display Headline
Development and validation of a recurrent Clostridium difficile risk‐prediction model
Display Headline
Development and validation of a recurrent Clostridium difficile risk‐prediction model
Sections
Article Source

© 2014 Society of Hospital Medicine

Disallow All Ads
Correspondence Location
Address for correspondence and reprint requests: Marya D. Zilberberg, MD, EviMed Research Group, LLC, PO Box 303, Goshen, MA 01032; Telephone: 413‐268‐6381; Fax: 413‐268‐3416 fax; E‐mail: [email protected]
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Article PDF Media
Media Files

Homeless youths where?

Article Type
Changed
Thu, 12/06/2018 - 16:59
Display Headline
Homeless youths where?

Imagine a place where thousand of teens were homeless, many sleeping on park benches, hungry, and vulnerable. No, this is not a far-away land or third-world country; it’s here in the United States: 1.6 million children will be homeless for some period right here in America, according to the Substance Abuse and Mental Health Services Administration Office of Applied Studies

It’s hard to believe that in one of the richest nations that we would actually have teens walking the streets with no place to go. You might think that these are the wayward teen or the nonconformist, or oppositional defiant teens. But, statistics show that most teens run away to escape abuse they experience at home. Almost 20%-40% of homeless youths identify themselves as LGBT (lesbian, gay, bisexual, or transgender), according to a 2006 report by the National Coalition for the Homeless. Regardless of the reason, the number of homeless children is growing, and the hardship that teens face on the street is even greater than that faced by adults.

Finding shelter as a teen is particularly challenging because many shelters have only a few "youth" beds allotted. There is already a shortage of shelters so the availability is even less for teens. Teens also are particularly vulnerable to sexual predators and human traffickers. Many start by trading sex for food, which puts them at risk of HIV, physical abuse, and likely drug abuse.

Although many of us assume that this is a problem relegated to the inner city, the reality is that these children come from all areas, all cities, and all states. The majority of homeless teens are white (57%), black or African American comprises (27%), then American Indian and Alaskan (3%), according to the SAMHSA Office of Applied Studies (2004). As medical professionals, our critical role is to identify the at-risk teens.

Once we recognize that a teen is in dispute with his or her family because of sexual orientation, drug use, or as a victim of sexual abuse, we have taken the first step to identify a patient at risk.

The second step is to know what resources are available to assist teens that are homeless. The National Runaway Safeline – by phone, at 1-800-RUNAWAY (1-800-786-2929) or at their website, 1800runaway.org – is the national hotline designed to help keep America’s runaway, homeless, and at-risk youth safe and off the streets and to provides access to local shelters.

Homelessness is a growing crisis that affects our youth. If we understand that many of these teens are escaping abuse, it may help to explain why they end up in these situations and to define the support that they need. Remember that shelters are always in need of donations and volunteers.

Dr. Pearce is a pediatrician in Frankfort, Ill. E-mail her at [email protected].

Name
Dr. Pearce
Author and Disclosure Information

Publications
Legacy Keywords
pediatrics, homeless youth, Dr. Francine Pearce
Sections
Author and Disclosure Information

Author and Disclosure Information

Name
Dr. Pearce
Name
Dr. Pearce

Imagine a place where thousand of teens were homeless, many sleeping on park benches, hungry, and vulnerable. No, this is not a far-away land or third-world country; it’s here in the United States: 1.6 million children will be homeless for some period right here in America, according to the Substance Abuse and Mental Health Services Administration Office of Applied Studies

It’s hard to believe that in one of the richest nations that we would actually have teens walking the streets with no place to go. You might think that these are the wayward teen or the nonconformist, or oppositional defiant teens. But, statistics show that most teens run away to escape abuse they experience at home. Almost 20%-40% of homeless youths identify themselves as LGBT (lesbian, gay, bisexual, or transgender), according to a 2006 report by the National Coalition for the Homeless. Regardless of the reason, the number of homeless children is growing, and the hardship that teens face on the street is even greater than that faced by adults.

Finding shelter as a teen is particularly challenging because many shelters have only a few "youth" beds allotted. There is already a shortage of shelters so the availability is even less for teens. Teens also are particularly vulnerable to sexual predators and human traffickers. Many start by trading sex for food, which puts them at risk of HIV, physical abuse, and likely drug abuse.

Although many of us assume that this is a problem relegated to the inner city, the reality is that these children come from all areas, all cities, and all states. The majority of homeless teens are white (57%), black or African American comprises (27%), then American Indian and Alaskan (3%), according to the SAMHSA Office of Applied Studies (2004). As medical professionals, our critical role is to identify the at-risk teens.

Once we recognize that a teen is in dispute with his or her family because of sexual orientation, drug use, or as a victim of sexual abuse, we have taken the first step to identify a patient at risk.

The second step is to know what resources are available to assist teens that are homeless. The National Runaway Safeline – by phone, at 1-800-RUNAWAY (1-800-786-2929) or at their website, 1800runaway.org – is the national hotline designed to help keep America’s runaway, homeless, and at-risk youth safe and off the streets and to provides access to local shelters.

Homelessness is a growing crisis that affects our youth. If we understand that many of these teens are escaping abuse, it may help to explain why they end up in these situations and to define the support that they need. Remember that shelters are always in need of donations and volunteers.

Dr. Pearce is a pediatrician in Frankfort, Ill. E-mail her at [email protected].

Imagine a place where thousand of teens were homeless, many sleeping on park benches, hungry, and vulnerable. No, this is not a far-away land or third-world country; it’s here in the United States: 1.6 million children will be homeless for some period right here in America, according to the Substance Abuse and Mental Health Services Administration Office of Applied Studies

It’s hard to believe that in one of the richest nations that we would actually have teens walking the streets with no place to go. You might think that these are the wayward teen or the nonconformist, or oppositional defiant teens. But, statistics show that most teens run away to escape abuse they experience at home. Almost 20%-40% of homeless youths identify themselves as LGBT (lesbian, gay, bisexual, or transgender), according to a 2006 report by the National Coalition for the Homeless. Regardless of the reason, the number of homeless children is growing, and the hardship that teens face on the street is even greater than that faced by adults.

Finding shelter as a teen is particularly challenging because many shelters have only a few "youth" beds allotted. There is already a shortage of shelters so the availability is even less for teens. Teens also are particularly vulnerable to sexual predators and human traffickers. Many start by trading sex for food, which puts them at risk of HIV, physical abuse, and likely drug abuse.

Although many of us assume that this is a problem relegated to the inner city, the reality is that these children come from all areas, all cities, and all states. The majority of homeless teens are white (57%), black or African American comprises (27%), then American Indian and Alaskan (3%), according to the SAMHSA Office of Applied Studies (2004). As medical professionals, our critical role is to identify the at-risk teens.

Once we recognize that a teen is in dispute with his or her family because of sexual orientation, drug use, or as a victim of sexual abuse, we have taken the first step to identify a patient at risk.

The second step is to know what resources are available to assist teens that are homeless. The National Runaway Safeline – by phone, at 1-800-RUNAWAY (1-800-786-2929) or at their website, 1800runaway.org – is the national hotline designed to help keep America’s runaway, homeless, and at-risk youth safe and off the streets and to provides access to local shelters.

Homelessness is a growing crisis that affects our youth. If we understand that many of these teens are escaping abuse, it may help to explain why they end up in these situations and to define the support that they need. Remember that shelters are always in need of donations and volunteers.

Dr. Pearce is a pediatrician in Frankfort, Ill. E-mail her at [email protected].

Publications
Publications
Article Type
Display Headline
Homeless youths where?
Display Headline
Homeless youths where?
Legacy Keywords
pediatrics, homeless youth, Dr. Francine Pearce
Legacy Keywords
pediatrics, homeless youth, Dr. Francine Pearce
Sections
Article Source

PURLs Copyright

Inside the Article