Academic Suppport

Article Type
Changed
Sun, 05/28/2017 - 22:08
Display Headline
An innovative approach to supporting hospitalist physicians towards academic success

Promotion through the ranks is the hallmark of success in academia. The support and infrastructure necessary to develop junior faculty members at academic medical centers may be inadequate.1, 2 Academic hospitalists are particularly vulnerable and at high risk for failure because of their heavy clinical commitment and limited time to pursue scholarly interests. Further, relatively few have pursued fellowship training, which means that many hospitalists must learn research‐related skills and the nuances of academia after joining the faculty.

Top‐notch mentors are believed to be integral to the success of the academic physician.36 Among other responsibilities, mentors (1) direct mentees toward promising opportunities, (2) serve as advocates for mentees, and (3) lend expertise to mentees' studies and scholarship. In general, there is concern that the cadre of talented, committed, and capable mentors is dwindling such that they are insufficient in number to satisfy and support the needs of the faculty.7, 8 In hospital medicine, experienced mentorship is particularly in short supply because the field is relatively new and there has been tremendous growth in the number of academic hospitalists, producing a large demand.

Like many hospitalist groups, our hospitalist division, the Collaborative Inpatient Medicine Service (CIMS), has experienced significant growth. It became apparent that the faculty needed and deserved a well‐designed academic support program to foster the development of skills necessary for academic success. The remainder of this article discusses our approach toward fulfilling these needs and the results to date.

DEVELOPING THE HOSPITALIST ACADEMIC SUPPORT PROGRAM

Problem Identification

Johns Hopkins Bayview Medical Center (JHBMC) is a 700‐bed urban university‐affiliated hospital. The CIMS hospital group is a distinct division separate from the hospitalist group at Johns Hopkins Hospital. All faculty are employed by the Johns Hopkins University School of Medicine (JHUSOM), and there is a single promotion track for the faculty. Specific requirements for promotion may be found in the Johns Hopkins University School of Medicine silver book at http://www.hopkinsmedicine.org/som/faculty/policies/silverbook/. In reviewing the documentation, it became apparent that the haphazard approach to supporting this group of junior faculty members was not going to work and that a more organized and thoughtful plan was necessary. A culmination of the following factors at our institution spurred the innovation:

  • CIMS had been growing in numbers from 4 full‐time equivalent (FTE) physicians in fiscal year (FY) 01 to 11.8 FTE physicians in FY06.

  • Most had limited training in research.

  • The physicians had little protected time for skill development and for working on scholarly projects.

  • Attempts to recruit a professor‐/associate professorlevel hospitalist from another institution to mentor our faculty members had been unsuccessful.

  • The hospitalists in our group had diverse interests such that we needed to find a flexible mentor who was willing and able to work across a breadth of content areas and methodologies.

  • Preliminary attempts to link up our hospitalists with clinician‐investigators at our institution were not fruitful.

 

Needs Assessment

In soliciting input from the hospitalists themselves and other stakeholders (including institutional leadership and leaders in hospital medicine), the following needs were identified:

  • Each CIMS faculty member must have a body of scholarship to support promotion and long‐term academic success.

  • Each CIMS faculty member needs appropriate mentorship.

  • Each CIMS faculty member needs protected time for scholarly work.

  • The CIMS faculty members need to support one another and be collaborative in their scholarly work.

  • The scholarly activities of the CIMS faculty need to support the mission of the division.

 

The mission of our division had been established to value and encourage the diverse interests and talents within the group:

The Collaborative Inpatient Medical Service (CIMS) is dedicated to serving the public trust by advancing the field of Hospital Medicine through the realization of excellence in patient care, education, research, leadership, and systems‐improvement.

 

Objectives

The objectives of the academic support program were organized into those for the CIMS Division as well as specific individual faculty goals and are outlined below:

  • Objectives for the division:

     

    • To increase the number and quality of peer‐reviewed publications produced by CIMS faculty.

    • To increase the amount of scholarly time available to CIMS faculty. In addition to external funding sources, we were committed to exploring nontraditional funding sources such as hospital administration and partnerships with other divisions or departments (including information technology) in need of clinically savvy physicians to help with projects.

    • To augment the leadership roles of the CIMS faculty with our institution and on a national level.

    • To support the CIMS faculty members such that they can be promoted at Johns Hopkins University School of Medicine (JHUSOM) and thereby retained.

    • Goals for individuals:

       

      • Each CIMS faculty member will advance his or her skill set to be moving toward producing scholarly work independently.

      • Each faculty member will lead at least 1 scholarly project at all times and will be involved as a team‐member in others.

      • Each faculty member will understand the criteria for promotion at our institution and will reflect on plans and strategies to realize success.

       

Strategies for Achieving the Objectives and Goals

Establish a Strong Mentoring System for the CIMS

The CIMS identified a primary mentor for the group, a faculty member within the Division of General Internal Medicine who was an experienced mentor with formidable management skills and an excellent track record in publishing scholarly work. Twenty‐percent of the mentor's time was set aside so he would have sufficient time to spend with CIMS faculty members in developing scholarly activities.

The mentor meets individually with each CIMS faculty member at the beginning of each academic year to identify career objectives; review current activities, interests, and skills; identify career development needs that require additional training or resources; set priorities for scholarly work; identify opportunities for collaboration internally and externally; and identify additional potential mentors to support specific projects. Regular follow‐up meetings are arranged, as needed to review progress and encourage advancing the work. The mentor uses resources to stay abreast of relevant funding opportunities and shares them with the group. The mentor reports regularly to the director of the CIMS regarding progress. The process as outlined remains ongoing.

Investing the Requisite Resources

A major decision was made that CIMS hospitalists would have 30% of their time protected for academic work, without the need for external funding. The expectation that the faculty had to use this time to effectively advance their career goals, which in turn would support the mission of CIMS, was clearly and explicitly expressed. The faculty would also be permitted to decrease their clinical time further on obtaining external funding. Additionally, in conjunction with a specific grant, the group hired a research assistant to permanently support the scholarly work of the faculty.

Leaders in both hospital administration and the Department of Medicine agreed that the only way to maintain a stable group of mature hospitalists who could serve as champions for change and help develop functional quality improvement projects was to support them in their academic efforts, including protected academic time irrespective of external funding.

The funding to protect the scholarly commitment (the mentor, the protected time of CIMS faculty, and the research assistant) has come primarily from divisional funds, although the CIMS budget is subsidized by the Department of Medicine and the medical center.

Recruit Faculty with Fellowship Training

It is our goal to reach a critical mass of hospitalists with experience and advanced training in scholarship. Fellowship‐trained faculty members are best positioned to realize academic success and can impart their knowledge and skills to others. Fellowship‐trained faculty members hired to date have come from either general internal medicine (n = 1) or geriatric (n = 2) fellowship programs, and none have been trained in a hospitalist fellowship program. It is hoped that these fellowship‐trained faculty and some of the other more experienced members of the group will be able to share in the mentoring responsibilities so that mentoring outsourcing can ultimately be replaced by CIMS faculty members.

EVALUATION DATA

In the 2 years since implementation of the scholarly support program, individual faculty in the CIMS have been meeting the above‐mentioned goals. Specifically, with respect to acquiring knowledge and skills, 2 faculty members have completed their master's degrees, and 6 others have made use of select courses to augment their knowledge and skills. All faculty members (100%) have a scholarly project they are leading, and most have reached out to a colleague in the CIMS to assist them, such that nearly all are team members on at least 1 other scholarly project. Through informal mentoring sessions and a once‐yearly formal meeting related to academic promotion, all members (100%) of the faculty are aware of the expectations and requirements for promotion.

Table 1 shows the accomplishment of the 5 faculty members in the academic track who have been division members for 3 years or more. Among the 5 faculty in the academic track, publications and extramural funding are improving. In the 5 years before the initiative, CIMS faculty averaged approximately 0.5 publications per person per year; in the first 2 years of this initiative, that number has increased to 1.3 publications per person per year. The 1 physician who has not yet been published has completed projects and has several article in process. External funding (largely in the form of 3 extramural grants from private foundations) has increased dramatically from an average of 4% per FTE before the intervention to approximately 15% per FTE afterward. In addition, all faculty members have secured a source of additional funding to reduce their clinical efforts since the implementation of this program. One foundation funded project that involved all division members, whose goal was to develop mechanisms to improve the discharge process of elderly patients to their homes, won the award at the SGIM 2007 National Meeting for the best clinical innovation. As illustrated in Table 1, 1 of the founding CIMS members transferred out of the academic track in 2003 in alignment with this physician's personal and professional goals and preferences. Two faculty members have moved up an academic rank, and several others are poised to do so.

Select Measures of Academic Success among Division Members Who Have Been on the Faculty for At Least 3 YearsComparison Before and After Implementation of Academic Support Program (ASP)
 Dr. A*Dr. BDr. CDr. DDr. EDr. F
  • Dr. A left the academic track to become a clinical associate before implementation of the ASP.

  • For Doctors B, D, E, and F, the reduction in their clinical % FTE was made possible through securing extramural research funding.

  • The articles attributed to individuals are independent of each other such that articles are counted 1 time.

Years on faculty777533
Clinical % FTE before ASP70%60%60%70%70%70%
Clinical % FTE after ASPNot applicable30%60%60%50%45%
Number of publications per year before ASPNot applicable0.750.75000
Number of publications per year after ASPNot applicable2.52110
Leadership role and title before ASP:Not applicable     
a. within institutionYesNoNoNoNo
b. national levelNoNoNoNoNo
Leadership role and title after ASP:Not applicable     
a. within institutionYesYesYesYesNo
b. national levelYesNoNoNoYes

Thus, the divisional objectives (increasing number of publications, securing funding to increase the time devoted to scholarship, new leadership roles, and progression toward promotion) are being met as well.

CONCLUSIONS

Our rapidly growing hospitalist division recognized that several factors threatened the ability of the division and individuals to succeed academically. Divisional, departmental, and medical center leadership was committed to creating a supportive structure that would be available to all hospitalists as opposed to expecting each individual to unearth the necessary resources on their own. The innovative approach to foster individual, and therefore divisional, academic and scholarly success was designed around the following strategies: retention of an expert mentor (who is a not a hospitalist) and securing 20% of his time, investing in scholarship by protecting 30% nonclinical time for academic pursuits, and attempting to seek out fellowship‐trained hospitalists when hiring.

Although quality mentorship, protected time, and recruiting the best‐available talent to fill needs may not seem all that innovative, we believe the systematic approach to the problem and our steadfast application of the strategic plan is unique, innovative, and may present a model to be emulated by other divisions. Some may contend that it is impossible to protect 30% FTE of academic hospitalists indefinitely. Our group has made substantial investment in supporting the academic pursuits of our physicians, and we believe this is essential to maintaining their satisfaction and commitment to scholarship. This amount of protected time is offered to the entire physician faculty and continues even as our division has almost tripled in size. This initiative represents a carefully calculated investment that has influenced our ability to recruit and retain excellent people. Ongoing prospective study of this intervention over time will provide additional perspective on its value and shortcomings. Nonetheless, early data suggest that the plan is indeed working and that our group is satisfied with the return on investment to date.

References
  1. Campbell EG,Weissman JS,Moy E,Blumenthal D.2001.Status of clinical research in academic health centers: views from the research leadership.JAMA.286:800806.
  2. Shewan LG,Glatz JA,Bennett CC,Coats AJ.Contemporary (post‐Wills) survey of the views of Australian medical researchers: importance of funding, infrastructure and motivators for a research career.Med J Aust.2005;183:604605.
  3. Swazey JP,Anderson MS.Mentors, Advisors, and Role Models in Graduate and Professional Education.Washington DC:Association of Academic Health Centers;1996.
  4. Bland C,Schmitz CC.Characteristics of the successful researcher and implications for faculty development.J Med Educ.1986;61:2231.
  5. Barondess JA.On mentoring.J R Soc Med.1997;90:347349.
  6. Palepu A,Friedman RH,Barnett RC, et al.Junior faculty members' mentoring relationships and their professional development in U.S. medical schools.Acad Med.1998;73:318323.
  7. AAMC (Association of American Medical Colleges).For the Health of the Public: Ensuring the Future of Clinical Research.Washington, DC:AAMC;1999.
  8. Wolf M.2002.Clinical research career development: the individual perspective.Acad Med.77:10841088.
Article PDF
Issue
Journal of Hospital Medicine - 3(4)
Page Number
314-318
Legacy Keywords
promotion, scholarship, research, mentoring
Sections
Article PDF
Article PDF

Promotion through the ranks is the hallmark of success in academia. The support and infrastructure necessary to develop junior faculty members at academic medical centers may be inadequate.1, 2 Academic hospitalists are particularly vulnerable and at high risk for failure because of their heavy clinical commitment and limited time to pursue scholarly interests. Further, relatively few have pursued fellowship training, which means that many hospitalists must learn research‐related skills and the nuances of academia after joining the faculty.

Top‐notch mentors are believed to be integral to the success of the academic physician.36 Among other responsibilities, mentors (1) direct mentees toward promising opportunities, (2) serve as advocates for mentees, and (3) lend expertise to mentees' studies and scholarship. In general, there is concern that the cadre of talented, committed, and capable mentors is dwindling such that they are insufficient in number to satisfy and support the needs of the faculty.7, 8 In hospital medicine, experienced mentorship is particularly in short supply because the field is relatively new and there has been tremendous growth in the number of academic hospitalists, producing a large demand.

Like many hospitalist groups, our hospitalist division, the Collaborative Inpatient Medicine Service (CIMS), has experienced significant growth. It became apparent that the faculty needed and deserved a well‐designed academic support program to foster the development of skills necessary for academic success. The remainder of this article discusses our approach toward fulfilling these needs and the results to date.

DEVELOPING THE HOSPITALIST ACADEMIC SUPPORT PROGRAM

Problem Identification

Johns Hopkins Bayview Medical Center (JHBMC) is a 700‐bed urban university‐affiliated hospital. The CIMS hospital group is a distinct division separate from the hospitalist group at Johns Hopkins Hospital. All faculty are employed by the Johns Hopkins University School of Medicine (JHUSOM), and there is a single promotion track for the faculty. Specific requirements for promotion may be found in the Johns Hopkins University School of Medicine silver book at http://www.hopkinsmedicine.org/som/faculty/policies/silverbook/. In reviewing the documentation, it became apparent that the haphazard approach to supporting this group of junior faculty members was not going to work and that a more organized and thoughtful plan was necessary. A culmination of the following factors at our institution spurred the innovation:

  • CIMS had been growing in numbers from 4 full‐time equivalent (FTE) physicians in fiscal year (FY) 01 to 11.8 FTE physicians in FY06.

  • Most had limited training in research.

  • The physicians had little protected time for skill development and for working on scholarly projects.

  • Attempts to recruit a professor‐/associate professorlevel hospitalist from another institution to mentor our faculty members had been unsuccessful.

  • The hospitalists in our group had diverse interests such that we needed to find a flexible mentor who was willing and able to work across a breadth of content areas and methodologies.

  • Preliminary attempts to link up our hospitalists with clinician‐investigators at our institution were not fruitful.

 

Needs Assessment

In soliciting input from the hospitalists themselves and other stakeholders (including institutional leadership and leaders in hospital medicine), the following needs were identified:

  • Each CIMS faculty member must have a body of scholarship to support promotion and long‐term academic success.

  • Each CIMS faculty member needs appropriate mentorship.

  • Each CIMS faculty member needs protected time for scholarly work.

  • The CIMS faculty members need to support one another and be collaborative in their scholarly work.

  • The scholarly activities of the CIMS faculty need to support the mission of the division.

 

The mission of our division had been established to value and encourage the diverse interests and talents within the group:

The Collaborative Inpatient Medical Service (CIMS) is dedicated to serving the public trust by advancing the field of Hospital Medicine through the realization of excellence in patient care, education, research, leadership, and systems‐improvement.

 

Objectives

The objectives of the academic support program were organized into those for the CIMS Division as well as specific individual faculty goals and are outlined below:

  • Objectives for the division:

     

    • To increase the number and quality of peer‐reviewed publications produced by CIMS faculty.

    • To increase the amount of scholarly time available to CIMS faculty. In addition to external funding sources, we were committed to exploring nontraditional funding sources such as hospital administration and partnerships with other divisions or departments (including information technology) in need of clinically savvy physicians to help with projects.

    • To augment the leadership roles of the CIMS faculty with our institution and on a national level.

    • To support the CIMS faculty members such that they can be promoted at Johns Hopkins University School of Medicine (JHUSOM) and thereby retained.

    • Goals for individuals:

       

      • Each CIMS faculty member will advance his or her skill set to be moving toward producing scholarly work independently.

      • Each faculty member will lead at least 1 scholarly project at all times and will be involved as a team‐member in others.

      • Each faculty member will understand the criteria for promotion at our institution and will reflect on plans and strategies to realize success.

       

Strategies for Achieving the Objectives and Goals

Establish a Strong Mentoring System for the CIMS

The CIMS identified a primary mentor for the group, a faculty member within the Division of General Internal Medicine who was an experienced mentor with formidable management skills and an excellent track record in publishing scholarly work. Twenty‐percent of the mentor's time was set aside so he would have sufficient time to spend with CIMS faculty members in developing scholarly activities.

The mentor meets individually with each CIMS faculty member at the beginning of each academic year to identify career objectives; review current activities, interests, and skills; identify career development needs that require additional training or resources; set priorities for scholarly work; identify opportunities for collaboration internally and externally; and identify additional potential mentors to support specific projects. Regular follow‐up meetings are arranged, as needed to review progress and encourage advancing the work. The mentor uses resources to stay abreast of relevant funding opportunities and shares them with the group. The mentor reports regularly to the director of the CIMS regarding progress. The process as outlined remains ongoing.

Investing the Requisite Resources

A major decision was made that CIMS hospitalists would have 30% of their time protected for academic work, without the need for external funding. The expectation that the faculty had to use this time to effectively advance their career goals, which in turn would support the mission of CIMS, was clearly and explicitly expressed. The faculty would also be permitted to decrease their clinical time further on obtaining external funding. Additionally, in conjunction with a specific grant, the group hired a research assistant to permanently support the scholarly work of the faculty.

Leaders in both hospital administration and the Department of Medicine agreed that the only way to maintain a stable group of mature hospitalists who could serve as champions for change and help develop functional quality improvement projects was to support them in their academic efforts, including protected academic time irrespective of external funding.

The funding to protect the scholarly commitment (the mentor, the protected time of CIMS faculty, and the research assistant) has come primarily from divisional funds, although the CIMS budget is subsidized by the Department of Medicine and the medical center.

Recruit Faculty with Fellowship Training

It is our goal to reach a critical mass of hospitalists with experience and advanced training in scholarship. Fellowship‐trained faculty members are best positioned to realize academic success and can impart their knowledge and skills to others. Fellowship‐trained faculty members hired to date have come from either general internal medicine (n = 1) or geriatric (n = 2) fellowship programs, and none have been trained in a hospitalist fellowship program. It is hoped that these fellowship‐trained faculty and some of the other more experienced members of the group will be able to share in the mentoring responsibilities so that mentoring outsourcing can ultimately be replaced by CIMS faculty members.

EVALUATION DATA

In the 2 years since implementation of the scholarly support program, individual faculty in the CIMS have been meeting the above‐mentioned goals. Specifically, with respect to acquiring knowledge and skills, 2 faculty members have completed their master's degrees, and 6 others have made use of select courses to augment their knowledge and skills. All faculty members (100%) have a scholarly project they are leading, and most have reached out to a colleague in the CIMS to assist them, such that nearly all are team members on at least 1 other scholarly project. Through informal mentoring sessions and a once‐yearly formal meeting related to academic promotion, all members (100%) of the faculty are aware of the expectations and requirements for promotion.

Table 1 shows the accomplishment of the 5 faculty members in the academic track who have been division members for 3 years or more. Among the 5 faculty in the academic track, publications and extramural funding are improving. In the 5 years before the initiative, CIMS faculty averaged approximately 0.5 publications per person per year; in the first 2 years of this initiative, that number has increased to 1.3 publications per person per year. The 1 physician who has not yet been published has completed projects and has several article in process. External funding (largely in the form of 3 extramural grants from private foundations) has increased dramatically from an average of 4% per FTE before the intervention to approximately 15% per FTE afterward. In addition, all faculty members have secured a source of additional funding to reduce their clinical efforts since the implementation of this program. One foundation funded project that involved all division members, whose goal was to develop mechanisms to improve the discharge process of elderly patients to their homes, won the award at the SGIM 2007 National Meeting for the best clinical innovation. As illustrated in Table 1, 1 of the founding CIMS members transferred out of the academic track in 2003 in alignment with this physician's personal and professional goals and preferences. Two faculty members have moved up an academic rank, and several others are poised to do so.

Select Measures of Academic Success among Division Members Who Have Been on the Faculty for At Least 3 YearsComparison Before and After Implementation of Academic Support Program (ASP)
 Dr. A*Dr. BDr. CDr. DDr. EDr. F
  • Dr. A left the academic track to become a clinical associate before implementation of the ASP.

  • For Doctors B, D, E, and F, the reduction in their clinical % FTE was made possible through securing extramural research funding.

  • The articles attributed to individuals are independent of each other such that articles are counted 1 time.

Years on faculty777533
Clinical % FTE before ASP70%60%60%70%70%70%
Clinical % FTE after ASPNot applicable30%60%60%50%45%
Number of publications per year before ASPNot applicable0.750.75000
Number of publications per year after ASPNot applicable2.52110
Leadership role and title before ASP:Not applicable     
a. within institutionYesNoNoNoNo
b. national levelNoNoNoNoNo
Leadership role and title after ASP:Not applicable     
a. within institutionYesYesYesYesNo
b. national levelYesNoNoNoYes

Thus, the divisional objectives (increasing number of publications, securing funding to increase the time devoted to scholarship, new leadership roles, and progression toward promotion) are being met as well.

CONCLUSIONS

Our rapidly growing hospitalist division recognized that several factors threatened the ability of the division and individuals to succeed academically. Divisional, departmental, and medical center leadership was committed to creating a supportive structure that would be available to all hospitalists as opposed to expecting each individual to unearth the necessary resources on their own. The innovative approach to foster individual, and therefore divisional, academic and scholarly success was designed around the following strategies: retention of an expert mentor (who is a not a hospitalist) and securing 20% of his time, investing in scholarship by protecting 30% nonclinical time for academic pursuits, and attempting to seek out fellowship‐trained hospitalists when hiring.

Although quality mentorship, protected time, and recruiting the best‐available talent to fill needs may not seem all that innovative, we believe the systematic approach to the problem and our steadfast application of the strategic plan is unique, innovative, and may present a model to be emulated by other divisions. Some may contend that it is impossible to protect 30% FTE of academic hospitalists indefinitely. Our group has made substantial investment in supporting the academic pursuits of our physicians, and we believe this is essential to maintaining their satisfaction and commitment to scholarship. This amount of protected time is offered to the entire physician faculty and continues even as our division has almost tripled in size. This initiative represents a carefully calculated investment that has influenced our ability to recruit and retain excellent people. Ongoing prospective study of this intervention over time will provide additional perspective on its value and shortcomings. Nonetheless, early data suggest that the plan is indeed working and that our group is satisfied with the return on investment to date.

Promotion through the ranks is the hallmark of success in academia. The support and infrastructure necessary to develop junior faculty members at academic medical centers may be inadequate.1, 2 Academic hospitalists are particularly vulnerable and at high risk for failure because of their heavy clinical commitment and limited time to pursue scholarly interests. Further, relatively few have pursued fellowship training, which means that many hospitalists must learn research‐related skills and the nuances of academia after joining the faculty.

Top‐notch mentors are believed to be integral to the success of the academic physician.36 Among other responsibilities, mentors (1) direct mentees toward promising opportunities, (2) serve as advocates for mentees, and (3) lend expertise to mentees' studies and scholarship. In general, there is concern that the cadre of talented, committed, and capable mentors is dwindling such that they are insufficient in number to satisfy and support the needs of the faculty.7, 8 In hospital medicine, experienced mentorship is particularly in short supply because the field is relatively new and there has been tremendous growth in the number of academic hospitalists, producing a large demand.

Like many hospitalist groups, our hospitalist division, the Collaborative Inpatient Medicine Service (CIMS), has experienced significant growth. It became apparent that the faculty needed and deserved a well‐designed academic support program to foster the development of skills necessary for academic success. The remainder of this article discusses our approach toward fulfilling these needs and the results to date.

DEVELOPING THE HOSPITALIST ACADEMIC SUPPORT PROGRAM

Problem Identification

Johns Hopkins Bayview Medical Center (JHBMC) is a 700‐bed urban university‐affiliated hospital. The CIMS hospital group is a distinct division separate from the hospitalist group at Johns Hopkins Hospital. All faculty are employed by the Johns Hopkins University School of Medicine (JHUSOM), and there is a single promotion track for the faculty. Specific requirements for promotion may be found in the Johns Hopkins University School of Medicine silver book at http://www.hopkinsmedicine.org/som/faculty/policies/silverbook/. In reviewing the documentation, it became apparent that the haphazard approach to supporting this group of junior faculty members was not going to work and that a more organized and thoughtful plan was necessary. A culmination of the following factors at our institution spurred the innovation:

  • CIMS had been growing in numbers from 4 full‐time equivalent (FTE) physicians in fiscal year (FY) 01 to 11.8 FTE physicians in FY06.

  • Most had limited training in research.

  • The physicians had little protected time for skill development and for working on scholarly projects.

  • Attempts to recruit a professor‐/associate professorlevel hospitalist from another institution to mentor our faculty members had been unsuccessful.

  • The hospitalists in our group had diverse interests such that we needed to find a flexible mentor who was willing and able to work across a breadth of content areas and methodologies.

  • Preliminary attempts to link up our hospitalists with clinician‐investigators at our institution were not fruitful.

 

Needs Assessment

In soliciting input from the hospitalists themselves and other stakeholders (including institutional leadership and leaders in hospital medicine), the following needs were identified:

  • Each CIMS faculty member must have a body of scholarship to support promotion and long‐term academic success.

  • Each CIMS faculty member needs appropriate mentorship.

  • Each CIMS faculty member needs protected time for scholarly work.

  • The CIMS faculty members need to support one another and be collaborative in their scholarly work.

  • The scholarly activities of the CIMS faculty need to support the mission of the division.

 

The mission of our division had been established to value and encourage the diverse interests and talents within the group:

The Collaborative Inpatient Medical Service (CIMS) is dedicated to serving the public trust by advancing the field of Hospital Medicine through the realization of excellence in patient care, education, research, leadership, and systems‐improvement.

 

Objectives

The objectives of the academic support program were organized into those for the CIMS Division as well as specific individual faculty goals and are outlined below:

  • Objectives for the division:

     

    • To increase the number and quality of peer‐reviewed publications produced by CIMS faculty.

    • To increase the amount of scholarly time available to CIMS faculty. In addition to external funding sources, we were committed to exploring nontraditional funding sources such as hospital administration and partnerships with other divisions or departments (including information technology) in need of clinically savvy physicians to help with projects.

    • To augment the leadership roles of the CIMS faculty with our institution and on a national level.

    • To support the CIMS faculty members such that they can be promoted at Johns Hopkins University School of Medicine (JHUSOM) and thereby retained.

    • Goals for individuals:

       

      • Each CIMS faculty member will advance his or her skill set to be moving toward producing scholarly work independently.

      • Each faculty member will lead at least 1 scholarly project at all times and will be involved as a team‐member in others.

      • Each faculty member will understand the criteria for promotion at our institution and will reflect on plans and strategies to realize success.

       

Strategies for Achieving the Objectives and Goals

Establish a Strong Mentoring System for the CIMS

The CIMS identified a primary mentor for the group, a faculty member within the Division of General Internal Medicine who was an experienced mentor with formidable management skills and an excellent track record in publishing scholarly work. Twenty‐percent of the mentor's time was set aside so he would have sufficient time to spend with CIMS faculty members in developing scholarly activities.

The mentor meets individually with each CIMS faculty member at the beginning of each academic year to identify career objectives; review current activities, interests, and skills; identify career development needs that require additional training or resources; set priorities for scholarly work; identify opportunities for collaboration internally and externally; and identify additional potential mentors to support specific projects. Regular follow‐up meetings are arranged, as needed to review progress and encourage advancing the work. The mentor uses resources to stay abreast of relevant funding opportunities and shares them with the group. The mentor reports regularly to the director of the CIMS regarding progress. The process as outlined remains ongoing.

Investing the Requisite Resources

A major decision was made that CIMS hospitalists would have 30% of their time protected for academic work, without the need for external funding. The expectation that the faculty had to use this time to effectively advance their career goals, which in turn would support the mission of CIMS, was clearly and explicitly expressed. The faculty would also be permitted to decrease their clinical time further on obtaining external funding. Additionally, in conjunction with a specific grant, the group hired a research assistant to permanently support the scholarly work of the faculty.

Leaders in both hospital administration and the Department of Medicine agreed that the only way to maintain a stable group of mature hospitalists who could serve as champions for change and help develop functional quality improvement projects was to support them in their academic efforts, including protected academic time irrespective of external funding.

The funding to protect the scholarly commitment (the mentor, the protected time of CIMS faculty, and the research assistant) has come primarily from divisional funds, although the CIMS budget is subsidized by the Department of Medicine and the medical center.

Recruit Faculty with Fellowship Training

It is our goal to reach a critical mass of hospitalists with experience and advanced training in scholarship. Fellowship‐trained faculty members are best positioned to realize academic success and can impart their knowledge and skills to others. Fellowship‐trained faculty members hired to date have come from either general internal medicine (n = 1) or geriatric (n = 2) fellowship programs, and none have been trained in a hospitalist fellowship program. It is hoped that these fellowship‐trained faculty and some of the other more experienced members of the group will be able to share in the mentoring responsibilities so that mentoring outsourcing can ultimately be replaced by CIMS faculty members.

EVALUATION DATA

In the 2 years since implementation of the scholarly support program, individual faculty in the CIMS have been meeting the above‐mentioned goals. Specifically, with respect to acquiring knowledge and skills, 2 faculty members have completed their master's degrees, and 6 others have made use of select courses to augment their knowledge and skills. All faculty members (100%) have a scholarly project they are leading, and most have reached out to a colleague in the CIMS to assist them, such that nearly all are team members on at least 1 other scholarly project. Through informal mentoring sessions and a once‐yearly formal meeting related to academic promotion, all members (100%) of the faculty are aware of the expectations and requirements for promotion.

Table 1 shows the accomplishment of the 5 faculty members in the academic track who have been division members for 3 years or more. Among the 5 faculty in the academic track, publications and extramural funding are improving. In the 5 years before the initiative, CIMS faculty averaged approximately 0.5 publications per person per year; in the first 2 years of this initiative, that number has increased to 1.3 publications per person per year. The 1 physician who has not yet been published has completed projects and has several article in process. External funding (largely in the form of 3 extramural grants from private foundations) has increased dramatically from an average of 4% per FTE before the intervention to approximately 15% per FTE afterward. In addition, all faculty members have secured a source of additional funding to reduce their clinical efforts since the implementation of this program. One foundation funded project that involved all division members, whose goal was to develop mechanisms to improve the discharge process of elderly patients to their homes, won the award at the SGIM 2007 National Meeting for the best clinical innovation. As illustrated in Table 1, 1 of the founding CIMS members transferred out of the academic track in 2003 in alignment with this physician's personal and professional goals and preferences. Two faculty members have moved up an academic rank, and several others are poised to do so.

Select Measures of Academic Success among Division Members Who Have Been on the Faculty for At Least 3 YearsComparison Before and After Implementation of Academic Support Program (ASP)
 Dr. A*Dr. BDr. CDr. DDr. EDr. F
  • Dr. A left the academic track to become a clinical associate before implementation of the ASP.

  • For Doctors B, D, E, and F, the reduction in their clinical % FTE was made possible through securing extramural research funding.

  • The articles attributed to individuals are independent of each other such that articles are counted 1 time.

Years on faculty777533
Clinical % FTE before ASP70%60%60%70%70%70%
Clinical % FTE after ASPNot applicable30%60%60%50%45%
Number of publications per year before ASPNot applicable0.750.75000
Number of publications per year after ASPNot applicable2.52110
Leadership role and title before ASP:Not applicable     
a. within institutionYesNoNoNoNo
b. national levelNoNoNoNoNo
Leadership role and title after ASP:Not applicable     
a. within institutionYesYesYesYesNo
b. national levelYesNoNoNoYes

Thus, the divisional objectives (increasing number of publications, securing funding to increase the time devoted to scholarship, new leadership roles, and progression toward promotion) are being met as well.

CONCLUSIONS

Our rapidly growing hospitalist division recognized that several factors threatened the ability of the division and individuals to succeed academically. Divisional, departmental, and medical center leadership was committed to creating a supportive structure that would be available to all hospitalists as opposed to expecting each individual to unearth the necessary resources on their own. The innovative approach to foster individual, and therefore divisional, academic and scholarly success was designed around the following strategies: retention of an expert mentor (who is a not a hospitalist) and securing 20% of his time, investing in scholarship by protecting 30% nonclinical time for academic pursuits, and attempting to seek out fellowship‐trained hospitalists when hiring.

Although quality mentorship, protected time, and recruiting the best‐available talent to fill needs may not seem all that innovative, we believe the systematic approach to the problem and our steadfast application of the strategic plan is unique, innovative, and may present a model to be emulated by other divisions. Some may contend that it is impossible to protect 30% FTE of academic hospitalists indefinitely. Our group has made substantial investment in supporting the academic pursuits of our physicians, and we believe this is essential to maintaining their satisfaction and commitment to scholarship. This amount of protected time is offered to the entire physician faculty and continues even as our division has almost tripled in size. This initiative represents a carefully calculated investment that has influenced our ability to recruit and retain excellent people. Ongoing prospective study of this intervention over time will provide additional perspective on its value and shortcomings. Nonetheless, early data suggest that the plan is indeed working and that our group is satisfied with the return on investment to date.

References
  1. Campbell EG,Weissman JS,Moy E,Blumenthal D.2001.Status of clinical research in academic health centers: views from the research leadership.JAMA.286:800806.
  2. Shewan LG,Glatz JA,Bennett CC,Coats AJ.Contemporary (post‐Wills) survey of the views of Australian medical researchers: importance of funding, infrastructure and motivators for a research career.Med J Aust.2005;183:604605.
  3. Swazey JP,Anderson MS.Mentors, Advisors, and Role Models in Graduate and Professional Education.Washington DC:Association of Academic Health Centers;1996.
  4. Bland C,Schmitz CC.Characteristics of the successful researcher and implications for faculty development.J Med Educ.1986;61:2231.
  5. Barondess JA.On mentoring.J R Soc Med.1997;90:347349.
  6. Palepu A,Friedman RH,Barnett RC, et al.Junior faculty members' mentoring relationships and their professional development in U.S. medical schools.Acad Med.1998;73:318323.
  7. AAMC (Association of American Medical Colleges).For the Health of the Public: Ensuring the Future of Clinical Research.Washington, DC:AAMC;1999.
  8. Wolf M.2002.Clinical research career development: the individual perspective.Acad Med.77:10841088.
References
  1. Campbell EG,Weissman JS,Moy E,Blumenthal D.2001.Status of clinical research in academic health centers: views from the research leadership.JAMA.286:800806.
  2. Shewan LG,Glatz JA,Bennett CC,Coats AJ.Contemporary (post‐Wills) survey of the views of Australian medical researchers: importance of funding, infrastructure and motivators for a research career.Med J Aust.2005;183:604605.
  3. Swazey JP,Anderson MS.Mentors, Advisors, and Role Models in Graduate and Professional Education.Washington DC:Association of Academic Health Centers;1996.
  4. Bland C,Schmitz CC.Characteristics of the successful researcher and implications for faculty development.J Med Educ.1986;61:2231.
  5. Barondess JA.On mentoring.J R Soc Med.1997;90:347349.
  6. Palepu A,Friedman RH,Barnett RC, et al.Junior faculty members' mentoring relationships and their professional development in U.S. medical schools.Acad Med.1998;73:318323.
  7. AAMC (Association of American Medical Colleges).For the Health of the Public: Ensuring the Future of Clinical Research.Washington, DC:AAMC;1999.
  8. Wolf M.2002.Clinical research career development: the individual perspective.Acad Med.77:10841088.
Issue
Journal of Hospital Medicine - 3(4)
Issue
Journal of Hospital Medicine - 3(4)
Page Number
314-318
Page Number
314-318
Article Type
Display Headline
An innovative approach to supporting hospitalist physicians towards academic success
Display Headline
An innovative approach to supporting hospitalist physicians towards academic success
Legacy Keywords
promotion, scholarship, research, mentoring
Legacy Keywords
promotion, scholarship, research, mentoring
Sections
Article Source

Copyright © 2008 Society of Hospital Medicine

Disallow All Ads
Correspondence Location
Division of General Internal Medicine, Johns Hopkins Bayview Medical Center, 4940 Eastern Avenue, Baltimore, MD, 21224
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Article PDF Media

Should ACEIs/ARAs Be Continued Before Surgery?

Article Type
Changed
Mon, 01/02/2017 - 19:34
Display Headline
Clinical consequences of withholding versus administering renin‐angiotensin‐aldosterone system antagonists in the preoperative period

Clinicians commonly use renin‐angiotensin‐aldosterone‐system (RAAS) antagonists such as angiotensin‐converting enzyme inhibitors (ACEIs) and angiotensin II receptor subtype 1 antagonists (ARAs) to treat hypertension, congestive heart failure, and diabetic nephropathy. Hospitalists and other clinicians involved in the preoperative care of patients treated chronically with these agents are faced with the uncertainty of whether to continue these medications immediately prior to surgery.

The concern among those who recommend holding therapy is that pharmacologic suppression of the RAAS in patients undergoing general anesthesia may lead to severe or refractory (to intravenous fluid support) hypotension requiring vasopressors. On the other hand, if complications are no more likely when continuing one of these agents up to the day of surgery, withholding it could represent an unnecessary and potentially harmful intervention (eg, when a clinician caring postoperatively for a patient forgets to restart it). Although several studies have attempted to address this dilemma, a systematic and comprehensive summary of the pertinent evidence has not been published.

In this systematic review and meta‐analysis, we sought to summarize the best available evidence about the relative incidence of patient‐important outcomes1 in patients who do or do not receive ACEI/ARA therapy on the day of their nonemergent surgery.

METHODS

We report this protocol‐driven review in accordance with the Quality of Reporting of Meta‐analyses (QUOROM) standards for reporting systematic reviews of randomized trials.2

Search Strategy

In collaboration with an expert reference librarian (P.J.E.), we designed a search strategy that included the electronic databases MEDLINE, EMBASE, CINAHL, Web of Science, Current Contents, CENTRAL, DARE, and SCOPUS from 1981 (when captopril, the first ACEI, was approved by the FDA) until March 2006. We also reviewed the reference lists of included articles, retrieved articles from our personal files, and consulted with anesthesiologists and hospitalists with an interest in perioperative care in order to identify unpublished studies or studies missed by our strategy.

Study Selection

Eligible studies were prospective cohort studies or randomized controlled trials enrolling adult patients (ie, most patients > 18 years) undergoing nonemergent surgery and using ACEI or ARA chronically and assessing the effect of withdrawing or continuing these agents up to the morning of surgery. Eligible studies measured and reported either events of great patient importance (death, myocardial infarction, transient ischemic attack or stroke, and hepatic or renal failure) or of potentially less importance such as unplanned admission to the intensive care unit or treatment‐requiring hypotension, arrhythmias, or hyperkalemia.

Study Selection

Two reviewers (D.J.R. and F.S.M.) independently screened the titles and abstracts for potential inclusion and retrieved potentially eligible articles for full‐text evaluation. Two reviewers (D.J.R. and M.L.B.) working in duplicate independently selected studies for inclusion. The reviewers were in agreement for full text inclusion 100% of the time.

Data Extraction

Two hospitalists with experience in perioperative care and trained in clinical research (D.J.R. and F.S.M.) working independently and in duplicate extracted data from each eligible article using a standardized structured data extraction form. We extracted information about the study authors and publication, the patients (numbers in each group, indications for chronic ACEI/ARA therapy, type of surgery, agents used for anesthesia), event rates of surgical and perioperative complications (death, stroke, myocardial infarction, unplanned admission to the intensive care unit, treatment‐requiring hypotension, arrhythmias, or hyperkalemia), and relevant periods (e.g., between last dose of ACEI/ARA and surgery, between surgery and clinical end points, total follow‐up). When key information was not available in the published report, we contacted authors by electronic mail. We made 2 attempts to contact authors who failed to respond. Three of the 4 authors contacted responded with the requested information.

Quality Assessment

For randomized trials, we noted whether authors reported adequate allocation concealment, blinding of patients, clinicians, data collectors, data analysts, outcome assessors, and loss to follow‐up. The same reviewers (D.J.R. and F.S.M.) assessed study quality and were in agreement for each article and each domain of quality (kappa statistic in each case was 1.0). For cohort studies we noted details of cohort selection and comparability according to the Newcastle‐Ottawa approach.3

Statistical Analysis

We used a DerSimonian and Laird random effects method4 to conduct meta‐analyses across eligible outcomes. Random effects meta‐analysis incorporates both within‐study and between‐study variability. We chose a random effects approach because of the important degree of clinical heterogeneity expected between the included studies. For rare events we followed the approach by Sweeting et al. for the choice of a continuity correction factor.5 We report the pooled relative risk and the associated 95% confidence interval.

Inconsistency and Subgroup Analyses

To ascertain the magnitude of inconsistency across trials, we measured the I2 statistic, an estimate of the proportion of the overall between‐study variability that is not a result of random error or chance but of true clinical heterogeneity.6 When possible, we explored subgroup analyses to explain heterogeneity, including subgroups defined by type of surgery (cardiovascular versus noncardiovascular), timing of measurement of outcomes (in relation to anesthesia induction postoperatively), and type of agent (ACEI or ARA). We estimated the difference in treatment effects between subgroups by testing the hypothesis of treatmentsubgroup interaction with a nominal significance level of 5%.7

RESULTS

Search Results

The 509 titles reviewed included 410 titles produced by electronic searches and an additional 99 titles from other sources (Fig. 1).

Figure 1
Flow diagram of study identification and selection.

Study Characteristics

Table 1 summarizes the characteristics of the 5 included studies (n = 434 patients). Myocardial infarction was an end point in 3 studies (Brabant, Bertrand, and Comfere); 1 event was reported in the withheld arm of each of these studies (none in the continuing arms). Hypotension requiring vasopressors was reported in all 5 studies. The other end points of interest were reported sparsely. There was considerable heterogeneity across studies regarding follow‐up period, which ranged from ending at incision to ending at dismissal from the hospital.

Characteristics of included studies
Author/Year Patients (n) Indication for ACEI/ARA Type of surgery End points measured
  • ACEI/ARA, renin‐angiotensin‐aldosterone‐system antagonists (either angiotensin‐converting enzyme inhibitors [ACEIs] or angiotensin II receptor subtype 1 antagonists [ARAs]); ICU, intensive care unit; PACU, postanesthesia care unit; ABP, arterial blood pressure; HR, heart rate; TIA, transient ischemic attack.

Randomized trials
Bertrand, 200111 19 continued 18 withheld Hypertension Elective major vascular Hypotension, need for vasoactive drugs (at or shortly after induction)
Coriat, 19948 21 continued 30 withheld Hypertension Peripheral vascular (>2 hours) Systolic blood pressure (at or shortly after induction), plasma ACEI and catecholamine levels
Pigott, 199917 20 continued 20 withheld Hypertension (n = 17); previous myocardial infarction (n = 23) Coronary artery bypass graft Arterial pressure (at or shortly after induction), cardiac index, systemic vascular resistance, use of vasoactive drugs
Observational studies
Brabant, 199910 12 continued 27 withheld Previous myocardial infarction (n = 6); diabetes mellitus (n = 6; n with diabetic nephropathy unknown); hypertension (n = unknown) Elective vascular surgery Blood pressure (at or shortly after induction)
Comfere, 20059 144 continued 123 withheld Hypertension Noncardiovascular Blood pressure (at or shortly after induction), unplanned ICU admissions, hemodynamic instability in the PACU (ABP or HR out of range), acute renal impairment, TIA, stroke, myocardial ischemia/emnfarction, and death

Methodological Quality of Included Studies

Table 2 describes the methodological quality, as reported, of the included studies. Allocation concealment was unclear in 2 of the 3 randomized trials. Details of blinding either were not reported or otherwise were unclear in 2 of these 3 studies. Only 1 study specified the extent of loss to follow‐up.8 In 1 of the observational studies,9 details of cohort selection were generally appropriate. The 12 patients examined in another study10 had been scheduled consecutively for surgery. Both studies controlled for a variety of demographic and other key variables. Duration of follow‐up ranged from 3 days after surgery (for ECG)10 to as long as duration of hospitalization.9

Quality of Included Studies
Randomized trials
Allocation concealment Blinding Loss to follow‐up
Bertrand, 200111 Unclear Unclear Not reported
Coriat, 19948 Unclear None 19%
Pigott, 199917 Adequate Investigator, cardiac anesthetists, perfusionists, and recovery staff were blinded to allocation. Blinding not reported for other data collectors, assessors of outcome, or data analysts Not reported
Observational studies
Details of cohort selection Comparability of cohorts
Brabant, 199910 Appropriate Cohort somewhat representative of the adult population undergoing nonemergent surgery. The unexposed cohort was drawn from the same community as the exposed cohort Similar with 2 exceptions: compared with the ACEI‐withheld group, the ARA‐given group contained more than twice the proportion of patients with previous myocardial revascularization Compared with the ARA‐given group, the ACEI‐withheld group contained more than twice the proportion of patients with diabetes mellitus
Comfere, 20059 Appropriate Cohort somewhat representative of the adult population undergoing nonemergent surgery (referral center population may not truly represent overall population). The unexposed cohort was drawn from the same community as the exposed cohort. Data were extracted from a secure record Adequate This study controls for a variety of demographic and other variables

Meta‐analyses

Pooled results suggested that patients receiving the immediate preoperative ACEI/ARA dose were more likely (RR 1.51, 95% CI 1.14‐2.01) to develop hypotension requiring vasopressors at or shortly after induction of anesthesia (Fig. 2A). There was important inconsistency between studies (I2 = 59%). The pooled effect derived from randomized trials (RR = 2.26, 95% CI 0.84‐6.12) seemed greater than that derived from the 2 observational studies (RR = 1.33, 95% CI 1.02‐1.73), but the treatment‐study design interaction was not significant (P = .3). Similarly, other subgroup explorations were not contributory.

Figure 2
(A) Meta‐analyses of included studies regarding the development of hypotension requiring vasopressors when immediate preoperative doses of ACEI/ARAs are given or withheld. (One study10 did not report the number of patients in the ACEI‐withheld group who required vasopressors. We used 18, the total number of patients reported to be hypotensive according to the authors' systolic pressure–based definition. Those authors10 do report that all 12 patients in the ARA‐continued group required vasopressors. Thus, our use of 12 and 18 patients in the given and withheld groups, respectively, is conservative [ie, underestimates the treatment effect].) (B) Meta‐analyses of the 3 included studies that examined the effect on risk of postoperative myocardial infarction of giving versus withholding the preoperative dose of an ACEI/ARA.

The incidence of perioperative myocardial infarction was not significantly different between continuing and withheld groups (Fig. 2B); the results were consistent across trials (I2 = 0%) but were imprecise (RR = 0.41, 95% CI 0.07‐2.53). Data were insufficient for subgroup analyses.

DISCUSSION

Statement of Principle Findings

Our systematic review identified 3 randomized trials and 2 observational studies examining the clinical consequences of continuing versus deliberately withholding the immediate preoperative dose of a renin‐angiotensin‐aldosterone system antagonist in patients treated chronically with these agents and scheduled to undergo nonemergent surgery.

Results from pooled estimates suggest that continuing chronic therapy up until surgery may increase the risk of perioperative hypotension requiring vasopressors (Fig. 3). Otherwise, this systematic review did not identify any clinically significant consequences associated either with preoperatively withholding or continuing RAAS antagonists. We do note that all 3 of the myocardial infarctions reported occurred in patients from whom the immediate preoperative ACEI/ARA dose was withheld, although no meaningful conclusion can be inferred from so few data points.

Figure 3
Summary of shared clinical outcomes for individual studies. (A) Frequency of hypotension requiring vasopressors. (B) Frequency of myocardial infarction.

Strengths and Weaknesses of This Review

We observed considerable variation in design quality from study to study. With the exception of hypotension, other end points were not examined uniformly in the studies comprising this review. This was due either to study design (retrospective) or to the belief that the outcomes were not likely. With 1 exception,11 patient‐important end points such as myocardial infarction were noted if they occurred but not explicitly sought. Without active surveillance (serial electrocardiographic and biomarker testing), events such as myocardial infarction may remain undetected. Pain from myocardial ischemia, for example, may be masked by postoperative analgesia. Creatine kinase with muscle and brain subunits (CK‐MB) may be elevated in response to extracardiac injury. Postoperative ECG findings often are nonspecific.12 Furthermore, these studies examined the immediate and short‐term postoperative periods, possibly missing late‐manifesting hypotension‐induced or other end‐organ damage. Thus, truly reliable conclusions regarding the frequency of myocardial infarction, cerebrovascular events, and other patient‐important outcomes cannot be reached. Because this review includes small studies, it is particularly vulnerable to the effects of publication bias. The overall quality of the evidence we summarized makes it likely that larger rigorous trials may fail to confirm our findings.1315 Notably, this is to our knowledge the first systematic review addressing the clinical consequences of continuing or withholding the immediate preoperative dose of ACEI/ARAs.

Meaning of the Study

Evidence exists that perioperative ACEI/ARA therapy can impair the body's already anesthesia‐ suppressed blood pressure regulation system. Patients scheduled to undergo cardiovascular surgery may be at increased risk for the development of perioperative hypotension requiring vasopressors if the immediate preoperative ACEI/ARA dose is given. The results of this reviewa review of studies that were relatively small and generally not powered to observe clinically significant consequencesdo not provide sufficient evidence to support the systematic withholding or the systematic continuation of RAAS antagonists. Patients will be served best by hospitalists and other clinicians involved in perioperative care who take into account situation‐specific details in making this decision. A patient at particularly high risk for the complications of a blood pressure extreme (either hyper‐ or hypotension) represents such an example.

For patients who receive the immediate preoperative ACEI/ARA dose and do develop perioperative hypotension, there is inadequate evidence to determine whether that hypotension leads to patient‐important adverse outcomes. In fact, data from literature presently available are insufficient to reach any conclusion about long‐term clinical consequences of continuing or not continuing chronic ACEI/ARA therapy. The available studies were relatively small, reported few if any events, and were not designed to measure accurately the incidence of patient‐important end points.

Unanswered Questions and Future Research

Large and rigorous randomized trials could help to clarify the relationships suggested in this meta‐analysis and provide valid data about the consequences of continuing versus withholding preoperative ACEI/ARA therapy. Such trials are required before strong evidence‐based recommendations can be formulated.

Acknowledgements

The authors are indebted to James M. Naessens, ScD, David R. Danielson, MD, and David O. Warner, MD, for their advice during the conduct of this study. We also gratefully acknowledge Amanda Ebright, MD, for asking the original question that led to this review and Mr. Matthew Maleska for his design of summary Figure 3.

References
  1. Guyatt G,Montori V,Devereaux PJ,Schunemann H,Bhandari M.Patients at the center: in our practice, and in our use of language.ACP J Club.2004;140:A11A12.
  2. Moher D,Cook DJ,Eastwood S,Olkin I,Rennie D,Stroup DF.Improving the quality of reports of meta‐analyses of randomised controlled trials: the QUOROM statement.Lancet.1999;354:18961900.
  3. Wells GA,Shea B,O'Connell D, et al. The Newcastle‐Ottawa Scale (NOS) for assessing the quality of nonrandomized studies in meta‐analysis. Ottawa Health Research Institute, University of Ottawa, Ontario, Canada. http://www.ohri.ca/programs/clinical_epidemiology/oxford.htm. Accessed: March 21,2006.
  4. DerSimonian R,Laird N.Meta‐analysis in clinical trials.Control Clin Trials. Sep1986;7:177188.
  5. Michael J.Sweeting AJS,Paul C.Lambert .What to add to nothing? Use and avoidance of continuity corrections in meta‐analysis of sparse data.Stat Med.2004;23:13511375.
  6. Higgins JPT,Thompson SG.Quantifying heterogeneity in a meta‐analysis.Stat Med.2002;21:15391558.
  7. Altman DG,Bland JM.Statistics notes: Interaction revisited: the difference between two estimatesBMJ.2003;326:219
  8. Coriat P,Richer C,Douraki T, et al.Influence of chronic angiotensin‐converting enzyme inhibition on anesthetic induction.Anesthesiology.1994;81:299307.
  9. Comfere T,Sprung J,Kumar MM, et al.Angiotensin system inhibitors in a general surgical population.Anesth Analg.2005;100:636644.
  10. Brabant SM,Bertrand M,Eyraud D,Darmon PL,Coriat P.The hemodynamic effects of anesthetic induction in vascular surgical patients chronically treated with angiotensin II receptor antagonists.Anesth Analg.1999;89:13881392.
  11. Bertrand M,Godet G,Meersschaert K,Brun L,Salcedo E,Coriat P.Should the angiotensin II antagonists be discontinued before surgery? [see comment].Anesth Analg.2001;92:2630.
  12. Zipes.Braunwald's Heart Disease: A Textbook of Cardiovascular Medicine.7th ed.New York:Saunders, an imprint of Elsevier;2005.
  13. Montori V,Guyatt G.Summarizing the Evidence: Publication Bias.Chicago:AMA Press;2002.
  14. Cappelleri JC,Ioannidis JP,Schmid CH, et al.Large trials vsmeta‐analysis of smaller trials: how do their results compare? [see comment].JAMA.1996;276:13321338.
  15. Egger M,Smith GD,Schneider M,Minder C.Bias in meta‐analysis detected by a simple, graphical test.BMJ.1997;315:629634.
  16. Fleisher LA.Preoperative evaluation of the patient with hypertension.JAMA.2002;287:20432046.
  17. Pigott DW,Nagle C,Allman K,Westaby S,Evans RD.Effect of omitting regular ACE inhibitor medication before cardiac surgery on haemodynamic variables and vasoactive drug requirements.Br J Anaesth.1999;83:715720.
Article PDF
Issue
Journal of Hospital Medicine - 3(4)
Page Number
319-325
Legacy Keywords
ACE‐I, ARA, ARB, anesthesia, angiotensin converting enzyme inhibitor, angiotensin receptor blocker, outcomes, perioperative, preoperative
Sections
Article PDF
Article PDF

Clinicians commonly use renin‐angiotensin‐aldosterone‐system (RAAS) antagonists such as angiotensin‐converting enzyme inhibitors (ACEIs) and angiotensin II receptor subtype 1 antagonists (ARAs) to treat hypertension, congestive heart failure, and diabetic nephropathy. Hospitalists and other clinicians involved in the preoperative care of patients treated chronically with these agents are faced with the uncertainty of whether to continue these medications immediately prior to surgery.

The concern among those who recommend holding therapy is that pharmacologic suppression of the RAAS in patients undergoing general anesthesia may lead to severe or refractory (to intravenous fluid support) hypotension requiring vasopressors. On the other hand, if complications are no more likely when continuing one of these agents up to the day of surgery, withholding it could represent an unnecessary and potentially harmful intervention (eg, when a clinician caring postoperatively for a patient forgets to restart it). Although several studies have attempted to address this dilemma, a systematic and comprehensive summary of the pertinent evidence has not been published.

In this systematic review and meta‐analysis, we sought to summarize the best available evidence about the relative incidence of patient‐important outcomes1 in patients who do or do not receive ACEI/ARA therapy on the day of their nonemergent surgery.

METHODS

We report this protocol‐driven review in accordance with the Quality of Reporting of Meta‐analyses (QUOROM) standards for reporting systematic reviews of randomized trials.2

Search Strategy

In collaboration with an expert reference librarian (P.J.E.), we designed a search strategy that included the electronic databases MEDLINE, EMBASE, CINAHL, Web of Science, Current Contents, CENTRAL, DARE, and SCOPUS from 1981 (when captopril, the first ACEI, was approved by the FDA) until March 2006. We also reviewed the reference lists of included articles, retrieved articles from our personal files, and consulted with anesthesiologists and hospitalists with an interest in perioperative care in order to identify unpublished studies or studies missed by our strategy.

Study Selection

Eligible studies were prospective cohort studies or randomized controlled trials enrolling adult patients (ie, most patients > 18 years) undergoing nonemergent surgery and using ACEI or ARA chronically and assessing the effect of withdrawing or continuing these agents up to the morning of surgery. Eligible studies measured and reported either events of great patient importance (death, myocardial infarction, transient ischemic attack or stroke, and hepatic or renal failure) or of potentially less importance such as unplanned admission to the intensive care unit or treatment‐requiring hypotension, arrhythmias, or hyperkalemia.

Study Selection

Two reviewers (D.J.R. and F.S.M.) independently screened the titles and abstracts for potential inclusion and retrieved potentially eligible articles for full‐text evaluation. Two reviewers (D.J.R. and M.L.B.) working in duplicate independently selected studies for inclusion. The reviewers were in agreement for full text inclusion 100% of the time.

Data Extraction

Two hospitalists with experience in perioperative care and trained in clinical research (D.J.R. and F.S.M.) working independently and in duplicate extracted data from each eligible article using a standardized structured data extraction form. We extracted information about the study authors and publication, the patients (numbers in each group, indications for chronic ACEI/ARA therapy, type of surgery, agents used for anesthesia), event rates of surgical and perioperative complications (death, stroke, myocardial infarction, unplanned admission to the intensive care unit, treatment‐requiring hypotension, arrhythmias, or hyperkalemia), and relevant periods (e.g., between last dose of ACEI/ARA and surgery, between surgery and clinical end points, total follow‐up). When key information was not available in the published report, we contacted authors by electronic mail. We made 2 attempts to contact authors who failed to respond. Three of the 4 authors contacted responded with the requested information.

Quality Assessment

For randomized trials, we noted whether authors reported adequate allocation concealment, blinding of patients, clinicians, data collectors, data analysts, outcome assessors, and loss to follow‐up. The same reviewers (D.J.R. and F.S.M.) assessed study quality and were in agreement for each article and each domain of quality (kappa statistic in each case was 1.0). For cohort studies we noted details of cohort selection and comparability according to the Newcastle‐Ottawa approach.3

Statistical Analysis

We used a DerSimonian and Laird random effects method4 to conduct meta‐analyses across eligible outcomes. Random effects meta‐analysis incorporates both within‐study and between‐study variability. We chose a random effects approach because of the important degree of clinical heterogeneity expected between the included studies. For rare events we followed the approach by Sweeting et al. for the choice of a continuity correction factor.5 We report the pooled relative risk and the associated 95% confidence interval.

Inconsistency and Subgroup Analyses

To ascertain the magnitude of inconsistency across trials, we measured the I2 statistic, an estimate of the proportion of the overall between‐study variability that is not a result of random error or chance but of true clinical heterogeneity.6 When possible, we explored subgroup analyses to explain heterogeneity, including subgroups defined by type of surgery (cardiovascular versus noncardiovascular), timing of measurement of outcomes (in relation to anesthesia induction postoperatively), and type of agent (ACEI or ARA). We estimated the difference in treatment effects between subgroups by testing the hypothesis of treatmentsubgroup interaction with a nominal significance level of 5%.7

RESULTS

Search Results

The 509 titles reviewed included 410 titles produced by electronic searches and an additional 99 titles from other sources (Fig. 1).

Figure 1
Flow diagram of study identification and selection.

Study Characteristics

Table 1 summarizes the characteristics of the 5 included studies (n = 434 patients). Myocardial infarction was an end point in 3 studies (Brabant, Bertrand, and Comfere); 1 event was reported in the withheld arm of each of these studies (none in the continuing arms). Hypotension requiring vasopressors was reported in all 5 studies. The other end points of interest were reported sparsely. There was considerable heterogeneity across studies regarding follow‐up period, which ranged from ending at incision to ending at dismissal from the hospital.

Characteristics of included studies
Author/Year Patients (n) Indication for ACEI/ARA Type of surgery End points measured
  • ACEI/ARA, renin‐angiotensin‐aldosterone‐system antagonists (either angiotensin‐converting enzyme inhibitors [ACEIs] or angiotensin II receptor subtype 1 antagonists [ARAs]); ICU, intensive care unit; PACU, postanesthesia care unit; ABP, arterial blood pressure; HR, heart rate; TIA, transient ischemic attack.

Randomized trials
Bertrand, 200111 19 continued 18 withheld Hypertension Elective major vascular Hypotension, need for vasoactive drugs (at or shortly after induction)
Coriat, 19948 21 continued 30 withheld Hypertension Peripheral vascular (>2 hours) Systolic blood pressure (at or shortly after induction), plasma ACEI and catecholamine levels
Pigott, 199917 20 continued 20 withheld Hypertension (n = 17); previous myocardial infarction (n = 23) Coronary artery bypass graft Arterial pressure (at or shortly after induction), cardiac index, systemic vascular resistance, use of vasoactive drugs
Observational studies
Brabant, 199910 12 continued 27 withheld Previous myocardial infarction (n = 6); diabetes mellitus (n = 6; n with diabetic nephropathy unknown); hypertension (n = unknown) Elective vascular surgery Blood pressure (at or shortly after induction)
Comfere, 20059 144 continued 123 withheld Hypertension Noncardiovascular Blood pressure (at or shortly after induction), unplanned ICU admissions, hemodynamic instability in the PACU (ABP or HR out of range), acute renal impairment, TIA, stroke, myocardial ischemia/emnfarction, and death

Methodological Quality of Included Studies

Table 2 describes the methodological quality, as reported, of the included studies. Allocation concealment was unclear in 2 of the 3 randomized trials. Details of blinding either were not reported or otherwise were unclear in 2 of these 3 studies. Only 1 study specified the extent of loss to follow‐up.8 In 1 of the observational studies,9 details of cohort selection were generally appropriate. The 12 patients examined in another study10 had been scheduled consecutively for surgery. Both studies controlled for a variety of demographic and other key variables. Duration of follow‐up ranged from 3 days after surgery (for ECG)10 to as long as duration of hospitalization.9

Quality of Included Studies
Randomized trials
Allocation concealment Blinding Loss to follow‐up
Bertrand, 200111 Unclear Unclear Not reported
Coriat, 19948 Unclear None 19%
Pigott, 199917 Adequate Investigator, cardiac anesthetists, perfusionists, and recovery staff were blinded to allocation. Blinding not reported for other data collectors, assessors of outcome, or data analysts Not reported
Observational studies
Details of cohort selection Comparability of cohorts
Brabant, 199910 Appropriate Cohort somewhat representative of the adult population undergoing nonemergent surgery. The unexposed cohort was drawn from the same community as the exposed cohort Similar with 2 exceptions: compared with the ACEI‐withheld group, the ARA‐given group contained more than twice the proportion of patients with previous myocardial revascularization Compared with the ARA‐given group, the ACEI‐withheld group contained more than twice the proportion of patients with diabetes mellitus
Comfere, 20059 Appropriate Cohort somewhat representative of the adult population undergoing nonemergent surgery (referral center population may not truly represent overall population). The unexposed cohort was drawn from the same community as the exposed cohort. Data were extracted from a secure record Adequate This study controls for a variety of demographic and other variables

Meta‐analyses

Pooled results suggested that patients receiving the immediate preoperative ACEI/ARA dose were more likely (RR 1.51, 95% CI 1.14‐2.01) to develop hypotension requiring vasopressors at or shortly after induction of anesthesia (Fig. 2A). There was important inconsistency between studies (I2 = 59%). The pooled effect derived from randomized trials (RR = 2.26, 95% CI 0.84‐6.12) seemed greater than that derived from the 2 observational studies (RR = 1.33, 95% CI 1.02‐1.73), but the treatment‐study design interaction was not significant (P = .3). Similarly, other subgroup explorations were not contributory.

Figure 2
(A) Meta‐analyses of included studies regarding the development of hypotension requiring vasopressors when immediate preoperative doses of ACEI/ARAs are given or withheld. (One study10 did not report the number of patients in the ACEI‐withheld group who required vasopressors. We used 18, the total number of patients reported to be hypotensive according to the authors' systolic pressure–based definition. Those authors10 do report that all 12 patients in the ARA‐continued group required vasopressors. Thus, our use of 12 and 18 patients in the given and withheld groups, respectively, is conservative [ie, underestimates the treatment effect].) (B) Meta‐analyses of the 3 included studies that examined the effect on risk of postoperative myocardial infarction of giving versus withholding the preoperative dose of an ACEI/ARA.

The incidence of perioperative myocardial infarction was not significantly different between continuing and withheld groups (Fig. 2B); the results were consistent across trials (I2 = 0%) but were imprecise (RR = 0.41, 95% CI 0.07‐2.53). Data were insufficient for subgroup analyses.

DISCUSSION

Statement of Principle Findings

Our systematic review identified 3 randomized trials and 2 observational studies examining the clinical consequences of continuing versus deliberately withholding the immediate preoperative dose of a renin‐angiotensin‐aldosterone system antagonist in patients treated chronically with these agents and scheduled to undergo nonemergent surgery.

Results from pooled estimates suggest that continuing chronic therapy up until surgery may increase the risk of perioperative hypotension requiring vasopressors (Fig. 3). Otherwise, this systematic review did not identify any clinically significant consequences associated either with preoperatively withholding or continuing RAAS antagonists. We do note that all 3 of the myocardial infarctions reported occurred in patients from whom the immediate preoperative ACEI/ARA dose was withheld, although no meaningful conclusion can be inferred from so few data points.

Figure 3
Summary of shared clinical outcomes for individual studies. (A) Frequency of hypotension requiring vasopressors. (B) Frequency of myocardial infarction.

Strengths and Weaknesses of This Review

We observed considerable variation in design quality from study to study. With the exception of hypotension, other end points were not examined uniformly in the studies comprising this review. This was due either to study design (retrospective) or to the belief that the outcomes were not likely. With 1 exception,11 patient‐important end points such as myocardial infarction were noted if they occurred but not explicitly sought. Without active surveillance (serial electrocardiographic and biomarker testing), events such as myocardial infarction may remain undetected. Pain from myocardial ischemia, for example, may be masked by postoperative analgesia. Creatine kinase with muscle and brain subunits (CK‐MB) may be elevated in response to extracardiac injury. Postoperative ECG findings often are nonspecific.12 Furthermore, these studies examined the immediate and short‐term postoperative periods, possibly missing late‐manifesting hypotension‐induced or other end‐organ damage. Thus, truly reliable conclusions regarding the frequency of myocardial infarction, cerebrovascular events, and other patient‐important outcomes cannot be reached. Because this review includes small studies, it is particularly vulnerable to the effects of publication bias. The overall quality of the evidence we summarized makes it likely that larger rigorous trials may fail to confirm our findings.1315 Notably, this is to our knowledge the first systematic review addressing the clinical consequences of continuing or withholding the immediate preoperative dose of ACEI/ARAs.

Meaning of the Study

Evidence exists that perioperative ACEI/ARA therapy can impair the body's already anesthesia‐ suppressed blood pressure regulation system. Patients scheduled to undergo cardiovascular surgery may be at increased risk for the development of perioperative hypotension requiring vasopressors if the immediate preoperative ACEI/ARA dose is given. The results of this reviewa review of studies that were relatively small and generally not powered to observe clinically significant consequencesdo not provide sufficient evidence to support the systematic withholding or the systematic continuation of RAAS antagonists. Patients will be served best by hospitalists and other clinicians involved in perioperative care who take into account situation‐specific details in making this decision. A patient at particularly high risk for the complications of a blood pressure extreme (either hyper‐ or hypotension) represents such an example.

For patients who receive the immediate preoperative ACEI/ARA dose and do develop perioperative hypotension, there is inadequate evidence to determine whether that hypotension leads to patient‐important adverse outcomes. In fact, data from literature presently available are insufficient to reach any conclusion about long‐term clinical consequences of continuing or not continuing chronic ACEI/ARA therapy. The available studies were relatively small, reported few if any events, and were not designed to measure accurately the incidence of patient‐important end points.

Unanswered Questions and Future Research

Large and rigorous randomized trials could help to clarify the relationships suggested in this meta‐analysis and provide valid data about the consequences of continuing versus withholding preoperative ACEI/ARA therapy. Such trials are required before strong evidence‐based recommendations can be formulated.

Acknowledgements

The authors are indebted to James M. Naessens, ScD, David R. Danielson, MD, and David O. Warner, MD, for their advice during the conduct of this study. We also gratefully acknowledge Amanda Ebright, MD, for asking the original question that led to this review and Mr. Matthew Maleska for his design of summary Figure 3.

Clinicians commonly use renin‐angiotensin‐aldosterone‐system (RAAS) antagonists such as angiotensin‐converting enzyme inhibitors (ACEIs) and angiotensin II receptor subtype 1 antagonists (ARAs) to treat hypertension, congestive heart failure, and diabetic nephropathy. Hospitalists and other clinicians involved in the preoperative care of patients treated chronically with these agents are faced with the uncertainty of whether to continue these medications immediately prior to surgery.

The concern among those who recommend holding therapy is that pharmacologic suppression of the RAAS in patients undergoing general anesthesia may lead to severe or refractory (to intravenous fluid support) hypotension requiring vasopressors. On the other hand, if complications are no more likely when continuing one of these agents up to the day of surgery, withholding it could represent an unnecessary and potentially harmful intervention (eg, when a clinician caring postoperatively for a patient forgets to restart it). Although several studies have attempted to address this dilemma, a systematic and comprehensive summary of the pertinent evidence has not been published.

In this systematic review and meta‐analysis, we sought to summarize the best available evidence about the relative incidence of patient‐important outcomes1 in patients who do or do not receive ACEI/ARA therapy on the day of their nonemergent surgery.

METHODS

We report this protocol‐driven review in accordance with the Quality of Reporting of Meta‐analyses (QUOROM) standards for reporting systematic reviews of randomized trials.2

Search Strategy

In collaboration with an expert reference librarian (P.J.E.), we designed a search strategy that included the electronic databases MEDLINE, EMBASE, CINAHL, Web of Science, Current Contents, CENTRAL, DARE, and SCOPUS from 1981 (when captopril, the first ACEI, was approved by the FDA) until March 2006. We also reviewed the reference lists of included articles, retrieved articles from our personal files, and consulted with anesthesiologists and hospitalists with an interest in perioperative care in order to identify unpublished studies or studies missed by our strategy.

Study Selection

Eligible studies were prospective cohort studies or randomized controlled trials enrolling adult patients (ie, most patients > 18 years) undergoing nonemergent surgery and using ACEI or ARA chronically and assessing the effect of withdrawing or continuing these agents up to the morning of surgery. Eligible studies measured and reported either events of great patient importance (death, myocardial infarction, transient ischemic attack or stroke, and hepatic or renal failure) or of potentially less importance such as unplanned admission to the intensive care unit or treatment‐requiring hypotension, arrhythmias, or hyperkalemia.

Study Selection

Two reviewers (D.J.R. and F.S.M.) independently screened the titles and abstracts for potential inclusion and retrieved potentially eligible articles for full‐text evaluation. Two reviewers (D.J.R. and M.L.B.) working in duplicate independently selected studies for inclusion. The reviewers were in agreement for full text inclusion 100% of the time.

Data Extraction

Two hospitalists with experience in perioperative care and trained in clinical research (D.J.R. and F.S.M.) working independently and in duplicate extracted data from each eligible article using a standardized structured data extraction form. We extracted information about the study authors and publication, the patients (numbers in each group, indications for chronic ACEI/ARA therapy, type of surgery, agents used for anesthesia), event rates of surgical and perioperative complications (death, stroke, myocardial infarction, unplanned admission to the intensive care unit, treatment‐requiring hypotension, arrhythmias, or hyperkalemia), and relevant periods (e.g., between last dose of ACEI/ARA and surgery, between surgery and clinical end points, total follow‐up). When key information was not available in the published report, we contacted authors by electronic mail. We made 2 attempts to contact authors who failed to respond. Three of the 4 authors contacted responded with the requested information.

Quality Assessment

For randomized trials, we noted whether authors reported adequate allocation concealment, blinding of patients, clinicians, data collectors, data analysts, outcome assessors, and loss to follow‐up. The same reviewers (D.J.R. and F.S.M.) assessed study quality and were in agreement for each article and each domain of quality (kappa statistic in each case was 1.0). For cohort studies we noted details of cohort selection and comparability according to the Newcastle‐Ottawa approach.3

Statistical Analysis

We used a DerSimonian and Laird random effects method4 to conduct meta‐analyses across eligible outcomes. Random effects meta‐analysis incorporates both within‐study and between‐study variability. We chose a random effects approach because of the important degree of clinical heterogeneity expected between the included studies. For rare events we followed the approach by Sweeting et al. for the choice of a continuity correction factor.5 We report the pooled relative risk and the associated 95% confidence interval.

Inconsistency and Subgroup Analyses

To ascertain the magnitude of inconsistency across trials, we measured the I2 statistic, an estimate of the proportion of the overall between‐study variability that is not a result of random error or chance but of true clinical heterogeneity.6 When possible, we explored subgroup analyses to explain heterogeneity, including subgroups defined by type of surgery (cardiovascular versus noncardiovascular), timing of measurement of outcomes (in relation to anesthesia induction postoperatively), and type of agent (ACEI or ARA). We estimated the difference in treatment effects between subgroups by testing the hypothesis of treatmentsubgroup interaction with a nominal significance level of 5%.7

RESULTS

Search Results

The 509 titles reviewed included 410 titles produced by electronic searches and an additional 99 titles from other sources (Fig. 1).

Figure 1
Flow diagram of study identification and selection.

Study Characteristics

Table 1 summarizes the characteristics of the 5 included studies (n = 434 patients). Myocardial infarction was an end point in 3 studies (Brabant, Bertrand, and Comfere); 1 event was reported in the withheld arm of each of these studies (none in the continuing arms). Hypotension requiring vasopressors was reported in all 5 studies. The other end points of interest were reported sparsely. There was considerable heterogeneity across studies regarding follow‐up period, which ranged from ending at incision to ending at dismissal from the hospital.

Characteristics of included studies
Author/Year Patients (n) Indication for ACEI/ARA Type of surgery End points measured
  • ACEI/ARA, renin‐angiotensin‐aldosterone‐system antagonists (either angiotensin‐converting enzyme inhibitors [ACEIs] or angiotensin II receptor subtype 1 antagonists [ARAs]); ICU, intensive care unit; PACU, postanesthesia care unit; ABP, arterial blood pressure; HR, heart rate; TIA, transient ischemic attack.

Randomized trials
Bertrand, 200111 19 continued 18 withheld Hypertension Elective major vascular Hypotension, need for vasoactive drugs (at or shortly after induction)
Coriat, 19948 21 continued 30 withheld Hypertension Peripheral vascular (>2 hours) Systolic blood pressure (at or shortly after induction), plasma ACEI and catecholamine levels
Pigott, 199917 20 continued 20 withheld Hypertension (n = 17); previous myocardial infarction (n = 23) Coronary artery bypass graft Arterial pressure (at or shortly after induction), cardiac index, systemic vascular resistance, use of vasoactive drugs
Observational studies
Brabant, 199910 12 continued 27 withheld Previous myocardial infarction (n = 6); diabetes mellitus (n = 6; n with diabetic nephropathy unknown); hypertension (n = unknown) Elective vascular surgery Blood pressure (at or shortly after induction)
Comfere, 20059 144 continued 123 withheld Hypertension Noncardiovascular Blood pressure (at or shortly after induction), unplanned ICU admissions, hemodynamic instability in the PACU (ABP or HR out of range), acute renal impairment, TIA, stroke, myocardial ischemia/emnfarction, and death

Methodological Quality of Included Studies

Table 2 describes the methodological quality, as reported, of the included studies. Allocation concealment was unclear in 2 of the 3 randomized trials. Details of blinding either were not reported or otherwise were unclear in 2 of these 3 studies. Only 1 study specified the extent of loss to follow‐up.8 In 1 of the observational studies,9 details of cohort selection were generally appropriate. The 12 patients examined in another study10 had been scheduled consecutively for surgery. Both studies controlled for a variety of demographic and other key variables. Duration of follow‐up ranged from 3 days after surgery (for ECG)10 to as long as duration of hospitalization.9

Quality of Included Studies
Randomized trials
Allocation concealment Blinding Loss to follow‐up
Bertrand, 200111 Unclear Unclear Not reported
Coriat, 19948 Unclear None 19%
Pigott, 199917 Adequate Investigator, cardiac anesthetists, perfusionists, and recovery staff were blinded to allocation. Blinding not reported for other data collectors, assessors of outcome, or data analysts Not reported
Observational studies
Details of cohort selection Comparability of cohorts
Brabant, 199910 Appropriate Cohort somewhat representative of the adult population undergoing nonemergent surgery. The unexposed cohort was drawn from the same community as the exposed cohort Similar with 2 exceptions: compared with the ACEI‐withheld group, the ARA‐given group contained more than twice the proportion of patients with previous myocardial revascularization Compared with the ARA‐given group, the ACEI‐withheld group contained more than twice the proportion of patients with diabetes mellitus
Comfere, 20059 Appropriate Cohort somewhat representative of the adult population undergoing nonemergent surgery (referral center population may not truly represent overall population). The unexposed cohort was drawn from the same community as the exposed cohort. Data were extracted from a secure record Adequate This study controls for a variety of demographic and other variables

Meta‐analyses

Pooled results suggested that patients receiving the immediate preoperative ACEI/ARA dose were more likely (RR 1.51, 95% CI 1.14‐2.01) to develop hypotension requiring vasopressors at or shortly after induction of anesthesia (Fig. 2A). There was important inconsistency between studies (I2 = 59%). The pooled effect derived from randomized trials (RR = 2.26, 95% CI 0.84‐6.12) seemed greater than that derived from the 2 observational studies (RR = 1.33, 95% CI 1.02‐1.73), but the treatment‐study design interaction was not significant (P = .3). Similarly, other subgroup explorations were not contributory.

Figure 2
(A) Meta‐analyses of included studies regarding the development of hypotension requiring vasopressors when immediate preoperative doses of ACEI/ARAs are given or withheld. (One study10 did not report the number of patients in the ACEI‐withheld group who required vasopressors. We used 18, the total number of patients reported to be hypotensive according to the authors' systolic pressure–based definition. Those authors10 do report that all 12 patients in the ARA‐continued group required vasopressors. Thus, our use of 12 and 18 patients in the given and withheld groups, respectively, is conservative [ie, underestimates the treatment effect].) (B) Meta‐analyses of the 3 included studies that examined the effect on risk of postoperative myocardial infarction of giving versus withholding the preoperative dose of an ACEI/ARA.

The incidence of perioperative myocardial infarction was not significantly different between continuing and withheld groups (Fig. 2B); the results were consistent across trials (I2 = 0%) but were imprecise (RR = 0.41, 95% CI 0.07‐2.53). Data were insufficient for subgroup analyses.

DISCUSSION

Statement of Principle Findings

Our systematic review identified 3 randomized trials and 2 observational studies examining the clinical consequences of continuing versus deliberately withholding the immediate preoperative dose of a renin‐angiotensin‐aldosterone system antagonist in patients treated chronically with these agents and scheduled to undergo nonemergent surgery.

Results from pooled estimates suggest that continuing chronic therapy up until surgery may increase the risk of perioperative hypotension requiring vasopressors (Fig. 3). Otherwise, this systematic review did not identify any clinically significant consequences associated either with preoperatively withholding or continuing RAAS antagonists. We do note that all 3 of the myocardial infarctions reported occurred in patients from whom the immediate preoperative ACEI/ARA dose was withheld, although no meaningful conclusion can be inferred from so few data points.

Figure 3
Summary of shared clinical outcomes for individual studies. (A) Frequency of hypotension requiring vasopressors. (B) Frequency of myocardial infarction.

Strengths and Weaknesses of This Review

We observed considerable variation in design quality from study to study. With the exception of hypotension, other end points were not examined uniformly in the studies comprising this review. This was due either to study design (retrospective) or to the belief that the outcomes were not likely. With 1 exception,11 patient‐important end points such as myocardial infarction were noted if they occurred but not explicitly sought. Without active surveillance (serial electrocardiographic and biomarker testing), events such as myocardial infarction may remain undetected. Pain from myocardial ischemia, for example, may be masked by postoperative analgesia. Creatine kinase with muscle and brain subunits (CK‐MB) may be elevated in response to extracardiac injury. Postoperative ECG findings often are nonspecific.12 Furthermore, these studies examined the immediate and short‐term postoperative periods, possibly missing late‐manifesting hypotension‐induced or other end‐organ damage. Thus, truly reliable conclusions regarding the frequency of myocardial infarction, cerebrovascular events, and other patient‐important outcomes cannot be reached. Because this review includes small studies, it is particularly vulnerable to the effects of publication bias. The overall quality of the evidence we summarized makes it likely that larger rigorous trials may fail to confirm our findings.1315 Notably, this is to our knowledge the first systematic review addressing the clinical consequences of continuing or withholding the immediate preoperative dose of ACEI/ARAs.

Meaning of the Study

Evidence exists that perioperative ACEI/ARA therapy can impair the body's already anesthesia‐ suppressed blood pressure regulation system. Patients scheduled to undergo cardiovascular surgery may be at increased risk for the development of perioperative hypotension requiring vasopressors if the immediate preoperative ACEI/ARA dose is given. The results of this reviewa review of studies that were relatively small and generally not powered to observe clinically significant consequencesdo not provide sufficient evidence to support the systematic withholding or the systematic continuation of RAAS antagonists. Patients will be served best by hospitalists and other clinicians involved in perioperative care who take into account situation‐specific details in making this decision. A patient at particularly high risk for the complications of a blood pressure extreme (either hyper‐ or hypotension) represents such an example.

For patients who receive the immediate preoperative ACEI/ARA dose and do develop perioperative hypotension, there is inadequate evidence to determine whether that hypotension leads to patient‐important adverse outcomes. In fact, data from literature presently available are insufficient to reach any conclusion about long‐term clinical consequences of continuing or not continuing chronic ACEI/ARA therapy. The available studies were relatively small, reported few if any events, and were not designed to measure accurately the incidence of patient‐important end points.

Unanswered Questions and Future Research

Large and rigorous randomized trials could help to clarify the relationships suggested in this meta‐analysis and provide valid data about the consequences of continuing versus withholding preoperative ACEI/ARA therapy. Such trials are required before strong evidence‐based recommendations can be formulated.

Acknowledgements

The authors are indebted to James M. Naessens, ScD, David R. Danielson, MD, and David O. Warner, MD, for their advice during the conduct of this study. We also gratefully acknowledge Amanda Ebright, MD, for asking the original question that led to this review and Mr. Matthew Maleska for his design of summary Figure 3.

References
  1. Guyatt G,Montori V,Devereaux PJ,Schunemann H,Bhandari M.Patients at the center: in our practice, and in our use of language.ACP J Club.2004;140:A11A12.
  2. Moher D,Cook DJ,Eastwood S,Olkin I,Rennie D,Stroup DF.Improving the quality of reports of meta‐analyses of randomised controlled trials: the QUOROM statement.Lancet.1999;354:18961900.
  3. Wells GA,Shea B,O'Connell D, et al. The Newcastle‐Ottawa Scale (NOS) for assessing the quality of nonrandomized studies in meta‐analysis. Ottawa Health Research Institute, University of Ottawa, Ontario, Canada. http://www.ohri.ca/programs/clinical_epidemiology/oxford.htm. Accessed: March 21,2006.
  4. DerSimonian R,Laird N.Meta‐analysis in clinical trials.Control Clin Trials. Sep1986;7:177188.
  5. Michael J.Sweeting AJS,Paul C.Lambert .What to add to nothing? Use and avoidance of continuity corrections in meta‐analysis of sparse data.Stat Med.2004;23:13511375.
  6. Higgins JPT,Thompson SG.Quantifying heterogeneity in a meta‐analysis.Stat Med.2002;21:15391558.
  7. Altman DG,Bland JM.Statistics notes: Interaction revisited: the difference between two estimatesBMJ.2003;326:219
  8. Coriat P,Richer C,Douraki T, et al.Influence of chronic angiotensin‐converting enzyme inhibition on anesthetic induction.Anesthesiology.1994;81:299307.
  9. Comfere T,Sprung J,Kumar MM, et al.Angiotensin system inhibitors in a general surgical population.Anesth Analg.2005;100:636644.
  10. Brabant SM,Bertrand M,Eyraud D,Darmon PL,Coriat P.The hemodynamic effects of anesthetic induction in vascular surgical patients chronically treated with angiotensin II receptor antagonists.Anesth Analg.1999;89:13881392.
  11. Bertrand M,Godet G,Meersschaert K,Brun L,Salcedo E,Coriat P.Should the angiotensin II antagonists be discontinued before surgery? [see comment].Anesth Analg.2001;92:2630.
  12. Zipes.Braunwald's Heart Disease: A Textbook of Cardiovascular Medicine.7th ed.New York:Saunders, an imprint of Elsevier;2005.
  13. Montori V,Guyatt G.Summarizing the Evidence: Publication Bias.Chicago:AMA Press;2002.
  14. Cappelleri JC,Ioannidis JP,Schmid CH, et al.Large trials vsmeta‐analysis of smaller trials: how do their results compare? [see comment].JAMA.1996;276:13321338.
  15. Egger M,Smith GD,Schneider M,Minder C.Bias in meta‐analysis detected by a simple, graphical test.BMJ.1997;315:629634.
  16. Fleisher LA.Preoperative evaluation of the patient with hypertension.JAMA.2002;287:20432046.
  17. Pigott DW,Nagle C,Allman K,Westaby S,Evans RD.Effect of omitting regular ACE inhibitor medication before cardiac surgery on haemodynamic variables and vasoactive drug requirements.Br J Anaesth.1999;83:715720.
References
  1. Guyatt G,Montori V,Devereaux PJ,Schunemann H,Bhandari M.Patients at the center: in our practice, and in our use of language.ACP J Club.2004;140:A11A12.
  2. Moher D,Cook DJ,Eastwood S,Olkin I,Rennie D,Stroup DF.Improving the quality of reports of meta‐analyses of randomised controlled trials: the QUOROM statement.Lancet.1999;354:18961900.
  3. Wells GA,Shea B,O'Connell D, et al. The Newcastle‐Ottawa Scale (NOS) for assessing the quality of nonrandomized studies in meta‐analysis. Ottawa Health Research Institute, University of Ottawa, Ontario, Canada. http://www.ohri.ca/programs/clinical_epidemiology/oxford.htm. Accessed: March 21,2006.
  4. DerSimonian R,Laird N.Meta‐analysis in clinical trials.Control Clin Trials. Sep1986;7:177188.
  5. Michael J.Sweeting AJS,Paul C.Lambert .What to add to nothing? Use and avoidance of continuity corrections in meta‐analysis of sparse data.Stat Med.2004;23:13511375.
  6. Higgins JPT,Thompson SG.Quantifying heterogeneity in a meta‐analysis.Stat Med.2002;21:15391558.
  7. Altman DG,Bland JM.Statistics notes: Interaction revisited: the difference between two estimatesBMJ.2003;326:219
  8. Coriat P,Richer C,Douraki T, et al.Influence of chronic angiotensin‐converting enzyme inhibition on anesthetic induction.Anesthesiology.1994;81:299307.
  9. Comfere T,Sprung J,Kumar MM, et al.Angiotensin system inhibitors in a general surgical population.Anesth Analg.2005;100:636644.
  10. Brabant SM,Bertrand M,Eyraud D,Darmon PL,Coriat P.The hemodynamic effects of anesthetic induction in vascular surgical patients chronically treated with angiotensin II receptor antagonists.Anesth Analg.1999;89:13881392.
  11. Bertrand M,Godet G,Meersschaert K,Brun L,Salcedo E,Coriat P.Should the angiotensin II antagonists be discontinued before surgery? [see comment].Anesth Analg.2001;92:2630.
  12. Zipes.Braunwald's Heart Disease: A Textbook of Cardiovascular Medicine.7th ed.New York:Saunders, an imprint of Elsevier;2005.
  13. Montori V,Guyatt G.Summarizing the Evidence: Publication Bias.Chicago:AMA Press;2002.
  14. Cappelleri JC,Ioannidis JP,Schmid CH, et al.Large trials vsmeta‐analysis of smaller trials: how do their results compare? [see comment].JAMA.1996;276:13321338.
  15. Egger M,Smith GD,Schneider M,Minder C.Bias in meta‐analysis detected by a simple, graphical test.BMJ.1997;315:629634.
  16. Fleisher LA.Preoperative evaluation of the patient with hypertension.JAMA.2002;287:20432046.
  17. Pigott DW,Nagle C,Allman K,Westaby S,Evans RD.Effect of omitting regular ACE inhibitor medication before cardiac surgery on haemodynamic variables and vasoactive drug requirements.Br J Anaesth.1999;83:715720.
Issue
Journal of Hospital Medicine - 3(4)
Issue
Journal of Hospital Medicine - 3(4)
Page Number
319-325
Page Number
319-325
Article Type
Display Headline
Clinical consequences of withholding versus administering renin‐angiotensin‐aldosterone system antagonists in the preoperative period
Display Headline
Clinical consequences of withholding versus administering renin‐angiotensin‐aldosterone system antagonists in the preoperative period
Legacy Keywords
ACE‐I, ARA, ARB, anesthesia, angiotensin converting enzyme inhibitor, angiotensin receptor blocker, outcomes, perioperative, preoperative
Legacy Keywords
ACE‐I, ARA, ARB, anesthesia, angiotensin converting enzyme inhibitor, angiotensin receptor blocker, outcomes, perioperative, preoperative
Sections
Article Source
Copyright © 2008 Society of Hospital Medicine
Disallow All Ads
Correspondence Location
Mayo Clinic, 200 First Street SW, Rochester, MN 55905
Content Gating
Gated (full article locked unless allowed per User)
Gating Strategy
First Peek Free
Article PDF Media

Pediatric Hospitalist Variation in Care

Article Type
Changed
Sun, 05/28/2017 - 22:07
Display Headline
Variation in pediatric hospitalists' use of proven and unproven therapies: A study from the Pediatric Research in Inpatient Settings (PRIS) network

Reduction of undesirable variation in care has been a major focus of systematic efforts to improve the quality of the healthcare system.13 The emergence of hospitalists, physicians specializing in the care of hospitalized patients, was spurred by a desire to streamline care and reduce variability in hospital management of common diseases.4, 5 Over the past decade, hospitalist systems have become a leading vehicle for care delivery.4, 6, 7 It remains unclear, however, whether implementation of hospitalist systems has lessened undesirable variation in the inpatient management of common diseases.

While systematic reviews have found costs and hospital length of stay to be 10‐15% lower in both pediatric and internal medicine hospitalist systems, few studies have adequately assessed the processes or quality of care in hospitalist systems.8, 9 Two internal medicine studies have found decreased mortality in hospitalist systems, but the mechanism by which hospitalists apparently achieved these gains is unclear.10, 11 Even less is known about care processes or quality in pediatric hospitalist systems. Death is a rare occurrence in pediatric ward settings, and the seven studies conducted to date comparing pediatric hospitalist and traditional systems have been universally underpowered to detect differences in mortality.9, 1218 There is a need to better understand care processes as a first step in understanding and improving quality of care in hospitalist systems.19

The Pediatric Research in Inpatient Settings (PRIS) Network was formed to improve the quality of care for hospitalized children through collaborative clinical research. In this study, we sought to study variation in the care of common pediatric conditions among a cohort of pediatric hospitalists. We have previously reported that less variability exists in hospitalists' reported management of inpatient conditions than in the reported management of these same conditions by community‐based pediatricians,20 but we were concerned that substantial undesirable variation (ie, variation in practice due to uncertainty or unsubstantiated local practice traditions, rather than justified variation in care based on different risks of harms or benefits in different patients) may still exist among hospitalists. We therefore conducted a study: 1) to investigate variation in hospitalists' reported use of common inpatient therapies, and 2) to test the hypothesis that greater variation exists in hospitalists' reported use of inpatient therapies of unproven benefit than in those therapies proven to be beneficial.

METHODS

Survey Design and Administration

In 2003, we designed the PRIS Survey to collect data on hospitalists' backgrounds, practices, and training needs, as well as their management of common pediatric conditions. For the current study, we chose a priori to evaluate hospitalists' use of 14 therapies in the management of 4 common conditions: asthma, bronchiolitis, gastroenteritis, and gastro‐esophageal reflux disease (GERD) (Table 1). These four conditions were chosen for study because they were among the top discharge diagnoses (primary and secondary) from the inpatient services at 2 of the authors' institutions (Children's Hospital Boston and Children's Hospital San Diego) during the year before administration of the survey, and because a discrete set of therapeutic agents are commonly used in their management. Respondents were asked to report the frequency with which they used each of the 14 therapies of interest on 5‐point Likert scales (from 1=never to 5=almost always). The survey initially developed was piloted with a small group of hospitalists and pediatricians, and a final version incorporating revisions was subsequently administered to all pediatric hospitalists in the US and Canada identified through any of 3 sources: 1) the Pediatric Research in Inpatient Settings (PRIS) list of participants; 2) the Society for Hospital Medicine (SHM) pediatric hospital medicine e‐mail listserv; and 3) the list of all attendees of the first national pediatric hospitalist conference sponsored by the Ambulatory Pediatrics Association (APA), SHM, and American Academy of Pediatrics (AAP); this meeting was held in San Antonio, Texas, USA in November 2003. Individuals identified through more than 1 of these groups were counted only once. Potential participants were assured that individual responses would be kept confidential, and were e‐mailed an access code to participate in the online survey, using a secure web‐based interface; a paper‐based version was also made available to those who preferred to respond in this manner. Regular reminder notices were sent to all non‐responders. Further details regarding PRIS Survey recruitment and study methods have been published previously.20

Therapies and Conditions Studied
ConditionTherapyBMJ clinical evidence Treatment effect categorization*Study classification
  • Abbreviation: BMJ, British Medical Journal.

AsthmaInhaled albuterolBeneficialProven
 Systemic corticosteroidsBeneficialProven
 Inhaled ipratropium in the first 24 hours of hospitalizationBeneficialProven
 Inhaled ipratropium after the first 24 hours of hospitalizationUnknown effectivenessUnproven
BronchiolitisInhaled albuterolUnknown effectivenessUnproven
 Inhaled epinephrineUnknown effectivenessUnproven
 Systemic corticosteroidsUnknown effectivenessUnproven
GastroenteritisIntravenous hydrationBeneficialProven
 LactobacillusNot assessedUnproven
 OndansetronNot assessedUnproven
Gastro‐Esophageal Reflux Disease (GERD)H2 histamine‐receptor antagonistsUnknown effectivenessUnproven
 Thickened feedsUnknown effectiveness Likely to be beneficialUnproven Proven
 MetoclopramideUnknown effectivenessUnproven
 Proton‐pump inhibitorsUnknown effectivenessUnproven

DefinitionsReference Responses and Percent Variation

To measure variation in reported management, we first sought to determine a reference response for each therapy of interest. Since the evidence base for most of the therapies we studied is weak, it was not possible to determine a gold standard response for each therapy. Instead, we sought to measure the degree of divergence from a reference response for each therapy in the following manner. First, to simplify analyses, we collapsed our five‐category Likert scale into three categories (never/rarely, sometimes, and often/almost always). We then defined the reference response for each therapy to be never/rarely or often/almost always, whichever of the 2 was more frequently selected by respondents; sometimes was not used as a reference category, as reporting use of a particular therapy sometimes indicated substantial variability even within an individual's own practice.

Classification of therapies as proven or unproven.

To classify each of the 14 studied therapies as being of proven or unproven, we used the British Medical Journal's publication Clinical Evidence.19 We chose to use Clinical Evidence as an evidence‐based reference because it provides rigorously developed, systematic analyses of therapeutic management options for multiple common pediatric conditions, and organizes recommendations in a straightforward manner. Four of the 14 therapies had been determined on systematic review to be proven beneficial at the time of study design: systemic corticosteroids, inhaled albuterol, and ipratropium (in the first 24 h) in the care of children with asthma; and IV hydration in the care of children with acute gastroenteritis. The remaining 10 therapies were either considered to be of unknown effectiveness or had not been formally evaluated by Clinical Evidence, and were hence considered unproven for this study (Table 1). Of note, the use of thickened feeds in the treatment of children with GERD had been determined to be of unknown effectiveness at the time of study design, but was reclassified as likely to be beneficial during the course of the study.

Analyses

Descriptive statistics were used to report respondents' demographic characteristics and work environments, as well as variation in their reported use of each of the 14 therapies. Variation in hospitalists' use of proven versus unproven therapies was compared using the Wilcoxon rank sum test, as it was distributed non‐normally. For our primary analysis, the use of thickened feeds in GERD was considered unproven, but a sensitivity analysis was conducted reclassifying it as proven in light of the evolving literature on its use and its consequent reclassification in Clinical Evidence.(SAS Version 9.1, Cary, NC) was used for statistical analyses.

RESULTS

213 of the 320 individuals identified through the 3 lists of pediatric hospitalists (67%) responded to the survey. Of these, 198 (93%) identified themselves as hospitalists and were therefore included. As previously reported,20 53% of respondents were male, 55% worked in academic training environments, and 47% had completed advanced training (fellowship) beyond their core pediatric training (residency training); respondents reported completing residency training 11 9 (mean, standard deviation) years prior to the survey, and spending 176 72 days per year in the care of hospitalized patients.

Variation in reported management: asthma

(Figure 1, Panel A). Relatively little variation existed in reported use of the 4 asthma therapies studied. Only 4.4% (95% CI, 1.4‐7.4%) of respondents did not provide the reference response of using inhaled albuterol often or almost always in the care of inpatients with asthma, and only 6.0% (2.5‐9.5%) of respondents did not report using systemic corticosteroids often or almost always. Variation in reported use of ipratropium was somewhat higher.

Figure 1
Percent variation in reported use of common inpatient therapies. (T bars indicate 95% confidence intervals).

Bronchiolitis

(Figure 1B). By contrast, variation in reported use of inhaled therapies for bronchiolitis was high, with many respondents reporting that they often or always used inhaled albuterol or epinephrine, while many others reported rarely or never using them. There was 59.6% (52.4‐66.8%) variation from the reference response of often/almost always using inhaled albuterol, and 72.2% (65.6‐78.8%) variation from the reference response of never/rarely using inhaled epinephrine. Only 11.6% (6.9‐16.3%) of respondents, however, varied from the reference response of using dexamethasone more than rarely in the care of children with bronchiolitis.

Gastroenteritis

(Figure 1C). Moderate variability existed in the reported use of the 3 studied therapies for children hospitalized with gastroenteritis. 21.1% (15.1‐27.1%) of respondents did not provide the reference response of often/almost always using IV hydration; 35.9% (28.9‐42.9%) did not provide the reference response of never or rarely using lactobacillus; likewise, 35.9% (28.9‐42.9%) did not provide the reference response of never or rarely using ondansetron.

Gastro‐Esophageal Reflux Disease

(Figure 1, Panel D). There was moderate to high variability in the reported management of GERD. 22.8% (16.7‐28.9%) of respondents did not provide the reference response of often/almost always using H2 antagonists, and 44.9% (37.6‐52.2%) did not report often/almost always using thickened feeds in the care of these children. 58.3% (51.1‐65.5%) and 72.1% (65.5‐78.7%) of respondents did not provide the reference response of never/rarely using metoclopramide and proton pump inhibitors, respectively.

Proven vs. Unproven Therapies

(Figure 2). Variation in reported use of therapies of unproven benefit was significantly higher than variation in reported use of the 4 proven therapies (albuterol, corticosteroids, and ipratropium in the first 24 h for asthma; IV re‐hydration for gastroenteritis). The mean variation in reported use of unproven therapies was 44.6 20.5%, compared with 15.5 12.5% variation in reported use of therapies of proven benefit (p = 0.02).

Figure 2
Variation in reported use of proven versus unproven therapies (T bars indicate standard deviations).

As a sensitivity analysis, the use of thickened feeds as a therapy for GERD was re‐categorized as proven and the above analysis repeated, for the reasons outlined in the methods section. This did not alter the identified relationship between variability and the evidence base fundamentally; hospitalists' reported variation in use of therapies of unproven benefit in this sensitivity analysis was 44.6 21.7%, compared with 21.4 17.0% variation in reported use of proven therapies (p = 0.05).

DISCUSSION

Substantial variation exists in the inpatient management of common pediatric diseases. Although we have previously found less reported variability in pediatric hospitalists' practices than in those of community‐based pediatricians,20 the current study demonstrates a high degree of reported variation even among a cohort of inpatient specialists. Importantly, however, reported variation was found to be significantly less for those inpatient therapies supported by a robust evidence base.

Bronchiolitis, gastroenteritis, asthma, and GERD are extremely common causes of pediatric hospitalization throughout the developed world.2125 Our finding of high reported variability in the routine care of all of these conditions except asthma is concerning, as it suggests that experts do not agree on how to manage children hospitalized with even the most common childhood diseases. While we hypothesized that there would be some variation in the use of therapies whose benefit has not been well established, the high degree of variation observed is of concern because it indicates that an insufficient evidentiary base exists to support much of our day‐to‐day practice. Some variation in practice in response to differing clinical presentations is both expected and desirable, but it is remarkable that variance in practice was significantly less for the most evidence‐based therapies than for those grounded less firmly in science, suggesting that the variation identified here is not justifiable variation based on appropriate responses to atypical clinical presentations, but uncertainty in the absence of clear data. Such undesired variability may decrease system reliability (introducing avoidable opportunity for error),26 and lead to under‐use of needed therapies as well as overuse of unnecessary therapies.1

Our work extends prior research that has identified wide variation in patterns of hospital admission, use of hospital resources, and processes of inpatient care,2732 by documenting reported variation in the use of common inpatient therapies. Rates of hospital admission may vary by as much as 7‐fold across regions.33 Our study demonstrates that wide variation exists not only in admission rates, but in reported inpatient care processes for some of the most common diseases seen in pediatric hospitals. Our study also supports the hypothesis that variation in care may be driven by gaps in knowledge.32 Among hospitalists, we found the strength of the evidence base to be a major determinant of reported variability.

Our study has several limitations. First, the data presented here are derived from provider self‐reports, which may not fully reflect actual practice. In the case of the few proven therapies studied, reporting bias could lead to an over‐reporting of adherence to evidence‐based standards of care. Like our study, however, prior studies have found that hospital‐based providers fairly consistently comply with evidence‐based practice recommendations for acute asthma care,34, 35 supporting our finding that variation in acute asthma care (which represented 3 of our 4 proven therapies) is low in this setting.

Another limitation is that classifications of therapies as proven or unproven change as the evidence base evolves. Of particular relevance to this study, the use of thickened feeds as a therapy for GERD, originally classified as being of unknown effectiveness, was reclassified by Clinical Evidence during the course of the study as likely to be beneficial. The relationship we identified between proven therapies and degree of variability in care did not change when we conducted a sensitivity analysis re‐categorizing this therapy as proven, but precisely quantifying variation is complicated by continuous changes in the state of the evidence.

Pediatric hospitalist systems have been found consistently to improve the efficiency of care,9 yet this study suggests that considerable variation in hospitalists' management of key conditions remains. The Pediatric Research in Inpatient Settings (PRIS) Network was formed in 2002 to improve the care of hospitalized children and the quality of inpatient practice by developing an evidence base for inpatient pediatric care. Ongoing multi‐center research efforts through PRIS and other research networks are beginning to critically evaluate therapies used in the management of common pediatric conditions. Rigorous studies of the processes and outcomes of pediatric hospital care will inform inpatient pediatric practice, and ultimately improve the care of hospitalized children. The current study strongly affirms the urgent need to establish such an evidence base. Without data to inform optimal care, efforts to reduce undesirable variation in care and improve care quality cannot be fully realized.

Acknowledgements

The authors would like to extend their thanks to the hospitalists and members of the Pediatric Research in Inpatient Settings Network who participated in this research, as well as the Children's National Medical Center and Children's Hospital Boston Inpatient Pediatrics Services, who provided funding to support this study. Special thanks to the Ambulatory Pediatrics Association (APA), for its core support of the PRIS Network. Dr. Landrigan is the recipient of a career development award from the Agency for Healthcare Research and Quality (AHRQ K08 HS13333). Dr. Conway is the recipient of a Robert Wood Johnson Clinical Scholars Grant. All researchers were independent from the funding agencies; the academic medical centers named above, APA, and AHRQ had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; or preparation, review, or approval of the manuscript.

References
  1. Institute of Medicine: Crossing the Quality Chasm: A New Health System for the 21st Century.Washington, D.C.:National Academic Press,2001.
  2. Urbach DR.Baxter NN.Reducing variation in surgical care.BMJ2005;330:14011402.
  3. Sedrakyan A,van der MJ,Lewsey J,Treasure T.Variation in use of video assisted thoracic surgery in the United Kingdom.BMJ2004;329:10111012.
  4. Wachter RM,.Goldman L.The emerging role of “hospitalists” in the American health care system.N. Engl J Med1996;335:514517.
  5. Maviglia SM,.Bates D.Hospitalism in the USA.Lancet1999;353:1902.
  6. Society of Hospital Medicine. Growth of Hospital Medicine Nationwide. Available at: http://www.hospitalmedicine.org/Content/NavigationMenu/Media/GrowthofHospitalMedicineNationwide/Growth_of_Hospital_M.htm. Accessed April 11,2007.
  7. Terry K.The changing face of hospital practice.Med Econ2002;79:7279.
  8. Wachter RM,.Goldman L.The hospitalist movement 5 years later.JAMA2002;287:487494.
  9. Landrigan CP,Conway PH,Edwards S,Srivastava R.Pediatric hospitalists: a systematic review of the literature.Pediatrics2006;117:17361744.
  10. Auerbach AD,Wachter RM,Katz P,Showstack J,Baron RB,Goldman L.Implementation of a voluntary hospitalist service at a community teaching hospital: improved clinical efficiency and patient outcomes.Ann Intern Med2002;137:859865.
  11. Meltzer D,Manning WG,Morrison J,Shah MN,Jin L,Guth T, et al.Effects of physician experience on costs and outcomes on an academic general medicine service: results of a trial of hospitalists.Ann Intern Med2002;137:866874.
  12. Bellet PS,Whitaker RC.Evaluation of a pediatric hospitalist service: impact on length of stay and hospital charges.Pediatrics2000;105:478484.
  13. Landrigan C,Srivastava R,Muret‐Wagstaff S,Soumerai SB,Ross‐Degnan D,Graef JW,Homer CJ, and Goldmann DA.Impact of an HMO hospitalist system in academic pediatrics.Pediatrics2002;110:720728.
  14. Maggioni A,Reyes M, and Lifshitz F.Evaluation of a pediatric hospitalist service by APR‐DRG's: impact on length of stay and hospital charges.Pediatr Research2001;49(suppl),691.
  15. Wells RD,Dahl B,Wilson SD.Pediatric hospitalists: quality care for the underserved?Am J Med Qual2001;16:174180.
  16. Ogershok PR,Li X,Palmer HC,Moore RS,Weisse ME,Ferrari ND.Restructuring an academic pediatric inpatient service using concepts developed by hospitalists.Clin Pediatr (Phila)2001;40:653660.
  17. Srivastava R,Muret‐Wagstaff S,Young PC, and James BC.Hospitalist care of medically complex children.Pediatr Research2004;55(suppl),1789.
  18. Seid M,Quinn K,Kurtin PS.Hospital‐based and community pediatricians: comparing outcomes for asthma and bronchiolitis.J Clin Outcomes Manage1997;4:2124.
  19. Godlee F,Tovey D,Bedford M, et al., eds.Clinical Evidence: The International Source of the Best Available Evidence for Effective Health Care.London, United Kingdom:BMJ Publishing Group;2004.
  20. Conway PH,Edwards S,Stucky ER,Chiang VW,Ottolini MC,Landrigan CP.Variations in management of common inpatient pediatric illnesses: hospitalists and community pediatricians.Pediatrics2006;118:441447.
  21. Muller‐Pebody B,Edmunds WJ,Zambon MC,Gay NJ,Crowcroft NS.Contribution of RSV to bronchiolitis and pneumonia‐associated hospitalizations in English children, April 1995‐March 1998.Epidemiol Infect2002;129:99106.
  22. Pelletier AJ,Mansbach JM,Camargo CA.Direct medical costs of bronchiolitis hospitalizations in the United States.Pediatrics2006;118:24182423.
  23. Van Damme P,Giaquinto C,Huet F,Gothefors L,Maxwell M,Van der WM.Multicenter Prospective Study of the Burden of Rotavirus Acute Gastroenteritis in Europe, 2004‐2005: The REVEAL Study.J Infect Dis2007;195Suppl 1:S4S16.
  24. Akinbami L.The state of childhood asthma, United States, 1980‐2005.Adv.Data.2006;124.
  25. Gold BD,Freston JW.Gastroesophageal reflux in children: pathogenesis, prevalence, diagnosis, and role of proton pump inhibitors in treatment.Paediatr Drugs2002;4:673685.
  26. Luria JW,Muething SE,Schoettker PJ,Kotagal UR.Reliability science and patient safety.Pediatr Clin North Am2006;53:11211133.
  27. Wennberg JE and McAndrew Cooper M, eds.The Dartmouth Atlas of Health Care in the United States.Hanover, NH, USA:Health Forum, Inc.,1999.
  28. Perrin JM,Homer CJ,Berwick DM,Woolf AD,Freeman JL,Wennberg JE.Variations in rates of hospitalization of children in three urban communities.N Engl J Med1989;320:11831187.
  29. Wennberg JE,Fisher ES,Stukel TA,Skinner JS,Sharp SM,Bronner KK.Use of hospitals, physician visits, and hospice care during last six months of life among cohorts loyal to highly respected hospitals in the United States.BMJ2004;328:607.
  30. Lee SK,McMillan DD,Ohlsson A,Pendray M,Synnes A,Whyte R, et al.Variations in practice and outcomes in the Canadian NICU network: 1996‐1997.Pediatrics2000;106:10701079.
  31. Nelson DG,Leake J,Bradley J,Kuppermann N.Evaluation of febrile children with petechial rashes: is there consensus among pediatricians?Pediatr Infect Dis J1998;17:11351140.
  32. Plint AC,Johnson DW,Wiebe N,Bulloch B,Pusic M,Joubert G, et al.Practice variation among pediatric emergency departments in the treatment of bronchiolitis.Acad Emerg Med2004;11:353360.
  33. Thakker Y,Sheldon TA,Long R,MacFaul R.Paediatric inpatient utilisation in a district general hospital.Arch Dis Child1994;70:488492.
  34. Mahadevan M,Jin A,Manning P,Lim TK.Emergency department asthma: compliance with an evidence‐based management algorithm.Ann Acad Med Singapore2002;31:419424.
  35. Moyer VA,Gist AK,Elliott EJ.Is the practice of paediatric inpatient medicine evidence‐based?J Paediatr Child Health2002;38:347351.
Article PDF
Issue
Journal of Hospital Medicine - 3(4)
Page Number
292-298
Legacy Keywords
hospitalist, pediatric, variation, variability, evidence‐based medicine, research network
Sections
Article PDF
Article PDF

Reduction of undesirable variation in care has been a major focus of systematic efforts to improve the quality of the healthcare system.13 The emergence of hospitalists, physicians specializing in the care of hospitalized patients, was spurred by a desire to streamline care and reduce variability in hospital management of common diseases.4, 5 Over the past decade, hospitalist systems have become a leading vehicle for care delivery.4, 6, 7 It remains unclear, however, whether implementation of hospitalist systems has lessened undesirable variation in the inpatient management of common diseases.

While systematic reviews have found costs and hospital length of stay to be 10‐15% lower in both pediatric and internal medicine hospitalist systems, few studies have adequately assessed the processes or quality of care in hospitalist systems.8, 9 Two internal medicine studies have found decreased mortality in hospitalist systems, but the mechanism by which hospitalists apparently achieved these gains is unclear.10, 11 Even less is known about care processes or quality in pediatric hospitalist systems. Death is a rare occurrence in pediatric ward settings, and the seven studies conducted to date comparing pediatric hospitalist and traditional systems have been universally underpowered to detect differences in mortality.9, 1218 There is a need to better understand care processes as a first step in understanding and improving quality of care in hospitalist systems.19

The Pediatric Research in Inpatient Settings (PRIS) Network was formed to improve the quality of care for hospitalized children through collaborative clinical research. In this study, we sought to study variation in the care of common pediatric conditions among a cohort of pediatric hospitalists. We have previously reported that less variability exists in hospitalists' reported management of inpatient conditions than in the reported management of these same conditions by community‐based pediatricians,20 but we were concerned that substantial undesirable variation (ie, variation in practice due to uncertainty or unsubstantiated local practice traditions, rather than justified variation in care based on different risks of harms or benefits in different patients) may still exist among hospitalists. We therefore conducted a study: 1) to investigate variation in hospitalists' reported use of common inpatient therapies, and 2) to test the hypothesis that greater variation exists in hospitalists' reported use of inpatient therapies of unproven benefit than in those therapies proven to be beneficial.

METHODS

Survey Design and Administration

In 2003, we designed the PRIS Survey to collect data on hospitalists' backgrounds, practices, and training needs, as well as their management of common pediatric conditions. For the current study, we chose a priori to evaluate hospitalists' use of 14 therapies in the management of 4 common conditions: asthma, bronchiolitis, gastroenteritis, and gastro‐esophageal reflux disease (GERD) (Table 1). These four conditions were chosen for study because they were among the top discharge diagnoses (primary and secondary) from the inpatient services at 2 of the authors' institutions (Children's Hospital Boston and Children's Hospital San Diego) during the year before administration of the survey, and because a discrete set of therapeutic agents are commonly used in their management. Respondents were asked to report the frequency with which they used each of the 14 therapies of interest on 5‐point Likert scales (from 1=never to 5=almost always). The survey initially developed was piloted with a small group of hospitalists and pediatricians, and a final version incorporating revisions was subsequently administered to all pediatric hospitalists in the US and Canada identified through any of 3 sources: 1) the Pediatric Research in Inpatient Settings (PRIS) list of participants; 2) the Society for Hospital Medicine (SHM) pediatric hospital medicine e‐mail listserv; and 3) the list of all attendees of the first national pediatric hospitalist conference sponsored by the Ambulatory Pediatrics Association (APA), SHM, and American Academy of Pediatrics (AAP); this meeting was held in San Antonio, Texas, USA in November 2003. Individuals identified through more than 1 of these groups were counted only once. Potential participants were assured that individual responses would be kept confidential, and were e‐mailed an access code to participate in the online survey, using a secure web‐based interface; a paper‐based version was also made available to those who preferred to respond in this manner. Regular reminder notices were sent to all non‐responders. Further details regarding PRIS Survey recruitment and study methods have been published previously.20

Therapies and Conditions Studied
ConditionTherapyBMJ clinical evidence Treatment effect categorization*Study classification
  • Abbreviation: BMJ, British Medical Journal.

AsthmaInhaled albuterolBeneficialProven
 Systemic corticosteroidsBeneficialProven
 Inhaled ipratropium in the first 24 hours of hospitalizationBeneficialProven
 Inhaled ipratropium after the first 24 hours of hospitalizationUnknown effectivenessUnproven
BronchiolitisInhaled albuterolUnknown effectivenessUnproven
 Inhaled epinephrineUnknown effectivenessUnproven
 Systemic corticosteroidsUnknown effectivenessUnproven
GastroenteritisIntravenous hydrationBeneficialProven
 LactobacillusNot assessedUnproven
 OndansetronNot assessedUnproven
Gastro‐Esophageal Reflux Disease (GERD)H2 histamine‐receptor antagonistsUnknown effectivenessUnproven
 Thickened feedsUnknown effectiveness Likely to be beneficialUnproven Proven
 MetoclopramideUnknown effectivenessUnproven
 Proton‐pump inhibitorsUnknown effectivenessUnproven

DefinitionsReference Responses and Percent Variation

To measure variation in reported management, we first sought to determine a reference response for each therapy of interest. Since the evidence base for most of the therapies we studied is weak, it was not possible to determine a gold standard response for each therapy. Instead, we sought to measure the degree of divergence from a reference response for each therapy in the following manner. First, to simplify analyses, we collapsed our five‐category Likert scale into three categories (never/rarely, sometimes, and often/almost always). We then defined the reference response for each therapy to be never/rarely or often/almost always, whichever of the 2 was more frequently selected by respondents; sometimes was not used as a reference category, as reporting use of a particular therapy sometimes indicated substantial variability even within an individual's own practice.

Classification of therapies as proven or unproven.

To classify each of the 14 studied therapies as being of proven or unproven, we used the British Medical Journal's publication Clinical Evidence.19 We chose to use Clinical Evidence as an evidence‐based reference because it provides rigorously developed, systematic analyses of therapeutic management options for multiple common pediatric conditions, and organizes recommendations in a straightforward manner. Four of the 14 therapies had been determined on systematic review to be proven beneficial at the time of study design: systemic corticosteroids, inhaled albuterol, and ipratropium (in the first 24 h) in the care of children with asthma; and IV hydration in the care of children with acute gastroenteritis. The remaining 10 therapies were either considered to be of unknown effectiveness or had not been formally evaluated by Clinical Evidence, and were hence considered unproven for this study (Table 1). Of note, the use of thickened feeds in the treatment of children with GERD had been determined to be of unknown effectiveness at the time of study design, but was reclassified as likely to be beneficial during the course of the study.

Analyses

Descriptive statistics were used to report respondents' demographic characteristics and work environments, as well as variation in their reported use of each of the 14 therapies. Variation in hospitalists' use of proven versus unproven therapies was compared using the Wilcoxon rank sum test, as it was distributed non‐normally. For our primary analysis, the use of thickened feeds in GERD was considered unproven, but a sensitivity analysis was conducted reclassifying it as proven in light of the evolving literature on its use and its consequent reclassification in Clinical Evidence.(SAS Version 9.1, Cary, NC) was used for statistical analyses.

RESULTS

213 of the 320 individuals identified through the 3 lists of pediatric hospitalists (67%) responded to the survey. Of these, 198 (93%) identified themselves as hospitalists and were therefore included. As previously reported,20 53% of respondents were male, 55% worked in academic training environments, and 47% had completed advanced training (fellowship) beyond their core pediatric training (residency training); respondents reported completing residency training 11 9 (mean, standard deviation) years prior to the survey, and spending 176 72 days per year in the care of hospitalized patients.

Variation in reported management: asthma

(Figure 1, Panel A). Relatively little variation existed in reported use of the 4 asthma therapies studied. Only 4.4% (95% CI, 1.4‐7.4%) of respondents did not provide the reference response of using inhaled albuterol often or almost always in the care of inpatients with asthma, and only 6.0% (2.5‐9.5%) of respondents did not report using systemic corticosteroids often or almost always. Variation in reported use of ipratropium was somewhat higher.

Figure 1
Percent variation in reported use of common inpatient therapies. (T bars indicate 95% confidence intervals).

Bronchiolitis

(Figure 1B). By contrast, variation in reported use of inhaled therapies for bronchiolitis was high, with many respondents reporting that they often or always used inhaled albuterol or epinephrine, while many others reported rarely or never using them. There was 59.6% (52.4‐66.8%) variation from the reference response of often/almost always using inhaled albuterol, and 72.2% (65.6‐78.8%) variation from the reference response of never/rarely using inhaled epinephrine. Only 11.6% (6.9‐16.3%) of respondents, however, varied from the reference response of using dexamethasone more than rarely in the care of children with bronchiolitis.

Gastroenteritis

(Figure 1C). Moderate variability existed in the reported use of the 3 studied therapies for children hospitalized with gastroenteritis. 21.1% (15.1‐27.1%) of respondents did not provide the reference response of often/almost always using IV hydration; 35.9% (28.9‐42.9%) did not provide the reference response of never or rarely using lactobacillus; likewise, 35.9% (28.9‐42.9%) did not provide the reference response of never or rarely using ondansetron.

Gastro‐Esophageal Reflux Disease

(Figure 1, Panel D). There was moderate to high variability in the reported management of GERD. 22.8% (16.7‐28.9%) of respondents did not provide the reference response of often/almost always using H2 antagonists, and 44.9% (37.6‐52.2%) did not report often/almost always using thickened feeds in the care of these children. 58.3% (51.1‐65.5%) and 72.1% (65.5‐78.7%) of respondents did not provide the reference response of never/rarely using metoclopramide and proton pump inhibitors, respectively.

Proven vs. Unproven Therapies

(Figure 2). Variation in reported use of therapies of unproven benefit was significantly higher than variation in reported use of the 4 proven therapies (albuterol, corticosteroids, and ipratropium in the first 24 h for asthma; IV re‐hydration for gastroenteritis). The mean variation in reported use of unproven therapies was 44.6 20.5%, compared with 15.5 12.5% variation in reported use of therapies of proven benefit (p = 0.02).

Figure 2
Variation in reported use of proven versus unproven therapies (T bars indicate standard deviations).

As a sensitivity analysis, the use of thickened feeds as a therapy for GERD was re‐categorized as proven and the above analysis repeated, for the reasons outlined in the methods section. This did not alter the identified relationship between variability and the evidence base fundamentally; hospitalists' reported variation in use of therapies of unproven benefit in this sensitivity analysis was 44.6 21.7%, compared with 21.4 17.0% variation in reported use of proven therapies (p = 0.05).

DISCUSSION

Substantial variation exists in the inpatient management of common pediatric diseases. Although we have previously found less reported variability in pediatric hospitalists' practices than in those of community‐based pediatricians,20 the current study demonstrates a high degree of reported variation even among a cohort of inpatient specialists. Importantly, however, reported variation was found to be significantly less for those inpatient therapies supported by a robust evidence base.

Bronchiolitis, gastroenteritis, asthma, and GERD are extremely common causes of pediatric hospitalization throughout the developed world.2125 Our finding of high reported variability in the routine care of all of these conditions except asthma is concerning, as it suggests that experts do not agree on how to manage children hospitalized with even the most common childhood diseases. While we hypothesized that there would be some variation in the use of therapies whose benefit has not been well established, the high degree of variation observed is of concern because it indicates that an insufficient evidentiary base exists to support much of our day‐to‐day practice. Some variation in practice in response to differing clinical presentations is both expected and desirable, but it is remarkable that variance in practice was significantly less for the most evidence‐based therapies than for those grounded less firmly in science, suggesting that the variation identified here is not justifiable variation based on appropriate responses to atypical clinical presentations, but uncertainty in the absence of clear data. Such undesired variability may decrease system reliability (introducing avoidable opportunity for error),26 and lead to under‐use of needed therapies as well as overuse of unnecessary therapies.1

Our work extends prior research that has identified wide variation in patterns of hospital admission, use of hospital resources, and processes of inpatient care,2732 by documenting reported variation in the use of common inpatient therapies. Rates of hospital admission may vary by as much as 7‐fold across regions.33 Our study demonstrates that wide variation exists not only in admission rates, but in reported inpatient care processes for some of the most common diseases seen in pediatric hospitals. Our study also supports the hypothesis that variation in care may be driven by gaps in knowledge.32 Among hospitalists, we found the strength of the evidence base to be a major determinant of reported variability.

Our study has several limitations. First, the data presented here are derived from provider self‐reports, which may not fully reflect actual practice. In the case of the few proven therapies studied, reporting bias could lead to an over‐reporting of adherence to evidence‐based standards of care. Like our study, however, prior studies have found that hospital‐based providers fairly consistently comply with evidence‐based practice recommendations for acute asthma care,34, 35 supporting our finding that variation in acute asthma care (which represented 3 of our 4 proven therapies) is low in this setting.

Another limitation is that classifications of therapies as proven or unproven change as the evidence base evolves. Of particular relevance to this study, the use of thickened feeds as a therapy for GERD, originally classified as being of unknown effectiveness, was reclassified by Clinical Evidence during the course of the study as likely to be beneficial. The relationship we identified between proven therapies and degree of variability in care did not change when we conducted a sensitivity analysis re‐categorizing this therapy as proven, but precisely quantifying variation is complicated by continuous changes in the state of the evidence.

Pediatric hospitalist systems have been found consistently to improve the efficiency of care,9 yet this study suggests that considerable variation in hospitalists' management of key conditions remains. The Pediatric Research in Inpatient Settings (PRIS) Network was formed in 2002 to improve the care of hospitalized children and the quality of inpatient practice by developing an evidence base for inpatient pediatric care. Ongoing multi‐center research efforts through PRIS and other research networks are beginning to critically evaluate therapies used in the management of common pediatric conditions. Rigorous studies of the processes and outcomes of pediatric hospital care will inform inpatient pediatric practice, and ultimately improve the care of hospitalized children. The current study strongly affirms the urgent need to establish such an evidence base. Without data to inform optimal care, efforts to reduce undesirable variation in care and improve care quality cannot be fully realized.

Acknowledgements

The authors would like to extend their thanks to the hospitalists and members of the Pediatric Research in Inpatient Settings Network who participated in this research, as well as the Children's National Medical Center and Children's Hospital Boston Inpatient Pediatrics Services, who provided funding to support this study. Special thanks to the Ambulatory Pediatrics Association (APA), for its core support of the PRIS Network. Dr. Landrigan is the recipient of a career development award from the Agency for Healthcare Research and Quality (AHRQ K08 HS13333). Dr. Conway is the recipient of a Robert Wood Johnson Clinical Scholars Grant. All researchers were independent from the funding agencies; the academic medical centers named above, APA, and AHRQ had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; or preparation, review, or approval of the manuscript.

Reduction of undesirable variation in care has been a major focus of systematic efforts to improve the quality of the healthcare system.13 The emergence of hospitalists, physicians specializing in the care of hospitalized patients, was spurred by a desire to streamline care and reduce variability in hospital management of common diseases.4, 5 Over the past decade, hospitalist systems have become a leading vehicle for care delivery.4, 6, 7 It remains unclear, however, whether implementation of hospitalist systems has lessened undesirable variation in the inpatient management of common diseases.

While systematic reviews have found costs and hospital length of stay to be 10‐15% lower in both pediatric and internal medicine hospitalist systems, few studies have adequately assessed the processes or quality of care in hospitalist systems.8, 9 Two internal medicine studies have found decreased mortality in hospitalist systems, but the mechanism by which hospitalists apparently achieved these gains is unclear.10, 11 Even less is known about care processes or quality in pediatric hospitalist systems. Death is a rare occurrence in pediatric ward settings, and the seven studies conducted to date comparing pediatric hospitalist and traditional systems have been universally underpowered to detect differences in mortality.9, 1218 There is a need to better understand care processes as a first step in understanding and improving quality of care in hospitalist systems.19

The Pediatric Research in Inpatient Settings (PRIS) Network was formed to improve the quality of care for hospitalized children through collaborative clinical research. In this study, we sought to study variation in the care of common pediatric conditions among a cohort of pediatric hospitalists. We have previously reported that less variability exists in hospitalists' reported management of inpatient conditions than in the reported management of these same conditions by community‐based pediatricians,20 but we were concerned that substantial undesirable variation (ie, variation in practice due to uncertainty or unsubstantiated local practice traditions, rather than justified variation in care based on different risks of harms or benefits in different patients) may still exist among hospitalists. We therefore conducted a study: 1) to investigate variation in hospitalists' reported use of common inpatient therapies, and 2) to test the hypothesis that greater variation exists in hospitalists' reported use of inpatient therapies of unproven benefit than in those therapies proven to be beneficial.

METHODS

Survey Design and Administration

In 2003, we designed the PRIS Survey to collect data on hospitalists' backgrounds, practices, and training needs, as well as their management of common pediatric conditions. For the current study, we chose a priori to evaluate hospitalists' use of 14 therapies in the management of 4 common conditions: asthma, bronchiolitis, gastroenteritis, and gastro‐esophageal reflux disease (GERD) (Table 1). These four conditions were chosen for study because they were among the top discharge diagnoses (primary and secondary) from the inpatient services at 2 of the authors' institutions (Children's Hospital Boston and Children's Hospital San Diego) during the year before administration of the survey, and because a discrete set of therapeutic agents are commonly used in their management. Respondents were asked to report the frequency with which they used each of the 14 therapies of interest on 5‐point Likert scales (from 1=never to 5=almost always). The survey initially developed was piloted with a small group of hospitalists and pediatricians, and a final version incorporating revisions was subsequently administered to all pediatric hospitalists in the US and Canada identified through any of 3 sources: 1) the Pediatric Research in Inpatient Settings (PRIS) list of participants; 2) the Society for Hospital Medicine (SHM) pediatric hospital medicine e‐mail listserv; and 3) the list of all attendees of the first national pediatric hospitalist conference sponsored by the Ambulatory Pediatrics Association (APA), SHM, and American Academy of Pediatrics (AAP); this meeting was held in San Antonio, Texas, USA in November 2003. Individuals identified through more than 1 of these groups were counted only once. Potential participants were assured that individual responses would be kept confidential, and were e‐mailed an access code to participate in the online survey, using a secure web‐based interface; a paper‐based version was also made available to those who preferred to respond in this manner. Regular reminder notices were sent to all non‐responders. Further details regarding PRIS Survey recruitment and study methods have been published previously.20

Therapies and Conditions Studied
ConditionTherapyBMJ clinical evidence Treatment effect categorization*Study classification
  • Abbreviation: BMJ, British Medical Journal.

AsthmaInhaled albuterolBeneficialProven
 Systemic corticosteroidsBeneficialProven
 Inhaled ipratropium in the first 24 hours of hospitalizationBeneficialProven
 Inhaled ipratropium after the first 24 hours of hospitalizationUnknown effectivenessUnproven
BronchiolitisInhaled albuterolUnknown effectivenessUnproven
 Inhaled epinephrineUnknown effectivenessUnproven
 Systemic corticosteroidsUnknown effectivenessUnproven
GastroenteritisIntravenous hydrationBeneficialProven
 LactobacillusNot assessedUnproven
 OndansetronNot assessedUnproven
Gastro‐Esophageal Reflux Disease (GERD)H2 histamine‐receptor antagonistsUnknown effectivenessUnproven
 Thickened feedsUnknown effectiveness Likely to be beneficialUnproven Proven
 MetoclopramideUnknown effectivenessUnproven
 Proton‐pump inhibitorsUnknown effectivenessUnproven

DefinitionsReference Responses and Percent Variation

To measure variation in reported management, we first sought to determine a reference response for each therapy of interest. Since the evidence base for most of the therapies we studied is weak, it was not possible to determine a gold standard response for each therapy. Instead, we sought to measure the degree of divergence from a reference response for each therapy in the following manner. First, to simplify analyses, we collapsed our five‐category Likert scale into three categories (never/rarely, sometimes, and often/almost always). We then defined the reference response for each therapy to be never/rarely or often/almost always, whichever of the 2 was more frequently selected by respondents; sometimes was not used as a reference category, as reporting use of a particular therapy sometimes indicated substantial variability even within an individual's own practice.

Classification of therapies as proven or unproven.

To classify each of the 14 studied therapies as being of proven or unproven, we used the British Medical Journal's publication Clinical Evidence.19 We chose to use Clinical Evidence as an evidence‐based reference because it provides rigorously developed, systematic analyses of therapeutic management options for multiple common pediatric conditions, and organizes recommendations in a straightforward manner. Four of the 14 therapies had been determined on systematic review to be proven beneficial at the time of study design: systemic corticosteroids, inhaled albuterol, and ipratropium (in the first 24 h) in the care of children with asthma; and IV hydration in the care of children with acute gastroenteritis. The remaining 10 therapies were either considered to be of unknown effectiveness or had not been formally evaluated by Clinical Evidence, and were hence considered unproven for this study (Table 1). Of note, the use of thickened feeds in the treatment of children with GERD had been determined to be of unknown effectiveness at the time of study design, but was reclassified as likely to be beneficial during the course of the study.

Analyses

Descriptive statistics were used to report respondents' demographic characteristics and work environments, as well as variation in their reported use of each of the 14 therapies. Variation in hospitalists' use of proven versus unproven therapies was compared using the Wilcoxon rank sum test, as it was distributed non‐normally. For our primary analysis, the use of thickened feeds in GERD was considered unproven, but a sensitivity analysis was conducted reclassifying it as proven in light of the evolving literature on its use and its consequent reclassification in Clinical Evidence.(SAS Version 9.1, Cary, NC) was used for statistical analyses.

RESULTS

213 of the 320 individuals identified through the 3 lists of pediatric hospitalists (67%) responded to the survey. Of these, 198 (93%) identified themselves as hospitalists and were therefore included. As previously reported,20 53% of respondents were male, 55% worked in academic training environments, and 47% had completed advanced training (fellowship) beyond their core pediatric training (residency training); respondents reported completing residency training 11 9 (mean, standard deviation) years prior to the survey, and spending 176 72 days per year in the care of hospitalized patients.

Variation in reported management: asthma

(Figure 1, Panel A). Relatively little variation existed in reported use of the 4 asthma therapies studied. Only 4.4% (95% CI, 1.4‐7.4%) of respondents did not provide the reference response of using inhaled albuterol often or almost always in the care of inpatients with asthma, and only 6.0% (2.5‐9.5%) of respondents did not report using systemic corticosteroids often or almost always. Variation in reported use of ipratropium was somewhat higher.

Figure 1
Percent variation in reported use of common inpatient therapies. (T bars indicate 95% confidence intervals).

Bronchiolitis

(Figure 1B). By contrast, variation in reported use of inhaled therapies for bronchiolitis was high, with many respondents reporting that they often or always used inhaled albuterol or epinephrine, while many others reported rarely or never using them. There was 59.6% (52.4‐66.8%) variation from the reference response of often/almost always using inhaled albuterol, and 72.2% (65.6‐78.8%) variation from the reference response of never/rarely using inhaled epinephrine. Only 11.6% (6.9‐16.3%) of respondents, however, varied from the reference response of using dexamethasone more than rarely in the care of children with bronchiolitis.

Gastroenteritis

(Figure 1C). Moderate variability existed in the reported use of the 3 studied therapies for children hospitalized with gastroenteritis. 21.1% (15.1‐27.1%) of respondents did not provide the reference response of often/almost always using IV hydration; 35.9% (28.9‐42.9%) did not provide the reference response of never or rarely using lactobacillus; likewise, 35.9% (28.9‐42.9%) did not provide the reference response of never or rarely using ondansetron.

Gastro‐Esophageal Reflux Disease

(Figure 1, Panel D). There was moderate to high variability in the reported management of GERD. 22.8% (16.7‐28.9%) of respondents did not provide the reference response of often/almost always using H2 antagonists, and 44.9% (37.6‐52.2%) did not report often/almost always using thickened feeds in the care of these children. 58.3% (51.1‐65.5%) and 72.1% (65.5‐78.7%) of respondents did not provide the reference response of never/rarely using metoclopramide and proton pump inhibitors, respectively.

Proven vs. Unproven Therapies

(Figure 2). Variation in reported use of therapies of unproven benefit was significantly higher than variation in reported use of the 4 proven therapies (albuterol, corticosteroids, and ipratropium in the first 24 h for asthma; IV re‐hydration for gastroenteritis). The mean variation in reported use of unproven therapies was 44.6 20.5%, compared with 15.5 12.5% variation in reported use of therapies of proven benefit (p = 0.02).

Figure 2
Variation in reported use of proven versus unproven therapies (T bars indicate standard deviations).

As a sensitivity analysis, the use of thickened feeds as a therapy for GERD was re‐categorized as proven and the above analysis repeated, for the reasons outlined in the methods section. This did not alter the identified relationship between variability and the evidence base fundamentally; hospitalists' reported variation in use of therapies of unproven benefit in this sensitivity analysis was 44.6 21.7%, compared with 21.4 17.0% variation in reported use of proven therapies (p = 0.05).

DISCUSSION

Substantial variation exists in the inpatient management of common pediatric diseases. Although we have previously found less reported variability in pediatric hospitalists' practices than in those of community‐based pediatricians,20 the current study demonstrates a high degree of reported variation even among a cohort of inpatient specialists. Importantly, however, reported variation was found to be significantly less for those inpatient therapies supported by a robust evidence base.

Bronchiolitis, gastroenteritis, asthma, and GERD are extremely common causes of pediatric hospitalization throughout the developed world.2125 Our finding of high reported variability in the routine care of all of these conditions except asthma is concerning, as it suggests that experts do not agree on how to manage children hospitalized with even the most common childhood diseases. While we hypothesized that there would be some variation in the use of therapies whose benefit has not been well established, the high degree of variation observed is of concern because it indicates that an insufficient evidentiary base exists to support much of our day‐to‐day practice. Some variation in practice in response to differing clinical presentations is both expected and desirable, but it is remarkable that variance in practice was significantly less for the most evidence‐based therapies than for those grounded less firmly in science, suggesting that the variation identified here is not justifiable variation based on appropriate responses to atypical clinical presentations, but uncertainty in the absence of clear data. Such undesired variability may decrease system reliability (introducing avoidable opportunity for error),26 and lead to under‐use of needed therapies as well as overuse of unnecessary therapies.1

Our work extends prior research that has identified wide variation in patterns of hospital admission, use of hospital resources, and processes of inpatient care,2732 by documenting reported variation in the use of common inpatient therapies. Rates of hospital admission may vary by as much as 7‐fold across regions.33 Our study demonstrates that wide variation exists not only in admission rates, but in reported inpatient care processes for some of the most common diseases seen in pediatric hospitals. Our study also supports the hypothesis that variation in care may be driven by gaps in knowledge.32 Among hospitalists, we found the strength of the evidence base to be a major determinant of reported variability.

Our study has several limitations. First, the data presented here are derived from provider self‐reports, which may not fully reflect actual practice. In the case of the few proven therapies studied, reporting bias could lead to an over‐reporting of adherence to evidence‐based standards of care. Like our study, however, prior studies have found that hospital‐based providers fairly consistently comply with evidence‐based practice recommendations for acute asthma care,34, 35 supporting our finding that variation in acute asthma care (which represented 3 of our 4 proven therapies) is low in this setting.

Another limitation is that classifications of therapies as proven or unproven change as the evidence base evolves. Of particular relevance to this study, the use of thickened feeds as a therapy for GERD, originally classified as being of unknown effectiveness, was reclassified by Clinical Evidence during the course of the study as likely to be beneficial. The relationship we identified between proven therapies and degree of variability in care did not change when we conducted a sensitivity analysis re‐categorizing this therapy as proven, but precisely quantifying variation is complicated by continuous changes in the state of the evidence.

Pediatric hospitalist systems have been found consistently to improve the efficiency of care,9 yet this study suggests that considerable variation in hospitalists' management of key conditions remains. The Pediatric Research in Inpatient Settings (PRIS) Network was formed in 2002 to improve the care of hospitalized children and the quality of inpatient practice by developing an evidence base for inpatient pediatric care. Ongoing multi‐center research efforts through PRIS and other research networks are beginning to critically evaluate therapies used in the management of common pediatric conditions. Rigorous studies of the processes and outcomes of pediatric hospital care will inform inpatient pediatric practice, and ultimately improve the care of hospitalized children. The current study strongly affirms the urgent need to establish such an evidence base. Without data to inform optimal care, efforts to reduce undesirable variation in care and improve care quality cannot be fully realized.

Acknowledgements

The authors would like to extend their thanks to the hospitalists and members of the Pediatric Research in Inpatient Settings Network who participated in this research, as well as the Children's National Medical Center and Children's Hospital Boston Inpatient Pediatrics Services, who provided funding to support this study. Special thanks to the Ambulatory Pediatrics Association (APA), for its core support of the PRIS Network. Dr. Landrigan is the recipient of a career development award from the Agency for Healthcare Research and Quality (AHRQ K08 HS13333). Dr. Conway is the recipient of a Robert Wood Johnson Clinical Scholars Grant. All researchers were independent from the funding agencies; the academic medical centers named above, APA, and AHRQ had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; or preparation, review, or approval of the manuscript.

References
  1. Institute of Medicine: Crossing the Quality Chasm: A New Health System for the 21st Century.Washington, D.C.:National Academic Press,2001.
  2. Urbach DR.Baxter NN.Reducing variation in surgical care.BMJ2005;330:14011402.
  3. Sedrakyan A,van der MJ,Lewsey J,Treasure T.Variation in use of video assisted thoracic surgery in the United Kingdom.BMJ2004;329:10111012.
  4. Wachter RM,.Goldman L.The emerging role of “hospitalists” in the American health care system.N. Engl J Med1996;335:514517.
  5. Maviglia SM,.Bates D.Hospitalism in the USA.Lancet1999;353:1902.
  6. Society of Hospital Medicine. Growth of Hospital Medicine Nationwide. Available at: http://www.hospitalmedicine.org/Content/NavigationMenu/Media/GrowthofHospitalMedicineNationwide/Growth_of_Hospital_M.htm. Accessed April 11,2007.
  7. Terry K.The changing face of hospital practice.Med Econ2002;79:7279.
  8. Wachter RM,.Goldman L.The hospitalist movement 5 years later.JAMA2002;287:487494.
  9. Landrigan CP,Conway PH,Edwards S,Srivastava R.Pediatric hospitalists: a systematic review of the literature.Pediatrics2006;117:17361744.
  10. Auerbach AD,Wachter RM,Katz P,Showstack J,Baron RB,Goldman L.Implementation of a voluntary hospitalist service at a community teaching hospital: improved clinical efficiency and patient outcomes.Ann Intern Med2002;137:859865.
  11. Meltzer D,Manning WG,Morrison J,Shah MN,Jin L,Guth T, et al.Effects of physician experience on costs and outcomes on an academic general medicine service: results of a trial of hospitalists.Ann Intern Med2002;137:866874.
  12. Bellet PS,Whitaker RC.Evaluation of a pediatric hospitalist service: impact on length of stay and hospital charges.Pediatrics2000;105:478484.
  13. Landrigan C,Srivastava R,Muret‐Wagstaff S,Soumerai SB,Ross‐Degnan D,Graef JW,Homer CJ, and Goldmann DA.Impact of an HMO hospitalist system in academic pediatrics.Pediatrics2002;110:720728.
  14. Maggioni A,Reyes M, and Lifshitz F.Evaluation of a pediatric hospitalist service by APR‐DRG's: impact on length of stay and hospital charges.Pediatr Research2001;49(suppl),691.
  15. Wells RD,Dahl B,Wilson SD.Pediatric hospitalists: quality care for the underserved?Am J Med Qual2001;16:174180.
  16. Ogershok PR,Li X,Palmer HC,Moore RS,Weisse ME,Ferrari ND.Restructuring an academic pediatric inpatient service using concepts developed by hospitalists.Clin Pediatr (Phila)2001;40:653660.
  17. Srivastava R,Muret‐Wagstaff S,Young PC, and James BC.Hospitalist care of medically complex children.Pediatr Research2004;55(suppl),1789.
  18. Seid M,Quinn K,Kurtin PS.Hospital‐based and community pediatricians: comparing outcomes for asthma and bronchiolitis.J Clin Outcomes Manage1997;4:2124.
  19. Godlee F,Tovey D,Bedford M, et al., eds.Clinical Evidence: The International Source of the Best Available Evidence for Effective Health Care.London, United Kingdom:BMJ Publishing Group;2004.
  20. Conway PH,Edwards S,Stucky ER,Chiang VW,Ottolini MC,Landrigan CP.Variations in management of common inpatient pediatric illnesses: hospitalists and community pediatricians.Pediatrics2006;118:441447.
  21. Muller‐Pebody B,Edmunds WJ,Zambon MC,Gay NJ,Crowcroft NS.Contribution of RSV to bronchiolitis and pneumonia‐associated hospitalizations in English children, April 1995‐March 1998.Epidemiol Infect2002;129:99106.
  22. Pelletier AJ,Mansbach JM,Camargo CA.Direct medical costs of bronchiolitis hospitalizations in the United States.Pediatrics2006;118:24182423.
  23. Van Damme P,Giaquinto C,Huet F,Gothefors L,Maxwell M,Van der WM.Multicenter Prospective Study of the Burden of Rotavirus Acute Gastroenteritis in Europe, 2004‐2005: The REVEAL Study.J Infect Dis2007;195Suppl 1:S4S16.
  24. Akinbami L.The state of childhood asthma, United States, 1980‐2005.Adv.Data.2006;124.
  25. Gold BD,Freston JW.Gastroesophageal reflux in children: pathogenesis, prevalence, diagnosis, and role of proton pump inhibitors in treatment.Paediatr Drugs2002;4:673685.
  26. Luria JW,Muething SE,Schoettker PJ,Kotagal UR.Reliability science and patient safety.Pediatr Clin North Am2006;53:11211133.
  27. Wennberg JE and McAndrew Cooper M, eds.The Dartmouth Atlas of Health Care in the United States.Hanover, NH, USA:Health Forum, Inc.,1999.
  28. Perrin JM,Homer CJ,Berwick DM,Woolf AD,Freeman JL,Wennberg JE.Variations in rates of hospitalization of children in three urban communities.N Engl J Med1989;320:11831187.
  29. Wennberg JE,Fisher ES,Stukel TA,Skinner JS,Sharp SM,Bronner KK.Use of hospitals, physician visits, and hospice care during last six months of life among cohorts loyal to highly respected hospitals in the United States.BMJ2004;328:607.
  30. Lee SK,McMillan DD,Ohlsson A,Pendray M,Synnes A,Whyte R, et al.Variations in practice and outcomes in the Canadian NICU network: 1996‐1997.Pediatrics2000;106:10701079.
  31. Nelson DG,Leake J,Bradley J,Kuppermann N.Evaluation of febrile children with petechial rashes: is there consensus among pediatricians?Pediatr Infect Dis J1998;17:11351140.
  32. Plint AC,Johnson DW,Wiebe N,Bulloch B,Pusic M,Joubert G, et al.Practice variation among pediatric emergency departments in the treatment of bronchiolitis.Acad Emerg Med2004;11:353360.
  33. Thakker Y,Sheldon TA,Long R,MacFaul R.Paediatric inpatient utilisation in a district general hospital.Arch Dis Child1994;70:488492.
  34. Mahadevan M,Jin A,Manning P,Lim TK.Emergency department asthma: compliance with an evidence‐based management algorithm.Ann Acad Med Singapore2002;31:419424.
  35. Moyer VA,Gist AK,Elliott EJ.Is the practice of paediatric inpatient medicine evidence‐based?J Paediatr Child Health2002;38:347351.
References
  1. Institute of Medicine: Crossing the Quality Chasm: A New Health System for the 21st Century.Washington, D.C.:National Academic Press,2001.
  2. Urbach DR.Baxter NN.Reducing variation in surgical care.BMJ2005;330:14011402.
  3. Sedrakyan A,van der MJ,Lewsey J,Treasure T.Variation in use of video assisted thoracic surgery in the United Kingdom.BMJ2004;329:10111012.
  4. Wachter RM,.Goldman L.The emerging role of “hospitalists” in the American health care system.N. Engl J Med1996;335:514517.
  5. Maviglia SM,.Bates D.Hospitalism in the USA.Lancet1999;353:1902.
  6. Society of Hospital Medicine. Growth of Hospital Medicine Nationwide. Available at: http://www.hospitalmedicine.org/Content/NavigationMenu/Media/GrowthofHospitalMedicineNationwide/Growth_of_Hospital_M.htm. Accessed April 11,2007.
  7. Terry K.The changing face of hospital practice.Med Econ2002;79:7279.
  8. Wachter RM,.Goldman L.The hospitalist movement 5 years later.JAMA2002;287:487494.
  9. Landrigan CP,Conway PH,Edwards S,Srivastava R.Pediatric hospitalists: a systematic review of the literature.Pediatrics2006;117:17361744.
  10. Auerbach AD,Wachter RM,Katz P,Showstack J,Baron RB,Goldman L.Implementation of a voluntary hospitalist service at a community teaching hospital: improved clinical efficiency and patient outcomes.Ann Intern Med2002;137:859865.
  11. Meltzer D,Manning WG,Morrison J,Shah MN,Jin L,Guth T, et al.Effects of physician experience on costs and outcomes on an academic general medicine service: results of a trial of hospitalists.Ann Intern Med2002;137:866874.
  12. Bellet PS,Whitaker RC.Evaluation of a pediatric hospitalist service: impact on length of stay and hospital charges.Pediatrics2000;105:478484.
  13. Landrigan C,Srivastava R,Muret‐Wagstaff S,Soumerai SB,Ross‐Degnan D,Graef JW,Homer CJ, and Goldmann DA.Impact of an HMO hospitalist system in academic pediatrics.Pediatrics2002;110:720728.
  14. Maggioni A,Reyes M, and Lifshitz F.Evaluation of a pediatric hospitalist service by APR‐DRG's: impact on length of stay and hospital charges.Pediatr Research2001;49(suppl),691.
  15. Wells RD,Dahl B,Wilson SD.Pediatric hospitalists: quality care for the underserved?Am J Med Qual2001;16:174180.
  16. Ogershok PR,Li X,Palmer HC,Moore RS,Weisse ME,Ferrari ND.Restructuring an academic pediatric inpatient service using concepts developed by hospitalists.Clin Pediatr (Phila)2001;40:653660.
  17. Srivastava R,Muret‐Wagstaff S,Young PC, and James BC.Hospitalist care of medically complex children.Pediatr Research2004;55(suppl),1789.
  18. Seid M,Quinn K,Kurtin PS.Hospital‐based and community pediatricians: comparing outcomes for asthma and bronchiolitis.J Clin Outcomes Manage1997;4:2124.
  19. Godlee F,Tovey D,Bedford M, et al., eds.Clinical Evidence: The International Source of the Best Available Evidence for Effective Health Care.London, United Kingdom:BMJ Publishing Group;2004.
  20. Conway PH,Edwards S,Stucky ER,Chiang VW,Ottolini MC,Landrigan CP.Variations in management of common inpatient pediatric illnesses: hospitalists and community pediatricians.Pediatrics2006;118:441447.
  21. Muller‐Pebody B,Edmunds WJ,Zambon MC,Gay NJ,Crowcroft NS.Contribution of RSV to bronchiolitis and pneumonia‐associated hospitalizations in English children, April 1995‐March 1998.Epidemiol Infect2002;129:99106.
  22. Pelletier AJ,Mansbach JM,Camargo CA.Direct medical costs of bronchiolitis hospitalizations in the United States.Pediatrics2006;118:24182423.
  23. Van Damme P,Giaquinto C,Huet F,Gothefors L,Maxwell M,Van der WM.Multicenter Prospective Study of the Burden of Rotavirus Acute Gastroenteritis in Europe, 2004‐2005: The REVEAL Study.J Infect Dis2007;195Suppl 1:S4S16.
  24. Akinbami L.The state of childhood asthma, United States, 1980‐2005.Adv.Data.2006;124.
  25. Gold BD,Freston JW.Gastroesophageal reflux in children: pathogenesis, prevalence, diagnosis, and role of proton pump inhibitors in treatment.Paediatr Drugs2002;4:673685.
  26. Luria JW,Muething SE,Schoettker PJ,Kotagal UR.Reliability science and patient safety.Pediatr Clin North Am2006;53:11211133.
  27. Wennberg JE and McAndrew Cooper M, eds.The Dartmouth Atlas of Health Care in the United States.Hanover, NH, USA:Health Forum, Inc.,1999.
  28. Perrin JM,Homer CJ,Berwick DM,Woolf AD,Freeman JL,Wennberg JE.Variations in rates of hospitalization of children in three urban communities.N Engl J Med1989;320:11831187.
  29. Wennberg JE,Fisher ES,Stukel TA,Skinner JS,Sharp SM,Bronner KK.Use of hospitals, physician visits, and hospice care during last six months of life among cohorts loyal to highly respected hospitals in the United States.BMJ2004;328:607.
  30. Lee SK,McMillan DD,Ohlsson A,Pendray M,Synnes A,Whyte R, et al.Variations in practice and outcomes in the Canadian NICU network: 1996‐1997.Pediatrics2000;106:10701079.
  31. Nelson DG,Leake J,Bradley J,Kuppermann N.Evaluation of febrile children with petechial rashes: is there consensus among pediatricians?Pediatr Infect Dis J1998;17:11351140.
  32. Plint AC,Johnson DW,Wiebe N,Bulloch B,Pusic M,Joubert G, et al.Practice variation among pediatric emergency departments in the treatment of bronchiolitis.Acad Emerg Med2004;11:353360.
  33. Thakker Y,Sheldon TA,Long R,MacFaul R.Paediatric inpatient utilisation in a district general hospital.Arch Dis Child1994;70:488492.
  34. Mahadevan M,Jin A,Manning P,Lim TK.Emergency department asthma: compliance with an evidence‐based management algorithm.Ann Acad Med Singapore2002;31:419424.
  35. Moyer VA,Gist AK,Elliott EJ.Is the practice of paediatric inpatient medicine evidence‐based?J Paediatr Child Health2002;38:347351.
Issue
Journal of Hospital Medicine - 3(4)
Issue
Journal of Hospital Medicine - 3(4)
Page Number
292-298
Page Number
292-298
Article Type
Display Headline
Variation in pediatric hospitalists' use of proven and unproven therapies: A study from the Pediatric Research in Inpatient Settings (PRIS) network
Display Headline
Variation in pediatric hospitalists' use of proven and unproven therapies: A study from the Pediatric Research in Inpatient Settings (PRIS) network
Legacy Keywords
hospitalist, pediatric, variation, variability, evidence‐based medicine, research network
Legacy Keywords
hospitalist, pediatric, variation, variability, evidence‐based medicine, research network
Sections
Article Source

Copyright © 2008 Society of Hospital Medicine

Disallow All Ads
Correspondence Location
Brigham and Women's Hospital, 221 Longwood Ave., 4th floor, Boston, MA 02115
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Article PDF Media

Nerves of Steal

Article Type
Changed
Mon, 01/02/2017 - 19:34
Display Headline
Nerves of steal

A 60 year‐old woman with advanced kidney disease presented with one month of progressively worsening, sharp burning pain and decreased sensation in her left hand. Cold air exacerbated the pain. She noted decreasing ability to utilize her left fingers, a weakened grip and that the muscles in her hand looked smaller.

Localized sensory and motor symptoms in a discrete region of a single limb suggest neuropathy. The lack of symptoms in the face or ipsilateral lower extremity would dissuade a clinician from considering central etiologies; the presence of neuropathic pain is uncommon for cortical lesions. The involvement of motor and sensory nerves indicates peripheral nerve involvement.

The general approach to patients with peripheral neuropathy begins with identifying the neuropathy as a mononeuropathy (involving a single nerve), a polyneuropathy (symmetric involvement of multiple nerves) or a mononeuropathy multiplex (asymmetric involvement of multiple nerves). The patient, in this case, described subacute neuropathic pain, sensory loss, and weakness in her left hand in a distribution consistent with mononeuropathy or mononeuropathy multiplex.

This patient could have carpal tunnel syndrome given its prevalence in patients with advanced renal disease. The differential diagnosis is broad, however, and includes ulnar mononeuropathy, nerve ischemia due to vasculitis or vasculopathy, lower cervical radiculopathy (though the patient does not describe neck or radicular pain), lower brachial plexopathy, and complex regional pain syndrome.

The patient was diagnosed with advanced kidney disease one year ago when biopsy revealed focal segmental glomerulosclerosis secondary to lithium. Since her diagnosis, two grafts were placed in the left upper arm in anticipation of dialysis: the first, placed seven months prior to this admission, failed to mature; the second, placed one month prior to this admission, was complicated by bleeding at the fistula site and was not yet mature. Prior to this admission she had not required hemodialysis. Her past history included hypertension, dyslipidemia, hypothyroidism, secondary hyperparathyroidism, a remote history of cervical cancer (stage unknown, recent PAP smear negative), microcytosis and schizoaffective disorder. Her medications were furosemide, amlodipine, lisinopril, atenolol, atorvastatin, pantoprazole, olanzapine, levothyroxine, iron, darbepoetin, sevelamer, multivitamin and docusate.

Given the history of procedures in the left arm one should consider ischemic injury to the left median nerve. Other local complications could include compressive lesions such as an abscess or hematoma or direct nerve injury from the procedure. Carpal tunnel syndrome remains high on the differential due to its prevalence and because renal failure and hypothyroidism increase the risk of carpal tunnel syndrome.

A careful physical examination would localize the nerve or nerves involved. Examination findings that would be consistent with carpal tunnel syndrome include sensory loss in the distribution of the left median nerve, weakness of muscles innervated by the median nerve, including the abductor pollicus brevis and opponens muscles, and a Tinels and Phalens sign of the left wrist. A proximal median neuropathy resulting from ischemia or compression might also involve median‐innervated forearm muscle such as the pronator teres (forearm pronation) and flexor carpi radialis (hand flexion and abduction) muscles. Complex regional pain syndrome can be seen after a traumatic injury or surgery and is typified by severe neuropathic pain in a limb, often in combination with trophic changes in the affected extremity. A cervical radiculopathy would affect muscles supplied by the injured nerve root. For example, a C8 radiculopathy would affect all of the intrinsic hand muscles, the wrist and finger extensors, and the triceps brachii. A lower brachial plexopathy would present similarly to a lower cervical radiculopathy on clinical examination; electrodiagnostic evaluation would be necessary to distinguish these two disorders.

The patient appeared fatigued and her left hand was wrapped in blankets. Her vital signs were stable. There was no thyroid enlargement or lymphadenopathy. There was marked thenar, hypothenar and forearm atrophy on the left. Strength testing of her left hand demonstrated a grip strength of 2/5, finger extension and interosseous strength of 1/5, left wrist flexion and extension of 3/5; left biceps and triceps were 5/5. Sensation was mildly decreased to light touch, temperature, pain and proprioception throughout the left hand. Strength and sensation were intact in the right upper and bilateral lower extremities. Reflexes were 2+ throughout. The left radial pulse was diminished compared to the left ulnar that was 1+. The left hand was dry and cool. Laboratory evaluation revealed an elevated white blood cell count of 15,300/mm3, a hematocrit of 33 percent, mean corpuscular volume of 73 fL, and a normal platelet count. Electrolytes were consistent with advanced renal disease. The thyroid stimulating hormone level was normal.

The patient's examination reveals an injury to the sensory and motor components of the left ulnar, median, and distal radial nerves. The volar forearm wasting suggests proximal median motor nerve injury in the forearm. Because the triceps is spared, the weakness of finger and wrist extension implies distal radial motor nerve injury. The interosseous weakness is consistent with injury to the ulnar motor nerve. Weakness of grip and wrist flexion is less specific and it may be explained by injury to either the median or ulnar motor nerves. The diffuse sensory loss over the palmar and dorsal aspect of the left hand is consistent with neuropathic injury to the left median, ulnar, and radial sensory nerves. The preserved deep tendon reflexes are controlled by the musculocutaneous nerve (the biceps reflex) and branches arising from the proximal radial nerve (the triceps and brachioradialis reflexes), both of which are proximal to the apparent level of neuropathic insult.

Carpal tunnel syndrome is excluded since abnormalities extend beyond the median nerve distribution. The presentation is consistent with a mononeuropathy multiplex. Axonal etiologies of mononeuropathy multiplexincluding vasculitis, ischemia, neoplastic infiltration, and infectious etiologies such as Lyme diseaseare more common than demyelinating causes. Vasculitic neuropathy commonly involves the lower extremities and may have systemic symptoms, not present in this case. Neoplasm or other compressive lesions such as hematoma could explain these findings. Abscess must be considered given the leukocytosis. A lower brachial plexopathy, technically a mononeuropathy multiplex involving the proximal arm at the level of the brachial plexus, is also in the differential diagnosis. Another axonal disorder to consider would be neuralgic amyotrophy, an idiopathic form of acute brachial plexopathy associated with pain that is a complication of surgery that typically presents within a few hours to weeks of the procedure.

Demyelinating causes of mononeuropathy multiplex are less likely and include a variant of chronic inflammatory demyelinating polyneuropathy (Lewis‐Sumner syndrome) and hereditary neuropathy with liability to pressure palsies. Both processes are typically indolent and usually not painful, though the latter may present with fulminant numbness and weakness.

Nerve conduction and needle electromyography of the arm and cervical paraspinal muscles would differentiate axonal degeneration from demyelination. It would identify the affected nerves and any nerve root involvement. Given the concern for abscess or hematoma, MR neurography focused on the surgical site would also be important.

Electromyography and nerve conduction velocities demonstrated severe axonal loss of the left median, ulnar and distal radial sensory nerves consistent with acute denervation. A magnetic resonance neurogram following the course of these nerves revealed enlarged ulnar and median nerves with abnormal signal, but no compressive lesion (Fig. 1).

Figure 1
MR Neurogram (Axial STIR) (a) of the elbow demonstrating abnormal increased size and increased signal of the ulnar nerve (arrow). (b) in a normal patient demonstrating normal signal and normal size of the ulnar nerve (arrow).

The electrodiagnostic testing is consistent with severe acute axonal injury to the left ulnar, median and radial nerves. This supports a diagnosis of mononeuropathy multiplex with axonal injury. Demyelinating causes are excluded at this point.

The MR neurogram demonstrates nonspecific nerve enlargement, which may be seen in ischemia, neoplastic processes (primary or metastatic), demyelinating disease, or, rarely, amyloidosis. Neoplastic involvement is unlikely in this case given the absence of a compressive mass lesion and the long segmental involvement of both the median and ulnar nerves. Compression from an abscess or hematoma is excluded. Neuralgic amyotrophy does not typically cause nerve enlargement.

Ischemia is the most likely diagnosis. Laboratory evaluation for vasculitis would be reasonable. Vasculitides that could present in this fashion include: polyarteritis nodosa, mixed connective tissue disease, Wegner's granulomatosis, Churg‐Strauss angiitis, Sjogren's, hepatitis C with serum cryoglobulinemia and possibly rheumatoid arthritis. Given the history of fistula placement in the affected limb, vascular sufficiency must be assessed.

Anti‐nuclear antibodies and anti‐neutrophilic cytoplasmic antibodies were negative, and a C‐ reactive protein was 5.9 mg/L (normal range, 0 to 10 mg/L). The erythrocyte sedimentation rate was 32mm/hr (normal range, 0 to 20) and serologies for hepatitis B and C were negative. There was no evidence of serum cryoglobulins.

A modestly elevated sedimentation rate and normal C‐reactive protein argue against a diagnosis of vasculitis. The negative ANA, ANCA, hepatitis serologies and cryoglobulin tests render unlikely the diagnoses of polyarteritis nodosa, Wegner's granulomatosis, Churg‐Strauss angiitis, or hepatitis related cryoglobulinemia. Eosinophilia (present in Churg‐Strauss), ENA (positive in mixed connective tissue disease), anti‐SSA and SSB (positive in Sjogren's) and a rheumatoid factor would round out this evaluation for vasculitis. A left radial sensory nerve biopsy could also be of value in diagnosing vasculitic neuropathy in this patient.

Given the evidence against vasculitis, the possibility of ischemia due to vascular insufficiency is concerning. Two ischemic complications of hemodialysis are known to cause distal multiple mononeuropathies. The first, ischemic monomelic neuropathy syndrome is seen almost exclusively in diabetics. It is characterized by the development of acute pain, weakness of the forearm and hand muscles, and sensory loss within minutes or hours of AV graft placement. Transient occlusion of the blood supply to the nerves of the forearm and hand induces nerve ischemia, but does not cause necrosis of other tissues. The nerve conduction findings in this patient are consistent with ischemic monomelic neuropathy syndrome. The delayed onset of her symptoms, however, makes this diagnosis unlikely.

The second ischemic complication of hemodialysis, and the likelier diagnosis, is vascular steal syndrome. This has a similar clinical and electrodiagnostic presentation to ischemic monomelic neuropathy syndrome, but has a latency period after surgery of days to months. Vascular steal occurs when a reversal of blood flow into the fistula steals flow from the palmar arch arteries and induces ischemia of the vasa nervorum. Vascular studies should be obtained urgently when this diagnosis is considered.

Evaluation of the arteriovenous graft and vascular surgery consultation were sought. Digital photoplethysmography revealed diminished waveforms in all fingers of the left hand. Arterial Doppler evaluation of the left upper extremity confirmed low‐velocity flow in the radial and ulnar arteries and failed to confirm flow in the brachial artery distal to the arteriovenous fistula. The patient underwent an angiogram of the left axillary and brachial arteries. There was normal flow until the level of the arteriovenous fistula but minimal flow distal to the fistula (Fig. 2).

Figure 2
Angiogram of the left upper extremity with injection of the bracial artery. Pcclusion of the brachial artery is present (arrow), with filling of several small collateral vessels

The diminished waveforms on digital photoplethysmography are consistent with poor perfusion distally. The angiogram suggests that the multiple mononeuropathies are a consequence of ischemia from impaired blood flow.

Consulting the vascular surgeons in this setting is essential because restoring adequate blood flow to the affected nerves can prevent further loss of function. Prognosis is dependent on many factors, including the severity of the functional loss and the duration of the symptoms prior to the restoration of blood flow. The patient's severe weakness and substantial muscle atrophy, manifestations of axonal degeneration, imply a poorer prognosis for recovery of function.

Embolization of the arteriovenous fistula was performed by interventional radiology. Post embolization angiograms demonstrated improved peripheral arterial flow (Fig. 3). One day later, the patient's finger flexion and extension improved. She reported mildly decreased dysesthesias and on examination her fingers were warmer to the touch. One month after discharge, her strength continued to be impaired, though improved and she still experienced pain.

Figure 3
Post‐embolization angiogram demonstrating improved collateral flow to the distal arterial vasculature.

COMMENTARY

Hospitalists must be equipped to recognize urgent and potentially reversible causes of neuropathy. The hospitalist should maintain a high index of suspicion for ischemia (either due to vasculitis or vascular compromise), traumatic nerve injury, nerve compression or entrapment, lymphoma or metastatic infiltration, hepatitis C with cryoglobulinemia, Guillain‐Barre syndrome and toxic exposures. Table 1 highlights important causes of mononeuropathy multiplex and summarizes associated findings and indicated diagnostic tests for specific evaluation.

Differential Diagnosis of Mononeuropathy Multiplex
Diagnosis Associated features Specific evaluation
Axonal neuropathies
Ischemia (including vascular steal) Poor arterial pulses, history of vascular surgery Digital photoplethysmography, Doppler, angiography
Nerve compression and trauma History of traumatic injury, mass, infection/abscess MR neurography
Lymphoma or metastatic infiltration History of known cancer, weight loss PET, whole body CT, bone marrow biopsy
Vasculitis Waxing and waning symptoms, association with connective tissue diseases, painful CRP, ESR, Hepatitis C, cryoglobulins, ANA, ANCA, antibodies to SSA/SSB, ENA, eosinophil count, serum complement, SPEP/UPEP, RF, nerve biopsy
Neurosarcoidosis Hilar lymphadenopathy, chronic cough Chest CT, ACE, nerve biopsy
Lyme Tick bite, erythema chronicum migrans Lyme serology
Leprosy Resident of southeast Asia, skin lesions Skin smear for acid fast bacilli (mycobacterium), nerve biopsy
Demyelinating neuropathies
Lewis‐Sumner syndrome (i.e. asymmetric CIDP) Relapsing remitting or chronic progressive course, areflexia Lumbar puncture (increased spinal fluid protein common)
Hereditary neuropathy with liability to pressure palsy Family history, recurrent episodes of entrapment/compression neuropathies Genetic testing (deletion in the gene for peripheral myelin protein‐22)
Multifocal motor neuropathy with conduction block Multifocal weakness in the distal arms/legs without sensory symptoms Only motor abnormalities on nerve conduction including conduction block

Another challenge for hospitalists is efficient evaluation of neuropathy. A systematic framework for creating a differential diagnosis and familiarity with available diagnostic tests is crucial. Hospitalists should be aware of three broad categories of neuropathy: mononeuropathy, polyneuropathy and mononeuropathy multiplex. Electrodiagnostic testing is essential to confirm the involved nerves and distinguishes axonal from demyelinating etiologies. Ultrasound, MR neurogram and, when indicated, nerve biopsy may be useful. Table 2 reviews these diagnostic tools as well as their indications and limitations.

Diagnostic Modalities for Evaluation of Peripheral Nerves
Test Indications Limitations
Electrodiagnostic Testing7 Any peripheral neuropathy, muscle or neuromuscular junction disorder Concomitant disease can reduce accuracy
Detects severity, chronicity, axonal v. demyelinating, diffuse v. focal, asymmetric v. symmetric
Electromyography (EMG) EMG EMG
Monopolar/concentric needle electrode inserted into the muscle belly Differentiates axonal v. muscle damage; sensitive for even mild axon degeneration; localizes lesions. Patient discomfort
Evaluates only motor fibers
Measures action potential at rest vs. during voluntary activation Does not detect demyelination
Might not be positive in first 21 days of symptoms
Nerve Conduction Studies (NCS) NCS NCS
Sensory High sensitivity to differentiate axon loss from demyelination; localizes lesions. Certain sensory responses lost with aging
Recording electrode placed over sensory nerve
Sensory nerve stimulated distally Sensory localizes lesion to proximal vs. distal or to dorsal root ganglion Less sensitive for mild axonal loss
Measures stimulus at proximal site
Motor Motor amount of axonal loss
Recording electrode placed over muscle belly
Motor nerve stimulated proximally
Measures stimulus at muscle
Specialized NCS tests Specialized testing can identify radiculopathy, peripheral neuropathy, myasthenia gravis
Ultrasound8
Performed with typical ultrasound equipment Suspected nerve entrapment Doesn't show pathologic changes within nerves
Clinician must localize lesion for technician and explicitly guide test process Evidence strongest for evaluation of median and ulnar nerves and Morton's neuroma Difficult to visualize deep nerves or nerves surrounded by fat
Normal nerves appear tubular with linear echoes on a longitudinal scan; honeycomb on transverse scan Detects lesions, nerve thickening, decreased echogenicity Small field of view unless reconstructed
Results operator dependent
Less accurate than MRI for tumors
MRI9, 10 MR neurography
Standard MRI equipment Concern regarding entrapment, trauma or mass lesions Expense
Optimizes nerve resolution compared with surrounding tissues To narrow differential when clinical and electrodiagnostic studies are inconclusive Time (1560 minutes depending on scan requested)
When carpal tunnel syndrome does not respond to conservative management
Detects mass lesions compressing nerves, nerve enlargement and abnormal signal (neuritis, infiltration), increased signal in denervated muscle groups (once strength is 3 of 5). These changes can be seen as early at 4 days post trauma compared to 23 weeks on EMG.
Nerve Biopsy11
Biopsy a nerve in the region of sensory loss or of a sensory nerve demonstrating electrophysiological abnormalities (decrease risk of adverse effects and to increase the likelihood of diagnosis Rarely necessary Painful, often for months
Concomitant muscle biopsy increases likelihood of diagnosing vasculitis or sarcoidosis Use as last resort when evaluation not definitive Risk of bleeding and infection
Greatest yield in multifocal neuropathies, or suspected amyloidotic polyneuropathy, vasculitis, sarcoidosis, lepromatous neuropathy, or rare hereditary disease where no genetic testing exists
Detects inflammation, amyloid deposits, tumor infiltration
Commonly targeted nerves include: LE sural, superficial peroneal, UE superficial radial

Ischemic steal syndrome should be considered when neuropathy develops in a limb subsequent to arterio‐venous access procedures. Any vascular network, including the vertebral, carotid and coronary arteries, is at risk for steal. A feature common to all steal syndromes is the diversion of blood away from its original destination toward a lower pressure alternative. In some cases, this leads to a reversal of arterial flow and ischemia. Ischemic complications from AV access occur in 1‐9% of patients.1 Symptoms of steal can be mild, such as self‐limited dialysis induced pain, coldness and numbness, or severe, including severe pain, sensory and motor loss.2 If vascular compromise is sufficient, gangrene can ensue. Sensory deficits usually precede motor loss and the radial pulse is commonly absent or diminished. Other findings can include pallor of the fingers, muscle atrophy, resorption of the nail bed, and gangrene or ulcerations of the fingers. Risk factors for steal include atherosclerotic disease, female gender, age greater than 60 years, diabetes mellitus, previous surgery on the same arm, and use of the brachial artery as a donor.3 Symptoms of ischemic steal typically present within the first month after surgery, but can also be delayed; there is one report of a patient presenting one year postoperatively.4

Imaging studies such as doppler and angiography can be helpful in diagnosing ischemic steal syndrome. Fistulagrams may reveal a reversal of blood flow in the distal arm and hand, but these are reserved for cases with suspected proximal obstructive arterial disease.5 Vascular imaging studies can be misleading, however, as many patients will have physiologic but asymptomatic reversal of flow. Thus, a functional assessment such as digital plethysmography is recommended, especially in cases where clinical symptoms are vague. Digital pressures less than 60mmHg demonstrated 100% sensitivity and 87% specificity in one case control study of 40 patients.6 Treatment of ischemic steal syndrome is aimed at decreasing flow through the access shunt.

In conclusion, this case highlights the importance of timely and systematic evaluation of peripheral neuropathy in the hospital setting. Neuropathy with rapid progression and high potential for permanent damage necessitates early neurologic, or in this case, vascular consultation. Hospitalists should be facile in evaluating peripheral neuropathies and recognizing the appropriate indications for diagnostic tests and procedures.

References
  1. Miles AM.Upper limb ischemia after vascular access surgery: differential diagnosis and management.Sem Dial2000;13:312315.
  2. DeCaprio JD,Valentine RJ,Kakish HB,Awad R,Hagino RT,Clagett GP.Steal syndrome complicating hemodialysis access.Cardiovascular Surg (London, England)1997;5:648653.
  3. Lazarides MK,Staramos DN,Kopadis G,Maltezos C,Tzilalis VD,Georgiadis GS.Onset of arterial ‘steal’ following proximal angioaccess: immediate and delayed types.Nephrol Dial Transplant2003;18:23872390.
  4. Mosby AH,Kulbaski M,Chen C,Isiklar H,Lumsden AB.Incidence and characteristics of patients with hand ischemia after hemodialysis access procedure.J Surg Res1998;74:810
  5. Mwipatayi BP,Bowles T,Balakrishnan S,Callaghan J,Haluszkiewicz E,Sieunarine K.Ischemic steal syndrome: a case series and review of current management.Curr Surg2006;63:130135.
  6. Schanzer A,Nguyen LL,Owens CD,Schanzer H.Use of digital pressure measurements for the diagnosis of AV access‐induced hand ischemia.Vasc Med2006;11:227231.
  7. Chemali KR,Tsao B.Electrodiagnostic testing of nerves and muscles: when, why, and how to order.Cleve Clin J Med2005;72:3748.
  8. Beekman R,Visser LH.High‐resolution sonography of the peripheral nervous system—a review of the literature.Eur J Neurol2004;11:305314.
  9. Kim S,Choi JY,Huh YM, et al.Role of magnetic resonance imaging in entrapment and compressive neuropathy‐what, where, and how to see the peripheral nerves on the musculoskeletal magnetic resonance image: part 2. Upper extremity.Eur Radiol2007;17:509522.
  10. Grant GA,Britz GW,Goodkin R,Jarvik JG,Maravilla K,Kliot M.The utility of magnetic resonance imaging in evaluating peripheral nerve disorders.Muscle Nerve2002;25:314331.
  11. Said G.Indications and usefulness of nerve biopsy.Arch Neurol2002;59:15321535.
Article PDF
Issue
Journal of Hospital Medicine - 3(4)
Page Number
342-348
Sections
Article PDF
Article PDF

A 60 year‐old woman with advanced kidney disease presented with one month of progressively worsening, sharp burning pain and decreased sensation in her left hand. Cold air exacerbated the pain. She noted decreasing ability to utilize her left fingers, a weakened grip and that the muscles in her hand looked smaller.

Localized sensory and motor symptoms in a discrete region of a single limb suggest neuropathy. The lack of symptoms in the face or ipsilateral lower extremity would dissuade a clinician from considering central etiologies; the presence of neuropathic pain is uncommon for cortical lesions. The involvement of motor and sensory nerves indicates peripheral nerve involvement.

The general approach to patients with peripheral neuropathy begins with identifying the neuropathy as a mononeuropathy (involving a single nerve), a polyneuropathy (symmetric involvement of multiple nerves) or a mononeuropathy multiplex (asymmetric involvement of multiple nerves). The patient, in this case, described subacute neuropathic pain, sensory loss, and weakness in her left hand in a distribution consistent with mononeuropathy or mononeuropathy multiplex.

This patient could have carpal tunnel syndrome given its prevalence in patients with advanced renal disease. The differential diagnosis is broad, however, and includes ulnar mononeuropathy, nerve ischemia due to vasculitis or vasculopathy, lower cervical radiculopathy (though the patient does not describe neck or radicular pain), lower brachial plexopathy, and complex regional pain syndrome.

The patient was diagnosed with advanced kidney disease one year ago when biopsy revealed focal segmental glomerulosclerosis secondary to lithium. Since her diagnosis, two grafts were placed in the left upper arm in anticipation of dialysis: the first, placed seven months prior to this admission, failed to mature; the second, placed one month prior to this admission, was complicated by bleeding at the fistula site and was not yet mature. Prior to this admission she had not required hemodialysis. Her past history included hypertension, dyslipidemia, hypothyroidism, secondary hyperparathyroidism, a remote history of cervical cancer (stage unknown, recent PAP smear negative), microcytosis and schizoaffective disorder. Her medications were furosemide, amlodipine, lisinopril, atenolol, atorvastatin, pantoprazole, olanzapine, levothyroxine, iron, darbepoetin, sevelamer, multivitamin and docusate.

Given the history of procedures in the left arm one should consider ischemic injury to the left median nerve. Other local complications could include compressive lesions such as an abscess or hematoma or direct nerve injury from the procedure. Carpal tunnel syndrome remains high on the differential due to its prevalence and because renal failure and hypothyroidism increase the risk of carpal tunnel syndrome.

A careful physical examination would localize the nerve or nerves involved. Examination findings that would be consistent with carpal tunnel syndrome include sensory loss in the distribution of the left median nerve, weakness of muscles innervated by the median nerve, including the abductor pollicus brevis and opponens muscles, and a Tinels and Phalens sign of the left wrist. A proximal median neuropathy resulting from ischemia or compression might also involve median‐innervated forearm muscle such as the pronator teres (forearm pronation) and flexor carpi radialis (hand flexion and abduction) muscles. Complex regional pain syndrome can be seen after a traumatic injury or surgery and is typified by severe neuropathic pain in a limb, often in combination with trophic changes in the affected extremity. A cervical radiculopathy would affect muscles supplied by the injured nerve root. For example, a C8 radiculopathy would affect all of the intrinsic hand muscles, the wrist and finger extensors, and the triceps brachii. A lower brachial plexopathy would present similarly to a lower cervical radiculopathy on clinical examination; electrodiagnostic evaluation would be necessary to distinguish these two disorders.

The patient appeared fatigued and her left hand was wrapped in blankets. Her vital signs were stable. There was no thyroid enlargement or lymphadenopathy. There was marked thenar, hypothenar and forearm atrophy on the left. Strength testing of her left hand demonstrated a grip strength of 2/5, finger extension and interosseous strength of 1/5, left wrist flexion and extension of 3/5; left biceps and triceps were 5/5. Sensation was mildly decreased to light touch, temperature, pain and proprioception throughout the left hand. Strength and sensation were intact in the right upper and bilateral lower extremities. Reflexes were 2+ throughout. The left radial pulse was diminished compared to the left ulnar that was 1+. The left hand was dry and cool. Laboratory evaluation revealed an elevated white blood cell count of 15,300/mm3, a hematocrit of 33 percent, mean corpuscular volume of 73 fL, and a normal platelet count. Electrolytes were consistent with advanced renal disease. The thyroid stimulating hormone level was normal.

The patient's examination reveals an injury to the sensory and motor components of the left ulnar, median, and distal radial nerves. The volar forearm wasting suggests proximal median motor nerve injury in the forearm. Because the triceps is spared, the weakness of finger and wrist extension implies distal radial motor nerve injury. The interosseous weakness is consistent with injury to the ulnar motor nerve. Weakness of grip and wrist flexion is less specific and it may be explained by injury to either the median or ulnar motor nerves. The diffuse sensory loss over the palmar and dorsal aspect of the left hand is consistent with neuropathic injury to the left median, ulnar, and radial sensory nerves. The preserved deep tendon reflexes are controlled by the musculocutaneous nerve (the biceps reflex) and branches arising from the proximal radial nerve (the triceps and brachioradialis reflexes), both of which are proximal to the apparent level of neuropathic insult.

Carpal tunnel syndrome is excluded since abnormalities extend beyond the median nerve distribution. The presentation is consistent with a mononeuropathy multiplex. Axonal etiologies of mononeuropathy multiplexincluding vasculitis, ischemia, neoplastic infiltration, and infectious etiologies such as Lyme diseaseare more common than demyelinating causes. Vasculitic neuropathy commonly involves the lower extremities and may have systemic symptoms, not present in this case. Neoplasm or other compressive lesions such as hematoma could explain these findings. Abscess must be considered given the leukocytosis. A lower brachial plexopathy, technically a mononeuropathy multiplex involving the proximal arm at the level of the brachial plexus, is also in the differential diagnosis. Another axonal disorder to consider would be neuralgic amyotrophy, an idiopathic form of acute brachial plexopathy associated with pain that is a complication of surgery that typically presents within a few hours to weeks of the procedure.

Demyelinating causes of mononeuropathy multiplex are less likely and include a variant of chronic inflammatory demyelinating polyneuropathy (Lewis‐Sumner syndrome) and hereditary neuropathy with liability to pressure palsies. Both processes are typically indolent and usually not painful, though the latter may present with fulminant numbness and weakness.

Nerve conduction and needle electromyography of the arm and cervical paraspinal muscles would differentiate axonal degeneration from demyelination. It would identify the affected nerves and any nerve root involvement. Given the concern for abscess or hematoma, MR neurography focused on the surgical site would also be important.

Electromyography and nerve conduction velocities demonstrated severe axonal loss of the left median, ulnar and distal radial sensory nerves consistent with acute denervation. A magnetic resonance neurogram following the course of these nerves revealed enlarged ulnar and median nerves with abnormal signal, but no compressive lesion (Fig. 1).

Figure 1
MR Neurogram (Axial STIR) (a) of the elbow demonstrating abnormal increased size and increased signal of the ulnar nerve (arrow). (b) in a normal patient demonstrating normal signal and normal size of the ulnar nerve (arrow).

The electrodiagnostic testing is consistent with severe acute axonal injury to the left ulnar, median and radial nerves. This supports a diagnosis of mononeuropathy multiplex with axonal injury. Demyelinating causes are excluded at this point.

The MR neurogram demonstrates nonspecific nerve enlargement, which may be seen in ischemia, neoplastic processes (primary or metastatic), demyelinating disease, or, rarely, amyloidosis. Neoplastic involvement is unlikely in this case given the absence of a compressive mass lesion and the long segmental involvement of both the median and ulnar nerves. Compression from an abscess or hematoma is excluded. Neuralgic amyotrophy does not typically cause nerve enlargement.

Ischemia is the most likely diagnosis. Laboratory evaluation for vasculitis would be reasonable. Vasculitides that could present in this fashion include: polyarteritis nodosa, mixed connective tissue disease, Wegner's granulomatosis, Churg‐Strauss angiitis, Sjogren's, hepatitis C with serum cryoglobulinemia and possibly rheumatoid arthritis. Given the history of fistula placement in the affected limb, vascular sufficiency must be assessed.

Anti‐nuclear antibodies and anti‐neutrophilic cytoplasmic antibodies were negative, and a C‐ reactive protein was 5.9 mg/L (normal range, 0 to 10 mg/L). The erythrocyte sedimentation rate was 32mm/hr (normal range, 0 to 20) and serologies for hepatitis B and C were negative. There was no evidence of serum cryoglobulins.

A modestly elevated sedimentation rate and normal C‐reactive protein argue against a diagnosis of vasculitis. The negative ANA, ANCA, hepatitis serologies and cryoglobulin tests render unlikely the diagnoses of polyarteritis nodosa, Wegner's granulomatosis, Churg‐Strauss angiitis, or hepatitis related cryoglobulinemia. Eosinophilia (present in Churg‐Strauss), ENA (positive in mixed connective tissue disease), anti‐SSA and SSB (positive in Sjogren's) and a rheumatoid factor would round out this evaluation for vasculitis. A left radial sensory nerve biopsy could also be of value in diagnosing vasculitic neuropathy in this patient.

Given the evidence against vasculitis, the possibility of ischemia due to vascular insufficiency is concerning. Two ischemic complications of hemodialysis are known to cause distal multiple mononeuropathies. The first, ischemic monomelic neuropathy syndrome is seen almost exclusively in diabetics. It is characterized by the development of acute pain, weakness of the forearm and hand muscles, and sensory loss within minutes or hours of AV graft placement. Transient occlusion of the blood supply to the nerves of the forearm and hand induces nerve ischemia, but does not cause necrosis of other tissues. The nerve conduction findings in this patient are consistent with ischemic monomelic neuropathy syndrome. The delayed onset of her symptoms, however, makes this diagnosis unlikely.

The second ischemic complication of hemodialysis, and the likelier diagnosis, is vascular steal syndrome. This has a similar clinical and electrodiagnostic presentation to ischemic monomelic neuropathy syndrome, but has a latency period after surgery of days to months. Vascular steal occurs when a reversal of blood flow into the fistula steals flow from the palmar arch arteries and induces ischemia of the vasa nervorum. Vascular studies should be obtained urgently when this diagnosis is considered.

Evaluation of the arteriovenous graft and vascular surgery consultation were sought. Digital photoplethysmography revealed diminished waveforms in all fingers of the left hand. Arterial Doppler evaluation of the left upper extremity confirmed low‐velocity flow in the radial and ulnar arteries and failed to confirm flow in the brachial artery distal to the arteriovenous fistula. The patient underwent an angiogram of the left axillary and brachial arteries. There was normal flow until the level of the arteriovenous fistula but minimal flow distal to the fistula (Fig. 2).

Figure 2
Angiogram of the left upper extremity with injection of the bracial artery. Pcclusion of the brachial artery is present (arrow), with filling of several small collateral vessels

The diminished waveforms on digital photoplethysmography are consistent with poor perfusion distally. The angiogram suggests that the multiple mononeuropathies are a consequence of ischemia from impaired blood flow.

Consulting the vascular surgeons in this setting is essential because restoring adequate blood flow to the affected nerves can prevent further loss of function. Prognosis is dependent on many factors, including the severity of the functional loss and the duration of the symptoms prior to the restoration of blood flow. The patient's severe weakness and substantial muscle atrophy, manifestations of axonal degeneration, imply a poorer prognosis for recovery of function.

Embolization of the arteriovenous fistula was performed by interventional radiology. Post embolization angiograms demonstrated improved peripheral arterial flow (Fig. 3). One day later, the patient's finger flexion and extension improved. She reported mildly decreased dysesthesias and on examination her fingers were warmer to the touch. One month after discharge, her strength continued to be impaired, though improved and she still experienced pain.

Figure 3
Post‐embolization angiogram demonstrating improved collateral flow to the distal arterial vasculature.

COMMENTARY

Hospitalists must be equipped to recognize urgent and potentially reversible causes of neuropathy. The hospitalist should maintain a high index of suspicion for ischemia (either due to vasculitis or vascular compromise), traumatic nerve injury, nerve compression or entrapment, lymphoma or metastatic infiltration, hepatitis C with cryoglobulinemia, Guillain‐Barre syndrome and toxic exposures. Table 1 highlights important causes of mononeuropathy multiplex and summarizes associated findings and indicated diagnostic tests for specific evaluation.

Differential Diagnosis of Mononeuropathy Multiplex
Diagnosis Associated features Specific evaluation
Axonal neuropathies
Ischemia (including vascular steal) Poor arterial pulses, history of vascular surgery Digital photoplethysmography, Doppler, angiography
Nerve compression and trauma History of traumatic injury, mass, infection/abscess MR neurography
Lymphoma or metastatic infiltration History of known cancer, weight loss PET, whole body CT, bone marrow biopsy
Vasculitis Waxing and waning symptoms, association with connective tissue diseases, painful CRP, ESR, Hepatitis C, cryoglobulins, ANA, ANCA, antibodies to SSA/SSB, ENA, eosinophil count, serum complement, SPEP/UPEP, RF, nerve biopsy
Neurosarcoidosis Hilar lymphadenopathy, chronic cough Chest CT, ACE, nerve biopsy
Lyme Tick bite, erythema chronicum migrans Lyme serology
Leprosy Resident of southeast Asia, skin lesions Skin smear for acid fast bacilli (mycobacterium), nerve biopsy
Demyelinating neuropathies
Lewis‐Sumner syndrome (i.e. asymmetric CIDP) Relapsing remitting or chronic progressive course, areflexia Lumbar puncture (increased spinal fluid protein common)
Hereditary neuropathy with liability to pressure palsy Family history, recurrent episodes of entrapment/compression neuropathies Genetic testing (deletion in the gene for peripheral myelin protein‐22)
Multifocal motor neuropathy with conduction block Multifocal weakness in the distal arms/legs without sensory symptoms Only motor abnormalities on nerve conduction including conduction block

Another challenge for hospitalists is efficient evaluation of neuropathy. A systematic framework for creating a differential diagnosis and familiarity with available diagnostic tests is crucial. Hospitalists should be aware of three broad categories of neuropathy: mononeuropathy, polyneuropathy and mononeuropathy multiplex. Electrodiagnostic testing is essential to confirm the involved nerves and distinguishes axonal from demyelinating etiologies. Ultrasound, MR neurogram and, when indicated, nerve biopsy may be useful. Table 2 reviews these diagnostic tools as well as their indications and limitations.

Diagnostic Modalities for Evaluation of Peripheral Nerves
Test Indications Limitations
Electrodiagnostic Testing7 Any peripheral neuropathy, muscle or neuromuscular junction disorder Concomitant disease can reduce accuracy
Detects severity, chronicity, axonal v. demyelinating, diffuse v. focal, asymmetric v. symmetric
Electromyography (EMG) EMG EMG
Monopolar/concentric needle electrode inserted into the muscle belly Differentiates axonal v. muscle damage; sensitive for even mild axon degeneration; localizes lesions. Patient discomfort
Evaluates only motor fibers
Measures action potential at rest vs. during voluntary activation Does not detect demyelination
Might not be positive in first 21 days of symptoms
Nerve Conduction Studies (NCS) NCS NCS
Sensory High sensitivity to differentiate axon loss from demyelination; localizes lesions. Certain sensory responses lost with aging
Recording electrode placed over sensory nerve
Sensory nerve stimulated distally Sensory localizes lesion to proximal vs. distal or to dorsal root ganglion Less sensitive for mild axonal loss
Measures stimulus at proximal site
Motor Motor amount of axonal loss
Recording electrode placed over muscle belly
Motor nerve stimulated proximally
Measures stimulus at muscle
Specialized NCS tests Specialized testing can identify radiculopathy, peripheral neuropathy, myasthenia gravis
Ultrasound8
Performed with typical ultrasound equipment Suspected nerve entrapment Doesn't show pathologic changes within nerves
Clinician must localize lesion for technician and explicitly guide test process Evidence strongest for evaluation of median and ulnar nerves and Morton's neuroma Difficult to visualize deep nerves or nerves surrounded by fat
Normal nerves appear tubular with linear echoes on a longitudinal scan; honeycomb on transverse scan Detects lesions, nerve thickening, decreased echogenicity Small field of view unless reconstructed
Results operator dependent
Less accurate than MRI for tumors
MRI9, 10 MR neurography
Standard MRI equipment Concern regarding entrapment, trauma or mass lesions Expense
Optimizes nerve resolution compared with surrounding tissues To narrow differential when clinical and electrodiagnostic studies are inconclusive Time (1560 minutes depending on scan requested)
When carpal tunnel syndrome does not respond to conservative management
Detects mass lesions compressing nerves, nerve enlargement and abnormal signal (neuritis, infiltration), increased signal in denervated muscle groups (once strength is 3 of 5). These changes can be seen as early at 4 days post trauma compared to 23 weeks on EMG.
Nerve Biopsy11
Biopsy a nerve in the region of sensory loss or of a sensory nerve demonstrating electrophysiological abnormalities (decrease risk of adverse effects and to increase the likelihood of diagnosis Rarely necessary Painful, often for months
Concomitant muscle biopsy increases likelihood of diagnosing vasculitis or sarcoidosis Use as last resort when evaluation not definitive Risk of bleeding and infection
Greatest yield in multifocal neuropathies, or suspected amyloidotic polyneuropathy, vasculitis, sarcoidosis, lepromatous neuropathy, or rare hereditary disease where no genetic testing exists
Detects inflammation, amyloid deposits, tumor infiltration
Commonly targeted nerves include: LE sural, superficial peroneal, UE superficial radial

Ischemic steal syndrome should be considered when neuropathy develops in a limb subsequent to arterio‐venous access procedures. Any vascular network, including the vertebral, carotid and coronary arteries, is at risk for steal. A feature common to all steal syndromes is the diversion of blood away from its original destination toward a lower pressure alternative. In some cases, this leads to a reversal of arterial flow and ischemia. Ischemic complications from AV access occur in 1‐9% of patients.1 Symptoms of steal can be mild, such as self‐limited dialysis induced pain, coldness and numbness, or severe, including severe pain, sensory and motor loss.2 If vascular compromise is sufficient, gangrene can ensue. Sensory deficits usually precede motor loss and the radial pulse is commonly absent or diminished. Other findings can include pallor of the fingers, muscle atrophy, resorption of the nail bed, and gangrene or ulcerations of the fingers. Risk factors for steal include atherosclerotic disease, female gender, age greater than 60 years, diabetes mellitus, previous surgery on the same arm, and use of the brachial artery as a donor.3 Symptoms of ischemic steal typically present within the first month after surgery, but can also be delayed; there is one report of a patient presenting one year postoperatively.4

Imaging studies such as doppler and angiography can be helpful in diagnosing ischemic steal syndrome. Fistulagrams may reveal a reversal of blood flow in the distal arm and hand, but these are reserved for cases with suspected proximal obstructive arterial disease.5 Vascular imaging studies can be misleading, however, as many patients will have physiologic but asymptomatic reversal of flow. Thus, a functional assessment such as digital plethysmography is recommended, especially in cases where clinical symptoms are vague. Digital pressures less than 60mmHg demonstrated 100% sensitivity and 87% specificity in one case control study of 40 patients.6 Treatment of ischemic steal syndrome is aimed at decreasing flow through the access shunt.

In conclusion, this case highlights the importance of timely and systematic evaluation of peripheral neuropathy in the hospital setting. Neuropathy with rapid progression and high potential for permanent damage necessitates early neurologic, or in this case, vascular consultation. Hospitalists should be facile in evaluating peripheral neuropathies and recognizing the appropriate indications for diagnostic tests and procedures.

A 60 year‐old woman with advanced kidney disease presented with one month of progressively worsening, sharp burning pain and decreased sensation in her left hand. Cold air exacerbated the pain. She noted decreasing ability to utilize her left fingers, a weakened grip and that the muscles in her hand looked smaller.

Localized sensory and motor symptoms in a discrete region of a single limb suggest neuropathy. The lack of symptoms in the face or ipsilateral lower extremity would dissuade a clinician from considering central etiologies; the presence of neuropathic pain is uncommon for cortical lesions. The involvement of motor and sensory nerves indicates peripheral nerve involvement.

The general approach to patients with peripheral neuropathy begins with identifying the neuropathy as a mononeuropathy (involving a single nerve), a polyneuropathy (symmetric involvement of multiple nerves) or a mononeuropathy multiplex (asymmetric involvement of multiple nerves). The patient, in this case, described subacute neuropathic pain, sensory loss, and weakness in her left hand in a distribution consistent with mononeuropathy or mononeuropathy multiplex.

This patient could have carpal tunnel syndrome given its prevalence in patients with advanced renal disease. The differential diagnosis is broad, however, and includes ulnar mononeuropathy, nerve ischemia due to vasculitis or vasculopathy, lower cervical radiculopathy (though the patient does not describe neck or radicular pain), lower brachial plexopathy, and complex regional pain syndrome.

The patient was diagnosed with advanced kidney disease one year ago when biopsy revealed focal segmental glomerulosclerosis secondary to lithium. Since her diagnosis, two grafts were placed in the left upper arm in anticipation of dialysis: the first, placed seven months prior to this admission, failed to mature; the second, placed one month prior to this admission, was complicated by bleeding at the fistula site and was not yet mature. Prior to this admission she had not required hemodialysis. Her past history included hypertension, dyslipidemia, hypothyroidism, secondary hyperparathyroidism, a remote history of cervical cancer (stage unknown, recent PAP smear negative), microcytosis and schizoaffective disorder. Her medications were furosemide, amlodipine, lisinopril, atenolol, atorvastatin, pantoprazole, olanzapine, levothyroxine, iron, darbepoetin, sevelamer, multivitamin and docusate.

Given the history of procedures in the left arm one should consider ischemic injury to the left median nerve. Other local complications could include compressive lesions such as an abscess or hematoma or direct nerve injury from the procedure. Carpal tunnel syndrome remains high on the differential due to its prevalence and because renal failure and hypothyroidism increase the risk of carpal tunnel syndrome.

A careful physical examination would localize the nerve or nerves involved. Examination findings that would be consistent with carpal tunnel syndrome include sensory loss in the distribution of the left median nerve, weakness of muscles innervated by the median nerve, including the abductor pollicus brevis and opponens muscles, and a Tinels and Phalens sign of the left wrist. A proximal median neuropathy resulting from ischemia or compression might also involve median‐innervated forearm muscle such as the pronator teres (forearm pronation) and flexor carpi radialis (hand flexion and abduction) muscles. Complex regional pain syndrome can be seen after a traumatic injury or surgery and is typified by severe neuropathic pain in a limb, often in combination with trophic changes in the affected extremity. A cervical radiculopathy would affect muscles supplied by the injured nerve root. For example, a C8 radiculopathy would affect all of the intrinsic hand muscles, the wrist and finger extensors, and the triceps brachii. A lower brachial plexopathy would present similarly to a lower cervical radiculopathy on clinical examination; electrodiagnostic evaluation would be necessary to distinguish these two disorders.

The patient appeared fatigued and her left hand was wrapped in blankets. Her vital signs were stable. There was no thyroid enlargement or lymphadenopathy. There was marked thenar, hypothenar and forearm atrophy on the left. Strength testing of her left hand demonstrated a grip strength of 2/5, finger extension and interosseous strength of 1/5, left wrist flexion and extension of 3/5; left biceps and triceps were 5/5. Sensation was mildly decreased to light touch, temperature, pain and proprioception throughout the left hand. Strength and sensation were intact in the right upper and bilateral lower extremities. Reflexes were 2+ throughout. The left radial pulse was diminished compared to the left ulnar that was 1+. The left hand was dry and cool. Laboratory evaluation revealed an elevated white blood cell count of 15,300/mm3, a hematocrit of 33 percent, mean corpuscular volume of 73 fL, and a normal platelet count. Electrolytes were consistent with advanced renal disease. The thyroid stimulating hormone level was normal.

The patient's examination reveals an injury to the sensory and motor components of the left ulnar, median, and distal radial nerves. The volar forearm wasting suggests proximal median motor nerve injury in the forearm. Because the triceps is spared, the weakness of finger and wrist extension implies distal radial motor nerve injury. The interosseous weakness is consistent with injury to the ulnar motor nerve. Weakness of grip and wrist flexion is less specific and it may be explained by injury to either the median or ulnar motor nerves. The diffuse sensory loss over the palmar and dorsal aspect of the left hand is consistent with neuropathic injury to the left median, ulnar, and radial sensory nerves. The preserved deep tendon reflexes are controlled by the musculocutaneous nerve (the biceps reflex) and branches arising from the proximal radial nerve (the triceps and brachioradialis reflexes), both of which are proximal to the apparent level of neuropathic insult.

Carpal tunnel syndrome is excluded since abnormalities extend beyond the median nerve distribution. The presentation is consistent with a mononeuropathy multiplex. Axonal etiologies of mononeuropathy multiplexincluding vasculitis, ischemia, neoplastic infiltration, and infectious etiologies such as Lyme diseaseare more common than demyelinating causes. Vasculitic neuropathy commonly involves the lower extremities and may have systemic symptoms, not present in this case. Neoplasm or other compressive lesions such as hematoma could explain these findings. Abscess must be considered given the leukocytosis. A lower brachial plexopathy, technically a mononeuropathy multiplex involving the proximal arm at the level of the brachial plexus, is also in the differential diagnosis. Another axonal disorder to consider would be neuralgic amyotrophy, an idiopathic form of acute brachial plexopathy associated with pain that is a complication of surgery that typically presents within a few hours to weeks of the procedure.

Demyelinating causes of mononeuropathy multiplex are less likely and include a variant of chronic inflammatory demyelinating polyneuropathy (Lewis‐Sumner syndrome) and hereditary neuropathy with liability to pressure palsies. Both processes are typically indolent and usually not painful, though the latter may present with fulminant numbness and weakness.

Nerve conduction and needle electromyography of the arm and cervical paraspinal muscles would differentiate axonal degeneration from demyelination. It would identify the affected nerves and any nerve root involvement. Given the concern for abscess or hematoma, MR neurography focused on the surgical site would also be important.

Electromyography and nerve conduction velocities demonstrated severe axonal loss of the left median, ulnar and distal radial sensory nerves consistent with acute denervation. A magnetic resonance neurogram following the course of these nerves revealed enlarged ulnar and median nerves with abnormal signal, but no compressive lesion (Fig. 1).

Figure 1
MR Neurogram (Axial STIR) (a) of the elbow demonstrating abnormal increased size and increased signal of the ulnar nerve (arrow). (b) in a normal patient demonstrating normal signal and normal size of the ulnar nerve (arrow).

The electrodiagnostic testing is consistent with severe acute axonal injury to the left ulnar, median and radial nerves. This supports a diagnosis of mononeuropathy multiplex with axonal injury. Demyelinating causes are excluded at this point.

The MR neurogram demonstrates nonspecific nerve enlargement, which may be seen in ischemia, neoplastic processes (primary or metastatic), demyelinating disease, or, rarely, amyloidosis. Neoplastic involvement is unlikely in this case given the absence of a compressive mass lesion and the long segmental involvement of both the median and ulnar nerves. Compression from an abscess or hematoma is excluded. Neuralgic amyotrophy does not typically cause nerve enlargement.

Ischemia is the most likely diagnosis. Laboratory evaluation for vasculitis would be reasonable. Vasculitides that could present in this fashion include: polyarteritis nodosa, mixed connective tissue disease, Wegner's granulomatosis, Churg‐Strauss angiitis, Sjogren's, hepatitis C with serum cryoglobulinemia and possibly rheumatoid arthritis. Given the history of fistula placement in the affected limb, vascular sufficiency must be assessed.

Anti‐nuclear antibodies and anti‐neutrophilic cytoplasmic antibodies were negative, and a C‐ reactive protein was 5.9 mg/L (normal range, 0 to 10 mg/L). The erythrocyte sedimentation rate was 32mm/hr (normal range, 0 to 20) and serologies for hepatitis B and C were negative. There was no evidence of serum cryoglobulins.

A modestly elevated sedimentation rate and normal C‐reactive protein argue against a diagnosis of vasculitis. The negative ANA, ANCA, hepatitis serologies and cryoglobulin tests render unlikely the diagnoses of polyarteritis nodosa, Wegner's granulomatosis, Churg‐Strauss angiitis, or hepatitis related cryoglobulinemia. Eosinophilia (present in Churg‐Strauss), ENA (positive in mixed connective tissue disease), anti‐SSA and SSB (positive in Sjogren's) and a rheumatoid factor would round out this evaluation for vasculitis. A left radial sensory nerve biopsy could also be of value in diagnosing vasculitic neuropathy in this patient.

Given the evidence against vasculitis, the possibility of ischemia due to vascular insufficiency is concerning. Two ischemic complications of hemodialysis are known to cause distal multiple mononeuropathies. The first, ischemic monomelic neuropathy syndrome is seen almost exclusively in diabetics. It is characterized by the development of acute pain, weakness of the forearm and hand muscles, and sensory loss within minutes or hours of AV graft placement. Transient occlusion of the blood supply to the nerves of the forearm and hand induces nerve ischemia, but does not cause necrosis of other tissues. The nerve conduction findings in this patient are consistent with ischemic monomelic neuropathy syndrome. The delayed onset of her symptoms, however, makes this diagnosis unlikely.

The second ischemic complication of hemodialysis, and the likelier diagnosis, is vascular steal syndrome. This has a similar clinical and electrodiagnostic presentation to ischemic monomelic neuropathy syndrome, but has a latency period after surgery of days to months. Vascular steal occurs when a reversal of blood flow into the fistula steals flow from the palmar arch arteries and induces ischemia of the vasa nervorum. Vascular studies should be obtained urgently when this diagnosis is considered.

Evaluation of the arteriovenous graft and vascular surgery consultation were sought. Digital photoplethysmography revealed diminished waveforms in all fingers of the left hand. Arterial Doppler evaluation of the left upper extremity confirmed low‐velocity flow in the radial and ulnar arteries and failed to confirm flow in the brachial artery distal to the arteriovenous fistula. The patient underwent an angiogram of the left axillary and brachial arteries. There was normal flow until the level of the arteriovenous fistula but minimal flow distal to the fistula (Fig. 2).

Figure 2
Angiogram of the left upper extremity with injection of the bracial artery. Pcclusion of the brachial artery is present (arrow), with filling of several small collateral vessels

The diminished waveforms on digital photoplethysmography are consistent with poor perfusion distally. The angiogram suggests that the multiple mononeuropathies are a consequence of ischemia from impaired blood flow.

Consulting the vascular surgeons in this setting is essential because restoring adequate blood flow to the affected nerves can prevent further loss of function. Prognosis is dependent on many factors, including the severity of the functional loss and the duration of the symptoms prior to the restoration of blood flow. The patient's severe weakness and substantial muscle atrophy, manifestations of axonal degeneration, imply a poorer prognosis for recovery of function.

Embolization of the arteriovenous fistula was performed by interventional radiology. Post embolization angiograms demonstrated improved peripheral arterial flow (Fig. 3). One day later, the patient's finger flexion and extension improved. She reported mildly decreased dysesthesias and on examination her fingers were warmer to the touch. One month after discharge, her strength continued to be impaired, though improved and she still experienced pain.

Figure 3
Post‐embolization angiogram demonstrating improved collateral flow to the distal arterial vasculature.

COMMENTARY

Hospitalists must be equipped to recognize urgent and potentially reversible causes of neuropathy. The hospitalist should maintain a high index of suspicion for ischemia (either due to vasculitis or vascular compromise), traumatic nerve injury, nerve compression or entrapment, lymphoma or metastatic infiltration, hepatitis C with cryoglobulinemia, Guillain‐Barre syndrome and toxic exposures. Table 1 highlights important causes of mononeuropathy multiplex and summarizes associated findings and indicated diagnostic tests for specific evaluation.

Differential Diagnosis of Mononeuropathy Multiplex
Diagnosis Associated features Specific evaluation
Axonal neuropathies
Ischemia (including vascular steal) Poor arterial pulses, history of vascular surgery Digital photoplethysmography, Doppler, angiography
Nerve compression and trauma History of traumatic injury, mass, infection/abscess MR neurography
Lymphoma or metastatic infiltration History of known cancer, weight loss PET, whole body CT, bone marrow biopsy
Vasculitis Waxing and waning symptoms, association with connective tissue diseases, painful CRP, ESR, Hepatitis C, cryoglobulins, ANA, ANCA, antibodies to SSA/SSB, ENA, eosinophil count, serum complement, SPEP/UPEP, RF, nerve biopsy
Neurosarcoidosis Hilar lymphadenopathy, chronic cough Chest CT, ACE, nerve biopsy
Lyme Tick bite, erythema chronicum migrans Lyme serology
Leprosy Resident of southeast Asia, skin lesions Skin smear for acid fast bacilli (mycobacterium), nerve biopsy
Demyelinating neuropathies
Lewis‐Sumner syndrome (i.e. asymmetric CIDP) Relapsing remitting or chronic progressive course, areflexia Lumbar puncture (increased spinal fluid protein common)
Hereditary neuropathy with liability to pressure palsy Family history, recurrent episodes of entrapment/compression neuropathies Genetic testing (deletion in the gene for peripheral myelin protein‐22)
Multifocal motor neuropathy with conduction block Multifocal weakness in the distal arms/legs without sensory symptoms Only motor abnormalities on nerve conduction including conduction block

Another challenge for hospitalists is efficient evaluation of neuropathy. A systematic framework for creating a differential diagnosis and familiarity with available diagnostic tests is crucial. Hospitalists should be aware of three broad categories of neuropathy: mononeuropathy, polyneuropathy and mononeuropathy multiplex. Electrodiagnostic testing is essential to confirm the involved nerves and distinguishes axonal from demyelinating etiologies. Ultrasound, MR neurogram and, when indicated, nerve biopsy may be useful. Table 2 reviews these diagnostic tools as well as their indications and limitations.

Diagnostic Modalities for Evaluation of Peripheral Nerves
Test Indications Limitations
Electrodiagnostic Testing7 Any peripheral neuropathy, muscle or neuromuscular junction disorder Concomitant disease can reduce accuracy
Detects severity, chronicity, axonal v. demyelinating, diffuse v. focal, asymmetric v. symmetric
Electromyography (EMG) EMG EMG
Monopolar/concentric needle electrode inserted into the muscle belly Differentiates axonal v. muscle damage; sensitive for even mild axon degeneration; localizes lesions. Patient discomfort
Evaluates only motor fibers
Measures action potential at rest vs. during voluntary activation Does not detect demyelination
Might not be positive in first 21 days of symptoms
Nerve Conduction Studies (NCS) NCS NCS
Sensory High sensitivity to differentiate axon loss from demyelination; localizes lesions. Certain sensory responses lost with aging
Recording electrode placed over sensory nerve
Sensory nerve stimulated distally Sensory localizes lesion to proximal vs. distal or to dorsal root ganglion Less sensitive for mild axonal loss
Measures stimulus at proximal site
Motor Motor amount of axonal loss
Recording electrode placed over muscle belly
Motor nerve stimulated proximally
Measures stimulus at muscle
Specialized NCS tests Specialized testing can identify radiculopathy, peripheral neuropathy, myasthenia gravis
Ultrasound8
Performed with typical ultrasound equipment Suspected nerve entrapment Doesn't show pathologic changes within nerves
Clinician must localize lesion for technician and explicitly guide test process Evidence strongest for evaluation of median and ulnar nerves and Morton's neuroma Difficult to visualize deep nerves or nerves surrounded by fat
Normal nerves appear tubular with linear echoes on a longitudinal scan; honeycomb on transverse scan Detects lesions, nerve thickening, decreased echogenicity Small field of view unless reconstructed
Results operator dependent
Less accurate than MRI for tumors
MRI9, 10 MR neurography
Standard MRI equipment Concern regarding entrapment, trauma or mass lesions Expense
Optimizes nerve resolution compared with surrounding tissues To narrow differential when clinical and electrodiagnostic studies are inconclusive Time (1560 minutes depending on scan requested)
When carpal tunnel syndrome does not respond to conservative management
Detects mass lesions compressing nerves, nerve enlargement and abnormal signal (neuritis, infiltration), increased signal in denervated muscle groups (once strength is 3 of 5). These changes can be seen as early at 4 days post trauma compared to 23 weeks on EMG.
Nerve Biopsy11
Biopsy a nerve in the region of sensory loss or of a sensory nerve demonstrating electrophysiological abnormalities (decrease risk of adverse effects and to increase the likelihood of diagnosis Rarely necessary Painful, often for months
Concomitant muscle biopsy increases likelihood of diagnosing vasculitis or sarcoidosis Use as last resort when evaluation not definitive Risk of bleeding and infection
Greatest yield in multifocal neuropathies, or suspected amyloidotic polyneuropathy, vasculitis, sarcoidosis, lepromatous neuropathy, or rare hereditary disease where no genetic testing exists
Detects inflammation, amyloid deposits, tumor infiltration
Commonly targeted nerves include: LE sural, superficial peroneal, UE superficial radial

Ischemic steal syndrome should be considered when neuropathy develops in a limb subsequent to arterio‐venous access procedures. Any vascular network, including the vertebral, carotid and coronary arteries, is at risk for steal. A feature common to all steal syndromes is the diversion of blood away from its original destination toward a lower pressure alternative. In some cases, this leads to a reversal of arterial flow and ischemia. Ischemic complications from AV access occur in 1‐9% of patients.1 Symptoms of steal can be mild, such as self‐limited dialysis induced pain, coldness and numbness, or severe, including severe pain, sensory and motor loss.2 If vascular compromise is sufficient, gangrene can ensue. Sensory deficits usually precede motor loss and the radial pulse is commonly absent or diminished. Other findings can include pallor of the fingers, muscle atrophy, resorption of the nail bed, and gangrene or ulcerations of the fingers. Risk factors for steal include atherosclerotic disease, female gender, age greater than 60 years, diabetes mellitus, previous surgery on the same arm, and use of the brachial artery as a donor.3 Symptoms of ischemic steal typically present within the first month after surgery, but can also be delayed; there is one report of a patient presenting one year postoperatively.4

Imaging studies such as doppler and angiography can be helpful in diagnosing ischemic steal syndrome. Fistulagrams may reveal a reversal of blood flow in the distal arm and hand, but these are reserved for cases with suspected proximal obstructive arterial disease.5 Vascular imaging studies can be misleading, however, as many patients will have physiologic but asymptomatic reversal of flow. Thus, a functional assessment such as digital plethysmography is recommended, especially in cases where clinical symptoms are vague. Digital pressures less than 60mmHg demonstrated 100% sensitivity and 87% specificity in one case control study of 40 patients.6 Treatment of ischemic steal syndrome is aimed at decreasing flow through the access shunt.

In conclusion, this case highlights the importance of timely and systematic evaluation of peripheral neuropathy in the hospital setting. Neuropathy with rapid progression and high potential for permanent damage necessitates early neurologic, or in this case, vascular consultation. Hospitalists should be facile in evaluating peripheral neuropathies and recognizing the appropriate indications for diagnostic tests and procedures.

References
  1. Miles AM.Upper limb ischemia after vascular access surgery: differential diagnosis and management.Sem Dial2000;13:312315.
  2. DeCaprio JD,Valentine RJ,Kakish HB,Awad R,Hagino RT,Clagett GP.Steal syndrome complicating hemodialysis access.Cardiovascular Surg (London, England)1997;5:648653.
  3. Lazarides MK,Staramos DN,Kopadis G,Maltezos C,Tzilalis VD,Georgiadis GS.Onset of arterial ‘steal’ following proximal angioaccess: immediate and delayed types.Nephrol Dial Transplant2003;18:23872390.
  4. Mosby AH,Kulbaski M,Chen C,Isiklar H,Lumsden AB.Incidence and characteristics of patients with hand ischemia after hemodialysis access procedure.J Surg Res1998;74:810
  5. Mwipatayi BP,Bowles T,Balakrishnan S,Callaghan J,Haluszkiewicz E,Sieunarine K.Ischemic steal syndrome: a case series and review of current management.Curr Surg2006;63:130135.
  6. Schanzer A,Nguyen LL,Owens CD,Schanzer H.Use of digital pressure measurements for the diagnosis of AV access‐induced hand ischemia.Vasc Med2006;11:227231.
  7. Chemali KR,Tsao B.Electrodiagnostic testing of nerves and muscles: when, why, and how to order.Cleve Clin J Med2005;72:3748.
  8. Beekman R,Visser LH.High‐resolution sonography of the peripheral nervous system—a review of the literature.Eur J Neurol2004;11:305314.
  9. Kim S,Choi JY,Huh YM, et al.Role of magnetic resonance imaging in entrapment and compressive neuropathy‐what, where, and how to see the peripheral nerves on the musculoskeletal magnetic resonance image: part 2. Upper extremity.Eur Radiol2007;17:509522.
  10. Grant GA,Britz GW,Goodkin R,Jarvik JG,Maravilla K,Kliot M.The utility of magnetic resonance imaging in evaluating peripheral nerve disorders.Muscle Nerve2002;25:314331.
  11. Said G.Indications and usefulness of nerve biopsy.Arch Neurol2002;59:15321535.
References
  1. Miles AM.Upper limb ischemia after vascular access surgery: differential diagnosis and management.Sem Dial2000;13:312315.
  2. DeCaprio JD,Valentine RJ,Kakish HB,Awad R,Hagino RT,Clagett GP.Steal syndrome complicating hemodialysis access.Cardiovascular Surg (London, England)1997;5:648653.
  3. Lazarides MK,Staramos DN,Kopadis G,Maltezos C,Tzilalis VD,Georgiadis GS.Onset of arterial ‘steal’ following proximal angioaccess: immediate and delayed types.Nephrol Dial Transplant2003;18:23872390.
  4. Mosby AH,Kulbaski M,Chen C,Isiklar H,Lumsden AB.Incidence and characteristics of patients with hand ischemia after hemodialysis access procedure.J Surg Res1998;74:810
  5. Mwipatayi BP,Bowles T,Balakrishnan S,Callaghan J,Haluszkiewicz E,Sieunarine K.Ischemic steal syndrome: a case series and review of current management.Curr Surg2006;63:130135.
  6. Schanzer A,Nguyen LL,Owens CD,Schanzer H.Use of digital pressure measurements for the diagnosis of AV access‐induced hand ischemia.Vasc Med2006;11:227231.
  7. Chemali KR,Tsao B.Electrodiagnostic testing of nerves and muscles: when, why, and how to order.Cleve Clin J Med2005;72:3748.
  8. Beekman R,Visser LH.High‐resolution sonography of the peripheral nervous system—a review of the literature.Eur J Neurol2004;11:305314.
  9. Kim S,Choi JY,Huh YM, et al.Role of magnetic resonance imaging in entrapment and compressive neuropathy‐what, where, and how to see the peripheral nerves on the musculoskeletal magnetic resonance image: part 2. Upper extremity.Eur Radiol2007;17:509522.
  10. Grant GA,Britz GW,Goodkin R,Jarvik JG,Maravilla K,Kliot M.The utility of magnetic resonance imaging in evaluating peripheral nerve disorders.Muscle Nerve2002;25:314331.
  11. Said G.Indications and usefulness of nerve biopsy.Arch Neurol2002;59:15321535.
Issue
Journal of Hospital Medicine - 3(4)
Issue
Journal of Hospital Medicine - 3(4)
Page Number
342-348
Page Number
342-348
Article Type
Display Headline
Nerves of steal
Display Headline
Nerves of steal
Sections
Article Source
Copyright © 2008 Society of Hospital Medicine
Disallow All Ads
Correspondence Location
Department of General Internal Medicine, Harborview Medical Center, University of Washington, Box 359780, 325 9th Ave, Seattle, WA 98104
Content Gating
Gated (full article locked unless allowed per User)
Gating Strategy
First Peek Free
Article PDF Media

Handoffs

Article Type
Changed
Mon, 01/02/2017 - 19:34
Display Headline
Challenging family dialogues within the intensive care unit: An intensivist's perspective

To the seasoned intensivist, discussions with family members of critically ill patients in the intensive care unit (ICU) can be very predictable. However, this does not imply that these dialogues are straightforward or simple. Each day, we spend a significant amount of time meeting with family members at different stages of their loved one's ICU stay. Some family members are satisfied with these exchanges while others leave them distraught or in emotional shambles. At times, intensivists do not always effectively communicate with family members.13 Both the team and the families come to the ICU table with different sets of perspectives, expectations, conversational skill sets, life experiences, and tolerances for stress. These differences are magnified when the ICU course turns rocky.

We thought it useful to illustrate ICU dialogues with family members as we perceive them. We focus on the potential checkpoints where miscommunication and misunderstanding may occur throughout the roller coaster ICU experience. To this end, over the past few years, our Critical Care Medicine group has been collecting thought‐provoking comments from various family conferences. Herein, we present the dynamic phases of an ICU encounter contextually inserting relevant quotes.

The specter of a loved one lying helplessly in an ICU bed, attached to imposing machines, with tubes coming out on all sides can be quite numbing and frightening. No amount of schooling or training can really prepare a person for this emotionally taxing situation. Disbelief reigns! We frequently hear, How can a person go from being fine one day to being so sick the next? or He was shoveling snow just last week! or, She was just fine after surgery, talking, walking, and eating.

Not only is the ICU a strange and scary place, but oftentimes, in the midst of our first meeting with family members of newly admitted ICU patients, we quickly realize that they are not really sure who we are or what we do. It seems to us that Critical Care Medicine as a medical specialty suffers from a lack of brand recognition. Often the family members say, You're a what? An intensivist? We've never heard of an intensivist. Do you also work in the Emergency Room? I heard someone mention critical care, is that the same as intensive care? Or sometimes we get whacked, What about getting a real doctor, like a cardiologist or a pulmonologist!

Family members immediately find different ways to let us know how much the patient means to them. They try to impress upon us the vitality and unique nature of their loved ones in the hope that this will make us all work harder. He's a real fighter and never gives up. Or He's a young and healthy 90. Or You have to take extra care of her, she's very special, she's the mother of eight children. Sometimes political or social connections are used to further incentivize or push the ICU team. He's best friends with Mr. Z who is on the Board of Trustees, or She's friends with this or that politician.

But, Google has really altered the nature of our family discussions; everyone, it seems, can now be a doctor. We used to hear I'm not a doctor, but Now, the inevitable internet search leads to I've been doing some reading on the web about this new drug and I've heard that it's a wonder drug. Why isn't my mother getting it? Or What is the APACHE III score of my sister and how are you using this value?

Just as intensivists regularly look at reams of lab data and calculate all types of organ failure and prognostication scores, family members similarly reframe the ICU discussion to a numbers game. This approach to seemingly getting our arms around the complicated big picture is used in many aspects of our lives, whether tracking our retirement portfolios or determining the odds of next week's football game. Doctor, what are her chances for improvement ‐ 50/50, 30/70 or 80/20? Even one in a million? Over time, family members even become experts at looking at the bedside monitors and devices. I've been watching the numbers, I see that the heart rate is down and you were able to decrease the oxygen on the respirator to 80%, and the blood oxygen is still over 90%, so my father must be better, right?

As the days go by, some families become more desperate. They seek good news or even any news from every person they meet. And the ICU environment certainly offers family members a myriad of people with whom to converse. Unfortunately, this frantic search for information leads them to receive conflicting and unreliable data. Frustration results, Why do we keep getting mixed messages? Or, Doctor, we like the hospital, but why can't all of you get the story straight? As family members gather together with other patients' families in the waiting room day and night, they often share their ICU stories with each other. We'll overhear someone say, What about the new antibiotic the patient in Bed 8 is getting? Shouldn't my husband be getting that too? I see everyone is gowning up, I keep hearing about that bad Staph bug going around, my father better not catch it.

Occasionally we become concerned, even perplexed, when we cannot successfully convey our message to the family despite our best intentions and efforts. Some families are just in denial; the reality of no progress and/or likely poor outcome cannot be heard, much less accepted. Doctor, I have been badgered with the truth enough. I just don't want to believe it. Or, Doctor, don't you ever have any good news to report to us? The insatiable need for prolonged and repetitive family conferences may deflect time away from the care of other patients and meeting with other families.

Unfortunately, some patients get stuck in the ICU, either not improving, or just steadily deteriorating despite aggressive care. We broach treatment limitation or end of life care with the family as we realize that further ICU care is not going to be beneficial. Sometimes this news is greeted with stunned silence. The family often pleads for their loved one to be able to stay a little bit longer in the ICU, Let's just see how he does for a few more days or over the weekend. Or, We just need to buy some more time until everything turns around. Or other approaches are used to postpone the inevitable ICU transfer. Doctor, our 50th wedding anniversary is in two weeks, so let's continue to keep him in the ICU. Or, You can't discharge my mother, she averages 14.5 alarms per hour, how can the ward ever take care of her?

And then comes the quest for the miracle, Don't you believe in miracles? Haven't you ever seen someone in this condition get better? Are you giving up? We'll never give up! Or, ignoring the express wishes of the patient, Oh, Doctor, my father did have an advanced directive, but I'm not sure whether I want to give it to you. Or, the message now gets personal What would you do if this was your mother or father?

Such questions highlight the existential dichotomy of critical care. As intensivists, we sometimes have to reconcile the family members' unrealistic view of prognosis, overly hopeful expectations, and desire for endless futile ICU care with our own understandings of prognosis, goals of care, and appropriate use of ICU beds. Where, and when should we draw the line? How do we all let go?4

This collection of comments and thoughts reflects a synthesis of many different discussions conducted under diverse conditions. Thankfully, not all of the individual elements of the scenario described above occur with each patient. Family members and intensivists commonly have amicable discourse resulting in an acceptable degree of understanding and consensus regarding the prognosis and care plan. However, on occasion, things just don't go as well as hoped for, neither in clinical outcomes nor in our discussions. While effective ICU communication strategies have been designed and studied,512 even the best of these may not prevent conflict and disagreement. Nevertheless, our challenge as critical care practitioners is to ensure that our dialogues with family members are honest and direct and that we communicate in a timely, consistent and empathetic manner.

Well, onto the next family meeting!

Acknowledgements

The authors thank the current and past critical care fellows for their contributions to this manuscript. We are particularly indebted to the ICU nurses, patient representatives and social workers of the Memorial Sloan‐Kettering Cancer Center, New York, New York who provide daily clinical and emotional support to our ICU patients and their families and to the CCM attending team.

References
  1. Azoulay E,Chevret S,Leleu G, et al.Half the families of intensive care unit patients experience inadequate communication with physicians.Crit Care Med2000;28(8):30443049.
  2. Curtis JR,Engelberg RA,Wenrich MD, et al.Missed opportunities during family conferences about end‐of‐life care in the intensive care unit.Am J Respir Crit Care Med2005;171:844849.
  3. Dowling J,Wang B.Impact on family satisfaction: The Critical Care Family Assistance Program.Chest2005;128:76S80S.
  4. Srivastava R.The art of letting go.NEJM2007;357:35.
  5. Curtis JR,Patrick DL,Shannon SE, et al.The family conference as a focus to improve communication about end‐of‐life care in the intensive care unit: opportunities for improvement.Crit Care Med2001;29:suppl 2:N26N33.
  6. Lautrette A,Darmon M,Megarbane B, et al.A communication strategy and brochure for relatives of patients dying in the ICU.N Engl J Med2007:356:469478.
  7. Lilly C,Daly BJ.The healing power of listening in the ICU.N Engl J Med2007;356:513515.
  8. Luce JM,White DB.The pressure to withhold or withdraw life‐sustaining therapy from critically ill patients in the United States.Am J Respir Crit Care Med2007;175(11):11041108.
  9. Lilly CM,De Meo DL,Sonna LA, et al.An intensive communication intervention for the critically ill.Am J Med2000;109:469475.
  10. Ahrens T,Yancey V,Kollef M.Improving family communications at the end of life: implications for length of stay in the intensive care unit and resource use.Am J Crit Care2003;12(4)317323.
  11. Breen CM,Abernethy AP,Abbott KH, et al.Conflict associated with decisions to limit life‐sustaining treatment in intensive care units.J Gen Intern Med2001;16(5)339341.
  12. Abbott KH,Sago JG,Breen CM, et al.Families looking back: one year after discussion of withdrawal or withholding of life‐sustaining support.Crit Care Med2001;29(1)197201.
Article PDF
Issue
Journal of Hospital Medicine - 3(4)
Page Number
354-356
Legacy Keywords
intensive care unit, critical care medicine, dialogues, family members, communication, conversation, quotation, conference, challenge, listening
Sections
Article PDF
Article PDF

To the seasoned intensivist, discussions with family members of critically ill patients in the intensive care unit (ICU) can be very predictable. However, this does not imply that these dialogues are straightforward or simple. Each day, we spend a significant amount of time meeting with family members at different stages of their loved one's ICU stay. Some family members are satisfied with these exchanges while others leave them distraught or in emotional shambles. At times, intensivists do not always effectively communicate with family members.13 Both the team and the families come to the ICU table with different sets of perspectives, expectations, conversational skill sets, life experiences, and tolerances for stress. These differences are magnified when the ICU course turns rocky.

We thought it useful to illustrate ICU dialogues with family members as we perceive them. We focus on the potential checkpoints where miscommunication and misunderstanding may occur throughout the roller coaster ICU experience. To this end, over the past few years, our Critical Care Medicine group has been collecting thought‐provoking comments from various family conferences. Herein, we present the dynamic phases of an ICU encounter contextually inserting relevant quotes.

The specter of a loved one lying helplessly in an ICU bed, attached to imposing machines, with tubes coming out on all sides can be quite numbing and frightening. No amount of schooling or training can really prepare a person for this emotionally taxing situation. Disbelief reigns! We frequently hear, How can a person go from being fine one day to being so sick the next? or He was shoveling snow just last week! or, She was just fine after surgery, talking, walking, and eating.

Not only is the ICU a strange and scary place, but oftentimes, in the midst of our first meeting with family members of newly admitted ICU patients, we quickly realize that they are not really sure who we are or what we do. It seems to us that Critical Care Medicine as a medical specialty suffers from a lack of brand recognition. Often the family members say, You're a what? An intensivist? We've never heard of an intensivist. Do you also work in the Emergency Room? I heard someone mention critical care, is that the same as intensive care? Or sometimes we get whacked, What about getting a real doctor, like a cardiologist or a pulmonologist!

Family members immediately find different ways to let us know how much the patient means to them. They try to impress upon us the vitality and unique nature of their loved ones in the hope that this will make us all work harder. He's a real fighter and never gives up. Or He's a young and healthy 90. Or You have to take extra care of her, she's very special, she's the mother of eight children. Sometimes political or social connections are used to further incentivize or push the ICU team. He's best friends with Mr. Z who is on the Board of Trustees, or She's friends with this or that politician.

But, Google has really altered the nature of our family discussions; everyone, it seems, can now be a doctor. We used to hear I'm not a doctor, but Now, the inevitable internet search leads to I've been doing some reading on the web about this new drug and I've heard that it's a wonder drug. Why isn't my mother getting it? Or What is the APACHE III score of my sister and how are you using this value?

Just as intensivists regularly look at reams of lab data and calculate all types of organ failure and prognostication scores, family members similarly reframe the ICU discussion to a numbers game. This approach to seemingly getting our arms around the complicated big picture is used in many aspects of our lives, whether tracking our retirement portfolios or determining the odds of next week's football game. Doctor, what are her chances for improvement ‐ 50/50, 30/70 or 80/20? Even one in a million? Over time, family members even become experts at looking at the bedside monitors and devices. I've been watching the numbers, I see that the heart rate is down and you were able to decrease the oxygen on the respirator to 80%, and the blood oxygen is still over 90%, so my father must be better, right?

As the days go by, some families become more desperate. They seek good news or even any news from every person they meet. And the ICU environment certainly offers family members a myriad of people with whom to converse. Unfortunately, this frantic search for information leads them to receive conflicting and unreliable data. Frustration results, Why do we keep getting mixed messages? Or, Doctor, we like the hospital, but why can't all of you get the story straight? As family members gather together with other patients' families in the waiting room day and night, they often share their ICU stories with each other. We'll overhear someone say, What about the new antibiotic the patient in Bed 8 is getting? Shouldn't my husband be getting that too? I see everyone is gowning up, I keep hearing about that bad Staph bug going around, my father better not catch it.

Occasionally we become concerned, even perplexed, when we cannot successfully convey our message to the family despite our best intentions and efforts. Some families are just in denial; the reality of no progress and/or likely poor outcome cannot be heard, much less accepted. Doctor, I have been badgered with the truth enough. I just don't want to believe it. Or, Doctor, don't you ever have any good news to report to us? The insatiable need for prolonged and repetitive family conferences may deflect time away from the care of other patients and meeting with other families.

Unfortunately, some patients get stuck in the ICU, either not improving, or just steadily deteriorating despite aggressive care. We broach treatment limitation or end of life care with the family as we realize that further ICU care is not going to be beneficial. Sometimes this news is greeted with stunned silence. The family often pleads for their loved one to be able to stay a little bit longer in the ICU, Let's just see how he does for a few more days or over the weekend. Or, We just need to buy some more time until everything turns around. Or other approaches are used to postpone the inevitable ICU transfer. Doctor, our 50th wedding anniversary is in two weeks, so let's continue to keep him in the ICU. Or, You can't discharge my mother, she averages 14.5 alarms per hour, how can the ward ever take care of her?

And then comes the quest for the miracle, Don't you believe in miracles? Haven't you ever seen someone in this condition get better? Are you giving up? We'll never give up! Or, ignoring the express wishes of the patient, Oh, Doctor, my father did have an advanced directive, but I'm not sure whether I want to give it to you. Or, the message now gets personal What would you do if this was your mother or father?

Such questions highlight the existential dichotomy of critical care. As intensivists, we sometimes have to reconcile the family members' unrealistic view of prognosis, overly hopeful expectations, and desire for endless futile ICU care with our own understandings of prognosis, goals of care, and appropriate use of ICU beds. Where, and when should we draw the line? How do we all let go?4

This collection of comments and thoughts reflects a synthesis of many different discussions conducted under diverse conditions. Thankfully, not all of the individual elements of the scenario described above occur with each patient. Family members and intensivists commonly have amicable discourse resulting in an acceptable degree of understanding and consensus regarding the prognosis and care plan. However, on occasion, things just don't go as well as hoped for, neither in clinical outcomes nor in our discussions. While effective ICU communication strategies have been designed and studied,512 even the best of these may not prevent conflict and disagreement. Nevertheless, our challenge as critical care practitioners is to ensure that our dialogues with family members are honest and direct and that we communicate in a timely, consistent and empathetic manner.

Well, onto the next family meeting!

Acknowledgements

The authors thank the current and past critical care fellows for their contributions to this manuscript. We are particularly indebted to the ICU nurses, patient representatives and social workers of the Memorial Sloan‐Kettering Cancer Center, New York, New York who provide daily clinical and emotional support to our ICU patients and their families and to the CCM attending team.

To the seasoned intensivist, discussions with family members of critically ill patients in the intensive care unit (ICU) can be very predictable. However, this does not imply that these dialogues are straightforward or simple. Each day, we spend a significant amount of time meeting with family members at different stages of their loved one's ICU stay. Some family members are satisfied with these exchanges while others leave them distraught or in emotional shambles. At times, intensivists do not always effectively communicate with family members.13 Both the team and the families come to the ICU table with different sets of perspectives, expectations, conversational skill sets, life experiences, and tolerances for stress. These differences are magnified when the ICU course turns rocky.

We thought it useful to illustrate ICU dialogues with family members as we perceive them. We focus on the potential checkpoints where miscommunication and misunderstanding may occur throughout the roller coaster ICU experience. To this end, over the past few years, our Critical Care Medicine group has been collecting thought‐provoking comments from various family conferences. Herein, we present the dynamic phases of an ICU encounter contextually inserting relevant quotes.

The specter of a loved one lying helplessly in an ICU bed, attached to imposing machines, with tubes coming out on all sides can be quite numbing and frightening. No amount of schooling or training can really prepare a person for this emotionally taxing situation. Disbelief reigns! We frequently hear, How can a person go from being fine one day to being so sick the next? or He was shoveling snow just last week! or, She was just fine after surgery, talking, walking, and eating.

Not only is the ICU a strange and scary place, but oftentimes, in the midst of our first meeting with family members of newly admitted ICU patients, we quickly realize that they are not really sure who we are or what we do. It seems to us that Critical Care Medicine as a medical specialty suffers from a lack of brand recognition. Often the family members say, You're a what? An intensivist? We've never heard of an intensivist. Do you also work in the Emergency Room? I heard someone mention critical care, is that the same as intensive care? Or sometimes we get whacked, What about getting a real doctor, like a cardiologist or a pulmonologist!

Family members immediately find different ways to let us know how much the patient means to them. They try to impress upon us the vitality and unique nature of their loved ones in the hope that this will make us all work harder. He's a real fighter and never gives up. Or He's a young and healthy 90. Or You have to take extra care of her, she's very special, she's the mother of eight children. Sometimes political or social connections are used to further incentivize or push the ICU team. He's best friends with Mr. Z who is on the Board of Trustees, or She's friends with this or that politician.

But, Google has really altered the nature of our family discussions; everyone, it seems, can now be a doctor. We used to hear I'm not a doctor, but Now, the inevitable internet search leads to I've been doing some reading on the web about this new drug and I've heard that it's a wonder drug. Why isn't my mother getting it? Or What is the APACHE III score of my sister and how are you using this value?

Just as intensivists regularly look at reams of lab data and calculate all types of organ failure and prognostication scores, family members similarly reframe the ICU discussion to a numbers game. This approach to seemingly getting our arms around the complicated big picture is used in many aspects of our lives, whether tracking our retirement portfolios or determining the odds of next week's football game. Doctor, what are her chances for improvement ‐ 50/50, 30/70 or 80/20? Even one in a million? Over time, family members even become experts at looking at the bedside monitors and devices. I've been watching the numbers, I see that the heart rate is down and you were able to decrease the oxygen on the respirator to 80%, and the blood oxygen is still over 90%, so my father must be better, right?

As the days go by, some families become more desperate. They seek good news or even any news from every person they meet. And the ICU environment certainly offers family members a myriad of people with whom to converse. Unfortunately, this frantic search for information leads them to receive conflicting and unreliable data. Frustration results, Why do we keep getting mixed messages? Or, Doctor, we like the hospital, but why can't all of you get the story straight? As family members gather together with other patients' families in the waiting room day and night, they often share their ICU stories with each other. We'll overhear someone say, What about the new antibiotic the patient in Bed 8 is getting? Shouldn't my husband be getting that too? I see everyone is gowning up, I keep hearing about that bad Staph bug going around, my father better not catch it.

Occasionally we become concerned, even perplexed, when we cannot successfully convey our message to the family despite our best intentions and efforts. Some families are just in denial; the reality of no progress and/or likely poor outcome cannot be heard, much less accepted. Doctor, I have been badgered with the truth enough. I just don't want to believe it. Or, Doctor, don't you ever have any good news to report to us? The insatiable need for prolonged and repetitive family conferences may deflect time away from the care of other patients and meeting with other families.

Unfortunately, some patients get stuck in the ICU, either not improving, or just steadily deteriorating despite aggressive care. We broach treatment limitation or end of life care with the family as we realize that further ICU care is not going to be beneficial. Sometimes this news is greeted with stunned silence. The family often pleads for their loved one to be able to stay a little bit longer in the ICU, Let's just see how he does for a few more days or over the weekend. Or, We just need to buy some more time until everything turns around. Or other approaches are used to postpone the inevitable ICU transfer. Doctor, our 50th wedding anniversary is in two weeks, so let's continue to keep him in the ICU. Or, You can't discharge my mother, she averages 14.5 alarms per hour, how can the ward ever take care of her?

And then comes the quest for the miracle, Don't you believe in miracles? Haven't you ever seen someone in this condition get better? Are you giving up? We'll never give up! Or, ignoring the express wishes of the patient, Oh, Doctor, my father did have an advanced directive, but I'm not sure whether I want to give it to you. Or, the message now gets personal What would you do if this was your mother or father?

Such questions highlight the existential dichotomy of critical care. As intensivists, we sometimes have to reconcile the family members' unrealistic view of prognosis, overly hopeful expectations, and desire for endless futile ICU care with our own understandings of prognosis, goals of care, and appropriate use of ICU beds. Where, and when should we draw the line? How do we all let go?4

This collection of comments and thoughts reflects a synthesis of many different discussions conducted under diverse conditions. Thankfully, not all of the individual elements of the scenario described above occur with each patient. Family members and intensivists commonly have amicable discourse resulting in an acceptable degree of understanding and consensus regarding the prognosis and care plan. However, on occasion, things just don't go as well as hoped for, neither in clinical outcomes nor in our discussions. While effective ICU communication strategies have been designed and studied,512 even the best of these may not prevent conflict and disagreement. Nevertheless, our challenge as critical care practitioners is to ensure that our dialogues with family members are honest and direct and that we communicate in a timely, consistent and empathetic manner.

Well, onto the next family meeting!

Acknowledgements

The authors thank the current and past critical care fellows for their contributions to this manuscript. We are particularly indebted to the ICU nurses, patient representatives and social workers of the Memorial Sloan‐Kettering Cancer Center, New York, New York who provide daily clinical and emotional support to our ICU patients and their families and to the CCM attending team.

References
  1. Azoulay E,Chevret S,Leleu G, et al.Half the families of intensive care unit patients experience inadequate communication with physicians.Crit Care Med2000;28(8):30443049.
  2. Curtis JR,Engelberg RA,Wenrich MD, et al.Missed opportunities during family conferences about end‐of‐life care in the intensive care unit.Am J Respir Crit Care Med2005;171:844849.
  3. Dowling J,Wang B.Impact on family satisfaction: The Critical Care Family Assistance Program.Chest2005;128:76S80S.
  4. Srivastava R.The art of letting go.NEJM2007;357:35.
  5. Curtis JR,Patrick DL,Shannon SE, et al.The family conference as a focus to improve communication about end‐of‐life care in the intensive care unit: opportunities for improvement.Crit Care Med2001;29:suppl 2:N26N33.
  6. Lautrette A,Darmon M,Megarbane B, et al.A communication strategy and brochure for relatives of patients dying in the ICU.N Engl J Med2007:356:469478.
  7. Lilly C,Daly BJ.The healing power of listening in the ICU.N Engl J Med2007;356:513515.
  8. Luce JM,White DB.The pressure to withhold or withdraw life‐sustaining therapy from critically ill patients in the United States.Am J Respir Crit Care Med2007;175(11):11041108.
  9. Lilly CM,De Meo DL,Sonna LA, et al.An intensive communication intervention for the critically ill.Am J Med2000;109:469475.
  10. Ahrens T,Yancey V,Kollef M.Improving family communications at the end of life: implications for length of stay in the intensive care unit and resource use.Am J Crit Care2003;12(4)317323.
  11. Breen CM,Abernethy AP,Abbott KH, et al.Conflict associated with decisions to limit life‐sustaining treatment in intensive care units.J Gen Intern Med2001;16(5)339341.
  12. Abbott KH,Sago JG,Breen CM, et al.Families looking back: one year after discussion of withdrawal or withholding of life‐sustaining support.Crit Care Med2001;29(1)197201.
References
  1. Azoulay E,Chevret S,Leleu G, et al.Half the families of intensive care unit patients experience inadequate communication with physicians.Crit Care Med2000;28(8):30443049.
  2. Curtis JR,Engelberg RA,Wenrich MD, et al.Missed opportunities during family conferences about end‐of‐life care in the intensive care unit.Am J Respir Crit Care Med2005;171:844849.
  3. Dowling J,Wang B.Impact on family satisfaction: The Critical Care Family Assistance Program.Chest2005;128:76S80S.
  4. Srivastava R.The art of letting go.NEJM2007;357:35.
  5. Curtis JR,Patrick DL,Shannon SE, et al.The family conference as a focus to improve communication about end‐of‐life care in the intensive care unit: opportunities for improvement.Crit Care Med2001;29:suppl 2:N26N33.
  6. Lautrette A,Darmon M,Megarbane B, et al.A communication strategy and brochure for relatives of patients dying in the ICU.N Engl J Med2007:356:469478.
  7. Lilly C,Daly BJ.The healing power of listening in the ICU.N Engl J Med2007;356:513515.
  8. Luce JM,White DB.The pressure to withhold or withdraw life‐sustaining therapy from critically ill patients in the United States.Am J Respir Crit Care Med2007;175(11):11041108.
  9. Lilly CM,De Meo DL,Sonna LA, et al.An intensive communication intervention for the critically ill.Am J Med2000;109:469475.
  10. Ahrens T,Yancey V,Kollef M.Improving family communications at the end of life: implications for length of stay in the intensive care unit and resource use.Am J Crit Care2003;12(4)317323.
  11. Breen CM,Abernethy AP,Abbott KH, et al.Conflict associated with decisions to limit life‐sustaining treatment in intensive care units.J Gen Intern Med2001;16(5)339341.
  12. Abbott KH,Sago JG,Breen CM, et al.Families looking back: one year after discussion of withdrawal or withholding of life‐sustaining support.Crit Care Med2001;29(1)197201.
Issue
Journal of Hospital Medicine - 3(4)
Issue
Journal of Hospital Medicine - 3(4)
Page Number
354-356
Page Number
354-356
Article Type
Display Headline
Challenging family dialogues within the intensive care unit: An intensivist's perspective
Display Headline
Challenging family dialogues within the intensive care unit: An intensivist's perspective
Legacy Keywords
intensive care unit, critical care medicine, dialogues, family members, communication, conversation, quotation, conference, challenge, listening
Legacy Keywords
intensive care unit, critical care medicine, dialogues, family members, communication, conversation, quotation, conference, challenge, listening
Sections
Article Source
Copyright © 2008 Society of Hospital Medicine
Disallow All Ads
Correspondence Location
Critical Care Medicine Service, Department of Anesthesiology and Critical Care Medicine, Memorial Sloan‐Kettering Cancer Center, 1275 York Avenue, New York, NY 10021
Content Gating
Gated (full article locked unless allowed per User)
Gating Strategy
First Peek Free
Article PDF Media

Case Report: Failure at the Transition of Care

Article Type
Changed
Mon, 01/02/2017 - 19:34
Display Headline
Failure at the transition of care: Challenges in the discharge of the vulnerable elderly patient

The patient is an 86‐year‐old woman with a history of mild dementia, major depression with psychotic features, congestive heart failure, hypertension, hyperlipidemia, osteoporosis, and hypothyroidism. She presented to her primary care physician (PCP) complaining of 4 days of bilateral lower extremity edema and dyspnea on exertion. She was admitted to the hospitalist service for exacerbation of congestive heart failure.

MEDICATIONS

Donepezil, olanzapine, mirtazapine, sertraline, spironolactone, triamterene/hydrochlorothizide, simvastatin, alendronate, levothyroxine, multivitamin.

SOCIAL HISTORY

She lived alone in an independent‐living retirement apartment that provided meals but not medical care, and she was able to function independently in her activities of daily living. Her pharmacy delivered her medications via courier service, whereas visiting home nurses filled her medication box and checked on her status weekly.

HOSPITAL COURSE

Admission vitals were: heart rate, 83; blood pressure, 158/84; respiratory rate, 20; temperature, 36.4, and saturation, 95% on room air. Echocardiogram revealed intact ejection fraction, left ventricular hypertrophy, and impaired relaxation. A TSH of 6.6 demonstrated undertreated hypothyroidism. Telemetry monitoring was significant for frequent short bursts of narrow‐complex tachycardia without clear atrial activity. The etiology of her heart failure exacerbation was presumed to be paroxysmal atrial fibrillation in the setting of diastolic dysfunction. Given her mild hyperkalemia (5.1), her diuretics were changed to monotherapy with furosemide. Low‐dose beta blockade and antithrombotic therapy were started as well as increased supplementation of levothyroxine. After several days of diuresis, her potassium had normalized, she tolerated initiation of a new ACE inhibitor, and her dyspnea had resolved. On the last hospital day, her dentures were accidentally discarded with her breakfast tray, causing her great distress.

On discharge she was on 4 new medications, 2 old medications had been stopped, and 1 prior medication's dose had been increased. During medication reconciliation, the patient reported that she had not been taking olanzapine for weeks, and thus this was omitted from her home health medication orders, with instructions to discuss with her PCP on first follow‐up within the week. The patient was provided with congestive heart failure instructions and a complete medication list. Unfortunately, the day of discharge was the first day of a holiday weekend.

Case management was unavailable on the weekend; her out‐of‐state family member was unable to be reached by phone, and her usual pharmacy courier service was closed. As she did not have a friend or family member to pick up her prescriptions from an alternate pharmacy, her prescriptions were provided as handwritten scripts, called in to her pharmacy's voice mail, and written on the home health orders. The patient was discharged to her home with communication to her PCP via telephone, e‐mail, and electronic discharge summary.

POSTDISCHARGE

Medications were not delivered to the patient until the third postdischarge day. Three days after discharge, the daughter from out of state left a message for the PCP expressing concern that the patient was failingnot eating or taking any of her medications. An expedited home nursing visit was arranged. Five days after discharge, the pharmacist called the PCP stating he had not received a prescription for the beta‐blocker. Her PCP saw the patient in clinic 6 days after discharge and reconciled the medication list, restarting the olanzapine that the patient had stopped a few weeks before and the mirtazapine, which had not been restarted despite its presence on the discharge orders and patient instructions. She continued to have poor appetite and mood and was taking her medications only with great effort from her visiting nurse and staff at the retirement community. A major cause of this decline was the significant worsening of her depression brought on by hospitalization, lapses in her psychiatric medications, and emotional distress induced by the loss of her dentures during her hospital stay. She was readmitted 10 days after her discharge because she was unable to care for herself.

DISCUSSION

This case demonstrates numerous pitfalls in the transition process. Despite communication between the hospitalists and the PCP and a common electronic medical record, this patient failed the transition from the acute care hospital to the ambulatory setting. On the holiday weekend, ancillary support services were unavailable, including case management to contact her home care agency and her pharmacy to fill and deliver her new prescriptions. Despite efforts by the discharging physician, the out‐of‐town family could not be contacted. Thus, an elderly woman with cognitive impairment was left to process a new diagnosis and 7 medication changes with an unreliable mechanism to obtain her new medications.

With the rise of hospital medicine, it has increasingly been recognized that transitions represent a point of vulnerability in the care of geriatric patients. A change in physical location of care and handoffs between caregivers create the potential for error and loss of information. Prior research has demonstrated frequent quantitative and qualitative deficiencies in the information conveyed between inpatient and outpatient physicians, with direct communication occurring less than 20% of the time.1 In this case, communication occurred between the hospitalists and the outpatient physician, demonstrating that communication is just one element of successful transitions.

Components of effective care transitions have been described in the literature, including: preparation of the patient and caregiver for the transition, medication reconciliation, instructions to patient and caregiver about symptoms and signs of worsening, and an explicit follow‐up plan for tests and appointments.2 Optimally, there is interactive discussion between the hospitalist and the receiving clinician with a summary of events including an updated medication, allergy, and problem list, current advance directives, and a common plan of care.2 This case illustrates that these elements are necessary but may not be sufficient.

Some interventions have been found to be effective. A nurse‐led multidisciplinary approach to the discharge of elderly patients with congestive heart failure led to decreased readmission rates after 90 days and was found to be a cost‐saving measure.3 Similar results have been seen in geriatric patients with a variety of diagnoses in trials using advanced‐practice nurses to bridge the vulnerable period of discharge or by interventions to improve the ability of family caregivers to handle the challenges of the transition.46 Individualized attention to the unique needs of each patient and members of their social support structure, and investment in resources to do so, has the ability to decrease readmissions.

Medication errors, medication omissions, or the inability to fill medications on discharge represent a patient safety challenge. There has been increasing emphasis on medication reconciliation at admission and discharge, but in some cases the gold standard medication list is hard to determine. Electronic medical records would seem to be a natural solution to this problem, but as this case illustrates, the electronic record may not reflect the reality of patient adherence. As in this case, clarification may require another visit with the primary provider, leaving a period of time with an uncertain medication list and therefore a vulnerable patient. Access to medications after discharge was also a problem in this case, but this is not rare. A 2001 study found that 2 days after discharge from a general medicine hospital service, 1 in 5 patients had been unable to obtain all discharge medications.7 A pharmacist‐led medication reconciliation intervention in nursing home patients led to decreases in length of stay and discrepancy‐related adverse drug events. Furthermore, a follow‐up call allowed for clarification of medication questions in 25% of cases.7, 8

Patient characteristics such as depression and cognitive dysfunction have been found to affect readmission rates and are important to assess in addressing risk for poor outcomes after discharge. A 2000 study comparing readmission rates after discharge from a geriatric rehabilitation hospital found that patients with depression had an odds ratio of 3.5 for readmission compared with those without depression.9 Inadequate health literacy is also associated with decreased ability to self‐manage chronic disease and is associated with increased risk of mortality in community‐dwelling elderly such as the patient in this case.10 Asking patients or their proxies to explain their own understanding of the discharge plan can unmask comprehension issues that otherwise may go undetected.

Discharge on a weekend presents a period of critical vulnerability. Early recognition that a transition is susceptible to failure allows the events necessary for success to occur during the week when services are available. An example in the present case might include having had the pharmacy fill the prescriptions prior to the day of discharge. This does introduce a new opportunity for error in cases in which the plan of care changes but would have solved the inability to have prescriptions filled once the holiday weekend had begun.

In cases in which the usual mechanisms break down, increased effort on the part of the hospitalist can usually create a unique solution to the problem. Examples of creative solutions that did not occur in this case might include contacting the manager of the patient's retirement apartment to determine if this individual might be willing to fill prescriptions at an alternate pharmacy. A better alternative would be to change the system such that the solution is readily accessible and time efficient. Weekend availability of case management would be one such step. A means for the hospital's inpatient pharmacy to provide 2‐3 days of bridging medications would prevent weekend prescription access from affecting timely discharges of multiple patients over the course of a year. The hospitalist is in a unique position to take a leadership role in effecting system change to address these issues.

Ultimately, it is the duty of the hospitalist to take responsibility for the safety and well‐being of the patient, and if no solution can be found, it may be necessary to hold discharge or find an alternate disposition until logistical hurdles have been overcome. Indeed, for patients admitted for myocardial infarction, discharges were less likely to occur on weekends, presumably because of lack of ancillary services.11 With foresight, creative problem solving, and systems improvement, this should rarely be necessary.

Transitions continue to be a difficult time for the most vulnerable patients. Intense efforts have improved outcomes in selected populations but have not been broadly applied. Identification of patients at the highest risk, such as those with depression, poor social support, and cognitive limitations, would allow anticipation of difficult transitions and potential utilization of proven interventions, such as advanced‐practice nurses or follow‐up pharmacy contact. Processes such as these might have prevented some of the problems in this patient's discharge. Appreciation of the weekend discharge as a time of particular challenges allows barriers to be identified and solutions created during the week, when resources are still available. Attention to all elements of effective transitions should become part of the growing culture of patient safety.

References
  1. Kripalani S,LeFevre F,Phillips F, et al.Deficits in communication and information transfer between hospital‐based and primary care physicians: implications for patient safety and continuity of care.JAMA.2007;297:831841.
  2. Coleman E.Falling through the cracks: challenges and opportunities for improving transitional care for persons with continuous complex care needs.J Am Geriatr Soc.2003;51:549555.
  3. Rich M,Beckham V,Wittenberg C, et al.A multidisciplinary intervention to prevent the readmission of elderly patients with congestive heart failure.N Engl J Med.1995;333:11901195.
  4. Naylor M,Brooten D,Campbell R, et al.Comprehensive discharge planning and home follow‐up of hospitalized elders: a randomized clinical trial.JAMA.1999;281:613620.
  5. Naylor M,Brooten D,Jones R, et al.Comprehensive discharge planning for the hospitalized elderly: a randomized clinical trial.Ann Intern Med.1994;120:9991006.
  6. Coleman E,Smith J,Frank J, et al.Preparing patients and caregivers to participate in care delivered across settings: the care transitions intervention.J Am Geriatr Soc.2004;52:18171825.
  7. Dudas V,Bookwalter T,Kerr MK, et al.The impact of follow‐up telephone calls to patients after hospitalization.Am J Med.2001;111:26S30S.
  8. Boockvar K,LaCorte H,Giambanco V, et al.Medication reconciliation for reducing drug discrepancy adverse events.Am J Geriatr Pharmacother.2006;4:236243.
  9. Mast BT,Azar AR,MacNeill SE, et al.Depression and activities of daily living predict rehospitalization within 6 months of discharge from geriatric rehabilitation.Rehabil Psychol.2004;49:219223.
  10. Baker DW,Wolf MS,Feinglass J, et al.Health literacy and mortality among elderly persons.Arch Intern Med.2007;167:15031509.
  11. Varnava AM,Sedgewick JEC,Deaner A, et al.Restricted weekend service inappropriately delays discharge after acute myocardial infarction.Heart.2002;87:216219.
Article PDF
Issue
Journal of Hospital Medicine - 3(4)
Page Number
349-352
Legacy Keywords
continuity of care and transition and discharge planning, geriatric patients, communication
Sections
Article PDF
Article PDF

The patient is an 86‐year‐old woman with a history of mild dementia, major depression with psychotic features, congestive heart failure, hypertension, hyperlipidemia, osteoporosis, and hypothyroidism. She presented to her primary care physician (PCP) complaining of 4 days of bilateral lower extremity edema and dyspnea on exertion. She was admitted to the hospitalist service for exacerbation of congestive heart failure.

MEDICATIONS

Donepezil, olanzapine, mirtazapine, sertraline, spironolactone, triamterene/hydrochlorothizide, simvastatin, alendronate, levothyroxine, multivitamin.

SOCIAL HISTORY

She lived alone in an independent‐living retirement apartment that provided meals but not medical care, and she was able to function independently in her activities of daily living. Her pharmacy delivered her medications via courier service, whereas visiting home nurses filled her medication box and checked on her status weekly.

HOSPITAL COURSE

Admission vitals were: heart rate, 83; blood pressure, 158/84; respiratory rate, 20; temperature, 36.4, and saturation, 95% on room air. Echocardiogram revealed intact ejection fraction, left ventricular hypertrophy, and impaired relaxation. A TSH of 6.6 demonstrated undertreated hypothyroidism. Telemetry monitoring was significant for frequent short bursts of narrow‐complex tachycardia without clear atrial activity. The etiology of her heart failure exacerbation was presumed to be paroxysmal atrial fibrillation in the setting of diastolic dysfunction. Given her mild hyperkalemia (5.1), her diuretics were changed to monotherapy with furosemide. Low‐dose beta blockade and antithrombotic therapy were started as well as increased supplementation of levothyroxine. After several days of diuresis, her potassium had normalized, she tolerated initiation of a new ACE inhibitor, and her dyspnea had resolved. On the last hospital day, her dentures were accidentally discarded with her breakfast tray, causing her great distress.

On discharge she was on 4 new medications, 2 old medications had been stopped, and 1 prior medication's dose had been increased. During medication reconciliation, the patient reported that she had not been taking olanzapine for weeks, and thus this was omitted from her home health medication orders, with instructions to discuss with her PCP on first follow‐up within the week. The patient was provided with congestive heart failure instructions and a complete medication list. Unfortunately, the day of discharge was the first day of a holiday weekend.

Case management was unavailable on the weekend; her out‐of‐state family member was unable to be reached by phone, and her usual pharmacy courier service was closed. As she did not have a friend or family member to pick up her prescriptions from an alternate pharmacy, her prescriptions were provided as handwritten scripts, called in to her pharmacy's voice mail, and written on the home health orders. The patient was discharged to her home with communication to her PCP via telephone, e‐mail, and electronic discharge summary.

POSTDISCHARGE

Medications were not delivered to the patient until the third postdischarge day. Three days after discharge, the daughter from out of state left a message for the PCP expressing concern that the patient was failingnot eating or taking any of her medications. An expedited home nursing visit was arranged. Five days after discharge, the pharmacist called the PCP stating he had not received a prescription for the beta‐blocker. Her PCP saw the patient in clinic 6 days after discharge and reconciled the medication list, restarting the olanzapine that the patient had stopped a few weeks before and the mirtazapine, which had not been restarted despite its presence on the discharge orders and patient instructions. She continued to have poor appetite and mood and was taking her medications only with great effort from her visiting nurse and staff at the retirement community. A major cause of this decline was the significant worsening of her depression brought on by hospitalization, lapses in her psychiatric medications, and emotional distress induced by the loss of her dentures during her hospital stay. She was readmitted 10 days after her discharge because she was unable to care for herself.

DISCUSSION

This case demonstrates numerous pitfalls in the transition process. Despite communication between the hospitalists and the PCP and a common electronic medical record, this patient failed the transition from the acute care hospital to the ambulatory setting. On the holiday weekend, ancillary support services were unavailable, including case management to contact her home care agency and her pharmacy to fill and deliver her new prescriptions. Despite efforts by the discharging physician, the out‐of‐town family could not be contacted. Thus, an elderly woman with cognitive impairment was left to process a new diagnosis and 7 medication changes with an unreliable mechanism to obtain her new medications.

With the rise of hospital medicine, it has increasingly been recognized that transitions represent a point of vulnerability in the care of geriatric patients. A change in physical location of care and handoffs between caregivers create the potential for error and loss of information. Prior research has demonstrated frequent quantitative and qualitative deficiencies in the information conveyed between inpatient and outpatient physicians, with direct communication occurring less than 20% of the time.1 In this case, communication occurred between the hospitalists and the outpatient physician, demonstrating that communication is just one element of successful transitions.

Components of effective care transitions have been described in the literature, including: preparation of the patient and caregiver for the transition, medication reconciliation, instructions to patient and caregiver about symptoms and signs of worsening, and an explicit follow‐up plan for tests and appointments.2 Optimally, there is interactive discussion between the hospitalist and the receiving clinician with a summary of events including an updated medication, allergy, and problem list, current advance directives, and a common plan of care.2 This case illustrates that these elements are necessary but may not be sufficient.

Some interventions have been found to be effective. A nurse‐led multidisciplinary approach to the discharge of elderly patients with congestive heart failure led to decreased readmission rates after 90 days and was found to be a cost‐saving measure.3 Similar results have been seen in geriatric patients with a variety of diagnoses in trials using advanced‐practice nurses to bridge the vulnerable period of discharge or by interventions to improve the ability of family caregivers to handle the challenges of the transition.46 Individualized attention to the unique needs of each patient and members of their social support structure, and investment in resources to do so, has the ability to decrease readmissions.

Medication errors, medication omissions, or the inability to fill medications on discharge represent a patient safety challenge. There has been increasing emphasis on medication reconciliation at admission and discharge, but in some cases the gold standard medication list is hard to determine. Electronic medical records would seem to be a natural solution to this problem, but as this case illustrates, the electronic record may not reflect the reality of patient adherence. As in this case, clarification may require another visit with the primary provider, leaving a period of time with an uncertain medication list and therefore a vulnerable patient. Access to medications after discharge was also a problem in this case, but this is not rare. A 2001 study found that 2 days after discharge from a general medicine hospital service, 1 in 5 patients had been unable to obtain all discharge medications.7 A pharmacist‐led medication reconciliation intervention in nursing home patients led to decreases in length of stay and discrepancy‐related adverse drug events. Furthermore, a follow‐up call allowed for clarification of medication questions in 25% of cases.7, 8

Patient characteristics such as depression and cognitive dysfunction have been found to affect readmission rates and are important to assess in addressing risk for poor outcomes after discharge. A 2000 study comparing readmission rates after discharge from a geriatric rehabilitation hospital found that patients with depression had an odds ratio of 3.5 for readmission compared with those without depression.9 Inadequate health literacy is also associated with decreased ability to self‐manage chronic disease and is associated with increased risk of mortality in community‐dwelling elderly such as the patient in this case.10 Asking patients or their proxies to explain their own understanding of the discharge plan can unmask comprehension issues that otherwise may go undetected.

Discharge on a weekend presents a period of critical vulnerability. Early recognition that a transition is susceptible to failure allows the events necessary for success to occur during the week when services are available. An example in the present case might include having had the pharmacy fill the prescriptions prior to the day of discharge. This does introduce a new opportunity for error in cases in which the plan of care changes but would have solved the inability to have prescriptions filled once the holiday weekend had begun.

In cases in which the usual mechanisms break down, increased effort on the part of the hospitalist can usually create a unique solution to the problem. Examples of creative solutions that did not occur in this case might include contacting the manager of the patient's retirement apartment to determine if this individual might be willing to fill prescriptions at an alternate pharmacy. A better alternative would be to change the system such that the solution is readily accessible and time efficient. Weekend availability of case management would be one such step. A means for the hospital's inpatient pharmacy to provide 2‐3 days of bridging medications would prevent weekend prescription access from affecting timely discharges of multiple patients over the course of a year. The hospitalist is in a unique position to take a leadership role in effecting system change to address these issues.

Ultimately, it is the duty of the hospitalist to take responsibility for the safety and well‐being of the patient, and if no solution can be found, it may be necessary to hold discharge or find an alternate disposition until logistical hurdles have been overcome. Indeed, for patients admitted for myocardial infarction, discharges were less likely to occur on weekends, presumably because of lack of ancillary services.11 With foresight, creative problem solving, and systems improvement, this should rarely be necessary.

Transitions continue to be a difficult time for the most vulnerable patients. Intense efforts have improved outcomes in selected populations but have not been broadly applied. Identification of patients at the highest risk, such as those with depression, poor social support, and cognitive limitations, would allow anticipation of difficult transitions and potential utilization of proven interventions, such as advanced‐practice nurses or follow‐up pharmacy contact. Processes such as these might have prevented some of the problems in this patient's discharge. Appreciation of the weekend discharge as a time of particular challenges allows barriers to be identified and solutions created during the week, when resources are still available. Attention to all elements of effective transitions should become part of the growing culture of patient safety.

The patient is an 86‐year‐old woman with a history of mild dementia, major depression with psychotic features, congestive heart failure, hypertension, hyperlipidemia, osteoporosis, and hypothyroidism. She presented to her primary care physician (PCP) complaining of 4 days of bilateral lower extremity edema and dyspnea on exertion. She was admitted to the hospitalist service for exacerbation of congestive heart failure.

MEDICATIONS

Donepezil, olanzapine, mirtazapine, sertraline, spironolactone, triamterene/hydrochlorothizide, simvastatin, alendronate, levothyroxine, multivitamin.

SOCIAL HISTORY

She lived alone in an independent‐living retirement apartment that provided meals but not medical care, and she was able to function independently in her activities of daily living. Her pharmacy delivered her medications via courier service, whereas visiting home nurses filled her medication box and checked on her status weekly.

HOSPITAL COURSE

Admission vitals were: heart rate, 83; blood pressure, 158/84; respiratory rate, 20; temperature, 36.4, and saturation, 95% on room air. Echocardiogram revealed intact ejection fraction, left ventricular hypertrophy, and impaired relaxation. A TSH of 6.6 demonstrated undertreated hypothyroidism. Telemetry monitoring was significant for frequent short bursts of narrow‐complex tachycardia without clear atrial activity. The etiology of her heart failure exacerbation was presumed to be paroxysmal atrial fibrillation in the setting of diastolic dysfunction. Given her mild hyperkalemia (5.1), her diuretics were changed to monotherapy with furosemide. Low‐dose beta blockade and antithrombotic therapy were started as well as increased supplementation of levothyroxine. After several days of diuresis, her potassium had normalized, she tolerated initiation of a new ACE inhibitor, and her dyspnea had resolved. On the last hospital day, her dentures were accidentally discarded with her breakfast tray, causing her great distress.

On discharge she was on 4 new medications, 2 old medications had been stopped, and 1 prior medication's dose had been increased. During medication reconciliation, the patient reported that she had not been taking olanzapine for weeks, and thus this was omitted from her home health medication orders, with instructions to discuss with her PCP on first follow‐up within the week. The patient was provided with congestive heart failure instructions and a complete medication list. Unfortunately, the day of discharge was the first day of a holiday weekend.

Case management was unavailable on the weekend; her out‐of‐state family member was unable to be reached by phone, and her usual pharmacy courier service was closed. As she did not have a friend or family member to pick up her prescriptions from an alternate pharmacy, her prescriptions were provided as handwritten scripts, called in to her pharmacy's voice mail, and written on the home health orders. The patient was discharged to her home with communication to her PCP via telephone, e‐mail, and electronic discharge summary.

POSTDISCHARGE

Medications were not delivered to the patient until the third postdischarge day. Three days after discharge, the daughter from out of state left a message for the PCP expressing concern that the patient was failingnot eating or taking any of her medications. An expedited home nursing visit was arranged. Five days after discharge, the pharmacist called the PCP stating he had not received a prescription for the beta‐blocker. Her PCP saw the patient in clinic 6 days after discharge and reconciled the medication list, restarting the olanzapine that the patient had stopped a few weeks before and the mirtazapine, which had not been restarted despite its presence on the discharge orders and patient instructions. She continued to have poor appetite and mood and was taking her medications only with great effort from her visiting nurse and staff at the retirement community. A major cause of this decline was the significant worsening of her depression brought on by hospitalization, lapses in her psychiatric medications, and emotional distress induced by the loss of her dentures during her hospital stay. She was readmitted 10 days after her discharge because she was unable to care for herself.

DISCUSSION

This case demonstrates numerous pitfalls in the transition process. Despite communication between the hospitalists and the PCP and a common electronic medical record, this patient failed the transition from the acute care hospital to the ambulatory setting. On the holiday weekend, ancillary support services were unavailable, including case management to contact her home care agency and her pharmacy to fill and deliver her new prescriptions. Despite efforts by the discharging physician, the out‐of‐town family could not be contacted. Thus, an elderly woman with cognitive impairment was left to process a new diagnosis and 7 medication changes with an unreliable mechanism to obtain her new medications.

With the rise of hospital medicine, it has increasingly been recognized that transitions represent a point of vulnerability in the care of geriatric patients. A change in physical location of care and handoffs between caregivers create the potential for error and loss of information. Prior research has demonstrated frequent quantitative and qualitative deficiencies in the information conveyed between inpatient and outpatient physicians, with direct communication occurring less than 20% of the time.1 In this case, communication occurred between the hospitalists and the outpatient physician, demonstrating that communication is just one element of successful transitions.

Components of effective care transitions have been described in the literature, including: preparation of the patient and caregiver for the transition, medication reconciliation, instructions to patient and caregiver about symptoms and signs of worsening, and an explicit follow‐up plan for tests and appointments.2 Optimally, there is interactive discussion between the hospitalist and the receiving clinician with a summary of events including an updated medication, allergy, and problem list, current advance directives, and a common plan of care.2 This case illustrates that these elements are necessary but may not be sufficient.

Some interventions have been found to be effective. A nurse‐led multidisciplinary approach to the discharge of elderly patients with congestive heart failure led to decreased readmission rates after 90 days and was found to be a cost‐saving measure.3 Similar results have been seen in geriatric patients with a variety of diagnoses in trials using advanced‐practice nurses to bridge the vulnerable period of discharge or by interventions to improve the ability of family caregivers to handle the challenges of the transition.46 Individualized attention to the unique needs of each patient and members of their social support structure, and investment in resources to do so, has the ability to decrease readmissions.

Medication errors, medication omissions, or the inability to fill medications on discharge represent a patient safety challenge. There has been increasing emphasis on medication reconciliation at admission and discharge, but in some cases the gold standard medication list is hard to determine. Electronic medical records would seem to be a natural solution to this problem, but as this case illustrates, the electronic record may not reflect the reality of patient adherence. As in this case, clarification may require another visit with the primary provider, leaving a period of time with an uncertain medication list and therefore a vulnerable patient. Access to medications after discharge was also a problem in this case, but this is not rare. A 2001 study found that 2 days after discharge from a general medicine hospital service, 1 in 5 patients had been unable to obtain all discharge medications.7 A pharmacist‐led medication reconciliation intervention in nursing home patients led to decreases in length of stay and discrepancy‐related adverse drug events. Furthermore, a follow‐up call allowed for clarification of medication questions in 25% of cases.7, 8

Patient characteristics such as depression and cognitive dysfunction have been found to affect readmission rates and are important to assess in addressing risk for poor outcomes after discharge. A 2000 study comparing readmission rates after discharge from a geriatric rehabilitation hospital found that patients with depression had an odds ratio of 3.5 for readmission compared with those without depression.9 Inadequate health literacy is also associated with decreased ability to self‐manage chronic disease and is associated with increased risk of mortality in community‐dwelling elderly such as the patient in this case.10 Asking patients or their proxies to explain their own understanding of the discharge plan can unmask comprehension issues that otherwise may go undetected.

Discharge on a weekend presents a period of critical vulnerability. Early recognition that a transition is susceptible to failure allows the events necessary for success to occur during the week when services are available. An example in the present case might include having had the pharmacy fill the prescriptions prior to the day of discharge. This does introduce a new opportunity for error in cases in which the plan of care changes but would have solved the inability to have prescriptions filled once the holiday weekend had begun.

In cases in which the usual mechanisms break down, increased effort on the part of the hospitalist can usually create a unique solution to the problem. Examples of creative solutions that did not occur in this case might include contacting the manager of the patient's retirement apartment to determine if this individual might be willing to fill prescriptions at an alternate pharmacy. A better alternative would be to change the system such that the solution is readily accessible and time efficient. Weekend availability of case management would be one such step. A means for the hospital's inpatient pharmacy to provide 2‐3 days of bridging medications would prevent weekend prescription access from affecting timely discharges of multiple patients over the course of a year. The hospitalist is in a unique position to take a leadership role in effecting system change to address these issues.

Ultimately, it is the duty of the hospitalist to take responsibility for the safety and well‐being of the patient, and if no solution can be found, it may be necessary to hold discharge or find an alternate disposition until logistical hurdles have been overcome. Indeed, for patients admitted for myocardial infarction, discharges were less likely to occur on weekends, presumably because of lack of ancillary services.11 With foresight, creative problem solving, and systems improvement, this should rarely be necessary.

Transitions continue to be a difficult time for the most vulnerable patients. Intense efforts have improved outcomes in selected populations but have not been broadly applied. Identification of patients at the highest risk, such as those with depression, poor social support, and cognitive limitations, would allow anticipation of difficult transitions and potential utilization of proven interventions, such as advanced‐practice nurses or follow‐up pharmacy contact. Processes such as these might have prevented some of the problems in this patient's discharge. Appreciation of the weekend discharge as a time of particular challenges allows barriers to be identified and solutions created during the week, when resources are still available. Attention to all elements of effective transitions should become part of the growing culture of patient safety.

References
  1. Kripalani S,LeFevre F,Phillips F, et al.Deficits in communication and information transfer between hospital‐based and primary care physicians: implications for patient safety and continuity of care.JAMA.2007;297:831841.
  2. Coleman E.Falling through the cracks: challenges and opportunities for improving transitional care for persons with continuous complex care needs.J Am Geriatr Soc.2003;51:549555.
  3. Rich M,Beckham V,Wittenberg C, et al.A multidisciplinary intervention to prevent the readmission of elderly patients with congestive heart failure.N Engl J Med.1995;333:11901195.
  4. Naylor M,Brooten D,Campbell R, et al.Comprehensive discharge planning and home follow‐up of hospitalized elders: a randomized clinical trial.JAMA.1999;281:613620.
  5. Naylor M,Brooten D,Jones R, et al.Comprehensive discharge planning for the hospitalized elderly: a randomized clinical trial.Ann Intern Med.1994;120:9991006.
  6. Coleman E,Smith J,Frank J, et al.Preparing patients and caregivers to participate in care delivered across settings: the care transitions intervention.J Am Geriatr Soc.2004;52:18171825.
  7. Dudas V,Bookwalter T,Kerr MK, et al.The impact of follow‐up telephone calls to patients after hospitalization.Am J Med.2001;111:26S30S.
  8. Boockvar K,LaCorte H,Giambanco V, et al.Medication reconciliation for reducing drug discrepancy adverse events.Am J Geriatr Pharmacother.2006;4:236243.
  9. Mast BT,Azar AR,MacNeill SE, et al.Depression and activities of daily living predict rehospitalization within 6 months of discharge from geriatric rehabilitation.Rehabil Psychol.2004;49:219223.
  10. Baker DW,Wolf MS,Feinglass J, et al.Health literacy and mortality among elderly persons.Arch Intern Med.2007;167:15031509.
  11. Varnava AM,Sedgewick JEC,Deaner A, et al.Restricted weekend service inappropriately delays discharge after acute myocardial infarction.Heart.2002;87:216219.
References
  1. Kripalani S,LeFevre F,Phillips F, et al.Deficits in communication and information transfer between hospital‐based and primary care physicians: implications for patient safety and continuity of care.JAMA.2007;297:831841.
  2. Coleman E.Falling through the cracks: challenges and opportunities for improving transitional care for persons with continuous complex care needs.J Am Geriatr Soc.2003;51:549555.
  3. Rich M,Beckham V,Wittenberg C, et al.A multidisciplinary intervention to prevent the readmission of elderly patients with congestive heart failure.N Engl J Med.1995;333:11901195.
  4. Naylor M,Brooten D,Campbell R, et al.Comprehensive discharge planning and home follow‐up of hospitalized elders: a randomized clinical trial.JAMA.1999;281:613620.
  5. Naylor M,Brooten D,Jones R, et al.Comprehensive discharge planning for the hospitalized elderly: a randomized clinical trial.Ann Intern Med.1994;120:9991006.
  6. Coleman E,Smith J,Frank J, et al.Preparing patients and caregivers to participate in care delivered across settings: the care transitions intervention.J Am Geriatr Soc.2004;52:18171825.
  7. Dudas V,Bookwalter T,Kerr MK, et al.The impact of follow‐up telephone calls to patients after hospitalization.Am J Med.2001;111:26S30S.
  8. Boockvar K,LaCorte H,Giambanco V, et al.Medication reconciliation for reducing drug discrepancy adverse events.Am J Geriatr Pharmacother.2006;4:236243.
  9. Mast BT,Azar AR,MacNeill SE, et al.Depression and activities of daily living predict rehospitalization within 6 months of discharge from geriatric rehabilitation.Rehabil Psychol.2004;49:219223.
  10. Baker DW,Wolf MS,Feinglass J, et al.Health literacy and mortality among elderly persons.Arch Intern Med.2007;167:15031509.
  11. Varnava AM,Sedgewick JEC,Deaner A, et al.Restricted weekend service inappropriately delays discharge after acute myocardial infarction.Heart.2002;87:216219.
Issue
Journal of Hospital Medicine - 3(4)
Issue
Journal of Hospital Medicine - 3(4)
Page Number
349-352
Page Number
349-352
Article Type
Display Headline
Failure at the transition of care: Challenges in the discharge of the vulnerable elderly patient
Display Headline
Failure at the transition of care: Challenges in the discharge of the vulnerable elderly patient
Legacy Keywords
continuity of care and transition and discharge planning, geriatric patients, communication
Legacy Keywords
continuity of care and transition and discharge planning, geriatric patients, communication
Sections
Article Source
Copyright © 2008 Society of Hospital Medicine
Disallow All Ads
Correspondence Location
Hospitalist Section, Anschutz inpatient Pavilion, 12605 E. 16th Ave., P.O. Box 6510, Aurora, CO 80045
Content Gating
Gated (full article locked unless allowed per User)
Gating Strategy
First Peek Free
Article PDF Media

Jumpstarting Hospital Medicine Research

Article Type
Changed
Sun, 05/28/2017 - 22:06
Display Headline
The University of Michigan Specialist–Hospitalist Allied Research Program: Jumpstarting hospital medicine research

Dramatic changes in the organization, financing, and delivery of hospital care that began a decade ago continue to accelerate. One of the most important changes has been the emergence of hospitalists as providers of inpatient care.1 Hospitalists are physicians, usually general internists, whose clinical focus is the hospitalized patient. As patient illnesses have become more severe and complex, physicians have found it difficult to balance inpatient and outpatient care and have focused on one of the two.25 It is estimated that there are currently 15,000 practicing hospitalists nationally, and projections suggest that this number may exceed 30,000 by 2010, which is equal to the number of cardiologists currently practicing in the United States.6 A 2003 survey from the American Hospital Association showed that more than 30% of the nation's 4900 community hospitals have hospital medicine groups.7 Furthermore, more than 70% of the nation's largest hospitals (>500 beds) and 66% of major teaching hospitals use hospitalists.7

The transition to a hospitalist model generates multiple new research questions about the best approach to caring for the hospitalized patient. Additionally, hospitalists may spawn new areas of clinical research by tackling clinical issues that formerly lacked a large number of specialist investigators. Examples include implementation‐based studies,8, 9 inpatient safety practices,1012 quasi‐experimental studies focusing on common inpatient issues,13, 14 and the evaluation of new methods for reducing resource utilization within various inpatient care delivery structures.15, 16

Similarly, if future clinical trials are to be carried out in real‐world settings, by necessity these will require the participation of hospitalists. Clinical research performed by hospitalists and hospital medicine programs, however, remains underdeveloped. Although this has been attributed to several variables, including the youth of the field, a paucity of fellowship‐trained hospitalist researchers, and a lack of a hospitalist‐oriented national funding source, we also believe that additional barriers exist which could be overcome if hospitalists actively partnered with specialists to perform hospital‐based clinical and translational research.

Hospitalists lack clinical expertise in many clinical issues. In both academic and nonacademic settings, the diagnostic approach, individual treatment decisions, and follow‐up of complex patients occur with frequent consultation of specialists. Specialists often provide a deeper understanding of both the pathophysiologic concepts and scientific principles underlying important clinical questions and are more likely to have had fellowship training that included clinical research experience. Specialists also have more access to extramural funding for disease‐based investigation, and thus their involvement in hospital‐based clinical research would likely enhance funding opportunities, improve project feasibility, and increase dissemination of the results. A successful clinical research program will therefore be one that combines specialists and hospitalists working collaboratively to determine the best way to care for inpatients. With that in mind, we created the University of Michigan SpecialistHospitalist Allied Research Program (SHARP).

METHODS

Setting

The University of Michigan Medical Center includes a 900‐bed teaching hospital with more than 44,000 yearly inpatient discharges, and the Department of Internal Medicine manages nearly 15,000 annual discharges. The University of Michigan Hospital Medicine Program has grown dramatically over the past few years and now includes more than 30 hospitalists. These hospitalists will manage nearly 8000 admissions in the upcoming year, which represent more than half of all the patients admitted to the Department of Internal Medicine. Five years ago, these 8000 admissions would have been cared for by 3 to 4 times as many providers, most of whom would have been specialists. Currently, specialists consult regularly on patients cared for by hospitalists, and as a result, a few loosely formed research collaborations developed spontaneously but lacked resources or infrastructure to facilitate their completion. SHARP was intended to organize these clinical research pilot studies and jumpstart hospital‐based clinical and translational research.

The SHARP Intervention

Objectives

In 2006, hospitalists and specialists with an interest in expanding clinical and translational research aimed at caring for inpatients were brought together for the SHARP intervention. This intervention had several objectives:

  • To develop a clinical research infrastructure within the University of Michigan Hospital Medicine Program to facilitate patient participation.

  • To foster increased specialisthospitalist collaboration for addressing common inpatient problems.

  • To facilitate pilot projects and preliminary data collection that enhance the ability to obtain subsequent extramural funding for collaborative research projects.

  • To facilitate multicenter investigation led by the University of Michigan by allowing the SHARP investigators to use an existing hospitalist consortium to expand the scope of research projects.

  • Ultimately, to develop the ability to perform multicenter intervention‐based clinical trials.

 

Structure

The key to SHARP's infrastructure is its personnel and governance structure. At the head of SHARP is an academic hospitalist as principal investigator (PI) and an academic cardiologist with health services research training serving as coprincipal investigator (Co‐PI). Key personnel also include a hospitalist investigator, a masters‐level research associate, a PhD clinical epidemiologist, and the hospitalists and subspecialists who serve as investigators. Although the program leadership has research experience, many of the hospitalist and specialist investigators are junior faculty without extensive prior research experience. Thus, SHARP was specifically designed to build the capacity to enhance inpatient clinical and translational research and to remove barriers for new investigators developing their academic careers.

It is critical that oversight provides direction for the research program, assists with project identification and selection, and facilitates collaborations that tie diverse projects together. We believe that this is best accomplished by the creation of a steering committee chaired by both the PI and Co‐PI. The steering committee also includes key individuals such as the Vice Chair of the Department of Medicine and the Associate Dean for Clinical and Translational Research at the University of Michigan. The 2 cochairs are responsible for overseeing the program and reporting the progress of SHARP to the University of Michigan Department of Internal Medicine. They will help identify and produce viable research proposals that can be brought to the full committee. To help the program understand and overcome bureaucratic obstacles, we have also included a former high‐level administrator on the steering committee as a consultant. Given the initial scope of the program, the SHARP steering committee has had a small number of key individuals. As the program grows and increases its number of ongoing collaborative projects, we will likely need to expand committee membership.

SHARP leadership meets regularly to plan projects, discuss grant ideas, make hiring decisions, and troubleshoot problems in existing projects. The entire steering committee meets quarterly to help chart the overall course of the program. A more thorough description of the program and its structure can be found on the SHARP Web site (www.med.umich.edu/sharp).

SHARP Funding

SHARP could not exist without resources. The funding for the program comes from the Department of Internal Medicine and uses revenue from the hospital medicine program that flows to the department. To garner support for the program, SHARP leadership sought buy‐in from the Chair of Medicine, all the division chiefs, and key faculty active in clinical research. The fact that the program has the potential to benefit not just hospitalists but also other department faculty such as specialists facilitated departmental funding. The program is funded for 3 years with an 18‐month program review to gauge progress. Funding is used to build clinical research infrastructure and facilitate collection of pilot data. SHARP resources support a portion of the salaries of key personnel for the 3‐year duration of the project (research associate, 50%; PI, 10%; Co‐PI, 5%; and epidemiologist, 5%), after which time intramural funding ends. Every SHARP project is, therefore, expected to apply for extramural funding with the goal of full extramural programmatic support after 3 years.

SHARP Performance Metrics

Measuring the accomplishments of SHARP is clearly important. As the program is intended to jumpstart collaborative inpatient clinical research, the number of such projects is important to track. An additional goal is to support work that leads to extramural funding. As the program started from scratch, it is unrealistic to have completed peer‐reviewed manuscripts or successful extramural grants as the sole metrics by which the program is judged, especially early in its initiation. In a yearly report to the department chair, we will report on primary and secondary outcomes (see Table 1).

Primary and Secondary Outcomes of SHARP
Primary outcomes
  • Abbreviation: SHARP, SpecialistHospitalist Allied Research Program.

1. Number of ongoing research projects involving SHARP support and a brief description of the aims and status of each
2. Number of extramural grants submitted in which SHARP is mentioned or involved
3. Extramural grants received (total and direct dollars)
4. Peer‐reviewed publications authored by SHARP investigators
Secondary outcomes
1. Abstracts accepted for presentation at national or international scientific meetings
2. Non‐peer‐reviewed publications related to SHARP
3. Invited presentations by SHARP investigators
4. People who have visited the University of Michigan in conjunction with SHARP work (eg, visiting professors)

Initial SHARP Projects

SHARP has a formal process for evaluating potential projects. A steering committee ultimately decides how best to use SHARP‐related resources. Key components in this decision are related to the proposal's innovation, feasibility, and importance as well as the extent of specialisthospitalist collaboration. The 2 projects described next are our initial areas of focus and exemplify these concepts. One project partners hospitalists with infectious disease specialists, whereas the second pairs hospitalists with geriatricians and clinical pharmacists.

Reducing False Positive Blood Cultures

The blood culture is an important tool for the diagnosis and management of bloodstream infections. As a result, physicians have a low threshold for obtaining blood cultures. Unfortunately, up to half of all positive blood cultures are positive because of contamination. These false positive cultures lead to additional diagnostic testing, unnecessary antibiotics, and increased healthcare costs.17 A variety of antiseptic agents and techniques are used to prevent falsely positive cultures. However, a recent evidence‐based systematic review performed by University of Michigan investigators found no clear evidence to suggest which antiseptic agent should be routinely used. They concluded that a randomized controlled trial was urgently needed.18

SHARP and its infrastructure have begun a cluster‐randomized crossover trial at the university hospital. The trial compares the effects of a variety of skin antiseptic agents on peripheral blood culture contamination rates. The study population includes hospitalized patients undergoing venipuncture for peripheral blood cultures on 3 general medicine and surgery floors. The trial will include over 12,000 blood culture sets and will have 85% power to detect a 0.5% difference in effectiveness between antiseptic agents. Key outcomes will be rates of positive blood cultures (true positive versus false positive), quantity of additional diagnostic testing generated by positive cultures, resource use (including antibiotics), and associated costs. Clinical outcomes such as length of stay and inpatient mortality will also be measured as secondary outcomes.

Pharmacist‐Facilitated Hospital Discharge

Hospital discharge is a complex process in which patients must be transferred from the care of an inpatient team to that of an outpatient provider. During most hospitalizations, a patient will have new medications added, a chronic medication stopped, or a change in medication dosage. Studies have revealed that the most common adverse events that have an impact on patients after discharge are related to medications.1921 In our experience at the University of Michigan, patients frequently have medication‐related adverse events after discharge because they do not understand what medications they should be taking, what they are used for, how to manage side effects, or whom to call with problems. In addition, predictable medication‐related issues (such as the ability to pay for a medicine or expected serum electrolyte changes with newly added medications) are not universally anticipated. The frail elderly are especially vulnerable to medication‐related adverse events.

Building on the work of others in the field, we proposed studying the impact of an inpatient clinical pharmacist to address medication misadventures related to hospital discharge in our elderly population.22 The study uses an interrupted time series design (the pharmacist will alternate months at a nonresident hospitalist service and a resident general medicine service) to measure the impact of the clinical pharmacist. The pharmacist will focus on patients over the age of 65 meeting criteria that identify them to be at high risk for an adverse medication event after discharge. These factors include any new medication started in the hospital, medication noncompliance or an adverse medication event that led to the admission, or use of a high‐risk medication (eg, anticoagulants, narcotics, diuretics, diabetic agents, and immunosuppressives). The pharmacist and inpatient physicians will identify high‐risk patients who will receive predischarge medication counseling. This process will identify problem medications and needed follow‐up (eg, laboratory testing) and assess compliance issues. After discharge, patients will be contacted by the pharmacist both within 72 hours and at 30 days. Standardized questions will be asked of patients to troubleshoot medication issues, assess them for problems with medications or follow‐up, and identify patients who may need more urgent access to a healthcare provider to address medication‐related problems.

Key outcomes will include the pharmacist's actions at discharge (eg, dose changes made, medication class switches, and side‐effect monitoring implemented). In addition, we will track types of medication issues identified after discharge and interventions made. Important clinical outcomes will include return to the emergency department after discharge, 30‐day readmission rates, and healthcare‐related costs.

DISCUSSION AND NEXT STEPS

SHARP is a novel clinical research program partnering hospitalists with specialists. Its current focus targets single‐institution studies that generate pilot data leading to larger projects. The ultimate goal is to develop the ability to do larger multicenter investigator‐initiated projects. The SHARP program will also have the ability to perform observational studies to identify predictors and risk factors and the ability to carry out implementation studies that show how best to translate results from published articles to direct patient care.

A specialisthospitalist collaboration overcomes barriers that we feel may impede hospital medicine research at an academic medical center. For a similar program to succeed at other institutions, key components from our program will have to be replicated. First, senior, fellowship‐trained researchers are required to mentor junior investigators (who may or may not have additional fellowship training), help guide project selection, oversee grant and manuscript submissions, and troubleshoot problems that arise in the course of any clinical research project. In our institution, this comes from within our hospitalist program and from our specialist collaborators. In institutions lacking hospitalists with research experience, this guidance could come from within a division of general medicine, internal medicine specialty divisions, internal medicine department leadership, or even noninternal medicine departments (eg, emergency medicine, neurology, and surgery) that have traditionally been involved in clinical research programs.

A second key component that must be considered is funding. An initial investment is necessary to fund key personnel dedicated to getting projects started on the right track, collecting pilot data, and ensuring project completion and dissemination of the results. The positive margin generated by our hospitalist program facilitated the initial investment. In the absence of a positive margin, resources could come directly from the hospital, the medical school, the department of internal medicine, or perhaps a foundation. The case would need to be made that an initial short‐term investment would enhance the academic standing of the institution, enhance the careers of young investigators, and over time lead to a self‐sustaining program through investigator‐initiated grants and extramural funding. In addition to experienced leadership and funding, we created an oversight committee, but we feel that this is not a critical component. A potential concern with a program that partners with specialists might be that research topics become too disease‐specific or specialty‐oriented. We specifically created the oversight committee to protect against this possibility, and other institutions might need similar safeguards.

Our next step includes leveraging existing hospitalist collaboratives that reach beyond academic medical centers to expand further the reach of SHARP. Ultimately, any new therapy, clinical tool, diagnostic paradigm, or implementation strategy that is developed or evaluated bythe SHARP program would need to be tested in a real‐world setting to assess external validity. With support from the Blue Cross Blue Shield of Michigan Foundation, we have created a multihospital patient safety consortium, the Hospitalists as Emerging Leaders in Patient Safety Consortium, which includes academic, government, urban, rural, teaching, and nonteaching hospitals.23 Although the initial focus is patient safety, our goal for the consortium is to develop it into a multihospital clinical research program that could take pilot projects developed by SHARP and test them in real‐world settings. We believe that full‐scale multihospital studies based on SHARP pilot data will be very attractive to external funding agencies and will help SHARP become financially self‐sufficient after the initial 3‐year start‐up.

Hospital medicine research is desperately needed.24, 25 Unfortunately, the clinical research capabilities of most hospital medicine programs are quite underdeveloped. We believe that partnering hospitalists with specialists can facilitate collaborative research to identify the best way to care for inpatients. If successful, we believe that variations of this model can be replicated at other institutions and will be a critical factor in jumpstarting hospital medicine clinical research.

Acknowledgements

The authors thank Dr. Marc E. Lippman, Dr. Robert F. Todd, Dr. Larry McMahon, Dr. Timothy J. Laing, and Mr. Lindsay J. Graham, whose support made this program possible.

References
  1. Wachter RM,Goldman L.The emerging role of “hospitalists” in the American health care system.N Engl J Med.1996;335:514517.
  2. Saint S,Zemencuk JK,Hayward RA,Golin CE,Konrad TR,Linzer M.What effect does increasing inpatient time have on outpatient‐oriented internist satisfaction?J Gen Intern Med.2003;18:725729.
  3. Saint S,Konrad TR,Golin CE,Welsh D,Linzer M.Characteristics of general internists who practice only outpatient medicine: results from the physician worklife study.Semin Med Pract.2002;5:511.
  4. Saint S,Flanders SA.Hospitalists in teaching hospitals: opportunities but not without danger.J Gen Intern Med.2004;19:392393.
  5. Flanders SA,Wachter RM.Hospitalists: the new model of inpatient medical care in the United States.Eur J Intern Med.2003;14:6570.
  6. Lurie JD,Miller DP,Lindenauer PK,Wachter RM,Sox HC.The potential size of the hospitalist workforce in the United States.Am J Med.1999;106:441445.
  7. Kralovec PD,Miller JA,Wellikson L,Huddleton JM.The status of hospital medicine groups in the United States.J Hosp Med.2006;1:7580.
  8. Krein SL,Olmsted RN,Hofer TP, et al.Translating infection prevention evidence into practice using quantitative and qualitative research.Am J Infect Control.2006;34:507512.
  9. Auerbach AD,Wachter RM,Katz P,Showstack J,Baron RB,Goldman L.Implementation of a voluntary hospitalist service at a community teaching hospital: improved clinical efficiency and patient outcomes.Ann Intern Med.2002;137:859865.
  10. Shojania KG,Duncan BW,McDonald KM,Wachter RM,Markowitz AJ.Making health care safer: a critical analysis of patient safety practices.Evid Rep Technol Assess (Summ).2001;(43):ix,1–668.
  11. Shojania KG,Duncan BW,McDonald KM,Wachter RM.Safe but sound: patient safety meets evidence‐based medicine.JAMA.2002;288:508513.
  12. Kaboli PJ,Hoth AB,McClimon BJ,Schnipper JL.Clinical pharmacists and inpatient medical care: a systematic review.Arch Intern Med.2006;166:955964.
  13. Borschel DM,Chenoweth CE,Kaufman SR, et al.Are antiseptic‐coated central venous catheters effective in a real‐world setting?Am J Infect Control.2006;34:388393.
  14. Flanders SA,Dudas V,Kerr K,McCulloch CE,Gonzales R.Effectiveness of ceftriaxone plus doxycycline in the treatment of patients hospitalized with community‐acquired pneumonia.J Hosp Med.2006;1:712.
  15. Meltzer D,Manning WG,Morrison J, et al.Effects of physician experience on costs and outcomes on an academic general medicine service: results of a trial of hospitalists.Ann Intern Med.2002;137:866874.
  16. Zemencuk JK,Hofer TP,Hayward RA,Moseley RH,Saint S.What effect does physician “profiling” have on inpatient physician satisfaction and hospital length of stay?BMC Health Serv Res.2006;6:45.
  17. Bates DW,Goldman L,Lee TH.Contaminant blood cultures and resource utilization. The true consequences of false‐positive results.JAMA.1991;265:365369.
  18. Malani A,Trimble K,Parekh V,Chenoweth C,Kaufman S,Saint S.Review of clinical trials of skin antiseptic agents used to reduce blood culture contamination.Infect Control Hosp Epidemiol.2007;28:892895.
  19. Forster AJ,Murff HJ,Peterson JF,Gandhi TK,Bates DW.The incidence and severity of adverse events affecting patients after discharge from the hospital.Ann Intern Med.2003;138:161167.
  20. Forster AJ,Murff HJ,Peterson JF,Gandhi TK,Bates DW.Adverse drug events occurring following hospital discharge.J Gen Intern Med.2005;20:317323.
  21. Forster AJ,Clark HD,Menard A, et al.Adverse events among medical patients after discharge from hospital.CMAJ.2004;170:345349.
  22. Schnipper JL,Kirwin JL,Cotugno MC, et al.Role of pharmacist counseling in preventing adverse drug events after hospitalization.Arch Intern Med.2006;166:565571.
  23. Flanders SA,Kaufman SR,Saint S.Hospitalists as emerging leaders in patient safety: targeting a few to affect many.JPatient Saf.2005;1:7882.
  24. Williams MV.The future of hospital medicine: evolution or revolution?Am J Med.2004;117:446450.
  25. Ranji SR,Rosenman DJ,Amin AN,Kripalani S.Hospital medicine fellowships: works in progress.Am J Med.2006;119:72 e17.
Article PDF
Issue
Journal of Hospital Medicine - 3(4)
Page Number
308-313
Legacy Keywords
hospitalist, interdisciplinary research, research skills, specialist
Sections
Article PDF
Article PDF

Dramatic changes in the organization, financing, and delivery of hospital care that began a decade ago continue to accelerate. One of the most important changes has been the emergence of hospitalists as providers of inpatient care.1 Hospitalists are physicians, usually general internists, whose clinical focus is the hospitalized patient. As patient illnesses have become more severe and complex, physicians have found it difficult to balance inpatient and outpatient care and have focused on one of the two.25 It is estimated that there are currently 15,000 practicing hospitalists nationally, and projections suggest that this number may exceed 30,000 by 2010, which is equal to the number of cardiologists currently practicing in the United States.6 A 2003 survey from the American Hospital Association showed that more than 30% of the nation's 4900 community hospitals have hospital medicine groups.7 Furthermore, more than 70% of the nation's largest hospitals (>500 beds) and 66% of major teaching hospitals use hospitalists.7

The transition to a hospitalist model generates multiple new research questions about the best approach to caring for the hospitalized patient. Additionally, hospitalists may spawn new areas of clinical research by tackling clinical issues that formerly lacked a large number of specialist investigators. Examples include implementation‐based studies,8, 9 inpatient safety practices,1012 quasi‐experimental studies focusing on common inpatient issues,13, 14 and the evaluation of new methods for reducing resource utilization within various inpatient care delivery structures.15, 16

Similarly, if future clinical trials are to be carried out in real‐world settings, by necessity these will require the participation of hospitalists. Clinical research performed by hospitalists and hospital medicine programs, however, remains underdeveloped. Although this has been attributed to several variables, including the youth of the field, a paucity of fellowship‐trained hospitalist researchers, and a lack of a hospitalist‐oriented national funding source, we also believe that additional barriers exist which could be overcome if hospitalists actively partnered with specialists to perform hospital‐based clinical and translational research.

Hospitalists lack clinical expertise in many clinical issues. In both academic and nonacademic settings, the diagnostic approach, individual treatment decisions, and follow‐up of complex patients occur with frequent consultation of specialists. Specialists often provide a deeper understanding of both the pathophysiologic concepts and scientific principles underlying important clinical questions and are more likely to have had fellowship training that included clinical research experience. Specialists also have more access to extramural funding for disease‐based investigation, and thus their involvement in hospital‐based clinical research would likely enhance funding opportunities, improve project feasibility, and increase dissemination of the results. A successful clinical research program will therefore be one that combines specialists and hospitalists working collaboratively to determine the best way to care for inpatients. With that in mind, we created the University of Michigan SpecialistHospitalist Allied Research Program (SHARP).

METHODS

Setting

The University of Michigan Medical Center includes a 900‐bed teaching hospital with more than 44,000 yearly inpatient discharges, and the Department of Internal Medicine manages nearly 15,000 annual discharges. The University of Michigan Hospital Medicine Program has grown dramatically over the past few years and now includes more than 30 hospitalists. These hospitalists will manage nearly 8000 admissions in the upcoming year, which represent more than half of all the patients admitted to the Department of Internal Medicine. Five years ago, these 8000 admissions would have been cared for by 3 to 4 times as many providers, most of whom would have been specialists. Currently, specialists consult regularly on patients cared for by hospitalists, and as a result, a few loosely formed research collaborations developed spontaneously but lacked resources or infrastructure to facilitate their completion. SHARP was intended to organize these clinical research pilot studies and jumpstart hospital‐based clinical and translational research.

The SHARP Intervention

Objectives

In 2006, hospitalists and specialists with an interest in expanding clinical and translational research aimed at caring for inpatients were brought together for the SHARP intervention. This intervention had several objectives:

  • To develop a clinical research infrastructure within the University of Michigan Hospital Medicine Program to facilitate patient participation.

  • To foster increased specialisthospitalist collaboration for addressing common inpatient problems.

  • To facilitate pilot projects and preliminary data collection that enhance the ability to obtain subsequent extramural funding for collaborative research projects.

  • To facilitate multicenter investigation led by the University of Michigan by allowing the SHARP investigators to use an existing hospitalist consortium to expand the scope of research projects.

  • Ultimately, to develop the ability to perform multicenter intervention‐based clinical trials.

 

Structure

The key to SHARP's infrastructure is its personnel and governance structure. At the head of SHARP is an academic hospitalist as principal investigator (PI) and an academic cardiologist with health services research training serving as coprincipal investigator (Co‐PI). Key personnel also include a hospitalist investigator, a masters‐level research associate, a PhD clinical epidemiologist, and the hospitalists and subspecialists who serve as investigators. Although the program leadership has research experience, many of the hospitalist and specialist investigators are junior faculty without extensive prior research experience. Thus, SHARP was specifically designed to build the capacity to enhance inpatient clinical and translational research and to remove barriers for new investigators developing their academic careers.

It is critical that oversight provides direction for the research program, assists with project identification and selection, and facilitates collaborations that tie diverse projects together. We believe that this is best accomplished by the creation of a steering committee chaired by both the PI and Co‐PI. The steering committee also includes key individuals such as the Vice Chair of the Department of Medicine and the Associate Dean for Clinical and Translational Research at the University of Michigan. The 2 cochairs are responsible for overseeing the program and reporting the progress of SHARP to the University of Michigan Department of Internal Medicine. They will help identify and produce viable research proposals that can be brought to the full committee. To help the program understand and overcome bureaucratic obstacles, we have also included a former high‐level administrator on the steering committee as a consultant. Given the initial scope of the program, the SHARP steering committee has had a small number of key individuals. As the program grows and increases its number of ongoing collaborative projects, we will likely need to expand committee membership.

SHARP leadership meets regularly to plan projects, discuss grant ideas, make hiring decisions, and troubleshoot problems in existing projects. The entire steering committee meets quarterly to help chart the overall course of the program. A more thorough description of the program and its structure can be found on the SHARP Web site (www.med.umich.edu/sharp).

SHARP Funding

SHARP could not exist without resources. The funding for the program comes from the Department of Internal Medicine and uses revenue from the hospital medicine program that flows to the department. To garner support for the program, SHARP leadership sought buy‐in from the Chair of Medicine, all the division chiefs, and key faculty active in clinical research. The fact that the program has the potential to benefit not just hospitalists but also other department faculty such as specialists facilitated departmental funding. The program is funded for 3 years with an 18‐month program review to gauge progress. Funding is used to build clinical research infrastructure and facilitate collection of pilot data. SHARP resources support a portion of the salaries of key personnel for the 3‐year duration of the project (research associate, 50%; PI, 10%; Co‐PI, 5%; and epidemiologist, 5%), after which time intramural funding ends. Every SHARP project is, therefore, expected to apply for extramural funding with the goal of full extramural programmatic support after 3 years.

SHARP Performance Metrics

Measuring the accomplishments of SHARP is clearly important. As the program is intended to jumpstart collaborative inpatient clinical research, the number of such projects is important to track. An additional goal is to support work that leads to extramural funding. As the program started from scratch, it is unrealistic to have completed peer‐reviewed manuscripts or successful extramural grants as the sole metrics by which the program is judged, especially early in its initiation. In a yearly report to the department chair, we will report on primary and secondary outcomes (see Table 1).

Primary and Secondary Outcomes of SHARP
Primary outcomes
  • Abbreviation: SHARP, SpecialistHospitalist Allied Research Program.

1. Number of ongoing research projects involving SHARP support and a brief description of the aims and status of each
2. Number of extramural grants submitted in which SHARP is mentioned or involved
3. Extramural grants received (total and direct dollars)
4. Peer‐reviewed publications authored by SHARP investigators
Secondary outcomes
1. Abstracts accepted for presentation at national or international scientific meetings
2. Non‐peer‐reviewed publications related to SHARP
3. Invited presentations by SHARP investigators
4. People who have visited the University of Michigan in conjunction with SHARP work (eg, visiting professors)

Initial SHARP Projects

SHARP has a formal process for evaluating potential projects. A steering committee ultimately decides how best to use SHARP‐related resources. Key components in this decision are related to the proposal's innovation, feasibility, and importance as well as the extent of specialisthospitalist collaboration. The 2 projects described next are our initial areas of focus and exemplify these concepts. One project partners hospitalists with infectious disease specialists, whereas the second pairs hospitalists with geriatricians and clinical pharmacists.

Reducing False Positive Blood Cultures

The blood culture is an important tool for the diagnosis and management of bloodstream infections. As a result, physicians have a low threshold for obtaining blood cultures. Unfortunately, up to half of all positive blood cultures are positive because of contamination. These false positive cultures lead to additional diagnostic testing, unnecessary antibiotics, and increased healthcare costs.17 A variety of antiseptic agents and techniques are used to prevent falsely positive cultures. However, a recent evidence‐based systematic review performed by University of Michigan investigators found no clear evidence to suggest which antiseptic agent should be routinely used. They concluded that a randomized controlled trial was urgently needed.18

SHARP and its infrastructure have begun a cluster‐randomized crossover trial at the university hospital. The trial compares the effects of a variety of skin antiseptic agents on peripheral blood culture contamination rates. The study population includes hospitalized patients undergoing venipuncture for peripheral blood cultures on 3 general medicine and surgery floors. The trial will include over 12,000 blood culture sets and will have 85% power to detect a 0.5% difference in effectiveness between antiseptic agents. Key outcomes will be rates of positive blood cultures (true positive versus false positive), quantity of additional diagnostic testing generated by positive cultures, resource use (including antibiotics), and associated costs. Clinical outcomes such as length of stay and inpatient mortality will also be measured as secondary outcomes.

Pharmacist‐Facilitated Hospital Discharge

Hospital discharge is a complex process in which patients must be transferred from the care of an inpatient team to that of an outpatient provider. During most hospitalizations, a patient will have new medications added, a chronic medication stopped, or a change in medication dosage. Studies have revealed that the most common adverse events that have an impact on patients after discharge are related to medications.1921 In our experience at the University of Michigan, patients frequently have medication‐related adverse events after discharge because they do not understand what medications they should be taking, what they are used for, how to manage side effects, or whom to call with problems. In addition, predictable medication‐related issues (such as the ability to pay for a medicine or expected serum electrolyte changes with newly added medications) are not universally anticipated. The frail elderly are especially vulnerable to medication‐related adverse events.

Building on the work of others in the field, we proposed studying the impact of an inpatient clinical pharmacist to address medication misadventures related to hospital discharge in our elderly population.22 The study uses an interrupted time series design (the pharmacist will alternate months at a nonresident hospitalist service and a resident general medicine service) to measure the impact of the clinical pharmacist. The pharmacist will focus on patients over the age of 65 meeting criteria that identify them to be at high risk for an adverse medication event after discharge. These factors include any new medication started in the hospital, medication noncompliance or an adverse medication event that led to the admission, or use of a high‐risk medication (eg, anticoagulants, narcotics, diuretics, diabetic agents, and immunosuppressives). The pharmacist and inpatient physicians will identify high‐risk patients who will receive predischarge medication counseling. This process will identify problem medications and needed follow‐up (eg, laboratory testing) and assess compliance issues. After discharge, patients will be contacted by the pharmacist both within 72 hours and at 30 days. Standardized questions will be asked of patients to troubleshoot medication issues, assess them for problems with medications or follow‐up, and identify patients who may need more urgent access to a healthcare provider to address medication‐related problems.

Key outcomes will include the pharmacist's actions at discharge (eg, dose changes made, medication class switches, and side‐effect monitoring implemented). In addition, we will track types of medication issues identified after discharge and interventions made. Important clinical outcomes will include return to the emergency department after discharge, 30‐day readmission rates, and healthcare‐related costs.

DISCUSSION AND NEXT STEPS

SHARP is a novel clinical research program partnering hospitalists with specialists. Its current focus targets single‐institution studies that generate pilot data leading to larger projects. The ultimate goal is to develop the ability to do larger multicenter investigator‐initiated projects. The SHARP program will also have the ability to perform observational studies to identify predictors and risk factors and the ability to carry out implementation studies that show how best to translate results from published articles to direct patient care.

A specialisthospitalist collaboration overcomes barriers that we feel may impede hospital medicine research at an academic medical center. For a similar program to succeed at other institutions, key components from our program will have to be replicated. First, senior, fellowship‐trained researchers are required to mentor junior investigators (who may or may not have additional fellowship training), help guide project selection, oversee grant and manuscript submissions, and troubleshoot problems that arise in the course of any clinical research project. In our institution, this comes from within our hospitalist program and from our specialist collaborators. In institutions lacking hospitalists with research experience, this guidance could come from within a division of general medicine, internal medicine specialty divisions, internal medicine department leadership, or even noninternal medicine departments (eg, emergency medicine, neurology, and surgery) that have traditionally been involved in clinical research programs.

A second key component that must be considered is funding. An initial investment is necessary to fund key personnel dedicated to getting projects started on the right track, collecting pilot data, and ensuring project completion and dissemination of the results. The positive margin generated by our hospitalist program facilitated the initial investment. In the absence of a positive margin, resources could come directly from the hospital, the medical school, the department of internal medicine, or perhaps a foundation. The case would need to be made that an initial short‐term investment would enhance the academic standing of the institution, enhance the careers of young investigators, and over time lead to a self‐sustaining program through investigator‐initiated grants and extramural funding. In addition to experienced leadership and funding, we created an oversight committee, but we feel that this is not a critical component. A potential concern with a program that partners with specialists might be that research topics become too disease‐specific or specialty‐oriented. We specifically created the oversight committee to protect against this possibility, and other institutions might need similar safeguards.

Our next step includes leveraging existing hospitalist collaboratives that reach beyond academic medical centers to expand further the reach of SHARP. Ultimately, any new therapy, clinical tool, diagnostic paradigm, or implementation strategy that is developed or evaluated bythe SHARP program would need to be tested in a real‐world setting to assess external validity. With support from the Blue Cross Blue Shield of Michigan Foundation, we have created a multihospital patient safety consortium, the Hospitalists as Emerging Leaders in Patient Safety Consortium, which includes academic, government, urban, rural, teaching, and nonteaching hospitals.23 Although the initial focus is patient safety, our goal for the consortium is to develop it into a multihospital clinical research program that could take pilot projects developed by SHARP and test them in real‐world settings. We believe that full‐scale multihospital studies based on SHARP pilot data will be very attractive to external funding agencies and will help SHARP become financially self‐sufficient after the initial 3‐year start‐up.

Hospital medicine research is desperately needed.24, 25 Unfortunately, the clinical research capabilities of most hospital medicine programs are quite underdeveloped. We believe that partnering hospitalists with specialists can facilitate collaborative research to identify the best way to care for inpatients. If successful, we believe that variations of this model can be replicated at other institutions and will be a critical factor in jumpstarting hospital medicine clinical research.

Acknowledgements

The authors thank Dr. Marc E. Lippman, Dr. Robert F. Todd, Dr. Larry McMahon, Dr. Timothy J. Laing, and Mr. Lindsay J. Graham, whose support made this program possible.

Dramatic changes in the organization, financing, and delivery of hospital care that began a decade ago continue to accelerate. One of the most important changes has been the emergence of hospitalists as providers of inpatient care.1 Hospitalists are physicians, usually general internists, whose clinical focus is the hospitalized patient. As patient illnesses have become more severe and complex, physicians have found it difficult to balance inpatient and outpatient care and have focused on one of the two.25 It is estimated that there are currently 15,000 practicing hospitalists nationally, and projections suggest that this number may exceed 30,000 by 2010, which is equal to the number of cardiologists currently practicing in the United States.6 A 2003 survey from the American Hospital Association showed that more than 30% of the nation's 4900 community hospitals have hospital medicine groups.7 Furthermore, more than 70% of the nation's largest hospitals (>500 beds) and 66% of major teaching hospitals use hospitalists.7

The transition to a hospitalist model generates multiple new research questions about the best approach to caring for the hospitalized patient. Additionally, hospitalists may spawn new areas of clinical research by tackling clinical issues that formerly lacked a large number of specialist investigators. Examples include implementation‐based studies,8, 9 inpatient safety practices,1012 quasi‐experimental studies focusing on common inpatient issues,13, 14 and the evaluation of new methods for reducing resource utilization within various inpatient care delivery structures.15, 16

Similarly, if future clinical trials are to be carried out in real‐world settings, by necessity these will require the participation of hospitalists. Clinical research performed by hospitalists and hospital medicine programs, however, remains underdeveloped. Although this has been attributed to several variables, including the youth of the field, a paucity of fellowship‐trained hospitalist researchers, and a lack of a hospitalist‐oriented national funding source, we also believe that additional barriers exist which could be overcome if hospitalists actively partnered with specialists to perform hospital‐based clinical and translational research.

Hospitalists lack clinical expertise in many clinical issues. In both academic and nonacademic settings, the diagnostic approach, individual treatment decisions, and follow‐up of complex patients occur with frequent consultation of specialists. Specialists often provide a deeper understanding of both the pathophysiologic concepts and scientific principles underlying important clinical questions and are more likely to have had fellowship training that included clinical research experience. Specialists also have more access to extramural funding for disease‐based investigation, and thus their involvement in hospital‐based clinical research would likely enhance funding opportunities, improve project feasibility, and increase dissemination of the results. A successful clinical research program will therefore be one that combines specialists and hospitalists working collaboratively to determine the best way to care for inpatients. With that in mind, we created the University of Michigan SpecialistHospitalist Allied Research Program (SHARP).

METHODS

Setting

The University of Michigan Medical Center includes a 900‐bed teaching hospital with more than 44,000 yearly inpatient discharges, and the Department of Internal Medicine manages nearly 15,000 annual discharges. The University of Michigan Hospital Medicine Program has grown dramatically over the past few years and now includes more than 30 hospitalists. These hospitalists will manage nearly 8000 admissions in the upcoming year, which represent more than half of all the patients admitted to the Department of Internal Medicine. Five years ago, these 8000 admissions would have been cared for by 3 to 4 times as many providers, most of whom would have been specialists. Currently, specialists consult regularly on patients cared for by hospitalists, and as a result, a few loosely formed research collaborations developed spontaneously but lacked resources or infrastructure to facilitate their completion. SHARP was intended to organize these clinical research pilot studies and jumpstart hospital‐based clinical and translational research.

The SHARP Intervention

Objectives

In 2006, hospitalists and specialists with an interest in expanding clinical and translational research aimed at caring for inpatients were brought together for the SHARP intervention. This intervention had several objectives:

  • To develop a clinical research infrastructure within the University of Michigan Hospital Medicine Program to facilitate patient participation.

  • To foster increased specialisthospitalist collaboration for addressing common inpatient problems.

  • To facilitate pilot projects and preliminary data collection that enhance the ability to obtain subsequent extramural funding for collaborative research projects.

  • To facilitate multicenter investigation led by the University of Michigan by allowing the SHARP investigators to use an existing hospitalist consortium to expand the scope of research projects.

  • Ultimately, to develop the ability to perform multicenter intervention‐based clinical trials.

 

Structure

The key to SHARP's infrastructure is its personnel and governance structure. At the head of SHARP is an academic hospitalist as principal investigator (PI) and an academic cardiologist with health services research training serving as coprincipal investigator (Co‐PI). Key personnel also include a hospitalist investigator, a masters‐level research associate, a PhD clinical epidemiologist, and the hospitalists and subspecialists who serve as investigators. Although the program leadership has research experience, many of the hospitalist and specialist investigators are junior faculty without extensive prior research experience. Thus, SHARP was specifically designed to build the capacity to enhance inpatient clinical and translational research and to remove barriers for new investigators developing their academic careers.

It is critical that oversight provides direction for the research program, assists with project identification and selection, and facilitates collaborations that tie diverse projects together. We believe that this is best accomplished by the creation of a steering committee chaired by both the PI and Co‐PI. The steering committee also includes key individuals such as the Vice Chair of the Department of Medicine and the Associate Dean for Clinical and Translational Research at the University of Michigan. The 2 cochairs are responsible for overseeing the program and reporting the progress of SHARP to the University of Michigan Department of Internal Medicine. They will help identify and produce viable research proposals that can be brought to the full committee. To help the program understand and overcome bureaucratic obstacles, we have also included a former high‐level administrator on the steering committee as a consultant. Given the initial scope of the program, the SHARP steering committee has had a small number of key individuals. As the program grows and increases its number of ongoing collaborative projects, we will likely need to expand committee membership.

SHARP leadership meets regularly to plan projects, discuss grant ideas, make hiring decisions, and troubleshoot problems in existing projects. The entire steering committee meets quarterly to help chart the overall course of the program. A more thorough description of the program and its structure can be found on the SHARP Web site (www.med.umich.edu/sharp).

SHARP Funding

SHARP could not exist without resources. The funding for the program comes from the Department of Internal Medicine and uses revenue from the hospital medicine program that flows to the department. To garner support for the program, SHARP leadership sought buy‐in from the Chair of Medicine, all the division chiefs, and key faculty active in clinical research. The fact that the program has the potential to benefit not just hospitalists but also other department faculty such as specialists facilitated departmental funding. The program is funded for 3 years with an 18‐month program review to gauge progress. Funding is used to build clinical research infrastructure and facilitate collection of pilot data. SHARP resources support a portion of the salaries of key personnel for the 3‐year duration of the project (research associate, 50%; PI, 10%; Co‐PI, 5%; and epidemiologist, 5%), after which time intramural funding ends. Every SHARP project is, therefore, expected to apply for extramural funding with the goal of full extramural programmatic support after 3 years.

SHARP Performance Metrics

Measuring the accomplishments of SHARP is clearly important. As the program is intended to jumpstart collaborative inpatient clinical research, the number of such projects is important to track. An additional goal is to support work that leads to extramural funding. As the program started from scratch, it is unrealistic to have completed peer‐reviewed manuscripts or successful extramural grants as the sole metrics by which the program is judged, especially early in its initiation. In a yearly report to the department chair, we will report on primary and secondary outcomes (see Table 1).

Primary and Secondary Outcomes of SHARP
Primary outcomes
  • Abbreviation: SHARP, SpecialistHospitalist Allied Research Program.

1. Number of ongoing research projects involving SHARP support and a brief description of the aims and status of each
2. Number of extramural grants submitted in which SHARP is mentioned or involved
3. Extramural grants received (total and direct dollars)
4. Peer‐reviewed publications authored by SHARP investigators
Secondary outcomes
1. Abstracts accepted for presentation at national or international scientific meetings
2. Non‐peer‐reviewed publications related to SHARP
3. Invited presentations by SHARP investigators
4. People who have visited the University of Michigan in conjunction with SHARP work (eg, visiting professors)

Initial SHARP Projects

SHARP has a formal process for evaluating potential projects. A steering committee ultimately decides how best to use SHARP‐related resources. Key components in this decision are related to the proposal's innovation, feasibility, and importance as well as the extent of specialisthospitalist collaboration. The 2 projects described next are our initial areas of focus and exemplify these concepts. One project partners hospitalists with infectious disease specialists, whereas the second pairs hospitalists with geriatricians and clinical pharmacists.

Reducing False Positive Blood Cultures

The blood culture is an important tool for the diagnosis and management of bloodstream infections. As a result, physicians have a low threshold for obtaining blood cultures. Unfortunately, up to half of all positive blood cultures are positive because of contamination. These false positive cultures lead to additional diagnostic testing, unnecessary antibiotics, and increased healthcare costs.17 A variety of antiseptic agents and techniques are used to prevent falsely positive cultures. However, a recent evidence‐based systematic review performed by University of Michigan investigators found no clear evidence to suggest which antiseptic agent should be routinely used. They concluded that a randomized controlled trial was urgently needed.18

SHARP and its infrastructure have begun a cluster‐randomized crossover trial at the university hospital. The trial compares the effects of a variety of skin antiseptic agents on peripheral blood culture contamination rates. The study population includes hospitalized patients undergoing venipuncture for peripheral blood cultures on 3 general medicine and surgery floors. The trial will include over 12,000 blood culture sets and will have 85% power to detect a 0.5% difference in effectiveness between antiseptic agents. Key outcomes will be rates of positive blood cultures (true positive versus false positive), quantity of additional diagnostic testing generated by positive cultures, resource use (including antibiotics), and associated costs. Clinical outcomes such as length of stay and inpatient mortality will also be measured as secondary outcomes.

Pharmacist‐Facilitated Hospital Discharge

Hospital discharge is a complex process in which patients must be transferred from the care of an inpatient team to that of an outpatient provider. During most hospitalizations, a patient will have new medications added, a chronic medication stopped, or a change in medication dosage. Studies have revealed that the most common adverse events that have an impact on patients after discharge are related to medications.1921 In our experience at the University of Michigan, patients frequently have medication‐related adverse events after discharge because they do not understand what medications they should be taking, what they are used for, how to manage side effects, or whom to call with problems. In addition, predictable medication‐related issues (such as the ability to pay for a medicine or expected serum electrolyte changes with newly added medications) are not universally anticipated. The frail elderly are especially vulnerable to medication‐related adverse events.

Building on the work of others in the field, we proposed studying the impact of an inpatient clinical pharmacist to address medication misadventures related to hospital discharge in our elderly population.22 The study uses an interrupted time series design (the pharmacist will alternate months at a nonresident hospitalist service and a resident general medicine service) to measure the impact of the clinical pharmacist. The pharmacist will focus on patients over the age of 65 meeting criteria that identify them to be at high risk for an adverse medication event after discharge. These factors include any new medication started in the hospital, medication noncompliance or an adverse medication event that led to the admission, or use of a high‐risk medication (eg, anticoagulants, narcotics, diuretics, diabetic agents, and immunosuppressives). The pharmacist and inpatient physicians will identify high‐risk patients who will receive predischarge medication counseling. This process will identify problem medications and needed follow‐up (eg, laboratory testing) and assess compliance issues. After discharge, patients will be contacted by the pharmacist both within 72 hours and at 30 days. Standardized questions will be asked of patients to troubleshoot medication issues, assess them for problems with medications or follow‐up, and identify patients who may need more urgent access to a healthcare provider to address medication‐related problems.

Key outcomes will include the pharmacist's actions at discharge (eg, dose changes made, medication class switches, and side‐effect monitoring implemented). In addition, we will track types of medication issues identified after discharge and interventions made. Important clinical outcomes will include return to the emergency department after discharge, 30‐day readmission rates, and healthcare‐related costs.

DISCUSSION AND NEXT STEPS

SHARP is a novel clinical research program partnering hospitalists with specialists. Its current focus targets single‐institution studies that generate pilot data leading to larger projects. The ultimate goal is to develop the ability to do larger multicenter investigator‐initiated projects. The SHARP program will also have the ability to perform observational studies to identify predictors and risk factors and the ability to carry out implementation studies that show how best to translate results from published articles to direct patient care.

A specialisthospitalist collaboration overcomes barriers that we feel may impede hospital medicine research at an academic medical center. For a similar program to succeed at other institutions, key components from our program will have to be replicated. First, senior, fellowship‐trained researchers are required to mentor junior investigators (who may or may not have additional fellowship training), help guide project selection, oversee grant and manuscript submissions, and troubleshoot problems that arise in the course of any clinical research project. In our institution, this comes from within our hospitalist program and from our specialist collaborators. In institutions lacking hospitalists with research experience, this guidance could come from within a division of general medicine, internal medicine specialty divisions, internal medicine department leadership, or even noninternal medicine departments (eg, emergency medicine, neurology, and surgery) that have traditionally been involved in clinical research programs.

A second key component that must be considered is funding. An initial investment is necessary to fund key personnel dedicated to getting projects started on the right track, collecting pilot data, and ensuring project completion and dissemination of the results. The positive margin generated by our hospitalist program facilitated the initial investment. In the absence of a positive margin, resources could come directly from the hospital, the medical school, the department of internal medicine, or perhaps a foundation. The case would need to be made that an initial short‐term investment would enhance the academic standing of the institution, enhance the careers of young investigators, and over time lead to a self‐sustaining program through investigator‐initiated grants and extramural funding. In addition to experienced leadership and funding, we created an oversight committee, but we feel that this is not a critical component. A potential concern with a program that partners with specialists might be that research topics become too disease‐specific or specialty‐oriented. We specifically created the oversight committee to protect against this possibility, and other institutions might need similar safeguards.

Our next step includes leveraging existing hospitalist collaboratives that reach beyond academic medical centers to expand further the reach of SHARP. Ultimately, any new therapy, clinical tool, diagnostic paradigm, or implementation strategy that is developed or evaluated bythe SHARP program would need to be tested in a real‐world setting to assess external validity. With support from the Blue Cross Blue Shield of Michigan Foundation, we have created a multihospital patient safety consortium, the Hospitalists as Emerging Leaders in Patient Safety Consortium, which includes academic, government, urban, rural, teaching, and nonteaching hospitals.23 Although the initial focus is patient safety, our goal for the consortium is to develop it into a multihospital clinical research program that could take pilot projects developed by SHARP and test them in real‐world settings. We believe that full‐scale multihospital studies based on SHARP pilot data will be very attractive to external funding agencies and will help SHARP become financially self‐sufficient after the initial 3‐year start‐up.

Hospital medicine research is desperately needed.24, 25 Unfortunately, the clinical research capabilities of most hospital medicine programs are quite underdeveloped. We believe that partnering hospitalists with specialists can facilitate collaborative research to identify the best way to care for inpatients. If successful, we believe that variations of this model can be replicated at other institutions and will be a critical factor in jumpstarting hospital medicine clinical research.

Acknowledgements

The authors thank Dr. Marc E. Lippman, Dr. Robert F. Todd, Dr. Larry McMahon, Dr. Timothy J. Laing, and Mr. Lindsay J. Graham, whose support made this program possible.

References
  1. Wachter RM,Goldman L.The emerging role of “hospitalists” in the American health care system.N Engl J Med.1996;335:514517.
  2. Saint S,Zemencuk JK,Hayward RA,Golin CE,Konrad TR,Linzer M.What effect does increasing inpatient time have on outpatient‐oriented internist satisfaction?J Gen Intern Med.2003;18:725729.
  3. Saint S,Konrad TR,Golin CE,Welsh D,Linzer M.Characteristics of general internists who practice only outpatient medicine: results from the physician worklife study.Semin Med Pract.2002;5:511.
  4. Saint S,Flanders SA.Hospitalists in teaching hospitals: opportunities but not without danger.J Gen Intern Med.2004;19:392393.
  5. Flanders SA,Wachter RM.Hospitalists: the new model of inpatient medical care in the United States.Eur J Intern Med.2003;14:6570.
  6. Lurie JD,Miller DP,Lindenauer PK,Wachter RM,Sox HC.The potential size of the hospitalist workforce in the United States.Am J Med.1999;106:441445.
  7. Kralovec PD,Miller JA,Wellikson L,Huddleton JM.The status of hospital medicine groups in the United States.J Hosp Med.2006;1:7580.
  8. Krein SL,Olmsted RN,Hofer TP, et al.Translating infection prevention evidence into practice using quantitative and qualitative research.Am J Infect Control.2006;34:507512.
  9. Auerbach AD,Wachter RM,Katz P,Showstack J,Baron RB,Goldman L.Implementation of a voluntary hospitalist service at a community teaching hospital: improved clinical efficiency and patient outcomes.Ann Intern Med.2002;137:859865.
  10. Shojania KG,Duncan BW,McDonald KM,Wachter RM,Markowitz AJ.Making health care safer: a critical analysis of patient safety practices.Evid Rep Technol Assess (Summ).2001;(43):ix,1–668.
  11. Shojania KG,Duncan BW,McDonald KM,Wachter RM.Safe but sound: patient safety meets evidence‐based medicine.JAMA.2002;288:508513.
  12. Kaboli PJ,Hoth AB,McClimon BJ,Schnipper JL.Clinical pharmacists and inpatient medical care: a systematic review.Arch Intern Med.2006;166:955964.
  13. Borschel DM,Chenoweth CE,Kaufman SR, et al.Are antiseptic‐coated central venous catheters effective in a real‐world setting?Am J Infect Control.2006;34:388393.
  14. Flanders SA,Dudas V,Kerr K,McCulloch CE,Gonzales R.Effectiveness of ceftriaxone plus doxycycline in the treatment of patients hospitalized with community‐acquired pneumonia.J Hosp Med.2006;1:712.
  15. Meltzer D,Manning WG,Morrison J, et al.Effects of physician experience on costs and outcomes on an academic general medicine service: results of a trial of hospitalists.Ann Intern Med.2002;137:866874.
  16. Zemencuk JK,Hofer TP,Hayward RA,Moseley RH,Saint S.What effect does physician “profiling” have on inpatient physician satisfaction and hospital length of stay?BMC Health Serv Res.2006;6:45.
  17. Bates DW,Goldman L,Lee TH.Contaminant blood cultures and resource utilization. The true consequences of false‐positive results.JAMA.1991;265:365369.
  18. Malani A,Trimble K,Parekh V,Chenoweth C,Kaufman S,Saint S.Review of clinical trials of skin antiseptic agents used to reduce blood culture contamination.Infect Control Hosp Epidemiol.2007;28:892895.
  19. Forster AJ,Murff HJ,Peterson JF,Gandhi TK,Bates DW.The incidence and severity of adverse events affecting patients after discharge from the hospital.Ann Intern Med.2003;138:161167.
  20. Forster AJ,Murff HJ,Peterson JF,Gandhi TK,Bates DW.Adverse drug events occurring following hospital discharge.J Gen Intern Med.2005;20:317323.
  21. Forster AJ,Clark HD,Menard A, et al.Adverse events among medical patients after discharge from hospital.CMAJ.2004;170:345349.
  22. Schnipper JL,Kirwin JL,Cotugno MC, et al.Role of pharmacist counseling in preventing adverse drug events after hospitalization.Arch Intern Med.2006;166:565571.
  23. Flanders SA,Kaufman SR,Saint S.Hospitalists as emerging leaders in patient safety: targeting a few to affect many.JPatient Saf.2005;1:7882.
  24. Williams MV.The future of hospital medicine: evolution or revolution?Am J Med.2004;117:446450.
  25. Ranji SR,Rosenman DJ,Amin AN,Kripalani S.Hospital medicine fellowships: works in progress.Am J Med.2006;119:72 e17.
References
  1. Wachter RM,Goldman L.The emerging role of “hospitalists” in the American health care system.N Engl J Med.1996;335:514517.
  2. Saint S,Zemencuk JK,Hayward RA,Golin CE,Konrad TR,Linzer M.What effect does increasing inpatient time have on outpatient‐oriented internist satisfaction?J Gen Intern Med.2003;18:725729.
  3. Saint S,Konrad TR,Golin CE,Welsh D,Linzer M.Characteristics of general internists who practice only outpatient medicine: results from the physician worklife study.Semin Med Pract.2002;5:511.
  4. Saint S,Flanders SA.Hospitalists in teaching hospitals: opportunities but not without danger.J Gen Intern Med.2004;19:392393.
  5. Flanders SA,Wachter RM.Hospitalists: the new model of inpatient medical care in the United States.Eur J Intern Med.2003;14:6570.
  6. Lurie JD,Miller DP,Lindenauer PK,Wachter RM,Sox HC.The potential size of the hospitalist workforce in the United States.Am J Med.1999;106:441445.
  7. Kralovec PD,Miller JA,Wellikson L,Huddleton JM.The status of hospital medicine groups in the United States.J Hosp Med.2006;1:7580.
  8. Krein SL,Olmsted RN,Hofer TP, et al.Translating infection prevention evidence into practice using quantitative and qualitative research.Am J Infect Control.2006;34:507512.
  9. Auerbach AD,Wachter RM,Katz P,Showstack J,Baron RB,Goldman L.Implementation of a voluntary hospitalist service at a community teaching hospital: improved clinical efficiency and patient outcomes.Ann Intern Med.2002;137:859865.
  10. Shojania KG,Duncan BW,McDonald KM,Wachter RM,Markowitz AJ.Making health care safer: a critical analysis of patient safety practices.Evid Rep Technol Assess (Summ).2001;(43):ix,1–668.
  11. Shojania KG,Duncan BW,McDonald KM,Wachter RM.Safe but sound: patient safety meets evidence‐based medicine.JAMA.2002;288:508513.
  12. Kaboli PJ,Hoth AB,McClimon BJ,Schnipper JL.Clinical pharmacists and inpatient medical care: a systematic review.Arch Intern Med.2006;166:955964.
  13. Borschel DM,Chenoweth CE,Kaufman SR, et al.Are antiseptic‐coated central venous catheters effective in a real‐world setting?Am J Infect Control.2006;34:388393.
  14. Flanders SA,Dudas V,Kerr K,McCulloch CE,Gonzales R.Effectiveness of ceftriaxone plus doxycycline in the treatment of patients hospitalized with community‐acquired pneumonia.J Hosp Med.2006;1:712.
  15. Meltzer D,Manning WG,Morrison J, et al.Effects of physician experience on costs and outcomes on an academic general medicine service: results of a trial of hospitalists.Ann Intern Med.2002;137:866874.
  16. Zemencuk JK,Hofer TP,Hayward RA,Moseley RH,Saint S.What effect does physician “profiling” have on inpatient physician satisfaction and hospital length of stay?BMC Health Serv Res.2006;6:45.
  17. Bates DW,Goldman L,Lee TH.Contaminant blood cultures and resource utilization. The true consequences of false‐positive results.JAMA.1991;265:365369.
  18. Malani A,Trimble K,Parekh V,Chenoweth C,Kaufman S,Saint S.Review of clinical trials of skin antiseptic agents used to reduce blood culture contamination.Infect Control Hosp Epidemiol.2007;28:892895.
  19. Forster AJ,Murff HJ,Peterson JF,Gandhi TK,Bates DW.The incidence and severity of adverse events affecting patients after discharge from the hospital.Ann Intern Med.2003;138:161167.
  20. Forster AJ,Murff HJ,Peterson JF,Gandhi TK,Bates DW.Adverse drug events occurring following hospital discharge.J Gen Intern Med.2005;20:317323.
  21. Forster AJ,Clark HD,Menard A, et al.Adverse events among medical patients after discharge from hospital.CMAJ.2004;170:345349.
  22. Schnipper JL,Kirwin JL,Cotugno MC, et al.Role of pharmacist counseling in preventing adverse drug events after hospitalization.Arch Intern Med.2006;166:565571.
  23. Flanders SA,Kaufman SR,Saint S.Hospitalists as emerging leaders in patient safety: targeting a few to affect many.JPatient Saf.2005;1:7882.
  24. Williams MV.The future of hospital medicine: evolution or revolution?Am J Med.2004;117:446450.
  25. Ranji SR,Rosenman DJ,Amin AN,Kripalani S.Hospital medicine fellowships: works in progress.Am J Med.2006;119:72 e17.
Issue
Journal of Hospital Medicine - 3(4)
Issue
Journal of Hospital Medicine - 3(4)
Page Number
308-313
Page Number
308-313
Article Type
Display Headline
The University of Michigan Specialist–Hospitalist Allied Research Program: Jumpstarting hospital medicine research
Display Headline
The University of Michigan Specialist–Hospitalist Allied Research Program: Jumpstarting hospital medicine research
Legacy Keywords
hospitalist, interdisciplinary research, research skills, specialist
Legacy Keywords
hospitalist, interdisciplinary research, research skills, specialist
Sections
Article Source

Copyright © 2008 Society of Hospital Medicine

Disallow All Ads
Correspondence Location
Department of Internal Medicine, Taubman Center, 1500 East Medical Center Drive, Room 3119F, Ann Arbor, MI 48109‐0376
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Article PDF Media

Acute Stroke Patient with Atrial Fibrillation

Article Type
Changed
Mon, 01/02/2017 - 19:34
Display Headline
Approach to and management of the acute stroke patient with atrial fibrillation: A literature review

INITIAL EVALUATION

The approach to patients with acute stroke symptoms should always start with the stabilization of the airway, breathing, and circulation. A fast clinical investigation for possible mimickers of an acute stroke (head trauma, migraines, epilepsy, infection, hypoglycemia, other metabolic derangements, and intoxications) is the next step. The history and physical examination should be guided by the National Institutes of Health stroke scale, which has been widely accepted by the American Stroke Association (ASA), the American Academy of Neurology, and the National Institute of Neurological Disorders and Stroke.2, 9 Strict control of electrolytes, glucose, and fever, management of blood pressure depending on thetype of stroke, and prophylaxis for deep vein thrombosis/pulmonary embolism, aspiration, dehydration, hypoxemia, malnutrition, and pressure sores should be initiated.9, 10 All patients with suspected acute stroke must be promptly assessed for thrombolytic therapy on the basis of the time since onset of symptoms and the National Institutes of Health stroke scale. Noncontrast computed tomography of the brain is the first step for differentiating between ischemic and hemorrhagic events.3, 9 There is an increased interest in the use of magnetic resonance imaging to detect acute intracranial hemorrhage (ICH) and its ability to detect stroke earlier than computed tomography.911 Multimodal computed tomography and magnetic resonance imaging provide additional information that will improve the diagnosis of ischemic stroke, and they have been added as a class I recommendation to the most recent stroke guidelines.9, 12 Computed tomographic angiography and perfusion computed tomography may precisely describe details regarding the site of occlusion, infarct core, salvageable brain tissue, and collateral flow that can improve patient selection for intravenous or intra‐arterial thrombolysis and exclude stroke mimics.9, 13

ISCHEMIC STROKE

Thrombolysis

In the setting of acute ischemic stroke, the patient should be promptly evaluated for thrombolytic therapy according to the American College of Chest Physicians guidelines.14 Intravenous r‐TPA (recombinant tissue plasminogen activator) is given only to 1% to 2% of stroke patients in the United States. This low percentage is mainly due to delayed presentation to an emergency department beyond the 3‐hour treatment window.15 Clear benefit has been proven for eligible patients if thrombolytic therapy is administered within 3 hours from the initiation of symptoms, although no subgroup analysis has been done in patients with atrial fibrillation.9 The efficacy of intravenous thrombolysis within the 3‐hour time window is similar between different stroke subtypes; therefore, its administration should not be delayed in order to investigate its etiology.16 Intravenous thrombolysis remains the standard of care, but recent studies have demonstrated that intra‐arterial administration, despite its risks, may be more effective in selected patients.9, 1719 Patients most likely to benefit from intra‐arterial thrombolysis are those with middle cerebral artery occlusion of less than 6 hours (Prolyse in Acute Cerebral Thromboembolism Trials I and II) and patients with severe basilar artery stroke.17, 19 A recent study in Germany has demonstrated that intra‐arterial thrombolysis may be superior to intravenous thrombolysis in the 3‐ to 6‐hour treatment window.19 The updated 2007 guidelines from the American Heart Association (AHA)/ASA have included intra‐arterial thrombolysis for specific patients who are not eligible for intravenous thrombolysis when this can be performed at experienced stroke centers.9 Thrombolysis reduces overall disability and improves the quality of life in appropriately selected patients. The risk of hemorrhage is approximately 5.2%.20 After intravenous thrombolysis, approximately one‐third of patients ultimately develop re‐occlusion of the artery, especially patients with only partial recanalization. This may lead to neurologic deterioration and higher in‐hospital mortality.21 According to more recent studies, ultrasound‐enhanced thrombolysis may augment tissue plasminogen activator induced arterial recanalization by continuous transcranial Doppler.22 Symptomatic hemorrhagic transformation of the infarction remains the primary concern with the administration of intravenous rtTPA.23, 24 Despite the apparent risks of ICH, atrial fibrillation patients not on warfarin should always be promptly referred for thrombolysis whenever they are eligible.

Heparin

For many years, clinicians have believed in the role of heparin in patients with atrial fibrillation, especially after intracranial hemorrhage is excluded by negative initial noncontrast head computed tomography.25 The most obvious pathophysiologic mechanism in patients with atrial fibrillation is cardioembolism. Therefore, it was believed that heparin could contribute to the resolution of the responsible clot. Two large international trials (the Heparin in Acute Embolic Stroke Trial and the International Stroke Trial), confirmed by multiple smaller ones, have investigated the use of heparin (unfractionated or low‐molecular‐weight heparin) at therapeutic doses in the setting of an acute ischemic event.2628 Surprisingly, none of them showed a statistically significant benefit, but instead they showed a clear increase in hemorrhagic events. Therefore, routine use of unfractionated heparin or low‐molecular‐weight heparin at therapeutic doses should be avoided in the acute setting of a stroke.28, 29

Aspirin

Among the antiplatelet agents, aspirin is the only well‐studied agent for the treatment of acute ischemic stroke. It has been proven that during the first 24 hours after stroke, there is substantial platelet activation that can be inhibited by aspirin.30, 31 Two major trials, the Chinese Acute Stroke Trial and the International Stroke Trial, have demonstrated the benefit of early aspirin use in patients with stroke and atrial fibrillation.30 Both proved a decrease in recurrent stroke without a significant increase in hemorrhaging. The recommended dose of aspirin is 325 mg/day.9 Currently, clopidogrel alone or in combination with aspirin and the intravenous administration of antiplatelet agents that inhibit the glycoprotein IIb/IIIa receptor are class III recommendations. They should not be used outside the setting of clinical trials.9

Warfarin

It is well known that atrial fibrillation increases the risk of ischemic stroke by a factor of 5.32 Studies have shown that maintaining the INR above 2.0 decreases not only the frequency but also the severity and mortality of ischemic events.4, 8, 32 The National Anticoagulation Benchmark Outcomes Report has shown that in the highest risk atrial fibrillation patients, only 55% receive warfarin and 21% do not receive aspirin or warfarin.33 This discrepancy results from the fact that warfarin is the second most common drug, after insulin, responsible for adverse drug events in emergency room visits. In atrial fibrillation patients on warfarin who present to the emergency with an acute stroke, there are no clear guidelines regarding the continued use of warfarin at therapeutic doses (target INR = 2.03.0). Warfarin is usually not initiated in the acute setting until the patient is medically stable. The exact time at which warfarin can be started or resumed after an acute ischemic stroke remains to be determined.34 Usually, it is preferable to start it within 1 week after the event, given the risk of early recurrent acute stroke during the next 2 to 4 weeks after the initial stroke.35

HEMORRHAGIC STROKE/ICH

Introduction

The risk of spontaneous ICH is 0.15%/year in patients over 70 years old and increases to 0.3% to 0.8% when patients are on therapeutic doses of warfarin with INR between 2 and 3.36, 37 Given the multiple interactions of warfarin with other medications, this is a significant concern because ICH is associated with substantial neurological deterioration.38 Although most warfarin‐induced ICH occurs in patients with therapeutic INR, it becomes the most prevalent mechanism when the INR exceeds 5.0, and it should be highly suspected.1, 4 Therefore, prompt determination of INR is critical in the initial evaluation of acute stroke in patients with atrial fibrillation. Age is the most important predisposing factor for ICH in patients with atrial fibrillation. There is almost a 50% increase in warfarin‐induced bleeding for every decade of age above 40.39 Cerebral amyloid angiopathy plays an important role in warfarin‐associated lobar ICH in the elderly, and it may contribute to the patient candidacy for warfarin treatment in the near future.40 On the other hand, a hemorrhagic stroke can be an iatrogenic complication of initiation of warfarin, heparin, or early thrombolysis because symptomatic hemorrhagic transformation of the infarction is the main and most lethal side effect of intravenous rtTPA in the treatment of acute ischemic stroke.24 ICH is associated with a 30% to 50% mortality rate, and it represents the most lethal and least treatable form of stroke.32 It has been suggested that macroalbuminuria is an independent predictor of hemorrhagic transformation and particularly of severe hemorrhage in patients with acute ischemic stroke, but specific guidelines for screening or special management of those patients do not currently exist.33 ICH is a medical emergency with high mortality and should be recognized and treated promptly. Recently, the AHA and ASA have published updated guidelines for the management of spontaneous ICH in adults.12

Vitamin K

All experts agree that anticoagulation should be urgently reversed in the setting of ICH. Although high doses of intravenous vitamin K (1020 mg) are usually enough to reverse the anticoagulant effect of warfarin, it may take up to 12 to 24 hours to act, and it depends on intact liver function. Given the high mortality of this condition, vitamin K as monotherapy is considered inadequate, and a more aggressive approach is recommended.41

Fresh Frozen Plasma (FFP)

In the United States, for many years FFP has been considered the standard of care for the acute reversal of warfarin‐associated anticoagulation.42 In general, 10 to 15 cc/kg FFP is used.43 Timing rather than dosage seems to be more important for a better clinical outcome.44 The use of FFP is complicated by the delayed time for thawing and compatibility check, volume overload, and sometimes inadequate and unpredictable correction. The median time for door‐to‐INR normalization is 30 hours, which is a significant delay for such a potentially fatal condition. Another possible complication of FFP is the report of increasing hematomas.45

Prothrombin Complex Concentrates (PCCs)

PCCs contain vitamin K dependent coagulation factors II, VII, IX, and X, the factors deficient in warfarin therapy.44, 46 Therefore, a PCC dose of 25 to 59 U/kg has been used in life‐threatening bleeding, resulting in a decrease in the median INR from 3.8 to 1.3 immediately after administration.42 PCCs should always be given with vitamin K. Thrombotic events have been described with the infusion of PCCs, but no clear guidelines have been published.42 A recent study from the Mayo Clinic showed that many experts suggest its use in the urgent condition of warfarin‐associated ICH.41 PCCs are widely used in the European community and have previously been cited as the agent of choice for urgent warfarin reversal.42, 47, 48 A recent study comparing PCCs with FFP and vitamin K has demonstrated that PCCs may be superior to FFP and vitamin K by reducing the risk of hematoma growth.49

Recombinant Factor VIIa

Recombinant factor VIIa is a preparation of activated coagulation factor VII (factor VIIa) that is produced by recombinant DNA technology.50 It was initially used for the treatment of inhibitors in patients with hemophilia. It has also been used in the past to correct anticoagulation in patients with acute ICH,36 but most studies have been done in patients with hemophilia or factor VII deficiency.50 Major limitations include cost, prothrombotic potential, and lack of correction of other coagulation factors dependent on vitamin K. Studies have shown that factor VII may be a safe, rapid, and effective way of reversing anticoagulation and may offer an improved quality of life to patients with ICH.51, 52 Factor Seven for Acute Hemorrhagic Stroke Treatment, a large phase III trial, is in progress, but preliminary results are controversial regarding the reduction in the size of hemorrhage, mortality, and improvement of functional outcome.32 In a recent article from the Mayo Clinic,41 several experts on clinical stroke, neurologic intensive care, and hematology suggest its use, alone or with FFP, for the urgent reversal of INR in the clinical setting of warfarin‐associated ICH. Currently, according to the 2007 AHA/ASA updated guidelines, recombinant factor VIIa can be administered within the first 3 to 4 hours after onset of ICH to slow progression of bleeding, although its efficacy and safety remain to be confirmed (class IIb recommendation).12

Surgical Evacuation

Despite the clear guidelines for the indications of surgery in spontaneous intracranial bleeding,12 the role of surgical evacuation in patients with supratherapeutic INR is not well defined. Many neurosurgeons are reluctant to operate in the setting of impaired hemostasis. The International Surgical Trial in Intracerebral Hemorrhage showed no clear benefit of early neurosurgical intervention compared to conservative treatment.53 Different surgical trials have shown different outcomes.54 The selection of patients who would benefit from surgery depends on the location and size of the hemorrhage, coagulation status, and Glasgow Coma Scale.55 Patients with rapidly expanding hematomas in a surgically accessible intracranial territory are more likely to benefit from a neurosurgical intervention. Newer surgical techniques with a computed‐tomography‐guided stereotactic approach or endoscopy‐guided evacuation in emerging ICH may offer better outcomes.56

RECENT ADVANCES

Mechanical Embolectomy

Mechanical embolectomy is a growing field of neurology with a promising interventional approach to the treatment of embolic strokes.57, 58 Patients with atrial fibrillation will probably be one of the patient groups who will receive maximum benefit when the efficacy and safety of the procedure are established. Endovascular reperfusion via mechanical embolectomy is offered to patients who are ineligible for thrombolytics, and it extends the time window up to 8 hours.58 For the first time, in 2007 the AHA/ASA guidelines have included the Mechanical Embolus Removal in Cerebral Ischemia device as a reasonable intervention for extraction of intra‐arterial thrombi in carefully selected patients.9

Left Atrial Appendage (LAA) Occlusion

The LAA is the source of 91% of embolic thrombi in patients with atrial fibrillation.59 Therefore, surgical or percutaneous removal or occlusion of the LAA would be an important treatment option, especially in high‐risk patients intolerant of warfarin or with recurrent strokes, despite anticoagulation. Several surgical techniques and percutaneous LAA occlusion devices have been studied with different success rates and safety characteristics.6063 Currently, there are no official guidelines for the use of those interventions.

Genetic Testing for Warfarin Sensitivity

Warfarin is the second most common drug, after insulin, to require emergency room visits for adverse drug events. In September 2007, the Food and Drug Administration approved the Nanosphere Verigene Warfarin Metabolism Nucleic Acid Test, which detects variants of 2 genes (CYP2C9 and VKORC1) implicated in the unexpected response to warfarin.6466 Guidelines for the applied use of these tests are currently under development.66

CONCLUSION

On average, there is a new stroke every 45 seconds, and every 3 to 4 minutes, someone dies from a stroke in the United States. Atrial fibrillation accounts for one‐fourth of all strokes in the elderly population. Acute stroke in anticoagulated patients with atrial fibrillation is a common, challenging scenario in emergency departments because many questions remain unanswered (Table 1). A special and prompt approach from the clinician is needed to achieve effective management and avoid potentially fatal complications (Figure 2). Many hospitals in the United States have formed stroke teams to ensure prompt clinical and radiographic assessment of stroke patients. Only early recognition of cardioembolic or hemorrhagic strokes in atrial fibrillation patients can lead to aggressive management of this potentially fatal and disabling condition.

Figure 1
INR‐specific incidence rates for the occurrence of a first ischemic or hemorrhagic complication in the study patients. T bars indicate 95% confidence intervals. Abbreviation: INR, international normalized ratio. Reprinted with permission from New England Journal of Medicine.4 Copyright 1995, Massachusetts Medical Society.
Figure 2
Suggested approach to the acute stroke patient with atrial fibrillation. Abbreviations: CT, computed tomography; FFP, fresh frozen plasma; MRI, magnetic resonance imaging; NIH, National Institutes of Health; PCC, prothrombin complex concentrates.
Questions That Need To Be Answered
1. When can warfarin be safely started after an acute cardioembolic stroke?
2. Could heparin in lower doses be beneficial without the risk of bleeding?
3. Should we repeat thrombolysis in cases of re‐occlusion?
4. What is the role of other antithrombotic and antiplatelet agents in these patients?
References
  1. Mackay J,Mensah GA.The Atlas of Heart Disease and Stroke.Geneva, Switzerland:World Health Organization;2004.
  2. National Institute of Neurological Disorders and Stroke. NIH Stroke Scale. Available at: http://www.ninds.nih.gov/doctors/NIH_stroke_scale_booklet.pdf. Accessed January2008.
  3. Royal College of Physicians.National Clinical Guidelines for Stroke.2nd ed.Prepared by the Intercollegiate Stroke Working Party.London:RCP,2004.
  4. The European Atrial Fibrillation Trial Study Group.Optimal oral anticoagulant therapy in patients with nonrheumatic atrial fibrillation and recent cerebral ischemia.N Engl J Med.1995;333:510.
  5. Fang MC,Chang Y,Hylek EM, et al.Advanced age, anticoagulation intensity, and risk for intracranial hemorrhage among patients taking warfarin for atrial fibrillation.Ann Intern Med.2004;141(10):745752.
  6. Kalra L,Lip GY.Antithrombotic treatment in atrial fibrillation.Heart.2007;93(1):3944.
  7. Gage BF,Van Walraven C,Pearce L, et al.Selecting patients with atrial fibrillation for anticoagulation: stroke risk stratification in patients taking aspirin.Circulation.2004;110(16):22872292.
  8. Medi C,Hankey GJ,Freedman SB.Atrial fibrillation.Med J Aust.2007;186(4):197202.
  9. Adams HP,del Zoppo G,Alberts MJ, et al.Guidelines for the early management of adults with ischemic stroke. A guideline from the American Heart Association/American Stroke Association Stroke Council, Clinical Cardiology Council, Cardiovascular Radiology and Intervention Council, and the Atherosclerotic Peripheral Vascular Disease and Quality of Care Outcomes in Research Interdisciplinary Working Groups.Stroke.2007;38(5):16551711.
  10. Hermier M,Nighoghossian N,Derex L, et al.MRI of acute post‐ischemic cerebral hemorrhage in stroke patients: diagnosis with T2*‐weighted gradient‐echo sequences.Neuroradiology.2001;43(10):809815.
  11. Desal HA,Auffray‐Calvier E,Guillon B, et al.Emergency imaging of cerebrovascular accidents.J Neuroradiol.2004;31(4):327333.
  12. Broderick J,Connolly S,Feldmann E, et al.Guidelines for the management of spontaneous intracerebral hemorrhage in adults. 2007 update. A guideline from the American Heart Association, American Stroke Association Stroke Council, High Blood Pressure Research Council, and the Quality of Care and Outcomes in Research Interdisciplinary Working Group.Stroke.2007;38(6):20012023.
  13. Tan JC,Dillon WP,Liu S,Adler F,Smith WS,Wintermark M.Systematic comparison of perfusion‐CT and CT‐angiography in acute stroke patients.Ann Neurol.2007;61(6):533543.
  14. Albers GW,Amarenco P,Easton JD,Sacco RL,Teal P.Antithrombotic and thrombolytic therapy for ischemic stroke: the seventh ACCP conference on antithrombotic and thrombolytic therapy.Chest.2004;126(3 suppl):S483S512.
  15. Goldstein LB.Acute ischemic stroke treatment in 2007.Circulation.2007;116(13):15041514.
  16. Hsia AW,Sachdev HS,Tomlinson J,Hamilton SA,Tong DC.Efficacy of IV tissue plasminogen activator in acute stroke: does stroke subtype really matter?Neurology.2003;61(1):7175.
  17. Egan R,Clark W,Lutsep H,Nesbit G,Barnwell S,Kellogg J.Efficacy of intraarterial thrombolysis of basilar artery stroke.J Stroke Cerebrovasc Dis.1999;8(1):2227.
  18. Poncyljusz W,Falkowski A,Kojder I, et al.Treatment of acute ischemic brain infarction with the assistance of local intraarterial thrombolysis with recombinant tissue‐type plasminogen activator.Acta Radiol.2007;48(7):774780.
  19. Tountopoulou A,Ahl B,Weissenborn K,Becker H,Goetz F.Intra‐arterial thrombolysis using rt‐PA in patients with acute stroke due to vessel occlusion of anterior and/or posterior cerebral circulation.Neuroradiology.2008;50(1):7583.
  20. Graham GD.Tissue plasminogen activator for acute ischemic stroke in clinical practice: a meta‐analysis of safety data.Stroke.2003;34:28472850.
  21. Alexandrov AV,Grotta JC.Arterial reocclusion in stroke patients treated with intravenous tissue plasminogen activator.Neurology.2002;59:862867.
  22. Saqqur M,Uchino K,Demchuk AM, et al.Site of arterial occlusion identified by transcranial Doppler predicts the response to intravenous thrombolysis for stroke.Stroke.2007;38(3):948954.
  23. Wardlaw JM,Zoppo G,Yamaguchi T,Berge E.Thrombolysis for acute ischemic stroke.Cochrane Database Syst Rev.2003;(3):CD000213.
  24. Hacke W,Donnan G,Fieschi C, et al.Association of outcome with early stroke treatment: pooled analysis of ATLANTIS, ECASS, and NINDS rt‐PA stroke trials.Lancet.2004;363:768774.
  25. Smith MA,Shahar E,Doliszny KM,McGovern PG,Arnett DK,Luepker RV.Trends in medical care of hospitalized stroke patients between 1980 and 1990: the Minnesota stroke survey.J Stroke Cerebrovasc Dis.1998;7(1):7684.
  26. Berge E,Abdelnoor M,Nakstad PH,Sandset PM.Low molecular‐weight heparin versus aspirin in patients with acute ischaemic stroke and atrial fibrillation: a double‐blind randomized study. HAEST Study Group. Heparin in Acute Embolic Stroke Trial.Lancet.2000;355(9211):12051210.
  27. International Stroke Trial Collaborative Group.The International Stroke Trial (IST): a randomized trial of aspirin, subcutaneous heparin, both, or neither among 19435 patients with acute ischemic stroke.Lancet.1997;349(9065):15691581.
  28. Adams HP.Emergent use of anticoagulation for treatment of patients with ischemic stroke.Stroke.2002;33:856861.
  29. Paciaroni M,Agnelli G,Micheli S,Caso V.Efficacy and safety of anticoagulant treatment in acute cardioembolic stroke: a meta‐analysis of randomized controlled trials.Stroke.2007;38(2):423430.
  30. Dippel DW.The results of CAPRIE, IST and CAST. International Stroke Trial. Chinese Acute Stroke Trial.Thromb Res1998;92(1 suppl 1):S13S16.
  31. Van Kooten F,Ciabattoni G,Patrono C,Dippel DWJ,Koudstaal PJ.Platelet activation and lipid peroxidation in patients with acute ischemic stroke.Stroke.1997;28:15571563.
  32. Hylek M,Go AS,Chang Y, et al.Effect of intensity of oral anticoagulation on stroke severity and mortality in atrial fibrillation elaine.N Engl J Med.2003;349:10191026.
  33. Waldo AL,Becker RC,Tapson VF,Colgan KJ.Hospitalized patients with atrial fibrillation and a high risk of stroke are not being provided with adequate anticoagulation.J Am Coll Cardiol.2005;46(9):17291736.
  34. Ezekowitz MD,Levine JA.Preventing stroke in patients with atrial fibrillation.JAMA.1999;281(19):18301835.
  35. Hart RG,Palacio S.Atrial fibrillation, stroke, and acute antithrombotic therapy: analysis of randomized clinical trials.Stroke.2002;33(11):27222727.
  36. Freeman WD,Brott TG,Barrett KM, et al.Recombinant factor VIIa for rapid reversal of warfarin anticoagulation in acute intracranial hemorrhage.Mayo Clin Proc.2004;79(12):14951500.
  37. Bertram M,Bonsanto M,Hacke W,Schwab S.Managing the therapeutic dilemma: patients with spontaneous intracerebral hemorrhage and urgent need for anticoagulation.J Neurol.2000;247(3):209214.
  38. Brott T,Broderick J,Kothari R, et al.Early hemorrhage growth in patients with intracerebral hemorrhage.Stroke.1997;28:15.
  39. Van der Meer FJM,Rosendaal FR,Vanderbroucke JP.Bleeding complications in oral anticoagulant therapy: an analysis of risk factors.Arch Intern Med.1993;153:15571562.
  40. Rosand J,Hylek EM,O'Donnell HC,Greenberg SM.Warfarin‐associated hemorrhage and cerebral amyloid angiopathy: a genetic and pathologic study.Neurology.2000;55(7):947951.
  41. Hart RG,Kase CS,Freeman WD, et al.Treatment of warfarin‐associated intracerebral hemorrhage: literature review and expert opinion.Mayo Clinic Proc.2007;82(1):8292.
  42. Lankiewicz MW,Hays J,Friedman KD,Tinkoff G,Blatt PM.Urgent reversal of warfarin with prothrombin complex concentrate.J Thromb Haemost.2006;4(5):967970.
  43. Appelboam R,Thomas EO.The headache over warfarin in British neurosurgical intensive care units: a national survey of current practice.Intensive Care Med.2007;33(11):19461953.
  44. Goldstein JN,Thomas SH,Frontiero V, et al.Timing of fresh frozen plasma administration and rapid correction of coagulopathy in warfarin‐related intracerebral hemorrhage.Stroke.2006;37(1):151155.
  45. Lee SB,Manno EM,Layton KF,Wijdicks EF.Progression of warfarin‐associated intracerebral hemorrhage after INR normalization with FFP.Neurology.2006;67(7):12721274.
  46. Lorenz R,Kienast J,Otto U, et al.Successful emergency reversal of phenprocoumon anticoagulation with prothrombin complex concentrate: a prospective clinical study.Blood Coagul Fibrinolysis.2007;18(6):565570.
  47. O'Shaughnessy DF,Atterbury C,Maggs P, et al.Guidelines for the use of fresh‐frozen plasma, cryoprecipitate and cryosupernatant.Br J Hematol.2004;126(1):1128.
  48. Ansel J,Hirsh J,Poller L,Bussey H,Jacobson A,Hylek E.The pharmacology and management of vitamin K antagonists. The seventh ACCP conference on antithrombotic and thrombolytic therapy.Chest.2004;126:204s33s.
  49. Huttner HB,Schellinger PD,Hartmann M, et al.Hematoma growth and outcome in treated neurocritical care patients with intracerebral hemorrhage related to oral anticoagulant therapy. Comparison of acute treatment strategies using vitamin K, fresh frozen plasma, and prothrombin complex concentrates.Stroke.2006;37:1465.
  50. Dunn CJ,Spencer CM.Recombinant factor VIIa.BioDrugs.1999;12(1):7177.
  51. Diringer MN,Ferran JM,Broderick J, et al.Impact of recombinant activated factor VII on health‐related quality of life after intracerebral hemorrhage.Cerebrovasc Dis.2007;24(2–3):219225.
  52. Mayer SA,Brun NC,Broderick J, et al.Recombinant activated factor VII for acute intracerebral hemorrhage: US phase IIA trial.Neurocrit Care.2006;4(3):206214.
  53. Mendelow AD,Gregson BA,Fernandes HM, et al.Early surgery versus initial conservative treatment in patients with spontaneous supratentorial intracerebral haematomas in the International Surgical Trial in Intracerebral Haemorrhage (STICH): a randomised trial.Lancet.2005;365(9457):387397.
  54. Thompson KM,Gerlach SY,Jorn HK,Larson JM,Brott TG,Files JA.Advances in the care of patients with intracerebral hemorrhage.Mayo Clin Proc.2007;82(8):987990.
  55. Collice M,D'Aliberti G,Talamonti G,Bacigaluppi S.Surgery for intracerebral hemorrhage.Neurol Sci.2004;25:s10s11.
  56. Nishihara T,Morita A,Teraoka A,Kirino T.Endoscopy‐guided removal of spontaneous intracerebral hemorrhage: comparison with computer tomography‐guided stereotactic evacuation.Childs Nerv Syst.2007;23(6):677683.
  57. Thomassen L,Bakke SJ.Endovascular reperfusion therapy in acute ischaemic stroke.Acta Neurol Scand Suppl.2007;187:2229.
  58. Smith WS.Safety of mechanical thrombectomy and intravenous tissue plasminogen activator in acute ischemic stroke. Results of the multi Mechanical Embolus Removal in Cerebral Ischemia (MERCI) trial, part I.AJNR Am J Neuroradiol.2006;27(6):11771182.
  59. Blackshear JL,Odell JA.Appendage obliteration to reduce stroke in cardiac surgical patients with atrial fibrillation.Ann Thorac Surg.1996;61(2):755759.
  60. Bayard YL,Ostermayer SH,Hein R, et al.Percutaneous devices for stroke prevention.Cardiovasc Revasc Med.2007;8(3):216225.
  61. El‐Chami MF,Hoffman M,Lerakis S.Sealing the left atrial appendage: ready for prime time?Am J Med Sci.2007;333(5):285289.
  62. Sick PB,Schuler G,Hauptmann KE, et al.Initial worldwide experience with the WATCHMAN left atrial appendage system for stroke prevention in atrial fibrillation.J Am Coll Cardiol.2007;49(13):14901495.
  63. Onalan O,Crystal E.Left atrial appendage exclusion for stroke prevention in patients with nonrheumatic atrial fibrillation.Stroke.2007;38(2 suppl):624630.
  64. FDA News. FDA clears genetic lab test for warfarin sensitivity. Available at: http://www.fda.gov/bbs/topics/news/2007/new01701.html. Accessed January2008.
  65. Ndegwa S.Pharmacogenomics and warfarin therapy.Issues Emerg Health Technol.2007;(104):18.
  66. Ross OA,Worrall BB,Meschia JF.Advancing stroke therapeutics through genetic understanding.Curr Drug Targets.2007;8(7):850859.
Article PDF
Issue
Journal of Hospital Medicine - 3(4)
Page Number
326-332
Legacy Keywords
arrhythmias and pacemakers, evidence‐based medicine, intracranial hemorrhage, ischemic stroke, valvular heart disease
Sections
Article PDF
Article PDF

INITIAL EVALUATION

The approach to patients with acute stroke symptoms should always start with the stabilization of the airway, breathing, and circulation. A fast clinical investigation for possible mimickers of an acute stroke (head trauma, migraines, epilepsy, infection, hypoglycemia, other metabolic derangements, and intoxications) is the next step. The history and physical examination should be guided by the National Institutes of Health stroke scale, which has been widely accepted by the American Stroke Association (ASA), the American Academy of Neurology, and the National Institute of Neurological Disorders and Stroke.2, 9 Strict control of electrolytes, glucose, and fever, management of blood pressure depending on thetype of stroke, and prophylaxis for deep vein thrombosis/pulmonary embolism, aspiration, dehydration, hypoxemia, malnutrition, and pressure sores should be initiated.9, 10 All patients with suspected acute stroke must be promptly assessed for thrombolytic therapy on the basis of the time since onset of symptoms and the National Institutes of Health stroke scale. Noncontrast computed tomography of the brain is the first step for differentiating between ischemic and hemorrhagic events.3, 9 There is an increased interest in the use of magnetic resonance imaging to detect acute intracranial hemorrhage (ICH) and its ability to detect stroke earlier than computed tomography.911 Multimodal computed tomography and magnetic resonance imaging provide additional information that will improve the diagnosis of ischemic stroke, and they have been added as a class I recommendation to the most recent stroke guidelines.9, 12 Computed tomographic angiography and perfusion computed tomography may precisely describe details regarding the site of occlusion, infarct core, salvageable brain tissue, and collateral flow that can improve patient selection for intravenous or intra‐arterial thrombolysis and exclude stroke mimics.9, 13

ISCHEMIC STROKE

Thrombolysis

In the setting of acute ischemic stroke, the patient should be promptly evaluated for thrombolytic therapy according to the American College of Chest Physicians guidelines.14 Intravenous r‐TPA (recombinant tissue plasminogen activator) is given only to 1% to 2% of stroke patients in the United States. This low percentage is mainly due to delayed presentation to an emergency department beyond the 3‐hour treatment window.15 Clear benefit has been proven for eligible patients if thrombolytic therapy is administered within 3 hours from the initiation of symptoms, although no subgroup analysis has been done in patients with atrial fibrillation.9 The efficacy of intravenous thrombolysis within the 3‐hour time window is similar between different stroke subtypes; therefore, its administration should not be delayed in order to investigate its etiology.16 Intravenous thrombolysis remains the standard of care, but recent studies have demonstrated that intra‐arterial administration, despite its risks, may be more effective in selected patients.9, 1719 Patients most likely to benefit from intra‐arterial thrombolysis are those with middle cerebral artery occlusion of less than 6 hours (Prolyse in Acute Cerebral Thromboembolism Trials I and II) and patients with severe basilar artery stroke.17, 19 A recent study in Germany has demonstrated that intra‐arterial thrombolysis may be superior to intravenous thrombolysis in the 3‐ to 6‐hour treatment window.19 The updated 2007 guidelines from the American Heart Association (AHA)/ASA have included intra‐arterial thrombolysis for specific patients who are not eligible for intravenous thrombolysis when this can be performed at experienced stroke centers.9 Thrombolysis reduces overall disability and improves the quality of life in appropriately selected patients. The risk of hemorrhage is approximately 5.2%.20 After intravenous thrombolysis, approximately one‐third of patients ultimately develop re‐occlusion of the artery, especially patients with only partial recanalization. This may lead to neurologic deterioration and higher in‐hospital mortality.21 According to more recent studies, ultrasound‐enhanced thrombolysis may augment tissue plasminogen activator induced arterial recanalization by continuous transcranial Doppler.22 Symptomatic hemorrhagic transformation of the infarction remains the primary concern with the administration of intravenous rtTPA.23, 24 Despite the apparent risks of ICH, atrial fibrillation patients not on warfarin should always be promptly referred for thrombolysis whenever they are eligible.

Heparin

For many years, clinicians have believed in the role of heparin in patients with atrial fibrillation, especially after intracranial hemorrhage is excluded by negative initial noncontrast head computed tomography.25 The most obvious pathophysiologic mechanism in patients with atrial fibrillation is cardioembolism. Therefore, it was believed that heparin could contribute to the resolution of the responsible clot. Two large international trials (the Heparin in Acute Embolic Stroke Trial and the International Stroke Trial), confirmed by multiple smaller ones, have investigated the use of heparin (unfractionated or low‐molecular‐weight heparin) at therapeutic doses in the setting of an acute ischemic event.2628 Surprisingly, none of them showed a statistically significant benefit, but instead they showed a clear increase in hemorrhagic events. Therefore, routine use of unfractionated heparin or low‐molecular‐weight heparin at therapeutic doses should be avoided in the acute setting of a stroke.28, 29

Aspirin

Among the antiplatelet agents, aspirin is the only well‐studied agent for the treatment of acute ischemic stroke. It has been proven that during the first 24 hours after stroke, there is substantial platelet activation that can be inhibited by aspirin.30, 31 Two major trials, the Chinese Acute Stroke Trial and the International Stroke Trial, have demonstrated the benefit of early aspirin use in patients with stroke and atrial fibrillation.30 Both proved a decrease in recurrent stroke without a significant increase in hemorrhaging. The recommended dose of aspirin is 325 mg/day.9 Currently, clopidogrel alone or in combination with aspirin and the intravenous administration of antiplatelet agents that inhibit the glycoprotein IIb/IIIa receptor are class III recommendations. They should not be used outside the setting of clinical trials.9

Warfarin

It is well known that atrial fibrillation increases the risk of ischemic stroke by a factor of 5.32 Studies have shown that maintaining the INR above 2.0 decreases not only the frequency but also the severity and mortality of ischemic events.4, 8, 32 The National Anticoagulation Benchmark Outcomes Report has shown that in the highest risk atrial fibrillation patients, only 55% receive warfarin and 21% do not receive aspirin or warfarin.33 This discrepancy results from the fact that warfarin is the second most common drug, after insulin, responsible for adverse drug events in emergency room visits. In atrial fibrillation patients on warfarin who present to the emergency with an acute stroke, there are no clear guidelines regarding the continued use of warfarin at therapeutic doses (target INR = 2.03.0). Warfarin is usually not initiated in the acute setting until the patient is medically stable. The exact time at which warfarin can be started or resumed after an acute ischemic stroke remains to be determined.34 Usually, it is preferable to start it within 1 week after the event, given the risk of early recurrent acute stroke during the next 2 to 4 weeks after the initial stroke.35

HEMORRHAGIC STROKE/ICH

Introduction

The risk of spontaneous ICH is 0.15%/year in patients over 70 years old and increases to 0.3% to 0.8% when patients are on therapeutic doses of warfarin with INR between 2 and 3.36, 37 Given the multiple interactions of warfarin with other medications, this is a significant concern because ICH is associated with substantial neurological deterioration.38 Although most warfarin‐induced ICH occurs in patients with therapeutic INR, it becomes the most prevalent mechanism when the INR exceeds 5.0, and it should be highly suspected.1, 4 Therefore, prompt determination of INR is critical in the initial evaluation of acute stroke in patients with atrial fibrillation. Age is the most important predisposing factor for ICH in patients with atrial fibrillation. There is almost a 50% increase in warfarin‐induced bleeding for every decade of age above 40.39 Cerebral amyloid angiopathy plays an important role in warfarin‐associated lobar ICH in the elderly, and it may contribute to the patient candidacy for warfarin treatment in the near future.40 On the other hand, a hemorrhagic stroke can be an iatrogenic complication of initiation of warfarin, heparin, or early thrombolysis because symptomatic hemorrhagic transformation of the infarction is the main and most lethal side effect of intravenous rtTPA in the treatment of acute ischemic stroke.24 ICH is associated with a 30% to 50% mortality rate, and it represents the most lethal and least treatable form of stroke.32 It has been suggested that macroalbuminuria is an independent predictor of hemorrhagic transformation and particularly of severe hemorrhage in patients with acute ischemic stroke, but specific guidelines for screening or special management of those patients do not currently exist.33 ICH is a medical emergency with high mortality and should be recognized and treated promptly. Recently, the AHA and ASA have published updated guidelines for the management of spontaneous ICH in adults.12

Vitamin K

All experts agree that anticoagulation should be urgently reversed in the setting of ICH. Although high doses of intravenous vitamin K (1020 mg) are usually enough to reverse the anticoagulant effect of warfarin, it may take up to 12 to 24 hours to act, and it depends on intact liver function. Given the high mortality of this condition, vitamin K as monotherapy is considered inadequate, and a more aggressive approach is recommended.41

Fresh Frozen Plasma (FFP)

In the United States, for many years FFP has been considered the standard of care for the acute reversal of warfarin‐associated anticoagulation.42 In general, 10 to 15 cc/kg FFP is used.43 Timing rather than dosage seems to be more important for a better clinical outcome.44 The use of FFP is complicated by the delayed time for thawing and compatibility check, volume overload, and sometimes inadequate and unpredictable correction. The median time for door‐to‐INR normalization is 30 hours, which is a significant delay for such a potentially fatal condition. Another possible complication of FFP is the report of increasing hematomas.45

Prothrombin Complex Concentrates (PCCs)

PCCs contain vitamin K dependent coagulation factors II, VII, IX, and X, the factors deficient in warfarin therapy.44, 46 Therefore, a PCC dose of 25 to 59 U/kg has been used in life‐threatening bleeding, resulting in a decrease in the median INR from 3.8 to 1.3 immediately after administration.42 PCCs should always be given with vitamin K. Thrombotic events have been described with the infusion of PCCs, but no clear guidelines have been published.42 A recent study from the Mayo Clinic showed that many experts suggest its use in the urgent condition of warfarin‐associated ICH.41 PCCs are widely used in the European community and have previously been cited as the agent of choice for urgent warfarin reversal.42, 47, 48 A recent study comparing PCCs with FFP and vitamin K has demonstrated that PCCs may be superior to FFP and vitamin K by reducing the risk of hematoma growth.49

Recombinant Factor VIIa

Recombinant factor VIIa is a preparation of activated coagulation factor VII (factor VIIa) that is produced by recombinant DNA technology.50 It was initially used for the treatment of inhibitors in patients with hemophilia. It has also been used in the past to correct anticoagulation in patients with acute ICH,36 but most studies have been done in patients with hemophilia or factor VII deficiency.50 Major limitations include cost, prothrombotic potential, and lack of correction of other coagulation factors dependent on vitamin K. Studies have shown that factor VII may be a safe, rapid, and effective way of reversing anticoagulation and may offer an improved quality of life to patients with ICH.51, 52 Factor Seven for Acute Hemorrhagic Stroke Treatment, a large phase III trial, is in progress, but preliminary results are controversial regarding the reduction in the size of hemorrhage, mortality, and improvement of functional outcome.32 In a recent article from the Mayo Clinic,41 several experts on clinical stroke, neurologic intensive care, and hematology suggest its use, alone or with FFP, for the urgent reversal of INR in the clinical setting of warfarin‐associated ICH. Currently, according to the 2007 AHA/ASA updated guidelines, recombinant factor VIIa can be administered within the first 3 to 4 hours after onset of ICH to slow progression of bleeding, although its efficacy and safety remain to be confirmed (class IIb recommendation).12

Surgical Evacuation

Despite the clear guidelines for the indications of surgery in spontaneous intracranial bleeding,12 the role of surgical evacuation in patients with supratherapeutic INR is not well defined. Many neurosurgeons are reluctant to operate in the setting of impaired hemostasis. The International Surgical Trial in Intracerebral Hemorrhage showed no clear benefit of early neurosurgical intervention compared to conservative treatment.53 Different surgical trials have shown different outcomes.54 The selection of patients who would benefit from surgery depends on the location and size of the hemorrhage, coagulation status, and Glasgow Coma Scale.55 Patients with rapidly expanding hematomas in a surgically accessible intracranial territory are more likely to benefit from a neurosurgical intervention. Newer surgical techniques with a computed‐tomography‐guided stereotactic approach or endoscopy‐guided evacuation in emerging ICH may offer better outcomes.56

RECENT ADVANCES

Mechanical Embolectomy

Mechanical embolectomy is a growing field of neurology with a promising interventional approach to the treatment of embolic strokes.57, 58 Patients with atrial fibrillation will probably be one of the patient groups who will receive maximum benefit when the efficacy and safety of the procedure are established. Endovascular reperfusion via mechanical embolectomy is offered to patients who are ineligible for thrombolytics, and it extends the time window up to 8 hours.58 For the first time, in 2007 the AHA/ASA guidelines have included the Mechanical Embolus Removal in Cerebral Ischemia device as a reasonable intervention for extraction of intra‐arterial thrombi in carefully selected patients.9

Left Atrial Appendage (LAA) Occlusion

The LAA is the source of 91% of embolic thrombi in patients with atrial fibrillation.59 Therefore, surgical or percutaneous removal or occlusion of the LAA would be an important treatment option, especially in high‐risk patients intolerant of warfarin or with recurrent strokes, despite anticoagulation. Several surgical techniques and percutaneous LAA occlusion devices have been studied with different success rates and safety characteristics.6063 Currently, there are no official guidelines for the use of those interventions.

Genetic Testing for Warfarin Sensitivity

Warfarin is the second most common drug, after insulin, to require emergency room visits for adverse drug events. In September 2007, the Food and Drug Administration approved the Nanosphere Verigene Warfarin Metabolism Nucleic Acid Test, which detects variants of 2 genes (CYP2C9 and VKORC1) implicated in the unexpected response to warfarin.6466 Guidelines for the applied use of these tests are currently under development.66

CONCLUSION

On average, there is a new stroke every 45 seconds, and every 3 to 4 minutes, someone dies from a stroke in the United States. Atrial fibrillation accounts for one‐fourth of all strokes in the elderly population. Acute stroke in anticoagulated patients with atrial fibrillation is a common, challenging scenario in emergency departments because many questions remain unanswered (Table 1). A special and prompt approach from the clinician is needed to achieve effective management and avoid potentially fatal complications (Figure 2). Many hospitals in the United States have formed stroke teams to ensure prompt clinical and radiographic assessment of stroke patients. Only early recognition of cardioembolic or hemorrhagic strokes in atrial fibrillation patients can lead to aggressive management of this potentially fatal and disabling condition.

Figure 1
INR‐specific incidence rates for the occurrence of a first ischemic or hemorrhagic complication in the study patients. T bars indicate 95% confidence intervals. Abbreviation: INR, international normalized ratio. Reprinted with permission from New England Journal of Medicine.4 Copyright 1995, Massachusetts Medical Society.
Figure 2
Suggested approach to the acute stroke patient with atrial fibrillation. Abbreviations: CT, computed tomography; FFP, fresh frozen plasma; MRI, magnetic resonance imaging; NIH, National Institutes of Health; PCC, prothrombin complex concentrates.
Questions That Need To Be Answered
1. When can warfarin be safely started after an acute cardioembolic stroke?
2. Could heparin in lower doses be beneficial without the risk of bleeding?
3. Should we repeat thrombolysis in cases of re‐occlusion?
4. What is the role of other antithrombotic and antiplatelet agents in these patients?

INITIAL EVALUATION

The approach to patients with acute stroke symptoms should always start with the stabilization of the airway, breathing, and circulation. A fast clinical investigation for possible mimickers of an acute stroke (head trauma, migraines, epilepsy, infection, hypoglycemia, other metabolic derangements, and intoxications) is the next step. The history and physical examination should be guided by the National Institutes of Health stroke scale, which has been widely accepted by the American Stroke Association (ASA), the American Academy of Neurology, and the National Institute of Neurological Disorders and Stroke.2, 9 Strict control of electrolytes, glucose, and fever, management of blood pressure depending on thetype of stroke, and prophylaxis for deep vein thrombosis/pulmonary embolism, aspiration, dehydration, hypoxemia, malnutrition, and pressure sores should be initiated.9, 10 All patients with suspected acute stroke must be promptly assessed for thrombolytic therapy on the basis of the time since onset of symptoms and the National Institutes of Health stroke scale. Noncontrast computed tomography of the brain is the first step for differentiating between ischemic and hemorrhagic events.3, 9 There is an increased interest in the use of magnetic resonance imaging to detect acute intracranial hemorrhage (ICH) and its ability to detect stroke earlier than computed tomography.911 Multimodal computed tomography and magnetic resonance imaging provide additional information that will improve the diagnosis of ischemic stroke, and they have been added as a class I recommendation to the most recent stroke guidelines.9, 12 Computed tomographic angiography and perfusion computed tomography may precisely describe details regarding the site of occlusion, infarct core, salvageable brain tissue, and collateral flow that can improve patient selection for intravenous or intra‐arterial thrombolysis and exclude stroke mimics.9, 13

ISCHEMIC STROKE

Thrombolysis

In the setting of acute ischemic stroke, the patient should be promptly evaluated for thrombolytic therapy according to the American College of Chest Physicians guidelines.14 Intravenous r‐TPA (recombinant tissue plasminogen activator) is given only to 1% to 2% of stroke patients in the United States. This low percentage is mainly due to delayed presentation to an emergency department beyond the 3‐hour treatment window.15 Clear benefit has been proven for eligible patients if thrombolytic therapy is administered within 3 hours from the initiation of symptoms, although no subgroup analysis has been done in patients with atrial fibrillation.9 The efficacy of intravenous thrombolysis within the 3‐hour time window is similar between different stroke subtypes; therefore, its administration should not be delayed in order to investigate its etiology.16 Intravenous thrombolysis remains the standard of care, but recent studies have demonstrated that intra‐arterial administration, despite its risks, may be more effective in selected patients.9, 1719 Patients most likely to benefit from intra‐arterial thrombolysis are those with middle cerebral artery occlusion of less than 6 hours (Prolyse in Acute Cerebral Thromboembolism Trials I and II) and patients with severe basilar artery stroke.17, 19 A recent study in Germany has demonstrated that intra‐arterial thrombolysis may be superior to intravenous thrombolysis in the 3‐ to 6‐hour treatment window.19 The updated 2007 guidelines from the American Heart Association (AHA)/ASA have included intra‐arterial thrombolysis for specific patients who are not eligible for intravenous thrombolysis when this can be performed at experienced stroke centers.9 Thrombolysis reduces overall disability and improves the quality of life in appropriately selected patients. The risk of hemorrhage is approximately 5.2%.20 After intravenous thrombolysis, approximately one‐third of patients ultimately develop re‐occlusion of the artery, especially patients with only partial recanalization. This may lead to neurologic deterioration and higher in‐hospital mortality.21 According to more recent studies, ultrasound‐enhanced thrombolysis may augment tissue plasminogen activator induced arterial recanalization by continuous transcranial Doppler.22 Symptomatic hemorrhagic transformation of the infarction remains the primary concern with the administration of intravenous rtTPA.23, 24 Despite the apparent risks of ICH, atrial fibrillation patients not on warfarin should always be promptly referred for thrombolysis whenever they are eligible.

Heparin

For many years, clinicians have believed in the role of heparin in patients with atrial fibrillation, especially after intracranial hemorrhage is excluded by negative initial noncontrast head computed tomography.25 The most obvious pathophysiologic mechanism in patients with atrial fibrillation is cardioembolism. Therefore, it was believed that heparin could contribute to the resolution of the responsible clot. Two large international trials (the Heparin in Acute Embolic Stroke Trial and the International Stroke Trial), confirmed by multiple smaller ones, have investigated the use of heparin (unfractionated or low‐molecular‐weight heparin) at therapeutic doses in the setting of an acute ischemic event.2628 Surprisingly, none of them showed a statistically significant benefit, but instead they showed a clear increase in hemorrhagic events. Therefore, routine use of unfractionated heparin or low‐molecular‐weight heparin at therapeutic doses should be avoided in the acute setting of a stroke.28, 29

Aspirin

Among the antiplatelet agents, aspirin is the only well‐studied agent for the treatment of acute ischemic stroke. It has been proven that during the first 24 hours after stroke, there is substantial platelet activation that can be inhibited by aspirin.30, 31 Two major trials, the Chinese Acute Stroke Trial and the International Stroke Trial, have demonstrated the benefit of early aspirin use in patients with stroke and atrial fibrillation.30 Both proved a decrease in recurrent stroke without a significant increase in hemorrhaging. The recommended dose of aspirin is 325 mg/day.9 Currently, clopidogrel alone or in combination with aspirin and the intravenous administration of antiplatelet agents that inhibit the glycoprotein IIb/IIIa receptor are class III recommendations. They should not be used outside the setting of clinical trials.9

Warfarin

It is well known that atrial fibrillation increases the risk of ischemic stroke by a factor of 5.32 Studies have shown that maintaining the INR above 2.0 decreases not only the frequency but also the severity and mortality of ischemic events.4, 8, 32 The National Anticoagulation Benchmark Outcomes Report has shown that in the highest risk atrial fibrillation patients, only 55% receive warfarin and 21% do not receive aspirin or warfarin.33 This discrepancy results from the fact that warfarin is the second most common drug, after insulin, responsible for adverse drug events in emergency room visits. In atrial fibrillation patients on warfarin who present to the emergency with an acute stroke, there are no clear guidelines regarding the continued use of warfarin at therapeutic doses (target INR = 2.03.0). Warfarin is usually not initiated in the acute setting until the patient is medically stable. The exact time at which warfarin can be started or resumed after an acute ischemic stroke remains to be determined.34 Usually, it is preferable to start it within 1 week after the event, given the risk of early recurrent acute stroke during the next 2 to 4 weeks after the initial stroke.35

HEMORRHAGIC STROKE/ICH

Introduction

The risk of spontaneous ICH is 0.15%/year in patients over 70 years old and increases to 0.3% to 0.8% when patients are on therapeutic doses of warfarin with INR between 2 and 3.36, 37 Given the multiple interactions of warfarin with other medications, this is a significant concern because ICH is associated with substantial neurological deterioration.38 Although most warfarin‐induced ICH occurs in patients with therapeutic INR, it becomes the most prevalent mechanism when the INR exceeds 5.0, and it should be highly suspected.1, 4 Therefore, prompt determination of INR is critical in the initial evaluation of acute stroke in patients with atrial fibrillation. Age is the most important predisposing factor for ICH in patients with atrial fibrillation. There is almost a 50% increase in warfarin‐induced bleeding for every decade of age above 40.39 Cerebral amyloid angiopathy plays an important role in warfarin‐associated lobar ICH in the elderly, and it may contribute to the patient candidacy for warfarin treatment in the near future.40 On the other hand, a hemorrhagic stroke can be an iatrogenic complication of initiation of warfarin, heparin, or early thrombolysis because symptomatic hemorrhagic transformation of the infarction is the main and most lethal side effect of intravenous rtTPA in the treatment of acute ischemic stroke.24 ICH is associated with a 30% to 50% mortality rate, and it represents the most lethal and least treatable form of stroke.32 It has been suggested that macroalbuminuria is an independent predictor of hemorrhagic transformation and particularly of severe hemorrhage in patients with acute ischemic stroke, but specific guidelines for screening or special management of those patients do not currently exist.33 ICH is a medical emergency with high mortality and should be recognized and treated promptly. Recently, the AHA and ASA have published updated guidelines for the management of spontaneous ICH in adults.12

Vitamin K

All experts agree that anticoagulation should be urgently reversed in the setting of ICH. Although high doses of intravenous vitamin K (1020 mg) are usually enough to reverse the anticoagulant effect of warfarin, it may take up to 12 to 24 hours to act, and it depends on intact liver function. Given the high mortality of this condition, vitamin K as monotherapy is considered inadequate, and a more aggressive approach is recommended.41

Fresh Frozen Plasma (FFP)

In the United States, for many years FFP has been considered the standard of care for the acute reversal of warfarin‐associated anticoagulation.42 In general, 10 to 15 cc/kg FFP is used.43 Timing rather than dosage seems to be more important for a better clinical outcome.44 The use of FFP is complicated by the delayed time for thawing and compatibility check, volume overload, and sometimes inadequate and unpredictable correction. The median time for door‐to‐INR normalization is 30 hours, which is a significant delay for such a potentially fatal condition. Another possible complication of FFP is the report of increasing hematomas.45

Prothrombin Complex Concentrates (PCCs)

PCCs contain vitamin K dependent coagulation factors II, VII, IX, and X, the factors deficient in warfarin therapy.44, 46 Therefore, a PCC dose of 25 to 59 U/kg has been used in life‐threatening bleeding, resulting in a decrease in the median INR from 3.8 to 1.3 immediately after administration.42 PCCs should always be given with vitamin K. Thrombotic events have been described with the infusion of PCCs, but no clear guidelines have been published.42 A recent study from the Mayo Clinic showed that many experts suggest its use in the urgent condition of warfarin‐associated ICH.41 PCCs are widely used in the European community and have previously been cited as the agent of choice for urgent warfarin reversal.42, 47, 48 A recent study comparing PCCs with FFP and vitamin K has demonstrated that PCCs may be superior to FFP and vitamin K by reducing the risk of hematoma growth.49

Recombinant Factor VIIa

Recombinant factor VIIa is a preparation of activated coagulation factor VII (factor VIIa) that is produced by recombinant DNA technology.50 It was initially used for the treatment of inhibitors in patients with hemophilia. It has also been used in the past to correct anticoagulation in patients with acute ICH,36 but most studies have been done in patients with hemophilia or factor VII deficiency.50 Major limitations include cost, prothrombotic potential, and lack of correction of other coagulation factors dependent on vitamin K. Studies have shown that factor VII may be a safe, rapid, and effective way of reversing anticoagulation and may offer an improved quality of life to patients with ICH.51, 52 Factor Seven for Acute Hemorrhagic Stroke Treatment, a large phase III trial, is in progress, but preliminary results are controversial regarding the reduction in the size of hemorrhage, mortality, and improvement of functional outcome.32 In a recent article from the Mayo Clinic,41 several experts on clinical stroke, neurologic intensive care, and hematology suggest its use, alone or with FFP, for the urgent reversal of INR in the clinical setting of warfarin‐associated ICH. Currently, according to the 2007 AHA/ASA updated guidelines, recombinant factor VIIa can be administered within the first 3 to 4 hours after onset of ICH to slow progression of bleeding, although its efficacy and safety remain to be confirmed (class IIb recommendation).12

Surgical Evacuation

Despite the clear guidelines for the indications of surgery in spontaneous intracranial bleeding,12 the role of surgical evacuation in patients with supratherapeutic INR is not well defined. Many neurosurgeons are reluctant to operate in the setting of impaired hemostasis. The International Surgical Trial in Intracerebral Hemorrhage showed no clear benefit of early neurosurgical intervention compared to conservative treatment.53 Different surgical trials have shown different outcomes.54 The selection of patients who would benefit from surgery depends on the location and size of the hemorrhage, coagulation status, and Glasgow Coma Scale.55 Patients with rapidly expanding hematomas in a surgically accessible intracranial territory are more likely to benefit from a neurosurgical intervention. Newer surgical techniques with a computed‐tomography‐guided stereotactic approach or endoscopy‐guided evacuation in emerging ICH may offer better outcomes.56

RECENT ADVANCES

Mechanical Embolectomy

Mechanical embolectomy is a growing field of neurology with a promising interventional approach to the treatment of embolic strokes.57, 58 Patients with atrial fibrillation will probably be one of the patient groups who will receive maximum benefit when the efficacy and safety of the procedure are established. Endovascular reperfusion via mechanical embolectomy is offered to patients who are ineligible for thrombolytics, and it extends the time window up to 8 hours.58 For the first time, in 2007 the AHA/ASA guidelines have included the Mechanical Embolus Removal in Cerebral Ischemia device as a reasonable intervention for extraction of intra‐arterial thrombi in carefully selected patients.9

Left Atrial Appendage (LAA) Occlusion

The LAA is the source of 91% of embolic thrombi in patients with atrial fibrillation.59 Therefore, surgical or percutaneous removal or occlusion of the LAA would be an important treatment option, especially in high‐risk patients intolerant of warfarin or with recurrent strokes, despite anticoagulation. Several surgical techniques and percutaneous LAA occlusion devices have been studied with different success rates and safety characteristics.6063 Currently, there are no official guidelines for the use of those interventions.

Genetic Testing for Warfarin Sensitivity

Warfarin is the second most common drug, after insulin, to require emergency room visits for adverse drug events. In September 2007, the Food and Drug Administration approved the Nanosphere Verigene Warfarin Metabolism Nucleic Acid Test, which detects variants of 2 genes (CYP2C9 and VKORC1) implicated in the unexpected response to warfarin.6466 Guidelines for the applied use of these tests are currently under development.66

CONCLUSION

On average, there is a new stroke every 45 seconds, and every 3 to 4 minutes, someone dies from a stroke in the United States. Atrial fibrillation accounts for one‐fourth of all strokes in the elderly population. Acute stroke in anticoagulated patients with atrial fibrillation is a common, challenging scenario in emergency departments because many questions remain unanswered (Table 1). A special and prompt approach from the clinician is needed to achieve effective management and avoid potentially fatal complications (Figure 2). Many hospitals in the United States have formed stroke teams to ensure prompt clinical and radiographic assessment of stroke patients. Only early recognition of cardioembolic or hemorrhagic strokes in atrial fibrillation patients can lead to aggressive management of this potentially fatal and disabling condition.

Figure 1
INR‐specific incidence rates for the occurrence of a first ischemic or hemorrhagic complication in the study patients. T bars indicate 95% confidence intervals. Abbreviation: INR, international normalized ratio. Reprinted with permission from New England Journal of Medicine.4 Copyright 1995, Massachusetts Medical Society.
Figure 2
Suggested approach to the acute stroke patient with atrial fibrillation. Abbreviations: CT, computed tomography; FFP, fresh frozen plasma; MRI, magnetic resonance imaging; NIH, National Institutes of Health; PCC, prothrombin complex concentrates.
Questions That Need To Be Answered
1. When can warfarin be safely started after an acute cardioembolic stroke?
2. Could heparin in lower doses be beneficial without the risk of bleeding?
3. Should we repeat thrombolysis in cases of re‐occlusion?
4. What is the role of other antithrombotic and antiplatelet agents in these patients?
References
  1. Mackay J,Mensah GA.The Atlas of Heart Disease and Stroke.Geneva, Switzerland:World Health Organization;2004.
  2. National Institute of Neurological Disorders and Stroke. NIH Stroke Scale. Available at: http://www.ninds.nih.gov/doctors/NIH_stroke_scale_booklet.pdf. Accessed January2008.
  3. Royal College of Physicians.National Clinical Guidelines for Stroke.2nd ed.Prepared by the Intercollegiate Stroke Working Party.London:RCP,2004.
  4. The European Atrial Fibrillation Trial Study Group.Optimal oral anticoagulant therapy in patients with nonrheumatic atrial fibrillation and recent cerebral ischemia.N Engl J Med.1995;333:510.
  5. Fang MC,Chang Y,Hylek EM, et al.Advanced age, anticoagulation intensity, and risk for intracranial hemorrhage among patients taking warfarin for atrial fibrillation.Ann Intern Med.2004;141(10):745752.
  6. Kalra L,Lip GY.Antithrombotic treatment in atrial fibrillation.Heart.2007;93(1):3944.
  7. Gage BF,Van Walraven C,Pearce L, et al.Selecting patients with atrial fibrillation for anticoagulation: stroke risk stratification in patients taking aspirin.Circulation.2004;110(16):22872292.
  8. Medi C,Hankey GJ,Freedman SB.Atrial fibrillation.Med J Aust.2007;186(4):197202.
  9. Adams HP,del Zoppo G,Alberts MJ, et al.Guidelines for the early management of adults with ischemic stroke. A guideline from the American Heart Association/American Stroke Association Stroke Council, Clinical Cardiology Council, Cardiovascular Radiology and Intervention Council, and the Atherosclerotic Peripheral Vascular Disease and Quality of Care Outcomes in Research Interdisciplinary Working Groups.Stroke.2007;38(5):16551711.
  10. Hermier M,Nighoghossian N,Derex L, et al.MRI of acute post‐ischemic cerebral hemorrhage in stroke patients: diagnosis with T2*‐weighted gradient‐echo sequences.Neuroradiology.2001;43(10):809815.
  11. Desal HA,Auffray‐Calvier E,Guillon B, et al.Emergency imaging of cerebrovascular accidents.J Neuroradiol.2004;31(4):327333.
  12. Broderick J,Connolly S,Feldmann E, et al.Guidelines for the management of spontaneous intracerebral hemorrhage in adults. 2007 update. A guideline from the American Heart Association, American Stroke Association Stroke Council, High Blood Pressure Research Council, and the Quality of Care and Outcomes in Research Interdisciplinary Working Group.Stroke.2007;38(6):20012023.
  13. Tan JC,Dillon WP,Liu S,Adler F,Smith WS,Wintermark M.Systematic comparison of perfusion‐CT and CT‐angiography in acute stroke patients.Ann Neurol.2007;61(6):533543.
  14. Albers GW,Amarenco P,Easton JD,Sacco RL,Teal P.Antithrombotic and thrombolytic therapy for ischemic stroke: the seventh ACCP conference on antithrombotic and thrombolytic therapy.Chest.2004;126(3 suppl):S483S512.
  15. Goldstein LB.Acute ischemic stroke treatment in 2007.Circulation.2007;116(13):15041514.
  16. Hsia AW,Sachdev HS,Tomlinson J,Hamilton SA,Tong DC.Efficacy of IV tissue plasminogen activator in acute stroke: does stroke subtype really matter?Neurology.2003;61(1):7175.
  17. Egan R,Clark W,Lutsep H,Nesbit G,Barnwell S,Kellogg J.Efficacy of intraarterial thrombolysis of basilar artery stroke.J Stroke Cerebrovasc Dis.1999;8(1):2227.
  18. Poncyljusz W,Falkowski A,Kojder I, et al.Treatment of acute ischemic brain infarction with the assistance of local intraarterial thrombolysis with recombinant tissue‐type plasminogen activator.Acta Radiol.2007;48(7):774780.
  19. Tountopoulou A,Ahl B,Weissenborn K,Becker H,Goetz F.Intra‐arterial thrombolysis using rt‐PA in patients with acute stroke due to vessel occlusion of anterior and/or posterior cerebral circulation.Neuroradiology.2008;50(1):7583.
  20. Graham GD.Tissue plasminogen activator for acute ischemic stroke in clinical practice: a meta‐analysis of safety data.Stroke.2003;34:28472850.
  21. Alexandrov AV,Grotta JC.Arterial reocclusion in stroke patients treated with intravenous tissue plasminogen activator.Neurology.2002;59:862867.
  22. Saqqur M,Uchino K,Demchuk AM, et al.Site of arterial occlusion identified by transcranial Doppler predicts the response to intravenous thrombolysis for stroke.Stroke.2007;38(3):948954.
  23. Wardlaw JM,Zoppo G,Yamaguchi T,Berge E.Thrombolysis for acute ischemic stroke.Cochrane Database Syst Rev.2003;(3):CD000213.
  24. Hacke W,Donnan G,Fieschi C, et al.Association of outcome with early stroke treatment: pooled analysis of ATLANTIS, ECASS, and NINDS rt‐PA stroke trials.Lancet.2004;363:768774.
  25. Smith MA,Shahar E,Doliszny KM,McGovern PG,Arnett DK,Luepker RV.Trends in medical care of hospitalized stroke patients between 1980 and 1990: the Minnesota stroke survey.J Stroke Cerebrovasc Dis.1998;7(1):7684.
  26. Berge E,Abdelnoor M,Nakstad PH,Sandset PM.Low molecular‐weight heparin versus aspirin in patients with acute ischaemic stroke and atrial fibrillation: a double‐blind randomized study. HAEST Study Group. Heparin in Acute Embolic Stroke Trial.Lancet.2000;355(9211):12051210.
  27. International Stroke Trial Collaborative Group.The International Stroke Trial (IST): a randomized trial of aspirin, subcutaneous heparin, both, or neither among 19435 patients with acute ischemic stroke.Lancet.1997;349(9065):15691581.
  28. Adams HP.Emergent use of anticoagulation for treatment of patients with ischemic stroke.Stroke.2002;33:856861.
  29. Paciaroni M,Agnelli G,Micheli S,Caso V.Efficacy and safety of anticoagulant treatment in acute cardioembolic stroke: a meta‐analysis of randomized controlled trials.Stroke.2007;38(2):423430.
  30. Dippel DW.The results of CAPRIE, IST and CAST. International Stroke Trial. Chinese Acute Stroke Trial.Thromb Res1998;92(1 suppl 1):S13S16.
  31. Van Kooten F,Ciabattoni G,Patrono C,Dippel DWJ,Koudstaal PJ.Platelet activation and lipid peroxidation in patients with acute ischemic stroke.Stroke.1997;28:15571563.
  32. Hylek M,Go AS,Chang Y, et al.Effect of intensity of oral anticoagulation on stroke severity and mortality in atrial fibrillation elaine.N Engl J Med.2003;349:10191026.
  33. Waldo AL,Becker RC,Tapson VF,Colgan KJ.Hospitalized patients with atrial fibrillation and a high risk of stroke are not being provided with adequate anticoagulation.J Am Coll Cardiol.2005;46(9):17291736.
  34. Ezekowitz MD,Levine JA.Preventing stroke in patients with atrial fibrillation.JAMA.1999;281(19):18301835.
  35. Hart RG,Palacio S.Atrial fibrillation, stroke, and acute antithrombotic therapy: analysis of randomized clinical trials.Stroke.2002;33(11):27222727.
  36. Freeman WD,Brott TG,Barrett KM, et al.Recombinant factor VIIa for rapid reversal of warfarin anticoagulation in acute intracranial hemorrhage.Mayo Clin Proc.2004;79(12):14951500.
  37. Bertram M,Bonsanto M,Hacke W,Schwab S.Managing the therapeutic dilemma: patients with spontaneous intracerebral hemorrhage and urgent need for anticoagulation.J Neurol.2000;247(3):209214.
  38. Brott T,Broderick J,Kothari R, et al.Early hemorrhage growth in patients with intracerebral hemorrhage.Stroke.1997;28:15.
  39. Van der Meer FJM,Rosendaal FR,Vanderbroucke JP.Bleeding complications in oral anticoagulant therapy: an analysis of risk factors.Arch Intern Med.1993;153:15571562.
  40. Rosand J,Hylek EM,O'Donnell HC,Greenberg SM.Warfarin‐associated hemorrhage and cerebral amyloid angiopathy: a genetic and pathologic study.Neurology.2000;55(7):947951.
  41. Hart RG,Kase CS,Freeman WD, et al.Treatment of warfarin‐associated intracerebral hemorrhage: literature review and expert opinion.Mayo Clinic Proc.2007;82(1):8292.
  42. Lankiewicz MW,Hays J,Friedman KD,Tinkoff G,Blatt PM.Urgent reversal of warfarin with prothrombin complex concentrate.J Thromb Haemost.2006;4(5):967970.
  43. Appelboam R,Thomas EO.The headache over warfarin in British neurosurgical intensive care units: a national survey of current practice.Intensive Care Med.2007;33(11):19461953.
  44. Goldstein JN,Thomas SH,Frontiero V, et al.Timing of fresh frozen plasma administration and rapid correction of coagulopathy in warfarin‐related intracerebral hemorrhage.Stroke.2006;37(1):151155.
  45. Lee SB,Manno EM,Layton KF,Wijdicks EF.Progression of warfarin‐associated intracerebral hemorrhage after INR normalization with FFP.Neurology.2006;67(7):12721274.
  46. Lorenz R,Kienast J,Otto U, et al.Successful emergency reversal of phenprocoumon anticoagulation with prothrombin complex concentrate: a prospective clinical study.Blood Coagul Fibrinolysis.2007;18(6):565570.
  47. O'Shaughnessy DF,Atterbury C,Maggs P, et al.Guidelines for the use of fresh‐frozen plasma, cryoprecipitate and cryosupernatant.Br J Hematol.2004;126(1):1128.
  48. Ansel J,Hirsh J,Poller L,Bussey H,Jacobson A,Hylek E.The pharmacology and management of vitamin K antagonists. The seventh ACCP conference on antithrombotic and thrombolytic therapy.Chest.2004;126:204s33s.
  49. Huttner HB,Schellinger PD,Hartmann M, et al.Hematoma growth and outcome in treated neurocritical care patients with intracerebral hemorrhage related to oral anticoagulant therapy. Comparison of acute treatment strategies using vitamin K, fresh frozen plasma, and prothrombin complex concentrates.Stroke.2006;37:1465.
  50. Dunn CJ,Spencer CM.Recombinant factor VIIa.BioDrugs.1999;12(1):7177.
  51. Diringer MN,Ferran JM,Broderick J, et al.Impact of recombinant activated factor VII on health‐related quality of life after intracerebral hemorrhage.Cerebrovasc Dis.2007;24(2–3):219225.
  52. Mayer SA,Brun NC,Broderick J, et al.Recombinant activated factor VII for acute intracerebral hemorrhage: US phase IIA trial.Neurocrit Care.2006;4(3):206214.
  53. Mendelow AD,Gregson BA,Fernandes HM, et al.Early surgery versus initial conservative treatment in patients with spontaneous supratentorial intracerebral haematomas in the International Surgical Trial in Intracerebral Haemorrhage (STICH): a randomised trial.Lancet.2005;365(9457):387397.
  54. Thompson KM,Gerlach SY,Jorn HK,Larson JM,Brott TG,Files JA.Advances in the care of patients with intracerebral hemorrhage.Mayo Clin Proc.2007;82(8):987990.
  55. Collice M,D'Aliberti G,Talamonti G,Bacigaluppi S.Surgery for intracerebral hemorrhage.Neurol Sci.2004;25:s10s11.
  56. Nishihara T,Morita A,Teraoka A,Kirino T.Endoscopy‐guided removal of spontaneous intracerebral hemorrhage: comparison with computer tomography‐guided stereotactic evacuation.Childs Nerv Syst.2007;23(6):677683.
  57. Thomassen L,Bakke SJ.Endovascular reperfusion therapy in acute ischaemic stroke.Acta Neurol Scand Suppl.2007;187:2229.
  58. Smith WS.Safety of mechanical thrombectomy and intravenous tissue plasminogen activator in acute ischemic stroke. Results of the multi Mechanical Embolus Removal in Cerebral Ischemia (MERCI) trial, part I.AJNR Am J Neuroradiol.2006;27(6):11771182.
  59. Blackshear JL,Odell JA.Appendage obliteration to reduce stroke in cardiac surgical patients with atrial fibrillation.Ann Thorac Surg.1996;61(2):755759.
  60. Bayard YL,Ostermayer SH,Hein R, et al.Percutaneous devices for stroke prevention.Cardiovasc Revasc Med.2007;8(3):216225.
  61. El‐Chami MF,Hoffman M,Lerakis S.Sealing the left atrial appendage: ready for prime time?Am J Med Sci.2007;333(5):285289.
  62. Sick PB,Schuler G,Hauptmann KE, et al.Initial worldwide experience with the WATCHMAN left atrial appendage system for stroke prevention in atrial fibrillation.J Am Coll Cardiol.2007;49(13):14901495.
  63. Onalan O,Crystal E.Left atrial appendage exclusion for stroke prevention in patients with nonrheumatic atrial fibrillation.Stroke.2007;38(2 suppl):624630.
  64. FDA News. FDA clears genetic lab test for warfarin sensitivity. Available at: http://www.fda.gov/bbs/topics/news/2007/new01701.html. Accessed January2008.
  65. Ndegwa S.Pharmacogenomics and warfarin therapy.Issues Emerg Health Technol.2007;(104):18.
  66. Ross OA,Worrall BB,Meschia JF.Advancing stroke therapeutics through genetic understanding.Curr Drug Targets.2007;8(7):850859.
References
  1. Mackay J,Mensah GA.The Atlas of Heart Disease and Stroke.Geneva, Switzerland:World Health Organization;2004.
  2. National Institute of Neurological Disorders and Stroke. NIH Stroke Scale. Available at: http://www.ninds.nih.gov/doctors/NIH_stroke_scale_booklet.pdf. Accessed January2008.
  3. Royal College of Physicians.National Clinical Guidelines for Stroke.2nd ed.Prepared by the Intercollegiate Stroke Working Party.London:RCP,2004.
  4. The European Atrial Fibrillation Trial Study Group.Optimal oral anticoagulant therapy in patients with nonrheumatic atrial fibrillation and recent cerebral ischemia.N Engl J Med.1995;333:510.
  5. Fang MC,Chang Y,Hylek EM, et al.Advanced age, anticoagulation intensity, and risk for intracranial hemorrhage among patients taking warfarin for atrial fibrillation.Ann Intern Med.2004;141(10):745752.
  6. Kalra L,Lip GY.Antithrombotic treatment in atrial fibrillation.Heart.2007;93(1):3944.
  7. Gage BF,Van Walraven C,Pearce L, et al.Selecting patients with atrial fibrillation for anticoagulation: stroke risk stratification in patients taking aspirin.Circulation.2004;110(16):22872292.
  8. Medi C,Hankey GJ,Freedman SB.Atrial fibrillation.Med J Aust.2007;186(4):197202.
  9. Adams HP,del Zoppo G,Alberts MJ, et al.Guidelines for the early management of adults with ischemic stroke. A guideline from the American Heart Association/American Stroke Association Stroke Council, Clinical Cardiology Council, Cardiovascular Radiology and Intervention Council, and the Atherosclerotic Peripheral Vascular Disease and Quality of Care Outcomes in Research Interdisciplinary Working Groups.Stroke.2007;38(5):16551711.
  10. Hermier M,Nighoghossian N,Derex L, et al.MRI of acute post‐ischemic cerebral hemorrhage in stroke patients: diagnosis with T2*‐weighted gradient‐echo sequences.Neuroradiology.2001;43(10):809815.
  11. Desal HA,Auffray‐Calvier E,Guillon B, et al.Emergency imaging of cerebrovascular accidents.J Neuroradiol.2004;31(4):327333.
  12. Broderick J,Connolly S,Feldmann E, et al.Guidelines for the management of spontaneous intracerebral hemorrhage in adults. 2007 update. A guideline from the American Heart Association, American Stroke Association Stroke Council, High Blood Pressure Research Council, and the Quality of Care and Outcomes in Research Interdisciplinary Working Group.Stroke.2007;38(6):20012023.
  13. Tan JC,Dillon WP,Liu S,Adler F,Smith WS,Wintermark M.Systematic comparison of perfusion‐CT and CT‐angiography in acute stroke patients.Ann Neurol.2007;61(6):533543.
  14. Albers GW,Amarenco P,Easton JD,Sacco RL,Teal P.Antithrombotic and thrombolytic therapy for ischemic stroke: the seventh ACCP conference on antithrombotic and thrombolytic therapy.Chest.2004;126(3 suppl):S483S512.
  15. Goldstein LB.Acute ischemic stroke treatment in 2007.Circulation.2007;116(13):15041514.
  16. Hsia AW,Sachdev HS,Tomlinson J,Hamilton SA,Tong DC.Efficacy of IV tissue plasminogen activator in acute stroke: does stroke subtype really matter?Neurology.2003;61(1):7175.
  17. Egan R,Clark W,Lutsep H,Nesbit G,Barnwell S,Kellogg J.Efficacy of intraarterial thrombolysis of basilar artery stroke.J Stroke Cerebrovasc Dis.1999;8(1):2227.
  18. Poncyljusz W,Falkowski A,Kojder I, et al.Treatment of acute ischemic brain infarction with the assistance of local intraarterial thrombolysis with recombinant tissue‐type plasminogen activator.Acta Radiol.2007;48(7):774780.
  19. Tountopoulou A,Ahl B,Weissenborn K,Becker H,Goetz F.Intra‐arterial thrombolysis using rt‐PA in patients with acute stroke due to vessel occlusion of anterior and/or posterior cerebral circulation.Neuroradiology.2008;50(1):7583.
  20. Graham GD.Tissue plasminogen activator for acute ischemic stroke in clinical practice: a meta‐analysis of safety data.Stroke.2003;34:28472850.
  21. Alexandrov AV,Grotta JC.Arterial reocclusion in stroke patients treated with intravenous tissue plasminogen activator.Neurology.2002;59:862867.
  22. Saqqur M,Uchino K,Demchuk AM, et al.Site of arterial occlusion identified by transcranial Doppler predicts the response to intravenous thrombolysis for stroke.Stroke.2007;38(3):948954.
  23. Wardlaw JM,Zoppo G,Yamaguchi T,Berge E.Thrombolysis for acute ischemic stroke.Cochrane Database Syst Rev.2003;(3):CD000213.
  24. Hacke W,Donnan G,Fieschi C, et al.Association of outcome with early stroke treatment: pooled analysis of ATLANTIS, ECASS, and NINDS rt‐PA stroke trials.Lancet.2004;363:768774.
  25. Smith MA,Shahar E,Doliszny KM,McGovern PG,Arnett DK,Luepker RV.Trends in medical care of hospitalized stroke patients between 1980 and 1990: the Minnesota stroke survey.J Stroke Cerebrovasc Dis.1998;7(1):7684.
  26. Berge E,Abdelnoor M,Nakstad PH,Sandset PM.Low molecular‐weight heparin versus aspirin in patients with acute ischaemic stroke and atrial fibrillation: a double‐blind randomized study. HAEST Study Group. Heparin in Acute Embolic Stroke Trial.Lancet.2000;355(9211):12051210.
  27. International Stroke Trial Collaborative Group.The International Stroke Trial (IST): a randomized trial of aspirin, subcutaneous heparin, both, or neither among 19435 patients with acute ischemic stroke.Lancet.1997;349(9065):15691581.
  28. Adams HP.Emergent use of anticoagulation for treatment of patients with ischemic stroke.Stroke.2002;33:856861.
  29. Paciaroni M,Agnelli G,Micheli S,Caso V.Efficacy and safety of anticoagulant treatment in acute cardioembolic stroke: a meta‐analysis of randomized controlled trials.Stroke.2007;38(2):423430.
  30. Dippel DW.The results of CAPRIE, IST and CAST. International Stroke Trial. Chinese Acute Stroke Trial.Thromb Res1998;92(1 suppl 1):S13S16.
  31. Van Kooten F,Ciabattoni G,Patrono C,Dippel DWJ,Koudstaal PJ.Platelet activation and lipid peroxidation in patients with acute ischemic stroke.Stroke.1997;28:15571563.
  32. Hylek M,Go AS,Chang Y, et al.Effect of intensity of oral anticoagulation on stroke severity and mortality in atrial fibrillation elaine.N Engl J Med.2003;349:10191026.
  33. Waldo AL,Becker RC,Tapson VF,Colgan KJ.Hospitalized patients with atrial fibrillation and a high risk of stroke are not being provided with adequate anticoagulation.J Am Coll Cardiol.2005;46(9):17291736.
  34. Ezekowitz MD,Levine JA.Preventing stroke in patients with atrial fibrillation.JAMA.1999;281(19):18301835.
  35. Hart RG,Palacio S.Atrial fibrillation, stroke, and acute antithrombotic therapy: analysis of randomized clinical trials.Stroke.2002;33(11):27222727.
  36. Freeman WD,Brott TG,Barrett KM, et al.Recombinant factor VIIa for rapid reversal of warfarin anticoagulation in acute intracranial hemorrhage.Mayo Clin Proc.2004;79(12):14951500.
  37. Bertram M,Bonsanto M,Hacke W,Schwab S.Managing the therapeutic dilemma: patients with spontaneous intracerebral hemorrhage and urgent need for anticoagulation.J Neurol.2000;247(3):209214.
  38. Brott T,Broderick J,Kothari R, et al.Early hemorrhage growth in patients with intracerebral hemorrhage.Stroke.1997;28:15.
  39. Van der Meer FJM,Rosendaal FR,Vanderbroucke JP.Bleeding complications in oral anticoagulant therapy: an analysis of risk factors.Arch Intern Med.1993;153:15571562.
  40. Rosand J,Hylek EM,O'Donnell HC,Greenberg SM.Warfarin‐associated hemorrhage and cerebral amyloid angiopathy: a genetic and pathologic study.Neurology.2000;55(7):947951.
  41. Hart RG,Kase CS,Freeman WD, et al.Treatment of warfarin‐associated intracerebral hemorrhage: literature review and expert opinion.Mayo Clinic Proc.2007;82(1):8292.
  42. Lankiewicz MW,Hays J,Friedman KD,Tinkoff G,Blatt PM.Urgent reversal of warfarin with prothrombin complex concentrate.J Thromb Haemost.2006;4(5):967970.
  43. Appelboam R,Thomas EO.The headache over warfarin in British neurosurgical intensive care units: a national survey of current practice.Intensive Care Med.2007;33(11):19461953.
  44. Goldstein JN,Thomas SH,Frontiero V, et al.Timing of fresh frozen plasma administration and rapid correction of coagulopathy in warfarin‐related intracerebral hemorrhage.Stroke.2006;37(1):151155.
  45. Lee SB,Manno EM,Layton KF,Wijdicks EF.Progression of warfarin‐associated intracerebral hemorrhage after INR normalization with FFP.Neurology.2006;67(7):12721274.
  46. Lorenz R,Kienast J,Otto U, et al.Successful emergency reversal of phenprocoumon anticoagulation with prothrombin complex concentrate: a prospective clinical study.Blood Coagul Fibrinolysis.2007;18(6):565570.
  47. O'Shaughnessy DF,Atterbury C,Maggs P, et al.Guidelines for the use of fresh‐frozen plasma, cryoprecipitate and cryosupernatant.Br J Hematol.2004;126(1):1128.
  48. Ansel J,Hirsh J,Poller L,Bussey H,Jacobson A,Hylek E.The pharmacology and management of vitamin K antagonists. The seventh ACCP conference on antithrombotic and thrombolytic therapy.Chest.2004;126:204s33s.
  49. Huttner HB,Schellinger PD,Hartmann M, et al.Hematoma growth and outcome in treated neurocritical care patients with intracerebral hemorrhage related to oral anticoagulant therapy. Comparison of acute treatment strategies using vitamin K, fresh frozen plasma, and prothrombin complex concentrates.Stroke.2006;37:1465.
  50. Dunn CJ,Spencer CM.Recombinant factor VIIa.BioDrugs.1999;12(1):7177.
  51. Diringer MN,Ferran JM,Broderick J, et al.Impact of recombinant activated factor VII on health‐related quality of life after intracerebral hemorrhage.Cerebrovasc Dis.2007;24(2–3):219225.
  52. Mayer SA,Brun NC,Broderick J, et al.Recombinant activated factor VII for acute intracerebral hemorrhage: US phase IIA trial.Neurocrit Care.2006;4(3):206214.
  53. Mendelow AD,Gregson BA,Fernandes HM, et al.Early surgery versus initial conservative treatment in patients with spontaneous supratentorial intracerebral haematomas in the International Surgical Trial in Intracerebral Haemorrhage (STICH): a randomised trial.Lancet.2005;365(9457):387397.
  54. Thompson KM,Gerlach SY,Jorn HK,Larson JM,Brott TG,Files JA.Advances in the care of patients with intracerebral hemorrhage.Mayo Clin Proc.2007;82(8):987990.
  55. Collice M,D'Aliberti G,Talamonti G,Bacigaluppi S.Surgery for intracerebral hemorrhage.Neurol Sci.2004;25:s10s11.
  56. Nishihara T,Morita A,Teraoka A,Kirino T.Endoscopy‐guided removal of spontaneous intracerebral hemorrhage: comparison with computer tomography‐guided stereotactic evacuation.Childs Nerv Syst.2007;23(6):677683.
  57. Thomassen L,Bakke SJ.Endovascular reperfusion therapy in acute ischaemic stroke.Acta Neurol Scand Suppl.2007;187:2229.
  58. Smith WS.Safety of mechanical thrombectomy and intravenous tissue plasminogen activator in acute ischemic stroke. Results of the multi Mechanical Embolus Removal in Cerebral Ischemia (MERCI) trial, part I.AJNR Am J Neuroradiol.2006;27(6):11771182.
  59. Blackshear JL,Odell JA.Appendage obliteration to reduce stroke in cardiac surgical patients with atrial fibrillation.Ann Thorac Surg.1996;61(2):755759.
  60. Bayard YL,Ostermayer SH,Hein R, et al.Percutaneous devices for stroke prevention.Cardiovasc Revasc Med.2007;8(3):216225.
  61. El‐Chami MF,Hoffman M,Lerakis S.Sealing the left atrial appendage: ready for prime time?Am J Med Sci.2007;333(5):285289.
  62. Sick PB,Schuler G,Hauptmann KE, et al.Initial worldwide experience with the WATCHMAN left atrial appendage system for stroke prevention in atrial fibrillation.J Am Coll Cardiol.2007;49(13):14901495.
  63. Onalan O,Crystal E.Left atrial appendage exclusion for stroke prevention in patients with nonrheumatic atrial fibrillation.Stroke.2007;38(2 suppl):624630.
  64. FDA News. FDA clears genetic lab test for warfarin sensitivity. Available at: http://www.fda.gov/bbs/topics/news/2007/new01701.html. Accessed January2008.
  65. Ndegwa S.Pharmacogenomics and warfarin therapy.Issues Emerg Health Technol.2007;(104):18.
  66. Ross OA,Worrall BB,Meschia JF.Advancing stroke therapeutics through genetic understanding.Curr Drug Targets.2007;8(7):850859.
Issue
Journal of Hospital Medicine - 3(4)
Issue
Journal of Hospital Medicine - 3(4)
Page Number
326-332
Page Number
326-332
Article Type
Display Headline
Approach to and management of the acute stroke patient with atrial fibrillation: A literature review
Display Headline
Approach to and management of the acute stroke patient with atrial fibrillation: A literature review
Legacy Keywords
arrhythmias and pacemakers, evidence‐based medicine, intracranial hemorrhage, ischemic stroke, valvular heart disease
Legacy Keywords
arrhythmias and pacemakers, evidence‐based medicine, intracranial hemorrhage, ischemic stroke, valvular heart disease
Sections
Article Source
Copyright © 2008 Society of Hospital Medicine
Disallow All Ads
Correspondence Location
Konstantinos Marmagkiolis, 461 Gypsy Lane, Apartment 33, Youngstown, OH 44504
Content Gating
Gated (full article locked unless allowed per User)
Gating Strategy
First Peek Free
Article PDF Media

Doctor Remodel

Article Type
Changed
Fri, 09/14/2018 - 12:35
Display Headline
Doctor Remodel

How often are patients in your program readmitted in 30 days to any hospital? I know many of you monitor readmission rates back to your own program or facility. But if you examine the patient perspective, how often are patients you discharge being readmitted to any acute care hospital within 30 days?

Given the increasing frequency that the Centers for Medicare and Medicaid Services (CMS) is reporting about readmission rates, I asked my quality director to research our hospital’s data.

As would any reasonable chief medical officer (CMO), I figured we probably had some opportunities for improvement, but overall I felt the numbers were probably fine. Like any hospital I have worked in, we have a core group of patients who return to the hospital frequently. But from a working hospitalist perspective, it didn’t seem to be a problem in our hospital.

So, when the data returned, our initial impressions about the rates were reaffirmed. The overall hospital 30-day readmit rate to our hospital was about 6%. We looked across different payers, socioeconomic groups, discharging services, and diagnosis for areas of opportunity. We found that two populations had slightly higher rates of readmission—congestive heart failure (CHF) and sickle-cell pain crisis—but in general, there were no particular outliers.

I admit from personal experience that the readmission number CMS touts has always boggled my mind to a degree. This means that almost one in five patients returns to a hospital within 30 days. Having worked in a variety of hospitals and communities, I couldn’t imagine a rate this high. I had never seen patients bouncing back that often.

I commissioned two quality improvement groups to begin looking at these areas, though I felt pretty good about our data. Although this was not a true all-facility, 30-day readmission rate, we felt it had to be a reasonable proxy for the true rate, which we could not obtain.

We looked to benchmark ourselves because we had no reference for comparison. CMS refers frequently to an approximate 20% readmission rate across the nation; we felt good because our rates were significantly lower. We did some like-facility comparisons, and our rate was still a little better than those facilities, so we continued to feel good.

For those of you who prefer more exact numbers, MedPac reported in June 2007 that 17.6% of admissions resulted in a readmission within 30 days, accounting for about $15 billion in Medicare spending. Further, 6% of admissions resulted in a seven-day readmission rate.

I admit from personal experience that the number CMS touts has always boggled my mind to a degree. This means that almost one in five patients returns to a hospital within 30 days. Having worked in a variety of hospitals and communities, I couldn’t imagine a rate this high. I had never seen patients bouncing back that often.

To me, this simply reaffirmed the hypothesis that healthcare has a serious problem with continuity of care and communication. But this was not my hospital’s problem—we were better than 20%! This was a problem for communities with a poor primary care base or perhaps a community without hospitalists to efficiently take care of inpatients.

But it turns out I fell into a classic leadership trap: thinking we are better than we really are.

Several months ago, I was sitting in a meeting with the quality and patient safety staff, when one of the outcomes managers passed a report to me from CMS. It was the “Pepper Report,” which CMS had begun sending to all hospitals in the past year. One of the key bits of data in this report is the hospital’s 30-day readmit rate. Because CMS is able to gather data from all facilities, this is the true readmit rate—at least for the Medicare population. Ours was approximately 17%. I was immediately deflated.

 

 

But like the optimistic person I am, I immediately saw a burning platform for change and began to plan our attack on this problem.

What is our chief tactic? A good discharge. I am convinced more than ever that we simply need to focus on a better discharge.

I am not alone in this thinking. Almost from the beginning of the hospitalist movement, we have focused on the “black hole,” that period of time from discharge to first followup appointment. Many of you who have come to SHM meetings have attended discharge planning and transitions of care sessions. We have worked closely with the Hartford Foundation in developing a good discharge for elderly patients. Part of this effort resulted in discharge checklist you will find on the SHM Web site (www.hospitalmedicine.org). The next version of this is Project BOOST (Better Outcomes for Older Adults through Safe Transitions), led by Mark V. Williams, MD, principal investigator on the project and professor and chief of the Division of Hospital Medicine at the Feinberg School of Medicine at Northwestern University in Chicago.

In early June, a group of SHM leaders visited with MedPac, which advises Congress on Medicare policy. MedPac is interested in recommendations to improve the readmission rates in the U.S. If the plea to simply provide good medical care doesn’t move you, I hope the CMS “incentives” will.

What You Can Do

Focus on the good discharge. Many tactics are intuitive. Ensure that a succinct yet complete discharge summary is sent to the next physician in a timely manner. Clearly articulate a treatment plan not only immediately after discharge but for the next several months in general. Be sure to list all test results, their interpretation, and any pending at the time of discharge. Reconcile all medications from the admission list. Teach patients and families about the illness and what to do in certain circumstances.

These are just a few of the things to do. I am sure we will discover more or refine those we know. But by simply focusing on a good discharge, your program and hospital will be in good shape for the coming scrutiny. TH

Dr. Cawley is president of SHM.

Issue
The Hospitalist - 2008(08)
Publications
Sections

How often are patients in your program readmitted in 30 days to any hospital? I know many of you monitor readmission rates back to your own program or facility. But if you examine the patient perspective, how often are patients you discharge being readmitted to any acute care hospital within 30 days?

Given the increasing frequency that the Centers for Medicare and Medicaid Services (CMS) is reporting about readmission rates, I asked my quality director to research our hospital’s data.

As would any reasonable chief medical officer (CMO), I figured we probably had some opportunities for improvement, but overall I felt the numbers were probably fine. Like any hospital I have worked in, we have a core group of patients who return to the hospital frequently. But from a working hospitalist perspective, it didn’t seem to be a problem in our hospital.

So, when the data returned, our initial impressions about the rates were reaffirmed. The overall hospital 30-day readmit rate to our hospital was about 6%. We looked across different payers, socioeconomic groups, discharging services, and diagnosis for areas of opportunity. We found that two populations had slightly higher rates of readmission—congestive heart failure (CHF) and sickle-cell pain crisis—but in general, there were no particular outliers.

I admit from personal experience that the readmission number CMS touts has always boggled my mind to a degree. This means that almost one in five patients returns to a hospital within 30 days. Having worked in a variety of hospitals and communities, I couldn’t imagine a rate this high. I had never seen patients bouncing back that often.

I commissioned two quality improvement groups to begin looking at these areas, though I felt pretty good about our data. Although this was not a true all-facility, 30-day readmission rate, we felt it had to be a reasonable proxy for the true rate, which we could not obtain.

We looked to benchmark ourselves because we had no reference for comparison. CMS refers frequently to an approximate 20% readmission rate across the nation; we felt good because our rates were significantly lower. We did some like-facility comparisons, and our rate was still a little better than those facilities, so we continued to feel good.

For those of you who prefer more exact numbers, MedPac reported in June 2007 that 17.6% of admissions resulted in a readmission within 30 days, accounting for about $15 billion in Medicare spending. Further, 6% of admissions resulted in a seven-day readmission rate.

I admit from personal experience that the number CMS touts has always boggled my mind to a degree. This means that almost one in five patients returns to a hospital within 30 days. Having worked in a variety of hospitals and communities, I couldn’t imagine a rate this high. I had never seen patients bouncing back that often.

To me, this simply reaffirmed the hypothesis that healthcare has a serious problem with continuity of care and communication. But this was not my hospital’s problem—we were better than 20%! This was a problem for communities with a poor primary care base or perhaps a community without hospitalists to efficiently take care of inpatients.

But it turns out I fell into a classic leadership trap: thinking we are better than we really are.

Several months ago, I was sitting in a meeting with the quality and patient safety staff, when one of the outcomes managers passed a report to me from CMS. It was the “Pepper Report,” which CMS had begun sending to all hospitals in the past year. One of the key bits of data in this report is the hospital’s 30-day readmit rate. Because CMS is able to gather data from all facilities, this is the true readmit rate—at least for the Medicare population. Ours was approximately 17%. I was immediately deflated.

 

 

But like the optimistic person I am, I immediately saw a burning platform for change and began to plan our attack on this problem.

What is our chief tactic? A good discharge. I am convinced more than ever that we simply need to focus on a better discharge.

I am not alone in this thinking. Almost from the beginning of the hospitalist movement, we have focused on the “black hole,” that period of time from discharge to first followup appointment. Many of you who have come to SHM meetings have attended discharge planning and transitions of care sessions. We have worked closely with the Hartford Foundation in developing a good discharge for elderly patients. Part of this effort resulted in discharge checklist you will find on the SHM Web site (www.hospitalmedicine.org). The next version of this is Project BOOST (Better Outcomes for Older Adults through Safe Transitions), led by Mark V. Williams, MD, principal investigator on the project and professor and chief of the Division of Hospital Medicine at the Feinberg School of Medicine at Northwestern University in Chicago.

In early June, a group of SHM leaders visited with MedPac, which advises Congress on Medicare policy. MedPac is interested in recommendations to improve the readmission rates in the U.S. If the plea to simply provide good medical care doesn’t move you, I hope the CMS “incentives” will.

What You Can Do

Focus on the good discharge. Many tactics are intuitive. Ensure that a succinct yet complete discharge summary is sent to the next physician in a timely manner. Clearly articulate a treatment plan not only immediately after discharge but for the next several months in general. Be sure to list all test results, their interpretation, and any pending at the time of discharge. Reconcile all medications from the admission list. Teach patients and families about the illness and what to do in certain circumstances.

These are just a few of the things to do. I am sure we will discover more or refine those we know. But by simply focusing on a good discharge, your program and hospital will be in good shape for the coming scrutiny. TH

Dr. Cawley is president of SHM.

How often are patients in your program readmitted in 30 days to any hospital? I know many of you monitor readmission rates back to your own program or facility. But if you examine the patient perspective, how often are patients you discharge being readmitted to any acute care hospital within 30 days?

Given the increasing frequency that the Centers for Medicare and Medicaid Services (CMS) is reporting about readmission rates, I asked my quality director to research our hospital’s data.

As would any reasonable chief medical officer (CMO), I figured we probably had some opportunities for improvement, but overall I felt the numbers were probably fine. Like any hospital I have worked in, we have a core group of patients who return to the hospital frequently. But from a working hospitalist perspective, it didn’t seem to be a problem in our hospital.

So, when the data returned, our initial impressions about the rates were reaffirmed. The overall hospital 30-day readmit rate to our hospital was about 6%. We looked across different payers, socioeconomic groups, discharging services, and diagnosis for areas of opportunity. We found that two populations had slightly higher rates of readmission—congestive heart failure (CHF) and sickle-cell pain crisis—but in general, there were no particular outliers.

I admit from personal experience that the readmission number CMS touts has always boggled my mind to a degree. This means that almost one in five patients returns to a hospital within 30 days. Having worked in a variety of hospitals and communities, I couldn’t imagine a rate this high. I had never seen patients bouncing back that often.

I commissioned two quality improvement groups to begin looking at these areas, though I felt pretty good about our data. Although this was not a true all-facility, 30-day readmission rate, we felt it had to be a reasonable proxy for the true rate, which we could not obtain.

We looked to benchmark ourselves because we had no reference for comparison. CMS refers frequently to an approximate 20% readmission rate across the nation; we felt good because our rates were significantly lower. We did some like-facility comparisons, and our rate was still a little better than those facilities, so we continued to feel good.

For those of you who prefer more exact numbers, MedPac reported in June 2007 that 17.6% of admissions resulted in a readmission within 30 days, accounting for about $15 billion in Medicare spending. Further, 6% of admissions resulted in a seven-day readmission rate.

I admit from personal experience that the number CMS touts has always boggled my mind to a degree. This means that almost one in five patients returns to a hospital within 30 days. Having worked in a variety of hospitals and communities, I couldn’t imagine a rate this high. I had never seen patients bouncing back that often.

To me, this simply reaffirmed the hypothesis that healthcare has a serious problem with continuity of care and communication. But this was not my hospital’s problem—we were better than 20%! This was a problem for communities with a poor primary care base or perhaps a community without hospitalists to efficiently take care of inpatients.

But it turns out I fell into a classic leadership trap: thinking we are better than we really are.

Several months ago, I was sitting in a meeting with the quality and patient safety staff, when one of the outcomes managers passed a report to me from CMS. It was the “Pepper Report,” which CMS had begun sending to all hospitals in the past year. One of the key bits of data in this report is the hospital’s 30-day readmit rate. Because CMS is able to gather data from all facilities, this is the true readmit rate—at least for the Medicare population. Ours was approximately 17%. I was immediately deflated.

 

 

But like the optimistic person I am, I immediately saw a burning platform for change and began to plan our attack on this problem.

What is our chief tactic? A good discharge. I am convinced more than ever that we simply need to focus on a better discharge.

I am not alone in this thinking. Almost from the beginning of the hospitalist movement, we have focused on the “black hole,” that period of time from discharge to first followup appointment. Many of you who have come to SHM meetings have attended discharge planning and transitions of care sessions. We have worked closely with the Hartford Foundation in developing a good discharge for elderly patients. Part of this effort resulted in discharge checklist you will find on the SHM Web site (www.hospitalmedicine.org). The next version of this is Project BOOST (Better Outcomes for Older Adults through Safe Transitions), led by Mark V. Williams, MD, principal investigator on the project and professor and chief of the Division of Hospital Medicine at the Feinberg School of Medicine at Northwestern University in Chicago.

In early June, a group of SHM leaders visited with MedPac, which advises Congress on Medicare policy. MedPac is interested in recommendations to improve the readmission rates in the U.S. If the plea to simply provide good medical care doesn’t move you, I hope the CMS “incentives” will.

What You Can Do

Focus on the good discharge. Many tactics are intuitive. Ensure that a succinct yet complete discharge summary is sent to the next physician in a timely manner. Clearly articulate a treatment plan not only immediately after discharge but for the next several months in general. Be sure to list all test results, their interpretation, and any pending at the time of discharge. Reconcile all medications from the admission list. Teach patients and families about the illness and what to do in certain circumstances.

These are just a few of the things to do. I am sure we will discover more or refine those we know. But by simply focusing on a good discharge, your program and hospital will be in good shape for the coming scrutiny. TH

Dr. Cawley is president of SHM.

Issue
The Hospitalist - 2008(08)
Issue
The Hospitalist - 2008(08)
Publications
Publications
Article Type
Display Headline
Doctor Remodel
Display Headline
Doctor Remodel
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)

Plan Good Discharges

Article Type
Changed
Fri, 09/14/2018 - 12:35
Display Headline
Plan Good Discharges

It was probably just the ramblings of a mad woman. Only she wasn’t mad, so I searched for a hint of delirium. Nothing. She was mentally fit and lucid—perhaps too lucid. Could it be true … had I become my archenemy?

To decide, I put her utterance to the test through the Kubler-Ross obstacle course, hopping the denial hurdle, quick-footing through the anger tire course, wading through the bargaining pool, and finally swinging safely across the depression crevasse to acceptance.

She was my eighth patient that day, a 78-year-old woman admitted to the orthopedic service with a hip fracture. I was asked to do a preoperative risk assessment and comanage her diabetes and heart failure. During our introductions she asked what kind of doctor I was.

Habitual tardiness, sketchy response times, vague payment structures, lack of transparency in pricing, pricing errors into the cost of the job—I don’t think the analogy was intended to be so perceptive. I and the healthcare system within which I work really had adopted some of the less-desirable attributes of the contracting world.

“A hospitalist,” I replied.

“Oh … that’s nice,” she answered, her furrowed eyebrow transforming her crow’s feet into a question mark.

“You know, a doctor who only cares for patients in the hospital,” I clarified. “I just take care of your acute problems.”

“You think a broken hip is cute?”

“No, no, not ‘cute.’ Acute. You know, I only deal with your urgent problems. When you leave here you will go back to see your primary care doctor, who will follow up your hip fracture and your more chronic issues.”

That’s when she dropped the bomb.

“Oh, I see; you’re sort of like a contractor for my body then—just helping when things get broke.”

I should explain my aversion to this comment. Reared by a 10-thumbed father, I’m genetically incapable of curing even the simplest household hiccup. This doesn’t mean I haven’t or won’t try. In fact, I’m willing to try anything. My wife, however, is too smart to allow that. She knows that home improvement project plus me equals larger home improvement project. Combine this mathematical axiom with our turn-of-the-(20th)-century home, and it’s easy to see why I find myself betrothed in nearly continuous engagement with contractors.

But this is a marriage on the rocks. As dependent as I am on home contractors, I generally dislike working with them. They’re all fine people I’m sure, and truth be told most of them are quite skilled at their work. The problem is that they go about their job as if they are allergic to customer service.

The only contractors who are not perpetually late are those who won’t give you a time to meet. “I’ll meet you in the morning,” they’ll say, only to define morning as any time after the sun comes up.

Then there’s the estimate, which appears to be an approximation calculated in a cavernous ballpark using an underestimater. It’s also not exactly clear how or what goes into the calculation of an estimate.

I recently got a written estimate that read as follows: “Fix sink, $400.” When I asked what the $400 would go toward, I got the ever-so-helpful reply: “Fixing the sink.” I responded, “No, I mean, how much are the parts and the labor and things like that?” He gruffly countered, “Four hundred dollars.” Uncovering how he came up with this estimate was about as easy as solving a Rubik’s cube. I gave up trying—and eventually paid $550.

 

 

Another time, a contractor agreed to fix a plumbing leak in our upstairs bathroom that had caused water damage to our first-floor ceiling. While tearing out the floor to reach the leak, he mistakenly ran a circular saw through a pipe, causing a considerably larger gusher that quickly destroyed said ceiling.

I understand these things happen. However, imagine my surprise when the eventual project cost was more than twice the estimated cost. He explained that repairing the new water damage was quite expensive and accounted for the variance with the estimate. We “discussed” this development, during which time I explained to him in no uncertain terms what the temperature in hell would be when I paid for his mistake.

So, it stung a bit to be called a “contractor.” But I could live with it. In fact, on the surface my patient’s analogy was quite good. Hospitalists do swoop in and fix patients’ problems only to then leave their lives, most often for good. It was only after a few days that her statement started to sour in my amygdala.

Habitual tardiness, sketchy response times, vague payment structures, lack of transparency in pricing, pricing errors into the cost of the job—I don’t think the analogy was intended to be so perceptive. I and the healthcare system within which I work really had adopted some of the less-desirable attributes of the contracting world.

I usually tell patients I’ll be back in an hour to give them their test results, knowing that I’m on “doctor time” and this could mean several hours or more. My tardiness usually results from being delayed while caring for another patient—but it’s all the same to the patient left waiting. Trying to build in cushion time for these unforeseen delays leaves a patient with a disagreeable contractor-like window of time to wait. For those who want to have their family at our daily rounds, an “I’ll come see you in the morning” is not just unhelpful—it disrespects the importance of their time.

Then there’s our payment system. It’s a mystery even to me: $12 aspirins, $100,000 cancer drugs, intentionally inflated professional fees and hospital bills that aren’t expected to be paid in full (unless the patient lacks an insurer to negotiate a lower price when they ironically are expected to foot the entire bill). All of which is made worse by the lack of transparency in our pricing. Patients (and most often I) simply are not privy to the costs of various tests and interventions. And, costs for the same procedure often differ among hospitals.

Few of us would contract for work without playing a role in choosing the supplies and knowing the rough cost of the materials. Yet that’s the situation our patients find themselves in daily.

Finally, expecting patients or their insurers to pay for my mistakes is not fair. I recognize there are adverse events that are unavoidable and should be reimbursed. However, many errors are as avoidable as being careful not to cut through a working pipe. Payment for these outcomes should be shouldered by the health system—not the patient.

I limped through the next few days re-examining my patient interactions. I licked my wounds, vowing to eschew those traits that so offend me as a consumer. I might not be able to repair a broken healthcare system, but I can refurbish the way I interact with my patients by being timely and responsive and not underestimating the effect of poor customer service. TH

Dr. Glasheen is associate professor of medicine at the University of Colorado, Denver, where he serves as director of the Hospital Medicine Program and the Hospitalist Training Program, and as associate program director of the Internal Medicine Residency Program.

Issue
The Hospitalist - 2008(08)
Publications
Sections

It was probably just the ramblings of a mad woman. Only she wasn’t mad, so I searched for a hint of delirium. Nothing. She was mentally fit and lucid—perhaps too lucid. Could it be true … had I become my archenemy?

To decide, I put her utterance to the test through the Kubler-Ross obstacle course, hopping the denial hurdle, quick-footing through the anger tire course, wading through the bargaining pool, and finally swinging safely across the depression crevasse to acceptance.

She was my eighth patient that day, a 78-year-old woman admitted to the orthopedic service with a hip fracture. I was asked to do a preoperative risk assessment and comanage her diabetes and heart failure. During our introductions she asked what kind of doctor I was.

Habitual tardiness, sketchy response times, vague payment structures, lack of transparency in pricing, pricing errors into the cost of the job—I don’t think the analogy was intended to be so perceptive. I and the healthcare system within which I work really had adopted some of the less-desirable attributes of the contracting world.

“A hospitalist,” I replied.

“Oh … that’s nice,” she answered, her furrowed eyebrow transforming her crow’s feet into a question mark.

“You know, a doctor who only cares for patients in the hospital,” I clarified. “I just take care of your acute problems.”

“You think a broken hip is cute?”

“No, no, not ‘cute.’ Acute. You know, I only deal with your urgent problems. When you leave here you will go back to see your primary care doctor, who will follow up your hip fracture and your more chronic issues.”

That’s when she dropped the bomb.

“Oh, I see; you’re sort of like a contractor for my body then—just helping when things get broke.”

I should explain my aversion to this comment. Reared by a 10-thumbed father, I’m genetically incapable of curing even the simplest household hiccup. This doesn’t mean I haven’t or won’t try. In fact, I’m willing to try anything. My wife, however, is too smart to allow that. She knows that home improvement project plus me equals larger home improvement project. Combine this mathematical axiom with our turn-of-the-(20th)-century home, and it’s easy to see why I find myself betrothed in nearly continuous engagement with contractors.

But this is a marriage on the rocks. As dependent as I am on home contractors, I generally dislike working with them. They’re all fine people I’m sure, and truth be told most of them are quite skilled at their work. The problem is that they go about their job as if they are allergic to customer service.

The only contractors who are not perpetually late are those who won’t give you a time to meet. “I’ll meet you in the morning,” they’ll say, only to define morning as any time after the sun comes up.

Then there’s the estimate, which appears to be an approximation calculated in a cavernous ballpark using an underestimater. It’s also not exactly clear how or what goes into the calculation of an estimate.

I recently got a written estimate that read as follows: “Fix sink, $400.” When I asked what the $400 would go toward, I got the ever-so-helpful reply: “Fixing the sink.” I responded, “No, I mean, how much are the parts and the labor and things like that?” He gruffly countered, “Four hundred dollars.” Uncovering how he came up with this estimate was about as easy as solving a Rubik’s cube. I gave up trying—and eventually paid $550.

 

 

Another time, a contractor agreed to fix a plumbing leak in our upstairs bathroom that had caused water damage to our first-floor ceiling. While tearing out the floor to reach the leak, he mistakenly ran a circular saw through a pipe, causing a considerably larger gusher that quickly destroyed said ceiling.

I understand these things happen. However, imagine my surprise when the eventual project cost was more than twice the estimated cost. He explained that repairing the new water damage was quite expensive and accounted for the variance with the estimate. We “discussed” this development, during which time I explained to him in no uncertain terms what the temperature in hell would be when I paid for his mistake.

So, it stung a bit to be called a “contractor.” But I could live with it. In fact, on the surface my patient’s analogy was quite good. Hospitalists do swoop in and fix patients’ problems only to then leave their lives, most often for good. It was only after a few days that her statement started to sour in my amygdala.

Habitual tardiness, sketchy response times, vague payment structures, lack of transparency in pricing, pricing errors into the cost of the job—I don’t think the analogy was intended to be so perceptive. I and the healthcare system within which I work really had adopted some of the less-desirable attributes of the contracting world.

I usually tell patients I’ll be back in an hour to give them their test results, knowing that I’m on “doctor time” and this could mean several hours or more. My tardiness usually results from being delayed while caring for another patient—but it’s all the same to the patient left waiting. Trying to build in cushion time for these unforeseen delays leaves a patient with a disagreeable contractor-like window of time to wait. For those who want to have their family at our daily rounds, an “I’ll come see you in the morning” is not just unhelpful—it disrespects the importance of their time.

Then there’s our payment system. It’s a mystery even to me: $12 aspirins, $100,000 cancer drugs, intentionally inflated professional fees and hospital bills that aren’t expected to be paid in full (unless the patient lacks an insurer to negotiate a lower price when they ironically are expected to foot the entire bill). All of which is made worse by the lack of transparency in our pricing. Patients (and most often I) simply are not privy to the costs of various tests and interventions. And, costs for the same procedure often differ among hospitals.

Few of us would contract for work without playing a role in choosing the supplies and knowing the rough cost of the materials. Yet that’s the situation our patients find themselves in daily.

Finally, expecting patients or their insurers to pay for my mistakes is not fair. I recognize there are adverse events that are unavoidable and should be reimbursed. However, many errors are as avoidable as being careful not to cut through a working pipe. Payment for these outcomes should be shouldered by the health system—not the patient.

I limped through the next few days re-examining my patient interactions. I licked my wounds, vowing to eschew those traits that so offend me as a consumer. I might not be able to repair a broken healthcare system, but I can refurbish the way I interact with my patients by being timely and responsive and not underestimating the effect of poor customer service. TH

Dr. Glasheen is associate professor of medicine at the University of Colorado, Denver, where he serves as director of the Hospital Medicine Program and the Hospitalist Training Program, and as associate program director of the Internal Medicine Residency Program.

It was probably just the ramblings of a mad woman. Only she wasn’t mad, so I searched for a hint of delirium. Nothing. She was mentally fit and lucid—perhaps too lucid. Could it be true … had I become my archenemy?

To decide, I put her utterance to the test through the Kubler-Ross obstacle course, hopping the denial hurdle, quick-footing through the anger tire course, wading through the bargaining pool, and finally swinging safely across the depression crevasse to acceptance.

She was my eighth patient that day, a 78-year-old woman admitted to the orthopedic service with a hip fracture. I was asked to do a preoperative risk assessment and comanage her diabetes and heart failure. During our introductions she asked what kind of doctor I was.

Habitual tardiness, sketchy response times, vague payment structures, lack of transparency in pricing, pricing errors into the cost of the job—I don’t think the analogy was intended to be so perceptive. I and the healthcare system within which I work really had adopted some of the less-desirable attributes of the contracting world.

“A hospitalist,” I replied.

“Oh … that’s nice,” she answered, her furrowed eyebrow transforming her crow’s feet into a question mark.

“You know, a doctor who only cares for patients in the hospital,” I clarified. “I just take care of your acute problems.”

“You think a broken hip is cute?”

“No, no, not ‘cute.’ Acute. You know, I only deal with your urgent problems. When you leave here you will go back to see your primary care doctor, who will follow up your hip fracture and your more chronic issues.”

That’s when she dropped the bomb.

“Oh, I see; you’re sort of like a contractor for my body then—just helping when things get broke.”

I should explain my aversion to this comment. Reared by a 10-thumbed father, I’m genetically incapable of curing even the simplest household hiccup. This doesn’t mean I haven’t or won’t try. In fact, I’m willing to try anything. My wife, however, is too smart to allow that. She knows that home improvement project plus me equals larger home improvement project. Combine this mathematical axiom with our turn-of-the-(20th)-century home, and it’s easy to see why I find myself betrothed in nearly continuous engagement with contractors.

But this is a marriage on the rocks. As dependent as I am on home contractors, I generally dislike working with them. They’re all fine people I’m sure, and truth be told most of them are quite skilled at their work. The problem is that they go about their job as if they are allergic to customer service.

The only contractors who are not perpetually late are those who won’t give you a time to meet. “I’ll meet you in the morning,” they’ll say, only to define morning as any time after the sun comes up.

Then there’s the estimate, which appears to be an approximation calculated in a cavernous ballpark using an underestimater. It’s also not exactly clear how or what goes into the calculation of an estimate.

I recently got a written estimate that read as follows: “Fix sink, $400.” When I asked what the $400 would go toward, I got the ever-so-helpful reply: “Fixing the sink.” I responded, “No, I mean, how much are the parts and the labor and things like that?” He gruffly countered, “Four hundred dollars.” Uncovering how he came up with this estimate was about as easy as solving a Rubik’s cube. I gave up trying—and eventually paid $550.

 

 

Another time, a contractor agreed to fix a plumbing leak in our upstairs bathroom that had caused water damage to our first-floor ceiling. While tearing out the floor to reach the leak, he mistakenly ran a circular saw through a pipe, causing a considerably larger gusher that quickly destroyed said ceiling.

I understand these things happen. However, imagine my surprise when the eventual project cost was more than twice the estimated cost. He explained that repairing the new water damage was quite expensive and accounted for the variance with the estimate. We “discussed” this development, during which time I explained to him in no uncertain terms what the temperature in hell would be when I paid for his mistake.

So, it stung a bit to be called a “contractor.” But I could live with it. In fact, on the surface my patient’s analogy was quite good. Hospitalists do swoop in and fix patients’ problems only to then leave their lives, most often for good. It was only after a few days that her statement started to sour in my amygdala.

Habitual tardiness, sketchy response times, vague payment structures, lack of transparency in pricing, pricing errors into the cost of the job—I don’t think the analogy was intended to be so perceptive. I and the healthcare system within which I work really had adopted some of the less-desirable attributes of the contracting world.

I usually tell patients I’ll be back in an hour to give them their test results, knowing that I’m on “doctor time” and this could mean several hours or more. My tardiness usually results from being delayed while caring for another patient—but it’s all the same to the patient left waiting. Trying to build in cushion time for these unforeseen delays leaves a patient with a disagreeable contractor-like window of time to wait. For those who want to have their family at our daily rounds, an “I’ll come see you in the morning” is not just unhelpful—it disrespects the importance of their time.

Then there’s our payment system. It’s a mystery even to me: $12 aspirins, $100,000 cancer drugs, intentionally inflated professional fees and hospital bills that aren’t expected to be paid in full (unless the patient lacks an insurer to negotiate a lower price when they ironically are expected to foot the entire bill). All of which is made worse by the lack of transparency in our pricing. Patients (and most often I) simply are not privy to the costs of various tests and interventions. And, costs for the same procedure often differ among hospitals.

Few of us would contract for work without playing a role in choosing the supplies and knowing the rough cost of the materials. Yet that’s the situation our patients find themselves in daily.

Finally, expecting patients or their insurers to pay for my mistakes is not fair. I recognize there are adverse events that are unavoidable and should be reimbursed. However, many errors are as avoidable as being careful not to cut through a working pipe. Payment for these outcomes should be shouldered by the health system—not the patient.

I limped through the next few days re-examining my patient interactions. I licked my wounds, vowing to eschew those traits that so offend me as a consumer. I might not be able to repair a broken healthcare system, but I can refurbish the way I interact with my patients by being timely and responsive and not underestimating the effect of poor customer service. TH

Dr. Glasheen is associate professor of medicine at the University of Colorado, Denver, where he serves as director of the Hospital Medicine Program and the Hospitalist Training Program, and as associate program director of the Internal Medicine Residency Program.

Issue
The Hospitalist - 2008(08)
Issue
The Hospitalist - 2008(08)
Publications
Publications
Article Type
Display Headline
Plan Good Discharges
Display Headline
Plan Good Discharges
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)