LayerRx Mapping ID
428
Slot System
Featured Buckets
Featured Buckets Admin
Medscape Lead Concept
63214

Could Aspirin Avert Bad Outcomes in Leukemia?

Article Type
Changed
Tue, 09/17/2024 - 19:23

 

A new analysis hints that there may be a benefit from aspirin for hospitalized patients with leukemia. In a preliminary study, researchers found that aspirin users had much lower odds of intracranial bleeding, deep vein thrombosis, in-hospital mortality, and septic stroke.

Aspirin users also spent less time in the hospital and had less costly care. 

No one is suggesting that clinicians give aspirin to hospitalized patients with leukemia when the drug is not otherwise indicated. However, the findings, released at the Society of Hematologic Oncology (SOHO 2024) meeting in Houston, do indicate that more research is warranted, study lead author Jayalekshmi Jayakumar, MD, of the Brooklyn Hospital Center in New York City, said in a presentation.

“We hope our study can act as background for further prospective and experimental studies to explore this association,” she said. “If we can establish causation, then aspirin has a potential to be a thromboprophylactic agent to enhance outcomes and reduce resource utilization among leukemia hospitalizations.”

Dr. Jayakumar noted that previous research has suggested aspirin may help prevent deep vein thrombosis in patients with breast and pancreatic cancer. And in blood cancer, animal research has suggested that aspirin may “promote apoptosis in leukemia cells and decrease the spread of leukemia cells through platelet inhibition,” she said. 

However, “we do not have any prospective or retrospective studies to establish causation or to see if this actually has some value within the clinical practice,” she noted.

Dr. Jayakumar stated that new study aims to detect whether aspirin may be beneficial in leukemia. She and her colleagues retrospectively tracked 1,663,149 US hospitalizations of patients with leukemia from 2016 to 2020 via the National Inpatient Sample. Of those patients, 11.2% used aspirin, although the data didn’t say whether they started it during hospitalization, and dosages were not reported. Aspirin users were older (mean age, 74.53 years vs 64.83 years in nonusers).

After adjustment for confounders, aspirin users had lower odds of several conditions than nonusers:

  • Epistaxis (odds ratio [OR], 0.63; 95% CI, 0.55-0.72; P < .001)
  • Hemoptysis (OR, 0.71; 95% CI, 0.61-0.82; P < .001)
  • Intracranial bleed (OR, 0.74; 95% CI, 0.64-0.85; P < .001)
  • Deep vein thrombosis (OR, 0.72; 95% CI, 0.66-0.78; P < .001) 
  • In-hospital mortality (OR, 0.54; 95% CI, 0.50-0.58; P < .001)
  • Sepsis (OR, 0.71; 95% CI, 0.68-0.75; P < .001)
  • Septic shock (OR, 0.55; 95% CI, 0.50-0.60; P < .001)

There was no association reported for gastrointestinal bleeding, a possible side effect of aspirin use, or tumor lysis syndrome. Aspirin users also had a shorter typical stay (−2.8 days) and lower typical hospital charges ($40,719).

“We also found that aspirin users had a slightly reduced risk of minor bleeding and infection compared to non–aspirin users,” Dr. Jayakumar said.

In an interview, Dr. Jayakumar noted that the study is retrospective and declined to speculate on why aspirin may have benefits or why it may have the seemingly contradictory effect of reducing both blood clots and bleeding.

Aspirin is one of the least expensive drugs in existence. 

In an interview, Richard M. Stone, MD, oncologist at Dana-Farber Cancer Institute in Boston, who’s familiar with the study findings but didn’t take part in the research, said the findings are “totally counterintuitive.”

“It doesn’t mean they should be rejected, but they should be highly scrutinized,” he said. 

Dr. Stone added that bleeding is a major risk in leukemia due to low platelet counts, although platelet transplants can be helpful, and patients rarely die of bleeding. Thrombosis is also a problem in leukemia, he said, and it’s being increasingly recognized as a risk in acute myeloid leukemia.

No funding was reported. Dr. Jayakumar and Dr. Stone had no disclosures.
 

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

 

A new analysis hints that there may be a benefit from aspirin for hospitalized patients with leukemia. In a preliminary study, researchers found that aspirin users had much lower odds of intracranial bleeding, deep vein thrombosis, in-hospital mortality, and septic stroke.

Aspirin users also spent less time in the hospital and had less costly care. 

No one is suggesting that clinicians give aspirin to hospitalized patients with leukemia when the drug is not otherwise indicated. However, the findings, released at the Society of Hematologic Oncology (SOHO 2024) meeting in Houston, do indicate that more research is warranted, study lead author Jayalekshmi Jayakumar, MD, of the Brooklyn Hospital Center in New York City, said in a presentation.

“We hope our study can act as background for further prospective and experimental studies to explore this association,” she said. “If we can establish causation, then aspirin has a potential to be a thromboprophylactic agent to enhance outcomes and reduce resource utilization among leukemia hospitalizations.”

Dr. Jayakumar noted that previous research has suggested aspirin may help prevent deep vein thrombosis in patients with breast and pancreatic cancer. And in blood cancer, animal research has suggested that aspirin may “promote apoptosis in leukemia cells and decrease the spread of leukemia cells through platelet inhibition,” she said. 

However, “we do not have any prospective or retrospective studies to establish causation or to see if this actually has some value within the clinical practice,” she noted.

Dr. Jayakumar stated that new study aims to detect whether aspirin may be beneficial in leukemia. She and her colleagues retrospectively tracked 1,663,149 US hospitalizations of patients with leukemia from 2016 to 2020 via the National Inpatient Sample. Of those patients, 11.2% used aspirin, although the data didn’t say whether they started it during hospitalization, and dosages were not reported. Aspirin users were older (mean age, 74.53 years vs 64.83 years in nonusers).

After adjustment for confounders, aspirin users had lower odds of several conditions than nonusers:

  • Epistaxis (odds ratio [OR], 0.63; 95% CI, 0.55-0.72; P < .001)
  • Hemoptysis (OR, 0.71; 95% CI, 0.61-0.82; P < .001)
  • Intracranial bleed (OR, 0.74; 95% CI, 0.64-0.85; P < .001)
  • Deep vein thrombosis (OR, 0.72; 95% CI, 0.66-0.78; P < .001) 
  • In-hospital mortality (OR, 0.54; 95% CI, 0.50-0.58; P < .001)
  • Sepsis (OR, 0.71; 95% CI, 0.68-0.75; P < .001)
  • Septic shock (OR, 0.55; 95% CI, 0.50-0.60; P < .001)

There was no association reported for gastrointestinal bleeding, a possible side effect of aspirin use, or tumor lysis syndrome. Aspirin users also had a shorter typical stay (−2.8 days) and lower typical hospital charges ($40,719).

“We also found that aspirin users had a slightly reduced risk of minor bleeding and infection compared to non–aspirin users,” Dr. Jayakumar said.

In an interview, Dr. Jayakumar noted that the study is retrospective and declined to speculate on why aspirin may have benefits or why it may have the seemingly contradictory effect of reducing both blood clots and bleeding.

Aspirin is one of the least expensive drugs in existence. 

In an interview, Richard M. Stone, MD, oncologist at Dana-Farber Cancer Institute in Boston, who’s familiar with the study findings but didn’t take part in the research, said the findings are “totally counterintuitive.”

“It doesn’t mean they should be rejected, but they should be highly scrutinized,” he said. 

Dr. Stone added that bleeding is a major risk in leukemia due to low platelet counts, although platelet transplants can be helpful, and patients rarely die of bleeding. Thrombosis is also a problem in leukemia, he said, and it’s being increasingly recognized as a risk in acute myeloid leukemia.

No funding was reported. Dr. Jayakumar and Dr. Stone had no disclosures.
 

A version of this article appeared on Medscape.com.

 

A new analysis hints that there may be a benefit from aspirin for hospitalized patients with leukemia. In a preliminary study, researchers found that aspirin users had much lower odds of intracranial bleeding, deep vein thrombosis, in-hospital mortality, and septic stroke.

Aspirin users also spent less time in the hospital and had less costly care. 

No one is suggesting that clinicians give aspirin to hospitalized patients with leukemia when the drug is not otherwise indicated. However, the findings, released at the Society of Hematologic Oncology (SOHO 2024) meeting in Houston, do indicate that more research is warranted, study lead author Jayalekshmi Jayakumar, MD, of the Brooklyn Hospital Center in New York City, said in a presentation.

“We hope our study can act as background for further prospective and experimental studies to explore this association,” she said. “If we can establish causation, then aspirin has a potential to be a thromboprophylactic agent to enhance outcomes and reduce resource utilization among leukemia hospitalizations.”

Dr. Jayakumar noted that previous research has suggested aspirin may help prevent deep vein thrombosis in patients with breast and pancreatic cancer. And in blood cancer, animal research has suggested that aspirin may “promote apoptosis in leukemia cells and decrease the spread of leukemia cells through platelet inhibition,” she said. 

However, “we do not have any prospective or retrospective studies to establish causation or to see if this actually has some value within the clinical practice,” she noted.

Dr. Jayakumar stated that new study aims to detect whether aspirin may be beneficial in leukemia. She and her colleagues retrospectively tracked 1,663,149 US hospitalizations of patients with leukemia from 2016 to 2020 via the National Inpatient Sample. Of those patients, 11.2% used aspirin, although the data didn’t say whether they started it during hospitalization, and dosages were not reported. Aspirin users were older (mean age, 74.53 years vs 64.83 years in nonusers).

After adjustment for confounders, aspirin users had lower odds of several conditions than nonusers:

  • Epistaxis (odds ratio [OR], 0.63; 95% CI, 0.55-0.72; P < .001)
  • Hemoptysis (OR, 0.71; 95% CI, 0.61-0.82; P < .001)
  • Intracranial bleed (OR, 0.74; 95% CI, 0.64-0.85; P < .001)
  • Deep vein thrombosis (OR, 0.72; 95% CI, 0.66-0.78; P < .001) 
  • In-hospital mortality (OR, 0.54; 95% CI, 0.50-0.58; P < .001)
  • Sepsis (OR, 0.71; 95% CI, 0.68-0.75; P < .001)
  • Septic shock (OR, 0.55; 95% CI, 0.50-0.60; P < .001)

There was no association reported for gastrointestinal bleeding, a possible side effect of aspirin use, or tumor lysis syndrome. Aspirin users also had a shorter typical stay (−2.8 days) and lower typical hospital charges ($40,719).

“We also found that aspirin users had a slightly reduced risk of minor bleeding and infection compared to non–aspirin users,” Dr. Jayakumar said.

In an interview, Dr. Jayakumar noted that the study is retrospective and declined to speculate on why aspirin may have benefits or why it may have the seemingly contradictory effect of reducing both blood clots and bleeding.

Aspirin is one of the least expensive drugs in existence. 

In an interview, Richard M. Stone, MD, oncologist at Dana-Farber Cancer Institute in Boston, who’s familiar with the study findings but didn’t take part in the research, said the findings are “totally counterintuitive.”

“It doesn’t mean they should be rejected, but they should be highly scrutinized,” he said. 

Dr. Stone added that bleeding is a major risk in leukemia due to low platelet counts, although platelet transplants can be helpful, and patients rarely die of bleeding. Thrombosis is also a problem in leukemia, he said, and it’s being increasingly recognized as a risk in acute myeloid leukemia.

No funding was reported. Dr. Jayakumar and Dr. Stone had no disclosures.
 

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Article Source

FROM SOHO 2024

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Gate On Date
Tue, 09/17/2024 - 18:54
Un-Gate On Date
Tue, 09/17/2024 - 18:54
Use ProPublica
CFC Schedule Remove Status
Tue, 09/17/2024 - 18:54
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article
survey writer start date
Tue, 09/17/2024 - 18:54

Do Clonal Hematopoiesis and Mosaic Chromosomal Alterations Increase Solid Tumor Risk?

Article Type
Changed
Wed, 09/25/2024 - 06:41

Clonal hematopoiesis of indeterminate potential (CHIP) and mosaic chromosomal alterations (mCAs) are associated with an increased risk for breast cancer, and CHIP is associated with increased mortality in patients with colon cancer, according to the authors of new research.

These findings, drawn from almost 11,000 patients in the Women’s Health Initiative (WHI) study, add further evidence that CHIP and mCA drive solid tumor risk, alongside known associations with hematologic malignancies, reported lead author Pinkal Desai, MD, associate professor of medicine and clinical director of molecular aging at Englander Institute for Precision Medicine, Weill Cornell Medical College, New York City, and colleagues.
 

How This Study Differs From Others of Breast Cancer Risk Factors

“The independent effect of CHIP and mCA on risk and mortality from solid tumors has not been elucidated due to lack of detailed data on mortality outcomes and risk factors,” the investigators wrote in Cancer, although some previous studies have suggested a link.

In particular, the investigators highlighted a 2022 UK Biobank study, which reported an association between CHIP and lung cancer and a borderline association with breast cancer that did not quite reach statistical significance.

But the UK Biobank study was confined to a UK population, Dr. Desai noted in an interview, and the data were less detailed than those in the present investigation.

“In terms of risk, the part that was lacking in previous studies was a comprehensive assessment of risk factors that increase risk for all these cancers,” Dr. Desai said. “For example, for breast cancer, we had very detailed data on [participants’] Gail risk score, which is known to impact breast cancer risk. We also had mammogram data and colonoscopy data.”

In an accompanying editorial, Koichi Takahashi, MD, PhD , and Nehali Shah, BS, of The University of Texas MD Anderson Cancer Center, Houston, Texas, pointed out the same UK Biobank findings, then noted that CHIP has also been linked with worse overall survival in unselected cancer patients. Still, they wrote, “the impact of CH on cancer risk and mortality remains controversial due to conflicting data and context‐dependent effects,” necessitating studies like this one by Dr. Desai and colleagues.
 

How Was the Relationship Between CHIP, MCA, and Solid Tumor Risk Assessed?

To explore possible associations between CHIP, mCA, and solid tumors, the investigators analyzed whole genome sequencing data from 10,866 women in the WHI, a multi-study program that began in 1992 and involved 161,808 women in both observational and clinical trial cohorts.

In 2002, the first big data release from the WHI suggested that hormone replacement therapy (HRT) increased breast cancer risk, leading to widespread reduction in HRT use.

More recent reports continue to shape our understanding of these risks, suggesting differences across cancer types. For breast cancer, the WHI data suggested that HRT-associated risk was largely driven by formulations involving progesterone and estrogen, whereas estrogen-only formulations, now more common, are generally considered to present an acceptable risk profile for suitable patients.

The new study accounted for this potential HRT-associated risk, including by adjusting for patients who received HRT, type of HRT received, and duration of HRT received. According to Desai, this approach is commonly used when analyzing data from the WHI, nullifying concerns about the potentially deleterious effects of the hormones used in the study.

“Our question was not ‘does HRT cause cancer?’ ” Dr. Desai said in an interview. “But HRT can be linked to breast cancer risk and has a potential to be a confounder, and hence the above methodology.

“So I can say that the confounding/effect modification that HRT would have contributed to in the relationship between exposure (CH and mCA) and outcome (cancer) is well adjusted for as described above. This is standard in WHI analyses,” she continued.

“Every Women’s Health Initiative analysis that comes out — not just for our study — uses a standard method ... where you account for hormonal therapy,” Dr. Desai added, again noting that many other potential risk factors were considered, enabling a “detailed, robust” analysis.

Dr. Takahashi and Ms. Shah agreed. “A notable strength of this study is its adjustment for many confounding factors,” they wrote. “The cohort’s well‐annotated data on other known cancer risk factors allowed for a robust assessment of CH’s independent risk.”
 

 

 

How Do Findings Compare With Those of the UK Biobank Study?

CHIP was associated with a 30% increased risk for breast cancer (hazard ratio [HR], 1.30; 95% CI, 1.03-1.64; P = .02), strengthening the borderline association reported by the UK Biobank study.

In contrast with the UK Biobank study, CHIP was not associated with lung cancer risk, although this may have been caused by fewer cases of lung cancer and a lack of male patients, Dr. Desai suggested.

“The discrepancy between the studies lies in the risk of lung cancer, although the point estimate in the current study suggested a positive association,” wrote Dr. Takahashi and Ms. Shah.

As in the UK Biobank study, CHIP was not associated with increased risk of developing colorectal cancer.

Mortality analysis, however, which was not conducted in the UK Biobank study, offered a new insight: Patients with existing colorectal cancer and CHIP had a significantly higher mortality risk than those without CHIP. Before stage adjustment, risk for mortality among those with colorectal cancer and CHIP was fourfold higher than those without CHIP (HR, 3.99; 95% CI, 2.41-6.62; P < .001). After stage adjustment, CHIP was still associated with a twofold higher mortality risk (HR, 2.50; 95% CI, 1.32-4.72; P = .004).

The investigators’ first mCA analyses, which employed a cell fraction cutoff greater than 3%, were unfruitful. But raising the cell fraction threshold to 5% in an exploratory analysis showed that autosomal mCA was associated with a 39% increased risk for breast cancer (HR, 1.39; 95% CI, 1.06-1.83; P = .01). No such associations were found between mCA and colorectal or lung cancer, regardless of cell fraction threshold.

The original 3% cell fraction threshold was selected on the basis of previous studies reporting a link between mCA and hematologic malignancies at this cutoff, Dr. Desai said.

She and her colleagues said a higher 5% cutoff might be needed, as they suspected that the link between mCA and solid tumors may not be causal, requiring a higher mutation rate.
 

Why Do Results Differ Between These Types of Studies?

Dr. Takahashi and Ms. Shah suggested that one possible limitation of the new study, and an obstacle to comparing results with the UK Biobank study and others like it, goes beyond population heterogeneity; incongruent findings could also be explained by differences in whole genome sequencing (WGS) technique.

“Although WGS allows sensitive detection of mCA through broad genomic coverage, it is less effective at detecting CHIP with low variant allele frequency (VAF) due to its relatively shallow depth (30x),” they wrote. “Consequently, the prevalence of mCA (18.8%) was much higher than that of CHIP (8.3%) in this cohort, contrasting with other studies using deeper sequencing.” As a result, the present study may have underestimated CHIP prevalence because of shallow sequencing depth.

“This inconsistency is a common challenge in CH population studies due to the lack of standardized methodologies and the frequent reliance on preexisting data not originally intended for CH detection,” Dr. Takahashi and Ms. Shah said.

Even so, despite the “heavily context-dependent” nature of these reported risks, the body of evidence to date now offers a convincing biological rationale linking CH with cancer development and outcomes, they added.
 

 

 

How Do the CHIP- and mCA-associated Risks Differ Between Solid Tumors and Blood Cancers?

“[These solid tumor risks are] not causal in the way CHIP mutations are causal for blood cancers,” Dr. Desai said. “Here we are talking about solid tumor risk, and it’s kind of scattered. It’s not just breast cancer ... there’s also increased colon cancer mortality. So I feel these mutations are doing something different ... they are sort of an added factor.”

Specific mechanisms remain unclear, Dr. Desai said, although she speculated about possible impacts on the inflammatory state or alterations to the tumor microenvironment.

“These are blood cells, right?” Dr. Desai asked. “They’re everywhere, and they’re changing something inherently in these tumors.”
 

Future research and therapeutic development

Siddhartha Jaiswal, MD, PhD, assistant professor in the Department of Pathology at Stanford University in California, whose lab focuses on clonal hematopoiesis, said the causality question is central to future research.

“The key question is, are these mutations acting because they alter the function of blood cells in some way to promote cancer risk, or is it reflective of some sort of shared etiology that’s not causal?” Dr. Jaiswal said in an interview.

Available data support both possibilities.

On one side, “reasonable evidence” supports the noncausal view, Dr. Jaiswal noted, because telomere length is one of the most common genetic risk factors for clonal hematopoiesis and also for solid tumors, suggesting a shared genetic factor. On the other hand, CHIP and mCA could be directly protumorigenic via conferred disturbances of immune cell function.

When asked if both causal and noncausal factors could be at play, Dr. Jaiswal said, “yeah, absolutely.”

The presence of a causal association could be promising from a therapeutic standpoint.

“If it turns out that this association is driven by a direct causal effect of the mutations, perhaps related to immune cell function or dysfunction, then targeting that dysfunction could be a therapeutic path to improve outcomes in people, and there’s a lot of interest in this,” Dr. Jaiswal said. He went on to explain how a trial exploring this approach via interleukin-8 inhibition in lung cancer fell short.

Yet earlier intervention may still hold promise, according to experts.

“[This study] provokes the hypothesis that CH‐targeted interventions could potentially reduce cancer risk in the future,” Dr. Takahashi and Ms. Shah said in their editorial.

The WHI program is funded by the National Heart, Lung, and Blood Institute; National Institutes of Health; and the Department of Health & Human Services. The investigators disclosed relationships with Eli Lilly, AbbVie, Celgene, and others. Dr. Jaiswal reported stock equity in a company that has an interest in clonal hematopoiesis.

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

Clonal hematopoiesis of indeterminate potential (CHIP) and mosaic chromosomal alterations (mCAs) are associated with an increased risk for breast cancer, and CHIP is associated with increased mortality in patients with colon cancer, according to the authors of new research.

These findings, drawn from almost 11,000 patients in the Women’s Health Initiative (WHI) study, add further evidence that CHIP and mCA drive solid tumor risk, alongside known associations with hematologic malignancies, reported lead author Pinkal Desai, MD, associate professor of medicine and clinical director of molecular aging at Englander Institute for Precision Medicine, Weill Cornell Medical College, New York City, and colleagues.
 

How This Study Differs From Others of Breast Cancer Risk Factors

“The independent effect of CHIP and mCA on risk and mortality from solid tumors has not been elucidated due to lack of detailed data on mortality outcomes and risk factors,” the investigators wrote in Cancer, although some previous studies have suggested a link.

In particular, the investigators highlighted a 2022 UK Biobank study, which reported an association between CHIP and lung cancer and a borderline association with breast cancer that did not quite reach statistical significance.

But the UK Biobank study was confined to a UK population, Dr. Desai noted in an interview, and the data were less detailed than those in the present investigation.

“In terms of risk, the part that was lacking in previous studies was a comprehensive assessment of risk factors that increase risk for all these cancers,” Dr. Desai said. “For example, for breast cancer, we had very detailed data on [participants’] Gail risk score, which is known to impact breast cancer risk. We also had mammogram data and colonoscopy data.”

In an accompanying editorial, Koichi Takahashi, MD, PhD , and Nehali Shah, BS, of The University of Texas MD Anderson Cancer Center, Houston, Texas, pointed out the same UK Biobank findings, then noted that CHIP has also been linked with worse overall survival in unselected cancer patients. Still, they wrote, “the impact of CH on cancer risk and mortality remains controversial due to conflicting data and context‐dependent effects,” necessitating studies like this one by Dr. Desai and colleagues.
 

How Was the Relationship Between CHIP, MCA, and Solid Tumor Risk Assessed?

To explore possible associations between CHIP, mCA, and solid tumors, the investigators analyzed whole genome sequencing data from 10,866 women in the WHI, a multi-study program that began in 1992 and involved 161,808 women in both observational and clinical trial cohorts.

In 2002, the first big data release from the WHI suggested that hormone replacement therapy (HRT) increased breast cancer risk, leading to widespread reduction in HRT use.

More recent reports continue to shape our understanding of these risks, suggesting differences across cancer types. For breast cancer, the WHI data suggested that HRT-associated risk was largely driven by formulations involving progesterone and estrogen, whereas estrogen-only formulations, now more common, are generally considered to present an acceptable risk profile for suitable patients.

The new study accounted for this potential HRT-associated risk, including by adjusting for patients who received HRT, type of HRT received, and duration of HRT received. According to Desai, this approach is commonly used when analyzing data from the WHI, nullifying concerns about the potentially deleterious effects of the hormones used in the study.

“Our question was not ‘does HRT cause cancer?’ ” Dr. Desai said in an interview. “But HRT can be linked to breast cancer risk and has a potential to be a confounder, and hence the above methodology.

“So I can say that the confounding/effect modification that HRT would have contributed to in the relationship between exposure (CH and mCA) and outcome (cancer) is well adjusted for as described above. This is standard in WHI analyses,” she continued.

“Every Women’s Health Initiative analysis that comes out — not just for our study — uses a standard method ... where you account for hormonal therapy,” Dr. Desai added, again noting that many other potential risk factors were considered, enabling a “detailed, robust” analysis.

Dr. Takahashi and Ms. Shah agreed. “A notable strength of this study is its adjustment for many confounding factors,” they wrote. “The cohort’s well‐annotated data on other known cancer risk factors allowed for a robust assessment of CH’s independent risk.”
 

 

 

How Do Findings Compare With Those of the UK Biobank Study?

CHIP was associated with a 30% increased risk for breast cancer (hazard ratio [HR], 1.30; 95% CI, 1.03-1.64; P = .02), strengthening the borderline association reported by the UK Biobank study.

In contrast with the UK Biobank study, CHIP was not associated with lung cancer risk, although this may have been caused by fewer cases of lung cancer and a lack of male patients, Dr. Desai suggested.

“The discrepancy between the studies lies in the risk of lung cancer, although the point estimate in the current study suggested a positive association,” wrote Dr. Takahashi and Ms. Shah.

As in the UK Biobank study, CHIP was not associated with increased risk of developing colorectal cancer.

Mortality analysis, however, which was not conducted in the UK Biobank study, offered a new insight: Patients with existing colorectal cancer and CHIP had a significantly higher mortality risk than those without CHIP. Before stage adjustment, risk for mortality among those with colorectal cancer and CHIP was fourfold higher than those without CHIP (HR, 3.99; 95% CI, 2.41-6.62; P < .001). After stage adjustment, CHIP was still associated with a twofold higher mortality risk (HR, 2.50; 95% CI, 1.32-4.72; P = .004).

The investigators’ first mCA analyses, which employed a cell fraction cutoff greater than 3%, were unfruitful. But raising the cell fraction threshold to 5% in an exploratory analysis showed that autosomal mCA was associated with a 39% increased risk for breast cancer (HR, 1.39; 95% CI, 1.06-1.83; P = .01). No such associations were found between mCA and colorectal or lung cancer, regardless of cell fraction threshold.

The original 3% cell fraction threshold was selected on the basis of previous studies reporting a link between mCA and hematologic malignancies at this cutoff, Dr. Desai said.

She and her colleagues said a higher 5% cutoff might be needed, as they suspected that the link between mCA and solid tumors may not be causal, requiring a higher mutation rate.
 

Why Do Results Differ Between These Types of Studies?

Dr. Takahashi and Ms. Shah suggested that one possible limitation of the new study, and an obstacle to comparing results with the UK Biobank study and others like it, goes beyond population heterogeneity; incongruent findings could also be explained by differences in whole genome sequencing (WGS) technique.

“Although WGS allows sensitive detection of mCA through broad genomic coverage, it is less effective at detecting CHIP with low variant allele frequency (VAF) due to its relatively shallow depth (30x),” they wrote. “Consequently, the prevalence of mCA (18.8%) was much higher than that of CHIP (8.3%) in this cohort, contrasting with other studies using deeper sequencing.” As a result, the present study may have underestimated CHIP prevalence because of shallow sequencing depth.

“This inconsistency is a common challenge in CH population studies due to the lack of standardized methodologies and the frequent reliance on preexisting data not originally intended for CH detection,” Dr. Takahashi and Ms. Shah said.

Even so, despite the “heavily context-dependent” nature of these reported risks, the body of evidence to date now offers a convincing biological rationale linking CH with cancer development and outcomes, they added.
 

 

 

How Do the CHIP- and mCA-associated Risks Differ Between Solid Tumors and Blood Cancers?

“[These solid tumor risks are] not causal in the way CHIP mutations are causal for blood cancers,” Dr. Desai said. “Here we are talking about solid tumor risk, and it’s kind of scattered. It’s not just breast cancer ... there’s also increased colon cancer mortality. So I feel these mutations are doing something different ... they are sort of an added factor.”

Specific mechanisms remain unclear, Dr. Desai said, although she speculated about possible impacts on the inflammatory state or alterations to the tumor microenvironment.

“These are blood cells, right?” Dr. Desai asked. “They’re everywhere, and they’re changing something inherently in these tumors.”
 

Future research and therapeutic development

Siddhartha Jaiswal, MD, PhD, assistant professor in the Department of Pathology at Stanford University in California, whose lab focuses on clonal hematopoiesis, said the causality question is central to future research.

“The key question is, are these mutations acting because they alter the function of blood cells in some way to promote cancer risk, or is it reflective of some sort of shared etiology that’s not causal?” Dr. Jaiswal said in an interview.

Available data support both possibilities.

On one side, “reasonable evidence” supports the noncausal view, Dr. Jaiswal noted, because telomere length is one of the most common genetic risk factors for clonal hematopoiesis and also for solid tumors, suggesting a shared genetic factor. On the other hand, CHIP and mCA could be directly protumorigenic via conferred disturbances of immune cell function.

When asked if both causal and noncausal factors could be at play, Dr. Jaiswal said, “yeah, absolutely.”

The presence of a causal association could be promising from a therapeutic standpoint.

“If it turns out that this association is driven by a direct causal effect of the mutations, perhaps related to immune cell function or dysfunction, then targeting that dysfunction could be a therapeutic path to improve outcomes in people, and there’s a lot of interest in this,” Dr. Jaiswal said. He went on to explain how a trial exploring this approach via interleukin-8 inhibition in lung cancer fell short.

Yet earlier intervention may still hold promise, according to experts.

“[This study] provokes the hypothesis that CH‐targeted interventions could potentially reduce cancer risk in the future,” Dr. Takahashi and Ms. Shah said in their editorial.

The WHI program is funded by the National Heart, Lung, and Blood Institute; National Institutes of Health; and the Department of Health & Human Services. The investigators disclosed relationships with Eli Lilly, AbbVie, Celgene, and others. Dr. Jaiswal reported stock equity in a company that has an interest in clonal hematopoiesis.

A version of this article first appeared on Medscape.com.

Clonal hematopoiesis of indeterminate potential (CHIP) and mosaic chromosomal alterations (mCAs) are associated with an increased risk for breast cancer, and CHIP is associated with increased mortality in patients with colon cancer, according to the authors of new research.

These findings, drawn from almost 11,000 patients in the Women’s Health Initiative (WHI) study, add further evidence that CHIP and mCA drive solid tumor risk, alongside known associations with hematologic malignancies, reported lead author Pinkal Desai, MD, associate professor of medicine and clinical director of molecular aging at Englander Institute for Precision Medicine, Weill Cornell Medical College, New York City, and colleagues.
 

How This Study Differs From Others of Breast Cancer Risk Factors

“The independent effect of CHIP and mCA on risk and mortality from solid tumors has not been elucidated due to lack of detailed data on mortality outcomes and risk factors,” the investigators wrote in Cancer, although some previous studies have suggested a link.

In particular, the investigators highlighted a 2022 UK Biobank study, which reported an association between CHIP and lung cancer and a borderline association with breast cancer that did not quite reach statistical significance.

But the UK Biobank study was confined to a UK population, Dr. Desai noted in an interview, and the data were less detailed than those in the present investigation.

“In terms of risk, the part that was lacking in previous studies was a comprehensive assessment of risk factors that increase risk for all these cancers,” Dr. Desai said. “For example, for breast cancer, we had very detailed data on [participants’] Gail risk score, which is known to impact breast cancer risk. We also had mammogram data and colonoscopy data.”

In an accompanying editorial, Koichi Takahashi, MD, PhD , and Nehali Shah, BS, of The University of Texas MD Anderson Cancer Center, Houston, Texas, pointed out the same UK Biobank findings, then noted that CHIP has also been linked with worse overall survival in unselected cancer patients. Still, they wrote, “the impact of CH on cancer risk and mortality remains controversial due to conflicting data and context‐dependent effects,” necessitating studies like this one by Dr. Desai and colleagues.
 

How Was the Relationship Between CHIP, MCA, and Solid Tumor Risk Assessed?

To explore possible associations between CHIP, mCA, and solid tumors, the investigators analyzed whole genome sequencing data from 10,866 women in the WHI, a multi-study program that began in 1992 and involved 161,808 women in both observational and clinical trial cohorts.

In 2002, the first big data release from the WHI suggested that hormone replacement therapy (HRT) increased breast cancer risk, leading to widespread reduction in HRT use.

More recent reports continue to shape our understanding of these risks, suggesting differences across cancer types. For breast cancer, the WHI data suggested that HRT-associated risk was largely driven by formulations involving progesterone and estrogen, whereas estrogen-only formulations, now more common, are generally considered to present an acceptable risk profile for suitable patients.

The new study accounted for this potential HRT-associated risk, including by adjusting for patients who received HRT, type of HRT received, and duration of HRT received. According to Desai, this approach is commonly used when analyzing data from the WHI, nullifying concerns about the potentially deleterious effects of the hormones used in the study.

“Our question was not ‘does HRT cause cancer?’ ” Dr. Desai said in an interview. “But HRT can be linked to breast cancer risk and has a potential to be a confounder, and hence the above methodology.

“So I can say that the confounding/effect modification that HRT would have contributed to in the relationship between exposure (CH and mCA) and outcome (cancer) is well adjusted for as described above. This is standard in WHI analyses,” she continued.

“Every Women’s Health Initiative analysis that comes out — not just for our study — uses a standard method ... where you account for hormonal therapy,” Dr. Desai added, again noting that many other potential risk factors were considered, enabling a “detailed, robust” analysis.

Dr. Takahashi and Ms. Shah agreed. “A notable strength of this study is its adjustment for many confounding factors,” they wrote. “The cohort’s well‐annotated data on other known cancer risk factors allowed for a robust assessment of CH’s independent risk.”
 

 

 

How Do Findings Compare With Those of the UK Biobank Study?

CHIP was associated with a 30% increased risk for breast cancer (hazard ratio [HR], 1.30; 95% CI, 1.03-1.64; P = .02), strengthening the borderline association reported by the UK Biobank study.

In contrast with the UK Biobank study, CHIP was not associated with lung cancer risk, although this may have been caused by fewer cases of lung cancer and a lack of male patients, Dr. Desai suggested.

“The discrepancy between the studies lies in the risk of lung cancer, although the point estimate in the current study suggested a positive association,” wrote Dr. Takahashi and Ms. Shah.

As in the UK Biobank study, CHIP was not associated with increased risk of developing colorectal cancer.

Mortality analysis, however, which was not conducted in the UK Biobank study, offered a new insight: Patients with existing colorectal cancer and CHIP had a significantly higher mortality risk than those without CHIP. Before stage adjustment, risk for mortality among those with colorectal cancer and CHIP was fourfold higher than those without CHIP (HR, 3.99; 95% CI, 2.41-6.62; P < .001). After stage adjustment, CHIP was still associated with a twofold higher mortality risk (HR, 2.50; 95% CI, 1.32-4.72; P = .004).

The investigators’ first mCA analyses, which employed a cell fraction cutoff greater than 3%, were unfruitful. But raising the cell fraction threshold to 5% in an exploratory analysis showed that autosomal mCA was associated with a 39% increased risk for breast cancer (HR, 1.39; 95% CI, 1.06-1.83; P = .01). No such associations were found between mCA and colorectal or lung cancer, regardless of cell fraction threshold.

The original 3% cell fraction threshold was selected on the basis of previous studies reporting a link between mCA and hematologic malignancies at this cutoff, Dr. Desai said.

She and her colleagues said a higher 5% cutoff might be needed, as they suspected that the link between mCA and solid tumors may not be causal, requiring a higher mutation rate.
 

Why Do Results Differ Between These Types of Studies?

Dr. Takahashi and Ms. Shah suggested that one possible limitation of the new study, and an obstacle to comparing results with the UK Biobank study and others like it, goes beyond population heterogeneity; incongruent findings could also be explained by differences in whole genome sequencing (WGS) technique.

“Although WGS allows sensitive detection of mCA through broad genomic coverage, it is less effective at detecting CHIP with low variant allele frequency (VAF) due to its relatively shallow depth (30x),” they wrote. “Consequently, the prevalence of mCA (18.8%) was much higher than that of CHIP (8.3%) in this cohort, contrasting with other studies using deeper sequencing.” As a result, the present study may have underestimated CHIP prevalence because of shallow sequencing depth.

“This inconsistency is a common challenge in CH population studies due to the lack of standardized methodologies and the frequent reliance on preexisting data not originally intended for CH detection,” Dr. Takahashi and Ms. Shah said.

Even so, despite the “heavily context-dependent” nature of these reported risks, the body of evidence to date now offers a convincing biological rationale linking CH with cancer development and outcomes, they added.
 

 

 

How Do the CHIP- and mCA-associated Risks Differ Between Solid Tumors and Blood Cancers?

“[These solid tumor risks are] not causal in the way CHIP mutations are causal for blood cancers,” Dr. Desai said. “Here we are talking about solid tumor risk, and it’s kind of scattered. It’s not just breast cancer ... there’s also increased colon cancer mortality. So I feel these mutations are doing something different ... they are sort of an added factor.”

Specific mechanisms remain unclear, Dr. Desai said, although she speculated about possible impacts on the inflammatory state or alterations to the tumor microenvironment.

“These are blood cells, right?” Dr. Desai asked. “They’re everywhere, and they’re changing something inherently in these tumors.”
 

Future research and therapeutic development

Siddhartha Jaiswal, MD, PhD, assistant professor in the Department of Pathology at Stanford University in California, whose lab focuses on clonal hematopoiesis, said the causality question is central to future research.

“The key question is, are these mutations acting because they alter the function of blood cells in some way to promote cancer risk, or is it reflective of some sort of shared etiology that’s not causal?” Dr. Jaiswal said in an interview.

Available data support both possibilities.

On one side, “reasonable evidence” supports the noncausal view, Dr. Jaiswal noted, because telomere length is one of the most common genetic risk factors for clonal hematopoiesis and also for solid tumors, suggesting a shared genetic factor. On the other hand, CHIP and mCA could be directly protumorigenic via conferred disturbances of immune cell function.

When asked if both causal and noncausal factors could be at play, Dr. Jaiswal said, “yeah, absolutely.”

The presence of a causal association could be promising from a therapeutic standpoint.

“If it turns out that this association is driven by a direct causal effect of the mutations, perhaps related to immune cell function or dysfunction, then targeting that dysfunction could be a therapeutic path to improve outcomes in people, and there’s a lot of interest in this,” Dr. Jaiswal said. He went on to explain how a trial exploring this approach via interleukin-8 inhibition in lung cancer fell short.

Yet earlier intervention may still hold promise, according to experts.

“[This study] provokes the hypothesis that CH‐targeted interventions could potentially reduce cancer risk in the future,” Dr. Takahashi and Ms. Shah said in their editorial.

The WHI program is funded by the National Heart, Lung, and Blood Institute; National Institutes of Health; and the Department of Health & Human Services. The investigators disclosed relationships with Eli Lilly, AbbVie, Celgene, and others. Dr. Jaiswal reported stock equity in a company that has an interest in clonal hematopoiesis.

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Article Source

FROM CANCER

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Cancer Cases, Deaths in Men Predicted to Surge by 2050

Article Type
Changed
Tue, 09/17/2024 - 19:29

 

TOPLINE:

The number of cancer cases in men is estimated to increase by 84% from 2022 to 2050 — reaching 19 million globally — and deaths are expected to rise by more than 93% — reaching 10.5 million globally — with substantial disparities in cancer cases and deaths by age and region of the world, a recent analysis found.

METHODOLOGY:

  • Overall, men have higher cancer incidence and mortality rates, which can be largely attributed to a higher prevalence of modifiable risk factors such as smoking, alcohol consumption, and occupational carcinogens, as well as the underuse of cancer prevention, screening, and treatment services.
  • To assess the burden of cancer in men of different ages and from different regions of the world, researchers analyzed data from the 2022 Global Cancer Observatory (GLOBOCAN), which provides national-level estimates for cancer cases and deaths.
  • Study outcomes included the incidence, mortality, and prevalence of cancer among men in 2022, along with projections for 2050. Estimates were stratified by several factors, including age; region; and Human Development Index (HDI), a composite score for health, education, and standard of living.
  • Researchers also calculated mortality-to-incidence ratios (MIRs) for various cancer types, where higher values indicate worse survival.

TAKEAWAY:

  • The researchers reported an estimated 10.3 million cancer cases and 5.4 million deaths globally in 2022, with almost two thirds of cases and deaths occurring in men aged 65 years or older.
  • By 2050, cancer cases and deaths were projected to increase by 84.3% (to 19 million) and 93.2% (to 10.5 million), respectively. The increase from 2022 to 2050 was more than twofold higher for older men and countries with low and medium HDI.
  • In 2022, the estimated global cancer MIR among men was nearly 55%, with variations by cancer types, age, and HDI. The MIR was lowest for thyroid cancer (7.6%) and highest for pancreatic cancer (90.9%); among World Health Organization regions, Africa had the highest MIR (72.6%), while the Americas had the lowest MIR (39.1%); countries with the lowest HDI had the highest MIR (73.5% vs 41.1% for very high HDI).
  • Lung cancer was the leading cause for cases and deaths in 2022 and was projected to remain the leading cause in 2050.

IN PRACTICE:

“Disparities in cancer incidence and mortality among men were observed across age groups, countries/territories, and HDI in 2022, with these disparities projected to widen further by 2050,” according to the authors, who called for efforts to “reduce disparities in cancer burden and ensure equity in cancer prevention and care for men across the globe.”

SOURCE:

The study, led by Habtamu Mellie Bizuayehu, PhD, School of Public Health, Faculty of Medicine, The University of Queensland, Brisbane, Australia, was published online in Cancer.

LIMITATIONS:

The findings may be influenced by the quality of GLOBOCAN data. Interpretation should be cautious as MIR may not fully reflect cancer outcome inequalities. The study did not include other measures of cancer burden, such as years of life lost or years lived with disability, which were unavailable from the data source.

DISCLOSURES:

The authors did not disclose any funding information. The authors declared no conflicts of interest.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

 

TOPLINE:

The number of cancer cases in men is estimated to increase by 84% from 2022 to 2050 — reaching 19 million globally — and deaths are expected to rise by more than 93% — reaching 10.5 million globally — with substantial disparities in cancer cases and deaths by age and region of the world, a recent analysis found.

METHODOLOGY:

  • Overall, men have higher cancer incidence and mortality rates, which can be largely attributed to a higher prevalence of modifiable risk factors such as smoking, alcohol consumption, and occupational carcinogens, as well as the underuse of cancer prevention, screening, and treatment services.
  • To assess the burden of cancer in men of different ages and from different regions of the world, researchers analyzed data from the 2022 Global Cancer Observatory (GLOBOCAN), which provides national-level estimates for cancer cases and deaths.
  • Study outcomes included the incidence, mortality, and prevalence of cancer among men in 2022, along with projections for 2050. Estimates were stratified by several factors, including age; region; and Human Development Index (HDI), a composite score for health, education, and standard of living.
  • Researchers also calculated mortality-to-incidence ratios (MIRs) for various cancer types, where higher values indicate worse survival.

TAKEAWAY:

  • The researchers reported an estimated 10.3 million cancer cases and 5.4 million deaths globally in 2022, with almost two thirds of cases and deaths occurring in men aged 65 years or older.
  • By 2050, cancer cases and deaths were projected to increase by 84.3% (to 19 million) and 93.2% (to 10.5 million), respectively. The increase from 2022 to 2050 was more than twofold higher for older men and countries with low and medium HDI.
  • In 2022, the estimated global cancer MIR among men was nearly 55%, with variations by cancer types, age, and HDI. The MIR was lowest for thyroid cancer (7.6%) and highest for pancreatic cancer (90.9%); among World Health Organization regions, Africa had the highest MIR (72.6%), while the Americas had the lowest MIR (39.1%); countries with the lowest HDI had the highest MIR (73.5% vs 41.1% for very high HDI).
  • Lung cancer was the leading cause for cases and deaths in 2022 and was projected to remain the leading cause in 2050.

IN PRACTICE:

“Disparities in cancer incidence and mortality among men were observed across age groups, countries/territories, and HDI in 2022, with these disparities projected to widen further by 2050,” according to the authors, who called for efforts to “reduce disparities in cancer burden and ensure equity in cancer prevention and care for men across the globe.”

SOURCE:

The study, led by Habtamu Mellie Bizuayehu, PhD, School of Public Health, Faculty of Medicine, The University of Queensland, Brisbane, Australia, was published online in Cancer.

LIMITATIONS:

The findings may be influenced by the quality of GLOBOCAN data. Interpretation should be cautious as MIR may not fully reflect cancer outcome inequalities. The study did not include other measures of cancer burden, such as years of life lost or years lived with disability, which were unavailable from the data source.

DISCLOSURES:

The authors did not disclose any funding information. The authors declared no conflicts of interest.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.

 

TOPLINE:

The number of cancer cases in men is estimated to increase by 84% from 2022 to 2050 — reaching 19 million globally — and deaths are expected to rise by more than 93% — reaching 10.5 million globally — with substantial disparities in cancer cases and deaths by age and region of the world, a recent analysis found.

METHODOLOGY:

  • Overall, men have higher cancer incidence and mortality rates, which can be largely attributed to a higher prevalence of modifiable risk factors such as smoking, alcohol consumption, and occupational carcinogens, as well as the underuse of cancer prevention, screening, and treatment services.
  • To assess the burden of cancer in men of different ages and from different regions of the world, researchers analyzed data from the 2022 Global Cancer Observatory (GLOBOCAN), which provides national-level estimates for cancer cases and deaths.
  • Study outcomes included the incidence, mortality, and prevalence of cancer among men in 2022, along with projections for 2050. Estimates were stratified by several factors, including age; region; and Human Development Index (HDI), a composite score for health, education, and standard of living.
  • Researchers also calculated mortality-to-incidence ratios (MIRs) for various cancer types, where higher values indicate worse survival.

TAKEAWAY:

  • The researchers reported an estimated 10.3 million cancer cases and 5.4 million deaths globally in 2022, with almost two thirds of cases and deaths occurring in men aged 65 years or older.
  • By 2050, cancer cases and deaths were projected to increase by 84.3% (to 19 million) and 93.2% (to 10.5 million), respectively. The increase from 2022 to 2050 was more than twofold higher for older men and countries with low and medium HDI.
  • In 2022, the estimated global cancer MIR among men was nearly 55%, with variations by cancer types, age, and HDI. The MIR was lowest for thyroid cancer (7.6%) and highest for pancreatic cancer (90.9%); among World Health Organization regions, Africa had the highest MIR (72.6%), while the Americas had the lowest MIR (39.1%); countries with the lowest HDI had the highest MIR (73.5% vs 41.1% for very high HDI).
  • Lung cancer was the leading cause for cases and deaths in 2022 and was projected to remain the leading cause in 2050.

IN PRACTICE:

“Disparities in cancer incidence and mortality among men were observed across age groups, countries/territories, and HDI in 2022, with these disparities projected to widen further by 2050,” according to the authors, who called for efforts to “reduce disparities in cancer burden and ensure equity in cancer prevention and care for men across the globe.”

SOURCE:

The study, led by Habtamu Mellie Bizuayehu, PhD, School of Public Health, Faculty of Medicine, The University of Queensland, Brisbane, Australia, was published online in Cancer.

LIMITATIONS:

The findings may be influenced by the quality of GLOBOCAN data. Interpretation should be cautious as MIR may not fully reflect cancer outcome inequalities. The study did not include other measures of cancer burden, such as years of life lost or years lived with disability, which were unavailable from the data source.

DISCLOSURES:

The authors did not disclose any funding information. The authors declared no conflicts of interest.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Gate On Date
Tue, 09/17/2024 - 19:29
Un-Gate On Date
Tue, 09/17/2024 - 19:29
Use ProPublica
CFC Schedule Remove Status
Tue, 09/17/2024 - 19:29
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article
survey writer start date
Tue, 09/17/2024 - 19:29

From Baghdad to Boston: The Making of a Blood Cancer Specialist

Article Type
Changed
Mon, 08/26/2024 - 14:57

 

A few years after moving with her family from Iraq to the United States, Areej El-Jawahri, MD, entered the University of Michigan with plans to study law. Then her close friend was diagnosed with terminal cancer. This friend’s wrenching experiences during her final days convinced Dr. El-Jawahri to follow a new career path, one devoted to healing. Today, she practices hematology at Massachusetts General Hospital, Boston, and is a leading advocate for palliative care in oncology.

In an interview, Dr. El-Jawahri spoke about her journey from Baghdad to Boston and the future of palliative medicine in hematology.

Question: Where did you grow up?

Dr. El-Jawahri:
My family is from Baghdad, Iraq, and I was born there. We moved to the States when I was 14. I came to Michigan not speaking a word of English. My parents — my father is a mechanical engineer, and my mom is a computer engineer — chose to live in a very white neighborhood in Farmington Hills, in the suburbs of Detroit. The neighborhood did not have any immigrants or Arab Americans. There are a lot of Arab Americans in Michigan, but they chose for me not to hang out with them early on so that I could learn the language. It was a really good choice.

Question: What happened to your college friend?

Dr. El-Jawahri:
She had a brain tumor and ended up receiving intensive care at the end of life. We had a lot of conversations about her wishes and desires, but none of those were honored. Her ending was not something that she wanted, nor did it honor her memory.

Question: What do you think went wrong?

Dr. El-Jawahri:
She was getting treatment for her family’s sake. The idea of losing her was too hard for them. I remember vividly the conversations where she would say, “I just hope I don’t end up in the hospital at the end of life.” We had that conversation explicitly. But because we were young, her family was very involved in her care. A lot of the decision-making was very complicated.

Question: How did this experience change your career path?

Dr. El-Jawahri:
I went into medicine specifically to become an oncologist and cure cancer. The naive 20-year-old in me said, “Nobody should die this miserable death. I’m going to go in, and I’m going to cure it.”

Question: How did palliative medicine become your major focus?

Dr. El-Jawahri:
During my first year at Harvard Medical School, I took a course that’s called “Living With Life-Threatening Illness.” It allows medical students to spend their entire first year getting to know a patient living with a serious illness. We’d spend weekly coffee or lunch breaks with them, where we’d hear about their experiences. After every weekly meeting with a patient, we also had a group meeting with several students and group facilitators to talk about — and process — the interactions we had with patients. I was assigned a woman who was living with metastatic breast cancer. I was also introduced to the field of palliative care and how it helps patients manage complex symptoms and process and cope with a difficult diagnosis. It also cultivates the understanding to make informed decisions about their care. That’s when I knew what I wanted to do for the rest of my life — figure out ways to integrate these palliative and supportive care concepts and improve the lived experience of patients and families within the oncology setting.

Question: What happened next?

Dr. El-Jawahri:
When I was a first-year intern, I went to residency at Massachusetts General Hospital. I was on an oncology service and admitted a young college student who was diagnosed with acute myeloid leukemia. She was an athlete, and every time she went up the stairs to her dorm, she was getting very short of breath. She went to a walk-in clinic because when you’re 20 and you’re healthy, you don’t think you need anything. They did some blood work, and 2 hours later, they called her and said, “You probably have leukemia. You need to go to the emergency department immediately.” There she saw an emergency doctor who said, “You will be admitted to the hospital. You have leukemia. I’m calling an oncologist, and you’ll probably have to start chemotherapy within the next day or two.”

Question: What was that experience like for the patient?

Dr. El-Jawahri:
I’ve never seen someone so scared. The first question she asked me was about her family, who were from North Carolina. She said, “It feels like everybody thinks that I’m dying. Do you think my family will have time to get here?” They were in a car driving over. This is not a unique story in this population. Unfortunately, these patients experience the most traumatic way of being diagnosed and probably the most traumatic experience in oncology. They’re being abducted into a hospital environment, losing all control and starting immediate therapy. Then, for the first 4-6 weeks, they experience immense toxicity, side effects like nausea, vomiting, diarrhea, and mucositis, where they have painful mouth and throat sores that require intravenous pain medications. This causes real posttraumatic stress. After seeing that woman, I made the decision to work in leukemia and transplants to try to make things a little bit better for these patients.

Question: How did the patient fare?

Dr. El-Jawahri:
She actually did great and was cured of her disease. Many of our patients with leukemia, especially younger ones, do well in terms of survival. But they struggle with the trauma of their diagnosis and the distress of the acute treatment period. Even in the curative setting, helping patients to cope with a traumatic diagnosis can have a big impact on their quality of life, how they feel, and their long-term outcomes in terms of psychological stress, depression, anxiety, and posttraumatic stress. But so often, our patients with leukemia are not offered palliative care and supportive care because they’re going to be cured.

Question: What is an important lesson from your research into palliative care in hematology?

Dr. El-Jawahri:
We can make things better for patients and families by integrating palliative care clinicians into the care of patients. Patients receiving palliative care are more likely to document their end-of-life preferences and discuss them with their clinicians, and they’re less likely to be hospitalized at the end of life. When you ask patients with cancer where do they want to die, many of patients say, “I want to die at home. I don’t want to be in a hospital.” A lot of the work I’m doing now is focused on creating digital apps with components of palliative care and supportive care interventions. Patients can administer these interventions to themselves and learn how to effectively cope and deal with their illness. Some patients may do well with a digital app, but others may actually need the in-person touch. Some may need a hybrid approach. One of the other future directions for us is thinking about how we optimize supportive care interventions. Which ones do we give to which patient?

Question: Considering all that you’ve learned since college, how do you think your sick friend should have been treated?

Dr. El-Jawahri:
She was neither introduced to the term palliative care nor to palliative care specialists. Now the standard of care — especially in patients with advanced cancer — is to integrate palliative care clinicians early in the course of illness. We would have loved for her to have a palliative care clinician who didn’t replace the oncologist but rather helped the patient, family, and oncologist communicate more effectively with one another. We hear all the time from patients who say different things to their oncologist than to their palliative care clinician. It’s not like my friend wasn’t able to communicate with her oncologist. But maybe part of it was that she wanted to not disappoint her oncologist [by ending treatment].

Question: Could you tell me about the research you presented at ASCO 2024 regarding 115 adult patients with acute myeloid leukemia and high-risk myelodysplastic syndrome who were receiving non-intensive chemotherapy?

Dr. El-Jawahri:
These patients receive therapy that requires frequent clinic visits and often substantially impairs their quality of life. We know this population often does not engage in any timely discussion with their clinicians about their end-of-life care preferences. This multisite randomized clinical trial assigned patients to receive usual oncology care [with palliative care consultations only upon request] vs to see palliative care clinicians monthly in the outpatient setting and twice weekly every time they were hospitalized. The intervention focused on how to help patients manage their symptoms and end-of-life communication in particular. The primary outcome of the study was time from the documentation of end-of-life care preferences to death.

Question: What did you learn?

Dr. El-Jawahri:
This is one of the first studies to highlight the impact of palliative care integration on end-of-life care preferences and discussions and documentation in this population. Patients receiving the palliative care intervention were much more likely to discuss their end-of-life care preferences (96.5% vs 68.4%; P < .001). More importantly, those receiving the intervention had a much longer time from documentation of end-of-life care preferences to death. On average, patients in the palliative care intervention group vs the usual care group had a mean of 41 vs 1.5 days from documentation of their preferences to death (P < .001). In the intervention group, these conversations were happening early enough for patients to plan, talk to their families, and discuss their wishes. In the usual care group, they were happening acutely while these patients were dying. We also learned that patients receiving palliative care intervention were less likely to be hospitalized at the end of life (70.6% vs 91.9%; P = .031) and had better quality of life (138.6 vs 125.5; P = .010).

Question: What’s next for your research in this area?

Dr. El-Jawahri:
We are doing a large-scale randomized, comparative effectiveness trial of specialty palliative care vs primary palliative care in 11,150 patients with acute myeloid leukemia across 20 institutions in the United States. We expect results in 2028.

Question: What are you hoping to understand?

Dr. El-Jawahri:
We will never have enough specialty palliative care clinicians to take care of all patients with serious illness. As a result, we have to learn how palliative care works: How does it improve outcomes? How do we potentially take what palliative care clinicians do and try to integrate it into regular oncology practice? A lot of the work that I’m excited about now regards what we call primary palliative care. How do we train oncology clinicians to incorporate palliative care skills in their practices so we’re able to better meet the needs of our patients and their families? What we’d love to understand from future research is which patient populations need specialty palliative care and which patients can do just fine with an oncology clinician who has a lot of good palliative care skills integrated into their practice.

Dr. El-Jawahri disclosed consulting for Incyte and Novartis.

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

 

A few years after moving with her family from Iraq to the United States, Areej El-Jawahri, MD, entered the University of Michigan with plans to study law. Then her close friend was diagnosed with terminal cancer. This friend’s wrenching experiences during her final days convinced Dr. El-Jawahri to follow a new career path, one devoted to healing. Today, she practices hematology at Massachusetts General Hospital, Boston, and is a leading advocate for palliative care in oncology.

In an interview, Dr. El-Jawahri spoke about her journey from Baghdad to Boston and the future of palliative medicine in hematology.

Question: Where did you grow up?

Dr. El-Jawahri:
My family is from Baghdad, Iraq, and I was born there. We moved to the States when I was 14. I came to Michigan not speaking a word of English. My parents — my father is a mechanical engineer, and my mom is a computer engineer — chose to live in a very white neighborhood in Farmington Hills, in the suburbs of Detroit. The neighborhood did not have any immigrants or Arab Americans. There are a lot of Arab Americans in Michigan, but they chose for me not to hang out with them early on so that I could learn the language. It was a really good choice.

Question: What happened to your college friend?

Dr. El-Jawahri:
She had a brain tumor and ended up receiving intensive care at the end of life. We had a lot of conversations about her wishes and desires, but none of those were honored. Her ending was not something that she wanted, nor did it honor her memory.

Question: What do you think went wrong?

Dr. El-Jawahri:
She was getting treatment for her family’s sake. The idea of losing her was too hard for them. I remember vividly the conversations where she would say, “I just hope I don’t end up in the hospital at the end of life.” We had that conversation explicitly. But because we were young, her family was very involved in her care. A lot of the decision-making was very complicated.

Question: How did this experience change your career path?

Dr. El-Jawahri:
I went into medicine specifically to become an oncologist and cure cancer. The naive 20-year-old in me said, “Nobody should die this miserable death. I’m going to go in, and I’m going to cure it.”

Question: How did palliative medicine become your major focus?

Dr. El-Jawahri:
During my first year at Harvard Medical School, I took a course that’s called “Living With Life-Threatening Illness.” It allows medical students to spend their entire first year getting to know a patient living with a serious illness. We’d spend weekly coffee or lunch breaks with them, where we’d hear about their experiences. After every weekly meeting with a patient, we also had a group meeting with several students and group facilitators to talk about — and process — the interactions we had with patients. I was assigned a woman who was living with metastatic breast cancer. I was also introduced to the field of palliative care and how it helps patients manage complex symptoms and process and cope with a difficult diagnosis. It also cultivates the understanding to make informed decisions about their care. That’s when I knew what I wanted to do for the rest of my life — figure out ways to integrate these palliative and supportive care concepts and improve the lived experience of patients and families within the oncology setting.

Question: What happened next?

Dr. El-Jawahri:
When I was a first-year intern, I went to residency at Massachusetts General Hospital. I was on an oncology service and admitted a young college student who was diagnosed with acute myeloid leukemia. She was an athlete, and every time she went up the stairs to her dorm, she was getting very short of breath. She went to a walk-in clinic because when you’re 20 and you’re healthy, you don’t think you need anything. They did some blood work, and 2 hours later, they called her and said, “You probably have leukemia. You need to go to the emergency department immediately.” There she saw an emergency doctor who said, “You will be admitted to the hospital. You have leukemia. I’m calling an oncologist, and you’ll probably have to start chemotherapy within the next day or two.”

Question: What was that experience like for the patient?

Dr. El-Jawahri:
I’ve never seen someone so scared. The first question she asked me was about her family, who were from North Carolina. She said, “It feels like everybody thinks that I’m dying. Do you think my family will have time to get here?” They were in a car driving over. This is not a unique story in this population. Unfortunately, these patients experience the most traumatic way of being diagnosed and probably the most traumatic experience in oncology. They’re being abducted into a hospital environment, losing all control and starting immediate therapy. Then, for the first 4-6 weeks, they experience immense toxicity, side effects like nausea, vomiting, diarrhea, and mucositis, where they have painful mouth and throat sores that require intravenous pain medications. This causes real posttraumatic stress. After seeing that woman, I made the decision to work in leukemia and transplants to try to make things a little bit better for these patients.

Question: How did the patient fare?

Dr. El-Jawahri:
She actually did great and was cured of her disease. Many of our patients with leukemia, especially younger ones, do well in terms of survival. But they struggle with the trauma of their diagnosis and the distress of the acute treatment period. Even in the curative setting, helping patients to cope with a traumatic diagnosis can have a big impact on their quality of life, how they feel, and their long-term outcomes in terms of psychological stress, depression, anxiety, and posttraumatic stress. But so often, our patients with leukemia are not offered palliative care and supportive care because they’re going to be cured.

Question: What is an important lesson from your research into palliative care in hematology?

Dr. El-Jawahri:
We can make things better for patients and families by integrating palliative care clinicians into the care of patients. Patients receiving palliative care are more likely to document their end-of-life preferences and discuss them with their clinicians, and they’re less likely to be hospitalized at the end of life. When you ask patients with cancer where do they want to die, many of patients say, “I want to die at home. I don’t want to be in a hospital.” A lot of the work I’m doing now is focused on creating digital apps with components of palliative care and supportive care interventions. Patients can administer these interventions to themselves and learn how to effectively cope and deal with their illness. Some patients may do well with a digital app, but others may actually need the in-person touch. Some may need a hybrid approach. One of the other future directions for us is thinking about how we optimize supportive care interventions. Which ones do we give to which patient?

Question: Considering all that you’ve learned since college, how do you think your sick friend should have been treated?

Dr. El-Jawahri:
She was neither introduced to the term palliative care nor to palliative care specialists. Now the standard of care — especially in patients with advanced cancer — is to integrate palliative care clinicians early in the course of illness. We would have loved for her to have a palliative care clinician who didn’t replace the oncologist but rather helped the patient, family, and oncologist communicate more effectively with one another. We hear all the time from patients who say different things to their oncologist than to their palliative care clinician. It’s not like my friend wasn’t able to communicate with her oncologist. But maybe part of it was that she wanted to not disappoint her oncologist [by ending treatment].

Question: Could you tell me about the research you presented at ASCO 2024 regarding 115 adult patients with acute myeloid leukemia and high-risk myelodysplastic syndrome who were receiving non-intensive chemotherapy?

Dr. El-Jawahri:
These patients receive therapy that requires frequent clinic visits and often substantially impairs their quality of life. We know this population often does not engage in any timely discussion with their clinicians about their end-of-life care preferences. This multisite randomized clinical trial assigned patients to receive usual oncology care [with palliative care consultations only upon request] vs to see palliative care clinicians monthly in the outpatient setting and twice weekly every time they were hospitalized. The intervention focused on how to help patients manage their symptoms and end-of-life communication in particular. The primary outcome of the study was time from the documentation of end-of-life care preferences to death.

Question: What did you learn?

Dr. El-Jawahri:
This is one of the first studies to highlight the impact of palliative care integration on end-of-life care preferences and discussions and documentation in this population. Patients receiving the palliative care intervention were much more likely to discuss their end-of-life care preferences (96.5% vs 68.4%; P < .001). More importantly, those receiving the intervention had a much longer time from documentation of end-of-life care preferences to death. On average, patients in the palliative care intervention group vs the usual care group had a mean of 41 vs 1.5 days from documentation of their preferences to death (P < .001). In the intervention group, these conversations were happening early enough for patients to plan, talk to their families, and discuss their wishes. In the usual care group, they were happening acutely while these patients were dying. We also learned that patients receiving palliative care intervention were less likely to be hospitalized at the end of life (70.6% vs 91.9%; P = .031) and had better quality of life (138.6 vs 125.5; P = .010).

Question: What’s next for your research in this area?

Dr. El-Jawahri:
We are doing a large-scale randomized, comparative effectiveness trial of specialty palliative care vs primary palliative care in 11,150 patients with acute myeloid leukemia across 20 institutions in the United States. We expect results in 2028.

Question: What are you hoping to understand?

Dr. El-Jawahri:
We will never have enough specialty palliative care clinicians to take care of all patients with serious illness. As a result, we have to learn how palliative care works: How does it improve outcomes? How do we potentially take what palliative care clinicians do and try to integrate it into regular oncology practice? A lot of the work that I’m excited about now regards what we call primary palliative care. How do we train oncology clinicians to incorporate palliative care skills in their practices so we’re able to better meet the needs of our patients and their families? What we’d love to understand from future research is which patient populations need specialty palliative care and which patients can do just fine with an oncology clinician who has a lot of good palliative care skills integrated into their practice.

Dr. El-Jawahri disclosed consulting for Incyte and Novartis.

A version of this article first appeared on Medscape.com.

 

A few years after moving with her family from Iraq to the United States, Areej El-Jawahri, MD, entered the University of Michigan with plans to study law. Then her close friend was diagnosed with terminal cancer. This friend’s wrenching experiences during her final days convinced Dr. El-Jawahri to follow a new career path, one devoted to healing. Today, she practices hematology at Massachusetts General Hospital, Boston, and is a leading advocate for palliative care in oncology.

In an interview, Dr. El-Jawahri spoke about her journey from Baghdad to Boston and the future of palliative medicine in hematology.

Question: Where did you grow up?

Dr. El-Jawahri:
My family is from Baghdad, Iraq, and I was born there. We moved to the States when I was 14. I came to Michigan not speaking a word of English. My parents — my father is a mechanical engineer, and my mom is a computer engineer — chose to live in a very white neighborhood in Farmington Hills, in the suburbs of Detroit. The neighborhood did not have any immigrants or Arab Americans. There are a lot of Arab Americans in Michigan, but they chose for me not to hang out with them early on so that I could learn the language. It was a really good choice.

Question: What happened to your college friend?

Dr. El-Jawahri:
She had a brain tumor and ended up receiving intensive care at the end of life. We had a lot of conversations about her wishes and desires, but none of those were honored. Her ending was not something that she wanted, nor did it honor her memory.

Question: What do you think went wrong?

Dr. El-Jawahri:
She was getting treatment for her family’s sake. The idea of losing her was too hard for them. I remember vividly the conversations where she would say, “I just hope I don’t end up in the hospital at the end of life.” We had that conversation explicitly. But because we were young, her family was very involved in her care. A lot of the decision-making was very complicated.

Question: How did this experience change your career path?

Dr. El-Jawahri:
I went into medicine specifically to become an oncologist and cure cancer. The naive 20-year-old in me said, “Nobody should die this miserable death. I’m going to go in, and I’m going to cure it.”

Question: How did palliative medicine become your major focus?

Dr. El-Jawahri:
During my first year at Harvard Medical School, I took a course that’s called “Living With Life-Threatening Illness.” It allows medical students to spend their entire first year getting to know a patient living with a serious illness. We’d spend weekly coffee or lunch breaks with them, where we’d hear about their experiences. After every weekly meeting with a patient, we also had a group meeting with several students and group facilitators to talk about — and process — the interactions we had with patients. I was assigned a woman who was living with metastatic breast cancer. I was also introduced to the field of palliative care and how it helps patients manage complex symptoms and process and cope with a difficult diagnosis. It also cultivates the understanding to make informed decisions about their care. That’s when I knew what I wanted to do for the rest of my life — figure out ways to integrate these palliative and supportive care concepts and improve the lived experience of patients and families within the oncology setting.

Question: What happened next?

Dr. El-Jawahri:
When I was a first-year intern, I went to residency at Massachusetts General Hospital. I was on an oncology service and admitted a young college student who was diagnosed with acute myeloid leukemia. She was an athlete, and every time she went up the stairs to her dorm, she was getting very short of breath. She went to a walk-in clinic because when you’re 20 and you’re healthy, you don’t think you need anything. They did some blood work, and 2 hours later, they called her and said, “You probably have leukemia. You need to go to the emergency department immediately.” There she saw an emergency doctor who said, “You will be admitted to the hospital. You have leukemia. I’m calling an oncologist, and you’ll probably have to start chemotherapy within the next day or two.”

Question: What was that experience like for the patient?

Dr. El-Jawahri:
I’ve never seen someone so scared. The first question she asked me was about her family, who were from North Carolina. She said, “It feels like everybody thinks that I’m dying. Do you think my family will have time to get here?” They were in a car driving over. This is not a unique story in this population. Unfortunately, these patients experience the most traumatic way of being diagnosed and probably the most traumatic experience in oncology. They’re being abducted into a hospital environment, losing all control and starting immediate therapy. Then, for the first 4-6 weeks, they experience immense toxicity, side effects like nausea, vomiting, diarrhea, and mucositis, where they have painful mouth and throat sores that require intravenous pain medications. This causes real posttraumatic stress. After seeing that woman, I made the decision to work in leukemia and transplants to try to make things a little bit better for these patients.

Question: How did the patient fare?

Dr. El-Jawahri:
She actually did great and was cured of her disease. Many of our patients with leukemia, especially younger ones, do well in terms of survival. But they struggle with the trauma of their diagnosis and the distress of the acute treatment period. Even in the curative setting, helping patients to cope with a traumatic diagnosis can have a big impact on their quality of life, how they feel, and their long-term outcomes in terms of psychological stress, depression, anxiety, and posttraumatic stress. But so often, our patients with leukemia are not offered palliative care and supportive care because they’re going to be cured.

Question: What is an important lesson from your research into palliative care in hematology?

Dr. El-Jawahri:
We can make things better for patients and families by integrating palliative care clinicians into the care of patients. Patients receiving palliative care are more likely to document their end-of-life preferences and discuss them with their clinicians, and they’re less likely to be hospitalized at the end of life. When you ask patients with cancer where do they want to die, many of patients say, “I want to die at home. I don’t want to be in a hospital.” A lot of the work I’m doing now is focused on creating digital apps with components of palliative care and supportive care interventions. Patients can administer these interventions to themselves and learn how to effectively cope and deal with their illness. Some patients may do well with a digital app, but others may actually need the in-person touch. Some may need a hybrid approach. One of the other future directions for us is thinking about how we optimize supportive care interventions. Which ones do we give to which patient?

Question: Considering all that you’ve learned since college, how do you think your sick friend should have been treated?

Dr. El-Jawahri:
She was neither introduced to the term palliative care nor to palliative care specialists. Now the standard of care — especially in patients with advanced cancer — is to integrate palliative care clinicians early in the course of illness. We would have loved for her to have a palliative care clinician who didn’t replace the oncologist but rather helped the patient, family, and oncologist communicate more effectively with one another. We hear all the time from patients who say different things to their oncologist than to their palliative care clinician. It’s not like my friend wasn’t able to communicate with her oncologist. But maybe part of it was that she wanted to not disappoint her oncologist [by ending treatment].

Question: Could you tell me about the research you presented at ASCO 2024 regarding 115 adult patients with acute myeloid leukemia and high-risk myelodysplastic syndrome who were receiving non-intensive chemotherapy?

Dr. El-Jawahri:
These patients receive therapy that requires frequent clinic visits and often substantially impairs their quality of life. We know this population often does not engage in any timely discussion with their clinicians about their end-of-life care preferences. This multisite randomized clinical trial assigned patients to receive usual oncology care [with palliative care consultations only upon request] vs to see palliative care clinicians monthly in the outpatient setting and twice weekly every time they were hospitalized. The intervention focused on how to help patients manage their symptoms and end-of-life communication in particular. The primary outcome of the study was time from the documentation of end-of-life care preferences to death.

Question: What did you learn?

Dr. El-Jawahri:
This is one of the first studies to highlight the impact of palliative care integration on end-of-life care preferences and discussions and documentation in this population. Patients receiving the palliative care intervention were much more likely to discuss their end-of-life care preferences (96.5% vs 68.4%; P < .001). More importantly, those receiving the intervention had a much longer time from documentation of end-of-life care preferences to death. On average, patients in the palliative care intervention group vs the usual care group had a mean of 41 vs 1.5 days from documentation of their preferences to death (P < .001). In the intervention group, these conversations were happening early enough for patients to plan, talk to their families, and discuss their wishes. In the usual care group, they were happening acutely while these patients were dying. We also learned that patients receiving palliative care intervention were less likely to be hospitalized at the end of life (70.6% vs 91.9%; P = .031) and had better quality of life (138.6 vs 125.5; P = .010).

Question: What’s next for your research in this area?

Dr. El-Jawahri:
We are doing a large-scale randomized, comparative effectiveness trial of specialty palliative care vs primary palliative care in 11,150 patients with acute myeloid leukemia across 20 institutions in the United States. We expect results in 2028.

Question: What are you hoping to understand?

Dr. El-Jawahri:
We will never have enough specialty palliative care clinicians to take care of all patients with serious illness. As a result, we have to learn how palliative care works: How does it improve outcomes? How do we potentially take what palliative care clinicians do and try to integrate it into regular oncology practice? A lot of the work that I’m excited about now regards what we call primary palliative care. How do we train oncology clinicians to incorporate palliative care skills in their practices so we’re able to better meet the needs of our patients and their families? What we’d love to understand from future research is which patient populations need specialty palliative care and which patients can do just fine with an oncology clinician who has a lot of good palliative care skills integrated into their practice.

Dr. El-Jawahri disclosed consulting for Incyte and Novartis.

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Cancer Treatment 101: A Primer for Non-Oncologists

Article Type
Changed
Fri, 08/23/2024 - 13:14

Each year in the United States, approximately 1.7 million Americans are diagnosed with a potentially lethal malignancy. Typical therapies of choice include surgery, radiation, and occasionally, toxic chemotherapy (chemo) — approaches that eliminate the cancer in about 1,000,000 of these cases. The remaining 700,000 or so often proceed to chemotherapy either immediately or upon cancer recurrence, spread, or newly recognized metastases. “Cures” after that point are rare.

I’m speaking in generalities, understanding that each cancer and each patient is unique.
 

Chemotherapy

Chemotherapy alone can cure a small number of cancer types. When added to radiation or surgery, chemotherapy can help to cure a wider range of cancer types. As an add-on, chemotherapy can extend the length and quality of life for many patients with cancer. Since chemotherapy is by definition “toxic,” it can also shorten the duration or harm the quality of life and provide false hope. The Table summarizes what chemotherapy can and cannot achieve in selected cancer types.



Careful, compassionate communication between patient and physician is key. Goals and expectations must be clearly understood.

Organized chemotherapeutic efforts are further categorized as first line, second line, and third line.

First-line treatment. The initial round of recommended chemotherapy for a specific cancer. It is typically considered the most effective treatment for that type and stage of cancer on the basis of current research and clinical trials.

Second-line treatment. This is the treatment used if the first-line chemotherapy doesn’t work as desired. Reasons to switch to second-line chemo include:

  • Lack of response (the tumor failed to shrink).
  • Progression (the cancer may have grown or spread further).
  • Adverse side effects were too severe to continue.

The drugs used in second-line chemo will typically be different from those used in first line, sometimes because cancer cells can develop resistance to chemotherapy drugs over time. Moreover, the goal of second-line chemo may differ from that of first-line therapy. Rather than chiefly aiming for a cure, second-line treatment might focus on slowing cancer growth, managing symptoms, or improving quality of life. Unfortunately, not every type of cancer has a readily available second-line option.

Third-line treatment. Third-line options come into play when both the initial course of chemo (first line) and the subsequent treatment (second line) have failed to achieve remission or control the cancer’s spread. Owing to the progressive nature of advanced cancers, patients might not be eligible or healthy enough for third-line therapy. Depending on cancer type, the patient’s general health, and response to previous treatments, third-line options could include:

  • New or different chemotherapy drugs compared with prior lines.
  • Surgery to debulk the tumor.
  • Radiation for symptom control.
  • Targeted therapy: drugs designed to target specific vulnerabilities in cancer cells.
  • Immunotherapy: agents that help the body’s immune system fight cancer cells.
  • Clinical trials testing new or investigational treatments, which may be applicable at any time, depending on the questions being addressed.
 

 

The goals of third-line therapy may shift from aiming for a cure to managing symptoms, improving quality of life, and potentially slowing cancer growth. The decision to pursue third-line therapy involves careful consideration by the doctor and patient, weighing the potential benefits and risks of treatment considering the individual’s overall health and specific situation.

It’s important to have realistic expectations about the potential outcomes of third-line therapy. Although remission may be unlikely, third-line therapy can still play a role in managing the disease.

Navigating advanced cancer treatment is very complex. The patient and physician must together consider detailed explanations and clarifications to set expectations and make informed decisions about care.
 

Interventions to Consider Earlier

In traditional clinical oncology practice, other interventions are possible, but these may not be offered until treatment has reached the third line:

  • Molecular testing.
  • Palliation.
  • Clinical trials.
  • Innovative testing to guide targeted therapy by ascertaining which agents are most likely (or not likely at all) to be effective.

I would argue that the patient’s interests are better served by considering and offering these other interventions much earlier, even before starting first-line chemotherapy.

Molecular testing. The best time for molecular testing of a new malignant tumor is typically at the time of diagnosis. Here’s why:

  • Molecular testing helps identify specific genetic mutations in the cancer cells. This information can be crucial for selecting targeted therapies that are most effective against those specific mutations. Early detection allows for the most treatment options. For example, for non–small cell lung cancer, early is best because treatment and outcomes may well be changed by test results.
  • Knowing the tumor’s molecular makeup can help determine whether a patient qualifies for clinical trials of new drugs designed for specific mutations.
  • Some molecular markers can offer information about the tumor’s aggressiveness and potential for metastasis so that prognosis can be informed.

Molecular testing can be a valuable tool throughout a cancer patient’s journey. With genetically diverse tumors, the initial biopsy might not capture the full picture. Molecular testing of circulating tumor DNA can be used to monitor a patient’s response to treatment and detect potential mutations that might arise during treatment resistance. Retesting after metastasis can provide additional information that can aid in treatment decisions.

Palliative care. The ideal time to discuss palliative care with a patient with cancer is early in the diagnosis and treatment process. Palliative care is not the same as hospice care; it isn’t just about end-of-life. Palliative care focuses on improving a patient’s quality of life throughout cancer treatment. Palliative care specialists can address a wide range of symptoms a patient might experience from cancer or its treatment, including pain, fatigue, nausea, and anxiety.

Early discussions allow for a more comprehensive care plan. Open communication about all treatment options, including palliative care, empowers patients to make informed decisions about their care goals and preferences.

Specific situations where discussing palliative care might be appropriate are:

  • Soon after a cancer diagnosis.
  • If the patient experiences significant side effects from cancer treatment.
  • When considering different treatment options, palliative care can complement those treatments.
  • In advanced stages of cancer, to focus on comfort and quality of life.

Clinical trials. Participation in a clinical trial to explore new or investigational treatments should always be considered.

In theory, clinical trials should be an option at any time in the patient’s course. But the organized clinical trial experience may not be available or appropriate. Then, the individual becomes a de facto “clinical trial with an n of 1.” Read this brief open-access blog post at Cancer Commons to learn more about that circumstance.

Innovative testing. The best choice of chemotherapeutic or targeted therapies is often unclear. The clinician is likely to follow published guidelines, often from the National Comprehensive Cancer Network.

These are evidence based and driven by consensus of experts. But guideline-recommended therapy is not always effective, and weeks or months can pass before this ineffectiveness becomes apparent. Thus, many researchers and companies are seeking methods of testing each patient’s specific cancer to determine in advance, or very quickly, whether a particular drug is likely to be effective.

Read more about these leading innovations:

SAGE Oncotest: Entering the Next Generation of Tailored Cancer Treatment

Alibrex: A New Blood Test to Reveal Whether a Cancer Treatment is Working

PARIS Test Uses Lab-Grown Mini-Tumors to Find a Patient’s Best Treatment

Using Live Cells from Patients to Find the Right Cancer Drug


Other innovative therapies under investigation could even be agnostic to cancer type:

Treating Pancreatic Cancer: Could Metabolism — Not Genomics — Be the Key?

High-Energy Blue Light Powers a Promising New Treatment to Destroy Cancer Cells

All-Clear Follow-Up: Hydrogen Peroxide Appears to Treat Oral and Skin Lesions


Cancer is a tough nut to crack. Many people and organizations are trying very hard. So much is being learned. Some approaches will be effective. We can all hope.

Dr. Lundberg, editor in chief, Cancer Commons, has disclosed no relevant financial relationships.

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

Each year in the United States, approximately 1.7 million Americans are diagnosed with a potentially lethal malignancy. Typical therapies of choice include surgery, radiation, and occasionally, toxic chemotherapy (chemo) — approaches that eliminate the cancer in about 1,000,000 of these cases. The remaining 700,000 or so often proceed to chemotherapy either immediately or upon cancer recurrence, spread, or newly recognized metastases. “Cures” after that point are rare.

I’m speaking in generalities, understanding that each cancer and each patient is unique.
 

Chemotherapy

Chemotherapy alone can cure a small number of cancer types. When added to radiation or surgery, chemotherapy can help to cure a wider range of cancer types. As an add-on, chemotherapy can extend the length and quality of life for many patients with cancer. Since chemotherapy is by definition “toxic,” it can also shorten the duration or harm the quality of life and provide false hope. The Table summarizes what chemotherapy can and cannot achieve in selected cancer types.



Careful, compassionate communication between patient and physician is key. Goals and expectations must be clearly understood.

Organized chemotherapeutic efforts are further categorized as first line, second line, and third line.

First-line treatment. The initial round of recommended chemotherapy for a specific cancer. It is typically considered the most effective treatment for that type and stage of cancer on the basis of current research and clinical trials.

Second-line treatment. This is the treatment used if the first-line chemotherapy doesn’t work as desired. Reasons to switch to second-line chemo include:

  • Lack of response (the tumor failed to shrink).
  • Progression (the cancer may have grown or spread further).
  • Adverse side effects were too severe to continue.

The drugs used in second-line chemo will typically be different from those used in first line, sometimes because cancer cells can develop resistance to chemotherapy drugs over time. Moreover, the goal of second-line chemo may differ from that of first-line therapy. Rather than chiefly aiming for a cure, second-line treatment might focus on slowing cancer growth, managing symptoms, or improving quality of life. Unfortunately, not every type of cancer has a readily available second-line option.

Third-line treatment. Third-line options come into play when both the initial course of chemo (first line) and the subsequent treatment (second line) have failed to achieve remission or control the cancer’s spread. Owing to the progressive nature of advanced cancers, patients might not be eligible or healthy enough for third-line therapy. Depending on cancer type, the patient’s general health, and response to previous treatments, third-line options could include:

  • New or different chemotherapy drugs compared with prior lines.
  • Surgery to debulk the tumor.
  • Radiation for symptom control.
  • Targeted therapy: drugs designed to target specific vulnerabilities in cancer cells.
  • Immunotherapy: agents that help the body’s immune system fight cancer cells.
  • Clinical trials testing new or investigational treatments, which may be applicable at any time, depending on the questions being addressed.
 

 

The goals of third-line therapy may shift from aiming for a cure to managing symptoms, improving quality of life, and potentially slowing cancer growth. The decision to pursue third-line therapy involves careful consideration by the doctor and patient, weighing the potential benefits and risks of treatment considering the individual’s overall health and specific situation.

It’s important to have realistic expectations about the potential outcomes of third-line therapy. Although remission may be unlikely, third-line therapy can still play a role in managing the disease.

Navigating advanced cancer treatment is very complex. The patient and physician must together consider detailed explanations and clarifications to set expectations and make informed decisions about care.
 

Interventions to Consider Earlier

In traditional clinical oncology practice, other interventions are possible, but these may not be offered until treatment has reached the third line:

  • Molecular testing.
  • Palliation.
  • Clinical trials.
  • Innovative testing to guide targeted therapy by ascertaining which agents are most likely (or not likely at all) to be effective.

I would argue that the patient’s interests are better served by considering and offering these other interventions much earlier, even before starting first-line chemotherapy.

Molecular testing. The best time for molecular testing of a new malignant tumor is typically at the time of diagnosis. Here’s why:

  • Molecular testing helps identify specific genetic mutations in the cancer cells. This information can be crucial for selecting targeted therapies that are most effective against those specific mutations. Early detection allows for the most treatment options. For example, for non–small cell lung cancer, early is best because treatment and outcomes may well be changed by test results.
  • Knowing the tumor’s molecular makeup can help determine whether a patient qualifies for clinical trials of new drugs designed for specific mutations.
  • Some molecular markers can offer information about the tumor’s aggressiveness and potential for metastasis so that prognosis can be informed.

Molecular testing can be a valuable tool throughout a cancer patient’s journey. With genetically diverse tumors, the initial biopsy might not capture the full picture. Molecular testing of circulating tumor DNA can be used to monitor a patient’s response to treatment and detect potential mutations that might arise during treatment resistance. Retesting after metastasis can provide additional information that can aid in treatment decisions.

Palliative care. The ideal time to discuss palliative care with a patient with cancer is early in the diagnosis and treatment process. Palliative care is not the same as hospice care; it isn’t just about end-of-life. Palliative care focuses on improving a patient’s quality of life throughout cancer treatment. Palliative care specialists can address a wide range of symptoms a patient might experience from cancer or its treatment, including pain, fatigue, nausea, and anxiety.

Early discussions allow for a more comprehensive care plan. Open communication about all treatment options, including palliative care, empowers patients to make informed decisions about their care goals and preferences.

Specific situations where discussing palliative care might be appropriate are:

  • Soon after a cancer diagnosis.
  • If the patient experiences significant side effects from cancer treatment.
  • When considering different treatment options, palliative care can complement those treatments.
  • In advanced stages of cancer, to focus on comfort and quality of life.

Clinical trials. Participation in a clinical trial to explore new or investigational treatments should always be considered.

In theory, clinical trials should be an option at any time in the patient’s course. But the organized clinical trial experience may not be available or appropriate. Then, the individual becomes a de facto “clinical trial with an n of 1.” Read this brief open-access blog post at Cancer Commons to learn more about that circumstance.

Innovative testing. The best choice of chemotherapeutic or targeted therapies is often unclear. The clinician is likely to follow published guidelines, often from the National Comprehensive Cancer Network.

These are evidence based and driven by consensus of experts. But guideline-recommended therapy is not always effective, and weeks or months can pass before this ineffectiveness becomes apparent. Thus, many researchers and companies are seeking methods of testing each patient’s specific cancer to determine in advance, or very quickly, whether a particular drug is likely to be effective.

Read more about these leading innovations:

SAGE Oncotest: Entering the Next Generation of Tailored Cancer Treatment

Alibrex: A New Blood Test to Reveal Whether a Cancer Treatment is Working

PARIS Test Uses Lab-Grown Mini-Tumors to Find a Patient’s Best Treatment

Using Live Cells from Patients to Find the Right Cancer Drug


Other innovative therapies under investigation could even be agnostic to cancer type:

Treating Pancreatic Cancer: Could Metabolism — Not Genomics — Be the Key?

High-Energy Blue Light Powers a Promising New Treatment to Destroy Cancer Cells

All-Clear Follow-Up: Hydrogen Peroxide Appears to Treat Oral and Skin Lesions


Cancer is a tough nut to crack. Many people and organizations are trying very hard. So much is being learned. Some approaches will be effective. We can all hope.

Dr. Lundberg, editor in chief, Cancer Commons, has disclosed no relevant financial relationships.

A version of this article appeared on Medscape.com.

Each year in the United States, approximately 1.7 million Americans are diagnosed with a potentially lethal malignancy. Typical therapies of choice include surgery, radiation, and occasionally, toxic chemotherapy (chemo) — approaches that eliminate the cancer in about 1,000,000 of these cases. The remaining 700,000 or so often proceed to chemotherapy either immediately or upon cancer recurrence, spread, or newly recognized metastases. “Cures” after that point are rare.

I’m speaking in generalities, understanding that each cancer and each patient is unique.
 

Chemotherapy

Chemotherapy alone can cure a small number of cancer types. When added to radiation or surgery, chemotherapy can help to cure a wider range of cancer types. As an add-on, chemotherapy can extend the length and quality of life for many patients with cancer. Since chemotherapy is by definition “toxic,” it can also shorten the duration or harm the quality of life and provide false hope. The Table summarizes what chemotherapy can and cannot achieve in selected cancer types.



Careful, compassionate communication between patient and physician is key. Goals and expectations must be clearly understood.

Organized chemotherapeutic efforts are further categorized as first line, second line, and third line.

First-line treatment. The initial round of recommended chemotherapy for a specific cancer. It is typically considered the most effective treatment for that type and stage of cancer on the basis of current research and clinical trials.

Second-line treatment. This is the treatment used if the first-line chemotherapy doesn’t work as desired. Reasons to switch to second-line chemo include:

  • Lack of response (the tumor failed to shrink).
  • Progression (the cancer may have grown or spread further).
  • Adverse side effects were too severe to continue.

The drugs used in second-line chemo will typically be different from those used in first line, sometimes because cancer cells can develop resistance to chemotherapy drugs over time. Moreover, the goal of second-line chemo may differ from that of first-line therapy. Rather than chiefly aiming for a cure, second-line treatment might focus on slowing cancer growth, managing symptoms, or improving quality of life. Unfortunately, not every type of cancer has a readily available second-line option.

Third-line treatment. Third-line options come into play when both the initial course of chemo (first line) and the subsequent treatment (second line) have failed to achieve remission or control the cancer’s spread. Owing to the progressive nature of advanced cancers, patients might not be eligible or healthy enough for third-line therapy. Depending on cancer type, the patient’s general health, and response to previous treatments, third-line options could include:

  • New or different chemotherapy drugs compared with prior lines.
  • Surgery to debulk the tumor.
  • Radiation for symptom control.
  • Targeted therapy: drugs designed to target specific vulnerabilities in cancer cells.
  • Immunotherapy: agents that help the body’s immune system fight cancer cells.
  • Clinical trials testing new or investigational treatments, which may be applicable at any time, depending on the questions being addressed.
 

 

The goals of third-line therapy may shift from aiming for a cure to managing symptoms, improving quality of life, and potentially slowing cancer growth. The decision to pursue third-line therapy involves careful consideration by the doctor and patient, weighing the potential benefits and risks of treatment considering the individual’s overall health and specific situation.

It’s important to have realistic expectations about the potential outcomes of third-line therapy. Although remission may be unlikely, third-line therapy can still play a role in managing the disease.

Navigating advanced cancer treatment is very complex. The patient and physician must together consider detailed explanations and clarifications to set expectations and make informed decisions about care.
 

Interventions to Consider Earlier

In traditional clinical oncology practice, other interventions are possible, but these may not be offered until treatment has reached the third line:

  • Molecular testing.
  • Palliation.
  • Clinical trials.
  • Innovative testing to guide targeted therapy by ascertaining which agents are most likely (or not likely at all) to be effective.

I would argue that the patient’s interests are better served by considering and offering these other interventions much earlier, even before starting first-line chemotherapy.

Molecular testing. The best time for molecular testing of a new malignant tumor is typically at the time of diagnosis. Here’s why:

  • Molecular testing helps identify specific genetic mutations in the cancer cells. This information can be crucial for selecting targeted therapies that are most effective against those specific mutations. Early detection allows for the most treatment options. For example, for non–small cell lung cancer, early is best because treatment and outcomes may well be changed by test results.
  • Knowing the tumor’s molecular makeup can help determine whether a patient qualifies for clinical trials of new drugs designed for specific mutations.
  • Some molecular markers can offer information about the tumor’s aggressiveness and potential for metastasis so that prognosis can be informed.

Molecular testing can be a valuable tool throughout a cancer patient’s journey. With genetically diverse tumors, the initial biopsy might not capture the full picture. Molecular testing of circulating tumor DNA can be used to monitor a patient’s response to treatment and detect potential mutations that might arise during treatment resistance. Retesting after metastasis can provide additional information that can aid in treatment decisions.

Palliative care. The ideal time to discuss palliative care with a patient with cancer is early in the diagnosis and treatment process. Palliative care is not the same as hospice care; it isn’t just about end-of-life. Palliative care focuses on improving a patient’s quality of life throughout cancer treatment. Palliative care specialists can address a wide range of symptoms a patient might experience from cancer or its treatment, including pain, fatigue, nausea, and anxiety.

Early discussions allow for a more comprehensive care plan. Open communication about all treatment options, including palliative care, empowers patients to make informed decisions about their care goals and preferences.

Specific situations where discussing palliative care might be appropriate are:

  • Soon after a cancer diagnosis.
  • If the patient experiences significant side effects from cancer treatment.
  • When considering different treatment options, palliative care can complement those treatments.
  • In advanced stages of cancer, to focus on comfort and quality of life.

Clinical trials. Participation in a clinical trial to explore new or investigational treatments should always be considered.

In theory, clinical trials should be an option at any time in the patient’s course. But the organized clinical trial experience may not be available or appropriate. Then, the individual becomes a de facto “clinical trial with an n of 1.” Read this brief open-access blog post at Cancer Commons to learn more about that circumstance.

Innovative testing. The best choice of chemotherapeutic or targeted therapies is often unclear. The clinician is likely to follow published guidelines, often from the National Comprehensive Cancer Network.

These are evidence based and driven by consensus of experts. But guideline-recommended therapy is not always effective, and weeks or months can pass before this ineffectiveness becomes apparent. Thus, many researchers and companies are seeking methods of testing each patient’s specific cancer to determine in advance, or very quickly, whether a particular drug is likely to be effective.

Read more about these leading innovations:

SAGE Oncotest: Entering the Next Generation of Tailored Cancer Treatment

Alibrex: A New Blood Test to Reveal Whether a Cancer Treatment is Working

PARIS Test Uses Lab-Grown Mini-Tumors to Find a Patient’s Best Treatment

Using Live Cells from Patients to Find the Right Cancer Drug


Other innovative therapies under investigation could even be agnostic to cancer type:

Treating Pancreatic Cancer: Could Metabolism — Not Genomics — Be the Key?

High-Energy Blue Light Powers a Promising New Treatment to Destroy Cancer Cells

All-Clear Follow-Up: Hydrogen Peroxide Appears to Treat Oral and Skin Lesions


Cancer is a tough nut to crack. Many people and organizations are trying very hard. So much is being learned. Some approaches will be effective. We can all hope.

Dr. Lundberg, editor in chief, Cancer Commons, has disclosed no relevant financial relationships.

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Immunotherapy May Be Overused in Dying Patients With Cancer

Article Type
Changed
Wed, 08/14/2024 - 02:28

Chemotherapy has fallen out of favor for treating cancer toward the end of life. The toxicity is too high, and the benefit, if any, is often too low.

Immunotherapy, however, has been taking its place. Checkpoint inhibitors are increasingly being initiated to treat metastatic cancer in patients approaching the end of life and have become the leading driver of end-of-life cancer spending.

This means “there are patients who are getting immunotherapy who shouldn’t,” said Yale University, New Haven, Connecticut, surgical oncologist Sajid Khan, MD, senior investigator on a recent study that highlighted the growing use of these agents in patients’ last month of life.

What’s driving this trend, and how can oncologists avoid overtreatment with immunotherapy at the end of life?
 

The N-of-1 Patient

With immunotherapy at the end of life, “each of us has had our N-of-1” where a patient bounces back with a remarkable and durable response, said Don Dizon, MD, a gynecologic oncologist at Brown University, Providence, Rhode Island.

He recalled a patient with sarcoma who did not respond to chemotherapy. But after Dr. Dizon started her on immunotherapy, everything turned around. She has now been in remission for 8 years and counting.

The possibility of an unexpected or remarkable responder is seductive. And the improved safety of immunotherapy over chemotherapy adds to the allure.

Meanwhile, patients are often desperate. It’s rare for someone to be ready to stop treatment, Dr. Dizon said. Everybody “hopes that they’re going to be the exceptional responder.”

At the end of the day, the question often becomes: “Why not try immunotherapy? What’s there to lose?”

This thinking may be prompting broader use of immunotherapy in late-stage disease, even in instances with no Food and Drug Administration indication and virtually no supportive data, such as for metastatic ovarian cancer, Dr. Dizon said.
 

Back to Earth

The problem with the hopeful approach is that end-of-life turnarounds with immunotherapy are rare, and there’s no way at the moment to predict who will have one, said Laura Petrillo, MD, a palliative care physician at Massachusetts General Hospital, Boston.

Even though immunotherapy generally comes with fewer adverse events than chemotherapy, catastrophic side effects are still possible.

Dr. Petrillo recalled a 95-year-old woman with metastatic cancer who was largely asymptomatic.

She had a qualifying mutation for a checkpoint inhibitor, so her oncologist started her on one. The patient never bounced back from the severe colitis the agent caused, and she died of complications in the hospital.

Although such reactions with immunotherapy are uncommon, less serious problems caused by the agents can still have a major impact on a person’s quality of life. Low-grade diarrhea, for instance, may not sound too bad, but in a patient’s daily life, it can translate to six or more episodes a day.

Even with no side effects, prescribing immunotherapy can mean that patients with limited time left spend a good portion of it at an infusion clinic instead of at home. These patients are also less likely to be referred to hospice and more likely to be admitted to and die in the hospital.

And with treatments that can cost $20,000 per dose, financial toxicity becomes a big concern.

In short, some of the reasons why chemotherapy is not recommended at the end of life also apply to immunotherapy, Dr. Petrillo said.
 

 

 

Prescribing Decisions

Recent research highlights the growing use of immunotherapy at the end of life.

Dr. Khan’s retrospective study found, for instance, that the percentage of patients starting immunotherapy in the last 30 days of life increased by about fourfold to fivefold over the study period for the three cancers analyzed — stage IV melanoma, lung, and kidney cancers.

Among the population that died within 30 days, the percentage receiving immunotherapy increased over the study periods — 0.8%-4.3% for melanoma, 0.9%-3.2% for NSCLC, and 0.5%-2.6% for kidney cell carcinoma — prompting the conclusion that immunotherapy prescriptions in the last month of life are on the rise.

Prescribing immunotherapy in patients who ultimately died within 1 month occurred more frequently at low-volume, nonacademic centers than at academic or high-volume centers, and outcomes varied by practice setting.

Patients had better survival outcomes overall when receiving immunotherapy at academic or high-volume centers — a finding Dr. Khan said is worth investigating further. Possible explanations include better management of severe immune-related side effects at larger centers and more caution when prescribing immunotherapy to “borderline” candidates, such as those with several comorbidities.

Importantly, given the retrospective design, Dr. Khan and colleagues already knew which patients prescribed immunotherapy died within 30 days of initiating treatment.

More specifically, 5192 of 71,204 patients who received immunotherapy (7.3%) died within a month of initiating therapy, while 66,012 (92.7%) lived beyond that point.

The study, however, did not assess how the remaining 92.7% who lived beyond 30 days fared on immunotherapy and the differences between those who lived less than 30 days and those who survived longer.

Knowing the outcome of patients at the outset of the analysis still leaves open the question of when immunotherapy can extend life and when it can’t for the patient in front of you.

To avoid overtreating at the end of life, it’s important to have “the same standard that you have for giving chemotherapy. You have to treat it with the same respect,” said Moshe Chasky, MD, a community medical oncologist with Alliance Cancer Specialists in Philadelphia, Pennsylvania. “You can’t just be throwing” immunotherapy around “at the end of life.”

While there are no clear predictors of risk and benefit, there are some factors to help guide decisions.

As with chemotherapy, Dr. Petrillo said performance status is key. Dr. Petrillo and colleagues found that median overall survival with immune checkpoint inhibitors for advanced non–small cell lung cancer was 14.3 months in patients with an Eastern Cooperative Oncology Group performance score of 0-1 but only 4.5 months with scores of ≥ 2.

Dr. Khan also found that immunotherapy survival is, unsurprisingly, worse in patients with high metastatic burdens and more comorbidities.

“You should still consider immunotherapy for metastatic melanoma, non–small cell lung cancer, and renal cell carcinoma,” Dr. Khan said. The message here is to “think twice before using” it, especially in comorbid patients with widespread metastases.

“Just because something can be done doesn’t always mean it should be done,” he said.

At Yale, when Dr. Khan works, immunotherapy decisions are considered by a multidisciplinary tumor board. At Mass General, immunotherapy has generally moved to the frontline setting, and the hospital no longer prescribes checkpoint inhibitors to hospitalized patients because the cost is too high relative to the potential benefit, Dr. Petrillo explained.

Still, with all the uncertainties about risk and benefit, counseling patients is a challenge. Dr. Dizon called it “the epitome of shared decision-making.”

Dr. Petrillo noted that it’s critical not to counsel patients based solely on the anecdotal patients who do surprisingly well.

“It’s hard to mention that and not have that be what somebody anchors on,” she said. But that speaks to “how desperate people can feel, how hopeful they can be.”

Dr. Khan, Dr. Petrillo, and Dr. Chasky all reported no relevant conflicts of interest.

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

Chemotherapy has fallen out of favor for treating cancer toward the end of life. The toxicity is too high, and the benefit, if any, is often too low.

Immunotherapy, however, has been taking its place. Checkpoint inhibitors are increasingly being initiated to treat metastatic cancer in patients approaching the end of life and have become the leading driver of end-of-life cancer spending.

This means “there are patients who are getting immunotherapy who shouldn’t,” said Yale University, New Haven, Connecticut, surgical oncologist Sajid Khan, MD, senior investigator on a recent study that highlighted the growing use of these agents in patients’ last month of life.

What’s driving this trend, and how can oncologists avoid overtreatment with immunotherapy at the end of life?
 

The N-of-1 Patient

With immunotherapy at the end of life, “each of us has had our N-of-1” where a patient bounces back with a remarkable and durable response, said Don Dizon, MD, a gynecologic oncologist at Brown University, Providence, Rhode Island.

He recalled a patient with sarcoma who did not respond to chemotherapy. But after Dr. Dizon started her on immunotherapy, everything turned around. She has now been in remission for 8 years and counting.

The possibility of an unexpected or remarkable responder is seductive. And the improved safety of immunotherapy over chemotherapy adds to the allure.

Meanwhile, patients are often desperate. It’s rare for someone to be ready to stop treatment, Dr. Dizon said. Everybody “hopes that they’re going to be the exceptional responder.”

At the end of the day, the question often becomes: “Why not try immunotherapy? What’s there to lose?”

This thinking may be prompting broader use of immunotherapy in late-stage disease, even in instances with no Food and Drug Administration indication and virtually no supportive data, such as for metastatic ovarian cancer, Dr. Dizon said.
 

Back to Earth

The problem with the hopeful approach is that end-of-life turnarounds with immunotherapy are rare, and there’s no way at the moment to predict who will have one, said Laura Petrillo, MD, a palliative care physician at Massachusetts General Hospital, Boston.

Even though immunotherapy generally comes with fewer adverse events than chemotherapy, catastrophic side effects are still possible.

Dr. Petrillo recalled a 95-year-old woman with metastatic cancer who was largely asymptomatic.

She had a qualifying mutation for a checkpoint inhibitor, so her oncologist started her on one. The patient never bounced back from the severe colitis the agent caused, and she died of complications in the hospital.

Although such reactions with immunotherapy are uncommon, less serious problems caused by the agents can still have a major impact on a person’s quality of life. Low-grade diarrhea, for instance, may not sound too bad, but in a patient’s daily life, it can translate to six or more episodes a day.

Even with no side effects, prescribing immunotherapy can mean that patients with limited time left spend a good portion of it at an infusion clinic instead of at home. These patients are also less likely to be referred to hospice and more likely to be admitted to and die in the hospital.

And with treatments that can cost $20,000 per dose, financial toxicity becomes a big concern.

In short, some of the reasons why chemotherapy is not recommended at the end of life also apply to immunotherapy, Dr. Petrillo said.
 

 

 

Prescribing Decisions

Recent research highlights the growing use of immunotherapy at the end of life.

Dr. Khan’s retrospective study found, for instance, that the percentage of patients starting immunotherapy in the last 30 days of life increased by about fourfold to fivefold over the study period for the three cancers analyzed — stage IV melanoma, lung, and kidney cancers.

Among the population that died within 30 days, the percentage receiving immunotherapy increased over the study periods — 0.8%-4.3% for melanoma, 0.9%-3.2% for NSCLC, and 0.5%-2.6% for kidney cell carcinoma — prompting the conclusion that immunotherapy prescriptions in the last month of life are on the rise.

Prescribing immunotherapy in patients who ultimately died within 1 month occurred more frequently at low-volume, nonacademic centers than at academic or high-volume centers, and outcomes varied by practice setting.

Patients had better survival outcomes overall when receiving immunotherapy at academic or high-volume centers — a finding Dr. Khan said is worth investigating further. Possible explanations include better management of severe immune-related side effects at larger centers and more caution when prescribing immunotherapy to “borderline” candidates, such as those with several comorbidities.

Importantly, given the retrospective design, Dr. Khan and colleagues already knew which patients prescribed immunotherapy died within 30 days of initiating treatment.

More specifically, 5192 of 71,204 patients who received immunotherapy (7.3%) died within a month of initiating therapy, while 66,012 (92.7%) lived beyond that point.

The study, however, did not assess how the remaining 92.7% who lived beyond 30 days fared on immunotherapy and the differences between those who lived less than 30 days and those who survived longer.

Knowing the outcome of patients at the outset of the analysis still leaves open the question of when immunotherapy can extend life and when it can’t for the patient in front of you.

To avoid overtreating at the end of life, it’s important to have “the same standard that you have for giving chemotherapy. You have to treat it with the same respect,” said Moshe Chasky, MD, a community medical oncologist with Alliance Cancer Specialists in Philadelphia, Pennsylvania. “You can’t just be throwing” immunotherapy around “at the end of life.”

While there are no clear predictors of risk and benefit, there are some factors to help guide decisions.

As with chemotherapy, Dr. Petrillo said performance status is key. Dr. Petrillo and colleagues found that median overall survival with immune checkpoint inhibitors for advanced non–small cell lung cancer was 14.3 months in patients with an Eastern Cooperative Oncology Group performance score of 0-1 but only 4.5 months with scores of ≥ 2.

Dr. Khan also found that immunotherapy survival is, unsurprisingly, worse in patients with high metastatic burdens and more comorbidities.

“You should still consider immunotherapy for metastatic melanoma, non–small cell lung cancer, and renal cell carcinoma,” Dr. Khan said. The message here is to “think twice before using” it, especially in comorbid patients with widespread metastases.

“Just because something can be done doesn’t always mean it should be done,” he said.

At Yale, when Dr. Khan works, immunotherapy decisions are considered by a multidisciplinary tumor board. At Mass General, immunotherapy has generally moved to the frontline setting, and the hospital no longer prescribes checkpoint inhibitors to hospitalized patients because the cost is too high relative to the potential benefit, Dr. Petrillo explained.

Still, with all the uncertainties about risk and benefit, counseling patients is a challenge. Dr. Dizon called it “the epitome of shared decision-making.”

Dr. Petrillo noted that it’s critical not to counsel patients based solely on the anecdotal patients who do surprisingly well.

“It’s hard to mention that and not have that be what somebody anchors on,” she said. But that speaks to “how desperate people can feel, how hopeful they can be.”

Dr. Khan, Dr. Petrillo, and Dr. Chasky all reported no relevant conflicts of interest.

A version of this article first appeared on Medscape.com.

Chemotherapy has fallen out of favor for treating cancer toward the end of life. The toxicity is too high, and the benefit, if any, is often too low.

Immunotherapy, however, has been taking its place. Checkpoint inhibitors are increasingly being initiated to treat metastatic cancer in patients approaching the end of life and have become the leading driver of end-of-life cancer spending.

This means “there are patients who are getting immunotherapy who shouldn’t,” said Yale University, New Haven, Connecticut, surgical oncologist Sajid Khan, MD, senior investigator on a recent study that highlighted the growing use of these agents in patients’ last month of life.

What’s driving this trend, and how can oncologists avoid overtreatment with immunotherapy at the end of life?
 

The N-of-1 Patient

With immunotherapy at the end of life, “each of us has had our N-of-1” where a patient bounces back with a remarkable and durable response, said Don Dizon, MD, a gynecologic oncologist at Brown University, Providence, Rhode Island.

He recalled a patient with sarcoma who did not respond to chemotherapy. But after Dr. Dizon started her on immunotherapy, everything turned around. She has now been in remission for 8 years and counting.

The possibility of an unexpected or remarkable responder is seductive. And the improved safety of immunotherapy over chemotherapy adds to the allure.

Meanwhile, patients are often desperate. It’s rare for someone to be ready to stop treatment, Dr. Dizon said. Everybody “hopes that they’re going to be the exceptional responder.”

At the end of the day, the question often becomes: “Why not try immunotherapy? What’s there to lose?”

This thinking may be prompting broader use of immunotherapy in late-stage disease, even in instances with no Food and Drug Administration indication and virtually no supportive data, such as for metastatic ovarian cancer, Dr. Dizon said.
 

Back to Earth

The problem with the hopeful approach is that end-of-life turnarounds with immunotherapy are rare, and there’s no way at the moment to predict who will have one, said Laura Petrillo, MD, a palliative care physician at Massachusetts General Hospital, Boston.

Even though immunotherapy generally comes with fewer adverse events than chemotherapy, catastrophic side effects are still possible.

Dr. Petrillo recalled a 95-year-old woman with metastatic cancer who was largely asymptomatic.

She had a qualifying mutation for a checkpoint inhibitor, so her oncologist started her on one. The patient never bounced back from the severe colitis the agent caused, and she died of complications in the hospital.

Although such reactions with immunotherapy are uncommon, less serious problems caused by the agents can still have a major impact on a person’s quality of life. Low-grade diarrhea, for instance, may not sound too bad, but in a patient’s daily life, it can translate to six or more episodes a day.

Even with no side effects, prescribing immunotherapy can mean that patients with limited time left spend a good portion of it at an infusion clinic instead of at home. These patients are also less likely to be referred to hospice and more likely to be admitted to and die in the hospital.

And with treatments that can cost $20,000 per dose, financial toxicity becomes a big concern.

In short, some of the reasons why chemotherapy is not recommended at the end of life also apply to immunotherapy, Dr. Petrillo said.
 

 

 

Prescribing Decisions

Recent research highlights the growing use of immunotherapy at the end of life.

Dr. Khan’s retrospective study found, for instance, that the percentage of patients starting immunotherapy in the last 30 days of life increased by about fourfold to fivefold over the study period for the three cancers analyzed — stage IV melanoma, lung, and kidney cancers.

Among the population that died within 30 days, the percentage receiving immunotherapy increased over the study periods — 0.8%-4.3% for melanoma, 0.9%-3.2% for NSCLC, and 0.5%-2.6% for kidney cell carcinoma — prompting the conclusion that immunotherapy prescriptions in the last month of life are on the rise.

Prescribing immunotherapy in patients who ultimately died within 1 month occurred more frequently at low-volume, nonacademic centers than at academic or high-volume centers, and outcomes varied by practice setting.

Patients had better survival outcomes overall when receiving immunotherapy at academic or high-volume centers — a finding Dr. Khan said is worth investigating further. Possible explanations include better management of severe immune-related side effects at larger centers and more caution when prescribing immunotherapy to “borderline” candidates, such as those with several comorbidities.

Importantly, given the retrospective design, Dr. Khan and colleagues already knew which patients prescribed immunotherapy died within 30 days of initiating treatment.

More specifically, 5192 of 71,204 patients who received immunotherapy (7.3%) died within a month of initiating therapy, while 66,012 (92.7%) lived beyond that point.

The study, however, did not assess how the remaining 92.7% who lived beyond 30 days fared on immunotherapy and the differences between those who lived less than 30 days and those who survived longer.

Knowing the outcome of patients at the outset of the analysis still leaves open the question of when immunotherapy can extend life and when it can’t for the patient in front of you.

To avoid overtreating at the end of life, it’s important to have “the same standard that you have for giving chemotherapy. You have to treat it with the same respect,” said Moshe Chasky, MD, a community medical oncologist with Alliance Cancer Specialists in Philadelphia, Pennsylvania. “You can’t just be throwing” immunotherapy around “at the end of life.”

While there are no clear predictors of risk and benefit, there are some factors to help guide decisions.

As with chemotherapy, Dr. Petrillo said performance status is key. Dr. Petrillo and colleagues found that median overall survival with immune checkpoint inhibitors for advanced non–small cell lung cancer was 14.3 months in patients with an Eastern Cooperative Oncology Group performance score of 0-1 but only 4.5 months with scores of ≥ 2.

Dr. Khan also found that immunotherapy survival is, unsurprisingly, worse in patients with high metastatic burdens and more comorbidities.

“You should still consider immunotherapy for metastatic melanoma, non–small cell lung cancer, and renal cell carcinoma,” Dr. Khan said. The message here is to “think twice before using” it, especially in comorbid patients with widespread metastases.

“Just because something can be done doesn’t always mean it should be done,” he said.

At Yale, when Dr. Khan works, immunotherapy decisions are considered by a multidisciplinary tumor board. At Mass General, immunotherapy has generally moved to the frontline setting, and the hospital no longer prescribes checkpoint inhibitors to hospitalized patients because the cost is too high relative to the potential benefit, Dr. Petrillo explained.

Still, with all the uncertainties about risk and benefit, counseling patients is a challenge. Dr. Dizon called it “the epitome of shared decision-making.”

Dr. Petrillo noted that it’s critical not to counsel patients based solely on the anecdotal patients who do surprisingly well.

“It’s hard to mention that and not have that be what somebody anchors on,” she said. But that speaks to “how desperate people can feel, how hopeful they can be.”

Dr. Khan, Dr. Petrillo, and Dr. Chasky all reported no relevant conflicts of interest.

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Ancient Viruses in Our DNA Hold Clues to Cancer Treatment

Article Type
Changed
Mon, 08/12/2024 - 13:15

An ancient virus that infected our ancestors tens of millions of years ago may be helping to fuel cancer today, according to a fascinating new study in Science Advances. Targeting these viral remnants still lingering in our DNA could lead to more effective cancer treatment with fewer side effects, the researchers said.

The study “gives a better understanding of how gene regulation can be impacted by these ancient retroviral sequences,” said Dixie Mager, PhD, scientist emeritus at the Terry Fox Laboratory at the British Columbia Cancer Research Institute, Vancouver, British Columbia, Canada. (Mager was not involved in the study.)

Long thought to be “junk” DNA with no biologic function, “endogenous retroviruses,” which have mutated over time and lost their ability to create the virus, are now known to regulate genes — allowing some genes to turn on and off. Research in recent years suggests they may play a role in diseases like cancer.

But scientists weren’t exactly sure what that role was, said senior study author Edward Chuong, PhD, a genome biologist at the University of Colorado Boulder.

Most studies have looked at whether endogenous retroviruses code for proteins that influence cancer. But these ancient viral strands usually don’t code for proteins at all.

Dr. Chuong took a different approach. Inspired by scientists who’ve studied how viral remnants regulate positive processes (immunity, brain development, or placenta development), he and his team explored whether some might regulate genes that, once activated, help cancer thrive.

Borrowing from epigenomic analysis data (data on molecules that alter gene expression) for 21 cancers mapped by the Cancer Genome Atlas, the researchers identified 19 virus-derived DNA sequences that bind to regulatory proteins more in cancer cells than in healthy cells. All of these could potentially act as gene regulators that promote cancer.

The researchers homed in on one sequence, called LTR10, because it showed especially high activity in several cancers, including lung and colorectal cancer. This DNA segment comes from a virus that entered our ancestors’ genome 30 million years ago, and it’s activated in a third of colorectal cancers.

Using the gene editing technology clustered regularly interspaced short palindromic repeats (CRISPR), Dr. Chuong’s team silenced LTR10 in colorectal cancer cells, altering the gene sequence so it couldn’t bind to regulatory proteins. Doing so dampened the activity of nearby cancer-promoting genes.

“They still behaved like cancer cells,” Dr. Chuong said. But “it made the cancer cells more susceptible to radiation. That would imply that the presence of that viral ‘switch’ actually helped those cancer cells survive radiation therapy.”

Previously, two studies had found that viral regulators play a role in promoting two types of cancer: Leukemia and prostate cancer. The new study shows these two cases weren’t flukes. All 21 cancers they looked at had at least one of those 19 viral elements, presumably working as cancer enhancers.

The study also identified what activates LTR10 to make it promote cancer. The culprit is a regulator protein called mitogen-activated protein (MAP) kinase, which is overactivated in about 40% of all human cancers.

Some cancer drugs — MAP kinase inhibitors — already target MAP kinase, and they’re often the first ones prescribed when a patient is diagnosed with cancer, Dr. Chuong said. As with many cancer treatments, doctors don’t know why they work, just that they do.

“By understanding the mechanisms in the cell, we might be able to make them work better or further optimize their treatment,” he said.

“MAP kinase inhibitors are really like a sledgehammer to the cell,” Dr. Chuong said — meaning they affect many cellular processes, not just those related to cancer.

“If we’re able to say that these viral switches are what’s important, then that could potentially help us develop a more targeted therapy that uses something like CRISPR to silence these viral elements,” he said. Or it could help providers choose a MAP kinase inhibitor from among the dozens available best suited to treat an individual patient and avoid side effects.  

Still, whether the findings translate to real cancer patients remains to be seen. “It’s very, very hard to go the final step of showing in a patient that these actually make a difference in the cancer,” Dr. Mager said.

More lab research, human trials, and at least a few years will be needed before this discovery could help treat cancer. “Directly targeting these elements as a therapy would be at least 5 years out,” Dr. Chuong said, “partly because that application would rely on CRISPR epigenome editing technology that is still being developed for clinical use.”
 

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

An ancient virus that infected our ancestors tens of millions of years ago may be helping to fuel cancer today, according to a fascinating new study in Science Advances. Targeting these viral remnants still lingering in our DNA could lead to more effective cancer treatment with fewer side effects, the researchers said.

The study “gives a better understanding of how gene regulation can be impacted by these ancient retroviral sequences,” said Dixie Mager, PhD, scientist emeritus at the Terry Fox Laboratory at the British Columbia Cancer Research Institute, Vancouver, British Columbia, Canada. (Mager was not involved in the study.)

Long thought to be “junk” DNA with no biologic function, “endogenous retroviruses,” which have mutated over time and lost their ability to create the virus, are now known to regulate genes — allowing some genes to turn on and off. Research in recent years suggests they may play a role in diseases like cancer.

But scientists weren’t exactly sure what that role was, said senior study author Edward Chuong, PhD, a genome biologist at the University of Colorado Boulder.

Most studies have looked at whether endogenous retroviruses code for proteins that influence cancer. But these ancient viral strands usually don’t code for proteins at all.

Dr. Chuong took a different approach. Inspired by scientists who’ve studied how viral remnants regulate positive processes (immunity, brain development, or placenta development), he and his team explored whether some might regulate genes that, once activated, help cancer thrive.

Borrowing from epigenomic analysis data (data on molecules that alter gene expression) for 21 cancers mapped by the Cancer Genome Atlas, the researchers identified 19 virus-derived DNA sequences that bind to regulatory proteins more in cancer cells than in healthy cells. All of these could potentially act as gene regulators that promote cancer.

The researchers homed in on one sequence, called LTR10, because it showed especially high activity in several cancers, including lung and colorectal cancer. This DNA segment comes from a virus that entered our ancestors’ genome 30 million years ago, and it’s activated in a third of colorectal cancers.

Using the gene editing technology clustered regularly interspaced short palindromic repeats (CRISPR), Dr. Chuong’s team silenced LTR10 in colorectal cancer cells, altering the gene sequence so it couldn’t bind to regulatory proteins. Doing so dampened the activity of nearby cancer-promoting genes.

“They still behaved like cancer cells,” Dr. Chuong said. But “it made the cancer cells more susceptible to radiation. That would imply that the presence of that viral ‘switch’ actually helped those cancer cells survive radiation therapy.”

Previously, two studies had found that viral regulators play a role in promoting two types of cancer: Leukemia and prostate cancer. The new study shows these two cases weren’t flukes. All 21 cancers they looked at had at least one of those 19 viral elements, presumably working as cancer enhancers.

The study also identified what activates LTR10 to make it promote cancer. The culprit is a regulator protein called mitogen-activated protein (MAP) kinase, which is overactivated in about 40% of all human cancers.

Some cancer drugs — MAP kinase inhibitors — already target MAP kinase, and they’re often the first ones prescribed when a patient is diagnosed with cancer, Dr. Chuong said. As with many cancer treatments, doctors don’t know why they work, just that they do.

“By understanding the mechanisms in the cell, we might be able to make them work better or further optimize their treatment,” he said.

“MAP kinase inhibitors are really like a sledgehammer to the cell,” Dr. Chuong said — meaning they affect many cellular processes, not just those related to cancer.

“If we’re able to say that these viral switches are what’s important, then that could potentially help us develop a more targeted therapy that uses something like CRISPR to silence these viral elements,” he said. Or it could help providers choose a MAP kinase inhibitor from among the dozens available best suited to treat an individual patient and avoid side effects.  

Still, whether the findings translate to real cancer patients remains to be seen. “It’s very, very hard to go the final step of showing in a patient that these actually make a difference in the cancer,” Dr. Mager said.

More lab research, human trials, and at least a few years will be needed before this discovery could help treat cancer. “Directly targeting these elements as a therapy would be at least 5 years out,” Dr. Chuong said, “partly because that application would rely on CRISPR epigenome editing technology that is still being developed for clinical use.”
 

A version of this article first appeared on Medscape.com.

An ancient virus that infected our ancestors tens of millions of years ago may be helping to fuel cancer today, according to a fascinating new study in Science Advances. Targeting these viral remnants still lingering in our DNA could lead to more effective cancer treatment with fewer side effects, the researchers said.

The study “gives a better understanding of how gene regulation can be impacted by these ancient retroviral sequences,” said Dixie Mager, PhD, scientist emeritus at the Terry Fox Laboratory at the British Columbia Cancer Research Institute, Vancouver, British Columbia, Canada. (Mager was not involved in the study.)

Long thought to be “junk” DNA with no biologic function, “endogenous retroviruses,” which have mutated over time and lost their ability to create the virus, are now known to regulate genes — allowing some genes to turn on and off. Research in recent years suggests they may play a role in diseases like cancer.

But scientists weren’t exactly sure what that role was, said senior study author Edward Chuong, PhD, a genome biologist at the University of Colorado Boulder.

Most studies have looked at whether endogenous retroviruses code for proteins that influence cancer. But these ancient viral strands usually don’t code for proteins at all.

Dr. Chuong took a different approach. Inspired by scientists who’ve studied how viral remnants regulate positive processes (immunity, brain development, or placenta development), he and his team explored whether some might regulate genes that, once activated, help cancer thrive.

Borrowing from epigenomic analysis data (data on molecules that alter gene expression) for 21 cancers mapped by the Cancer Genome Atlas, the researchers identified 19 virus-derived DNA sequences that bind to regulatory proteins more in cancer cells than in healthy cells. All of these could potentially act as gene regulators that promote cancer.

The researchers homed in on one sequence, called LTR10, because it showed especially high activity in several cancers, including lung and colorectal cancer. This DNA segment comes from a virus that entered our ancestors’ genome 30 million years ago, and it’s activated in a third of colorectal cancers.

Using the gene editing technology clustered regularly interspaced short palindromic repeats (CRISPR), Dr. Chuong’s team silenced LTR10 in colorectal cancer cells, altering the gene sequence so it couldn’t bind to regulatory proteins. Doing so dampened the activity of nearby cancer-promoting genes.

“They still behaved like cancer cells,” Dr. Chuong said. But “it made the cancer cells more susceptible to radiation. That would imply that the presence of that viral ‘switch’ actually helped those cancer cells survive radiation therapy.”

Previously, two studies had found that viral regulators play a role in promoting two types of cancer: Leukemia and prostate cancer. The new study shows these two cases weren’t flukes. All 21 cancers they looked at had at least one of those 19 viral elements, presumably working as cancer enhancers.

The study also identified what activates LTR10 to make it promote cancer. The culprit is a regulator protein called mitogen-activated protein (MAP) kinase, which is overactivated in about 40% of all human cancers.

Some cancer drugs — MAP kinase inhibitors — already target MAP kinase, and they’re often the first ones prescribed when a patient is diagnosed with cancer, Dr. Chuong said. As with many cancer treatments, doctors don’t know why they work, just that they do.

“By understanding the mechanisms in the cell, we might be able to make them work better or further optimize their treatment,” he said.

“MAP kinase inhibitors are really like a sledgehammer to the cell,” Dr. Chuong said — meaning they affect many cellular processes, not just those related to cancer.

“If we’re able to say that these viral switches are what’s important, then that could potentially help us develop a more targeted therapy that uses something like CRISPR to silence these viral elements,” he said. Or it could help providers choose a MAP kinase inhibitor from among the dozens available best suited to treat an individual patient and avoid side effects.  

Still, whether the findings translate to real cancer patients remains to be seen. “It’s very, very hard to go the final step of showing in a patient that these actually make a difference in the cancer,” Dr. Mager said.

More lab research, human trials, and at least a few years will be needed before this discovery could help treat cancer. “Directly targeting these elements as a therapy would be at least 5 years out,” Dr. Chuong said, “partly because that application would rely on CRISPR epigenome editing technology that is still being developed for clinical use.”
 

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Article Source

FROM SCIENCE ADVANCES

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Greater Transparency of Oncologists’ Pharma Relationships Needed

Article Type
Changed
Wed, 07/31/2024 - 09:12

Three-quarters of oncologists participating in a recent global survey failed to identify one or more situations representing a conflict of interest, according to a new study.

The findings reflect limited awareness in low-income countries about what scenarios constitute a conflict of interest, first author, Khalid El Bairi, MD, said during an interview. “There is a lack of training in ethics and integrity in medical schools [in countries in Africa], so people are not informed about conflicts of interest,” continued Dr. El Bairi, who presented the new research at the annual meeting of the American Society of Clinical Oncology. “There is also a lack of policies in universities and hospitals to guide clinicians about conflict of interest reporting.”

Overall, 58.5% of survey participants categorized honoraria as a conflict of interest that required disclosure, while 50% said the same of gifts from pharmaceutical representatives, and 44.5% identified travel grants for attending conferences as conflicts of interests. The report was published in JCO Global Oncology. Less often considered conflicts of interest were personal and institutional research funding, trips to conferences, consulting or advisory roles, food and beverages, expert testimony, and sample drugs provided by the pharmaceutical industry.

Just 24% of participants indicated that all of the listed items were deemed conflicts of interest. The survey — called Oncology Transparency Under Scrutiny and Tracking, or ONCOTRUST-1 — considered the perceptions of 200 oncologists, about 70% of whom practice in low- and middle-income countries.

What’s more, 37.5% of respondents identified fear of losing financial support as a reason not to report a conflict of interest. Still, 75% indicated that industry-sponsored speaking does not affect treatment decisions, and 60% said conflicts of interest do not impair objective appraisal of clinical trials.

Dr. El Bairi, a research associate in the department of medical oncology at Mohammed VI University Hospital, Oujda, Morocco, and his colleagues undertook the study in part because of an editorial published in The Lancet Oncology last year. First author Fidel Rubagumya, MD, a consultant oncologist and director of research at Rwanda Military Hospital, Kigali, and colleagues called for more research on the ties between oncologists and industry in Africa. The ONCOTRUST-1 findings set the stage for a planned follow-up study, which aims to compare views surrounding conflicts of interests between oncologists in different economic settings.
 

Open Payments Houses US Physicians’ Conflicts of Interest

To be sure, many authors of research published in major US journals are based outside of the United States. According to JAMA Network Open, 69% of submissions to the journal are from international authors. However, Dr. El Bairi also raised other potential signs of industry influence that he said need global discussion, such as the role of pharmaceutical companies in presentations of clinical trial findings at large cancer societies’ conferences, a shift toward progression-free survival as the endpoint in clinical cancer trials, and the rise of third-party writing assistance.

“There are two sides of the story,” Dr. El Bairi said. “The good side is that unfortunately, sometimes [industry money is] the only way for African oncologists to go abroad for training, to conferences for their continuous medical education. The bad is now we may harm patients, we might harm science by having conflicts of interest not reported.”

Unlike other countries, the United States has plentiful data on the scale of physicians’ financial conflicts of interest in the form of the Open Payments platform. Championed by Sen. Chuck Grassley (R-Iowa), the federal repository of payments to doctors and teaching hospitals by drug and medical device companies was established as part of the Affordable Care Act (ACA).

The health care reform law, which passed in 2010, requires pharmaceutical companies and medical device makers to report this information.

From 2013 to 2021, the pharmaceutical and medical device industry paid physicians $12.1 billion, according to a research letter published in JAMA in March of 2024 that reviewed Open Payments data.

Ranked by specialty, hematologists and oncologists received the fourth-largest amount of money in aggregate, the study shows. Their total of $825.8 million trailed only physicians in orthopedics ($1.36 billion), neurology and psychiatry ($1.32 billion) and cardiology ($1.29 billion). What’s more, this specialty had the biggest share of physicians taking industry money, with 74.2% of hematologists and oncologists receiving payments.

The payments from industry include fees for consulting services and speaking, as well as food and beverages, travel and lodging, education, gifts, grants, and honoraria.

Joseph S. Ross, MD, MHS, one of the JAMA study’s coauthors, said in an interview that the continued prevalence of such funding runs counter to the expectation behind the measure, which was that transparency would lead to physicians’ becoming less likely to accept a payment.

“We as a profession need to take a cold hard look in the mirror,” he said, referring to physicians in general.

Dr. Ross, professor of medicine at Yale University School of Medicine, New Haven, Connecticut, said he hopes that the profession will self-police, and that patients will make a bigger deal of the issue. Still, he acknowledged that “the vast majority” of patient advocacy groups, too, are funded by the pharmaceutical industry.
 

 

 

Exposing Industry Payments May Have Perverse Effect

A growing body of research explores the effect that physicians’ financial relationships with pharmaceutical companies can have on their prescribing practices. Indeed, oncologists taking industry payments seem to be more likely to prescribe nonrecommended and low-value drugs in some clinical settings, according to a study published in The BMJ last year.

That study’s first author, Aaron P. Mitchell, MD, a medical oncologist and assistant attending physician at Memorial Sloan Kettering Cancer Center, New York City, suggested in an interview that exposing industry payments to the sunlight may have had a perverse effect on physicians.

“There’s this idea of having license to do something,” Dr. Mitchell said, speaking broadly about human psychology rather than drawing on empirical data. “You might feel a little less bad about then prescribing more of that company’s drug, because the disclosure has already been done.”

The influence of pharmaceutical industry money on oncologists goes beyond what’s prescribed to which treatments get studied, approved, and recommended by guidelines, Dr. Mitchell said. He was also first author of a 2016 paper published in JAMA Oncology that found 86% of authors of the National Comprehensive Cancer Network guidelines had at least one conflict of interest reported on Open Systems in 2014.

Meanwhile, the fact that physicians’ payments from industry are a matter of public record on Open Systems has not guaranteed that doctors will disclose their conflicts of interest in other forums. A study published in JAMA earlier this year, for which Dr. Mitchell served as first author, found that almost one in three physicians endorsing drugs and devices on the social media platform X failed to disclose that the manufacturer paid them.

The lack of disclosure seems to extend beyond social media. A 2018 study published in JAMA Oncology found that 32% of oncologist authors of clinical drug trials for drugs approved over a 20-month period from 2016 to 2017 did not fully disclose payments from the trial sponsor when checked against the Open Payments database.

A lion’s share of industry payments within oncology appears to be going to a small group of high-profile physicians, suggested a 2022 study published in JCO Oncology Practice. It found that just 1% of all US oncologists accounted for 37% of industry payments, with each receiving more than $100,000 a year.
 

Experts: Professional Societies Should Further Limit Industry Payments

While partnerships between drug companies and physicians are necessary and have often been positive, more than disclosure is needed to minimize the risk of patient harm, according to an editorial published in March in JCO Oncology Practice. In it, Nina Niu Sanford, MD, a radiation oncologist UT Southwestern Medical Center, Dallas, and Bishal Gyawali, MD, PhD, a medical oncologist at Queen’s University, Kingston, Ontario, Canada, argue that following a specific blueprint could help mitigate financial conflicts of interest.

For starters, Dr. Sanford and Dr. Gyawali contend in the editorial that the maximum general payment NCCN members are allowed to receive from industry should be $0, compared with a current bar of $20,000 from a single entity or $50,000 from all external entities combined. They also urge professional societies to follow the current policy of the American Society of Clinical Oncology and ban members serving in their leadership from receiving any general payments from the industry.

The authors further suggest that investigators of clinical trials should be barred from holding stock for the drug or product while it is under study and that editorialists should not have conflicts of interest with the company whose drug or product they are discussing.

Pharmaceutical money can harm patients in ways that are not always obvious, Dr. Gyawali said in an interview.

“It can dominate the conversation by removing critical viewpoints from these top people about certain drugs,” he said. “It’s not always about saying good things about the drug.”

For instance, he suggested, a doctor receiving payments from Pfizer might openly criticize perceived flaws in drugs from other companies but refrain from weighing in negatively on a Pfizer drug.

From 2016 to 2018, industry made general payments to more than 52,000 physicians for 137 unique cancer drugs, according to a separate 2021 study published in the Journal of Cancer Policy, for which Dr. Gyawali served as one of the coauthors.

The results suggest that pharmaceutical money affects the entire cancer system, not relatively few oncology leaders. The amounts and dollar values grew each year covered by the study, to nearly 466,000 payments totaling $98.5 million in 2018.

Adriane Fugh-Berman, MD, professor of pharmacology and physiology at Georgetown University, Washington, DC, and director of PharmedOut, a Georgetown-based project that advances evidence-based prescribing and educates healthcare professionals about pharmaceutical marketing practices, has called for a ban on industry gifts to physicians.

When a publication asks physicians to disclose relevant conflicts of interest, physicians may choose not to disclose, because they don’t feel that their conflicts are relevant, Dr. Fugh-Berman said. Drug and device makers have also grown sophisticated about how they work with physicians, she suggested. “It’s illegal to market a drug before it comes on the market, but it’s not illegal to market the disease,” said Dr. Fugh-Berman, noting that drugmakers often work on long timelines.

“The doctor is going around saying we don’t have good therapies. They’re not pushing a drug. And so they feel totally fine about it.”

Anecdotally, Dr. Fugh-Berman noted that, if anything, speaking fees and similar payments only improve doctors’ reputations. She said that’s especially true if the physicians are paid by multiple companies, on the supposed theory that their conflicts of interest cancel each other out.

“I’m not defending this,” added Dr. Fugh-Berman, observing that, at the end of the day, such conflicts may go against the interests of patients.

“Sometimes the best drugs are older, generic, cheap drugs, and if oncologists or other specialists are only choosing among the most promoted drugs, they’re not necessarily choosing the best drugs.”

Beyond any prestige, doctors have other possible nonfinancial incentives for receiving industry payments. “It’s the relationships,” Dr. Fugh-Berman said. “Companies are very good at offering friendship.”

Dr. El Bairi reported NCODA leadership and honoraria along with expert testimony through techspert.io. Dr. Ross reported that he is a deputy editor of JAMA but was not involved in decisions regarding acceptance of or the review of the manuscript he authored and discussed in this article. Dr. Ross also reported receiving grants from the Food and Drug Administration, Johnson & Johnson, the Medical Device Innovation Consortium, the Agency for Healthcare Research and Quality, and the National Heart, Lung, and Blood Institute. He was an expert witness in a qui tam suit alleging violations of the False Claims Act and Anti-Kickback Statute against Biogen that was settled in 2022. Dr. Mitchell reported no relevant financial relationships. Dr. Gyawali reported a consulting or advisory role with Vivio Health. Dr. Fugh-Berman reported being an expert witness for plaintiffs in complaints about drug and device marketing practices.

Meeting/Event
Publications
Topics
Sections
Meeting/Event
Meeting/Event

Three-quarters of oncologists participating in a recent global survey failed to identify one or more situations representing a conflict of interest, according to a new study.

The findings reflect limited awareness in low-income countries about what scenarios constitute a conflict of interest, first author, Khalid El Bairi, MD, said during an interview. “There is a lack of training in ethics and integrity in medical schools [in countries in Africa], so people are not informed about conflicts of interest,” continued Dr. El Bairi, who presented the new research at the annual meeting of the American Society of Clinical Oncology. “There is also a lack of policies in universities and hospitals to guide clinicians about conflict of interest reporting.”

Overall, 58.5% of survey participants categorized honoraria as a conflict of interest that required disclosure, while 50% said the same of gifts from pharmaceutical representatives, and 44.5% identified travel grants for attending conferences as conflicts of interests. The report was published in JCO Global Oncology. Less often considered conflicts of interest were personal and institutional research funding, trips to conferences, consulting or advisory roles, food and beverages, expert testimony, and sample drugs provided by the pharmaceutical industry.

Just 24% of participants indicated that all of the listed items were deemed conflicts of interest. The survey — called Oncology Transparency Under Scrutiny and Tracking, or ONCOTRUST-1 — considered the perceptions of 200 oncologists, about 70% of whom practice in low- and middle-income countries.

What’s more, 37.5% of respondents identified fear of losing financial support as a reason not to report a conflict of interest. Still, 75% indicated that industry-sponsored speaking does not affect treatment decisions, and 60% said conflicts of interest do not impair objective appraisal of clinical trials.

Dr. El Bairi, a research associate in the department of medical oncology at Mohammed VI University Hospital, Oujda, Morocco, and his colleagues undertook the study in part because of an editorial published in The Lancet Oncology last year. First author Fidel Rubagumya, MD, a consultant oncologist and director of research at Rwanda Military Hospital, Kigali, and colleagues called for more research on the ties between oncologists and industry in Africa. The ONCOTRUST-1 findings set the stage for a planned follow-up study, which aims to compare views surrounding conflicts of interests between oncologists in different economic settings.
 

Open Payments Houses US Physicians’ Conflicts of Interest

To be sure, many authors of research published in major US journals are based outside of the United States. According to JAMA Network Open, 69% of submissions to the journal are from international authors. However, Dr. El Bairi also raised other potential signs of industry influence that he said need global discussion, such as the role of pharmaceutical companies in presentations of clinical trial findings at large cancer societies’ conferences, a shift toward progression-free survival as the endpoint in clinical cancer trials, and the rise of third-party writing assistance.

“There are two sides of the story,” Dr. El Bairi said. “The good side is that unfortunately, sometimes [industry money is] the only way for African oncologists to go abroad for training, to conferences for their continuous medical education. The bad is now we may harm patients, we might harm science by having conflicts of interest not reported.”

Unlike other countries, the United States has plentiful data on the scale of physicians’ financial conflicts of interest in the form of the Open Payments platform. Championed by Sen. Chuck Grassley (R-Iowa), the federal repository of payments to doctors and teaching hospitals by drug and medical device companies was established as part of the Affordable Care Act (ACA).

The health care reform law, which passed in 2010, requires pharmaceutical companies and medical device makers to report this information.

From 2013 to 2021, the pharmaceutical and medical device industry paid physicians $12.1 billion, according to a research letter published in JAMA in March of 2024 that reviewed Open Payments data.

Ranked by specialty, hematologists and oncologists received the fourth-largest amount of money in aggregate, the study shows. Their total of $825.8 million trailed only physicians in orthopedics ($1.36 billion), neurology and psychiatry ($1.32 billion) and cardiology ($1.29 billion). What’s more, this specialty had the biggest share of physicians taking industry money, with 74.2% of hematologists and oncologists receiving payments.

The payments from industry include fees for consulting services and speaking, as well as food and beverages, travel and lodging, education, gifts, grants, and honoraria.

Joseph S. Ross, MD, MHS, one of the JAMA study’s coauthors, said in an interview that the continued prevalence of such funding runs counter to the expectation behind the measure, which was that transparency would lead to physicians’ becoming less likely to accept a payment.

“We as a profession need to take a cold hard look in the mirror,” he said, referring to physicians in general.

Dr. Ross, professor of medicine at Yale University School of Medicine, New Haven, Connecticut, said he hopes that the profession will self-police, and that patients will make a bigger deal of the issue. Still, he acknowledged that “the vast majority” of patient advocacy groups, too, are funded by the pharmaceutical industry.
 

 

 

Exposing Industry Payments May Have Perverse Effect

A growing body of research explores the effect that physicians’ financial relationships with pharmaceutical companies can have on their prescribing practices. Indeed, oncologists taking industry payments seem to be more likely to prescribe nonrecommended and low-value drugs in some clinical settings, according to a study published in The BMJ last year.

That study’s first author, Aaron P. Mitchell, MD, a medical oncologist and assistant attending physician at Memorial Sloan Kettering Cancer Center, New York City, suggested in an interview that exposing industry payments to the sunlight may have had a perverse effect on physicians.

“There’s this idea of having license to do something,” Dr. Mitchell said, speaking broadly about human psychology rather than drawing on empirical data. “You might feel a little less bad about then prescribing more of that company’s drug, because the disclosure has already been done.”

The influence of pharmaceutical industry money on oncologists goes beyond what’s prescribed to which treatments get studied, approved, and recommended by guidelines, Dr. Mitchell said. He was also first author of a 2016 paper published in JAMA Oncology that found 86% of authors of the National Comprehensive Cancer Network guidelines had at least one conflict of interest reported on Open Systems in 2014.

Meanwhile, the fact that physicians’ payments from industry are a matter of public record on Open Systems has not guaranteed that doctors will disclose their conflicts of interest in other forums. A study published in JAMA earlier this year, for which Dr. Mitchell served as first author, found that almost one in three physicians endorsing drugs and devices on the social media platform X failed to disclose that the manufacturer paid them.

The lack of disclosure seems to extend beyond social media. A 2018 study published in JAMA Oncology found that 32% of oncologist authors of clinical drug trials for drugs approved over a 20-month period from 2016 to 2017 did not fully disclose payments from the trial sponsor when checked against the Open Payments database.

A lion’s share of industry payments within oncology appears to be going to a small group of high-profile physicians, suggested a 2022 study published in JCO Oncology Practice. It found that just 1% of all US oncologists accounted for 37% of industry payments, with each receiving more than $100,000 a year.
 

Experts: Professional Societies Should Further Limit Industry Payments

While partnerships between drug companies and physicians are necessary and have often been positive, more than disclosure is needed to minimize the risk of patient harm, according to an editorial published in March in JCO Oncology Practice. In it, Nina Niu Sanford, MD, a radiation oncologist UT Southwestern Medical Center, Dallas, and Bishal Gyawali, MD, PhD, a medical oncologist at Queen’s University, Kingston, Ontario, Canada, argue that following a specific blueprint could help mitigate financial conflicts of interest.

For starters, Dr. Sanford and Dr. Gyawali contend in the editorial that the maximum general payment NCCN members are allowed to receive from industry should be $0, compared with a current bar of $20,000 from a single entity or $50,000 from all external entities combined. They also urge professional societies to follow the current policy of the American Society of Clinical Oncology and ban members serving in their leadership from receiving any general payments from the industry.

The authors further suggest that investigators of clinical trials should be barred from holding stock for the drug or product while it is under study and that editorialists should not have conflicts of interest with the company whose drug or product they are discussing.

Pharmaceutical money can harm patients in ways that are not always obvious, Dr. Gyawali said in an interview.

“It can dominate the conversation by removing critical viewpoints from these top people about certain drugs,” he said. “It’s not always about saying good things about the drug.”

For instance, he suggested, a doctor receiving payments from Pfizer might openly criticize perceived flaws in drugs from other companies but refrain from weighing in negatively on a Pfizer drug.

From 2016 to 2018, industry made general payments to more than 52,000 physicians for 137 unique cancer drugs, according to a separate 2021 study published in the Journal of Cancer Policy, for which Dr. Gyawali served as one of the coauthors.

The results suggest that pharmaceutical money affects the entire cancer system, not relatively few oncology leaders. The amounts and dollar values grew each year covered by the study, to nearly 466,000 payments totaling $98.5 million in 2018.

Adriane Fugh-Berman, MD, professor of pharmacology and physiology at Georgetown University, Washington, DC, and director of PharmedOut, a Georgetown-based project that advances evidence-based prescribing and educates healthcare professionals about pharmaceutical marketing practices, has called for a ban on industry gifts to physicians.

When a publication asks physicians to disclose relevant conflicts of interest, physicians may choose not to disclose, because they don’t feel that their conflicts are relevant, Dr. Fugh-Berman said. Drug and device makers have also grown sophisticated about how they work with physicians, she suggested. “It’s illegal to market a drug before it comes on the market, but it’s not illegal to market the disease,” said Dr. Fugh-Berman, noting that drugmakers often work on long timelines.

“The doctor is going around saying we don’t have good therapies. They’re not pushing a drug. And so they feel totally fine about it.”

Anecdotally, Dr. Fugh-Berman noted that, if anything, speaking fees and similar payments only improve doctors’ reputations. She said that’s especially true if the physicians are paid by multiple companies, on the supposed theory that their conflicts of interest cancel each other out.

“I’m not defending this,” added Dr. Fugh-Berman, observing that, at the end of the day, such conflicts may go against the interests of patients.

“Sometimes the best drugs are older, generic, cheap drugs, and if oncologists or other specialists are only choosing among the most promoted drugs, they’re not necessarily choosing the best drugs.”

Beyond any prestige, doctors have other possible nonfinancial incentives for receiving industry payments. “It’s the relationships,” Dr. Fugh-Berman said. “Companies are very good at offering friendship.”

Dr. El Bairi reported NCODA leadership and honoraria along with expert testimony through techspert.io. Dr. Ross reported that he is a deputy editor of JAMA but was not involved in decisions regarding acceptance of or the review of the manuscript he authored and discussed in this article. Dr. Ross also reported receiving grants from the Food and Drug Administration, Johnson & Johnson, the Medical Device Innovation Consortium, the Agency for Healthcare Research and Quality, and the National Heart, Lung, and Blood Institute. He was an expert witness in a qui tam suit alleging violations of the False Claims Act and Anti-Kickback Statute against Biogen that was settled in 2022. Dr. Mitchell reported no relevant financial relationships. Dr. Gyawali reported a consulting or advisory role with Vivio Health. Dr. Fugh-Berman reported being an expert witness for plaintiffs in complaints about drug and device marketing practices.

Three-quarters of oncologists participating in a recent global survey failed to identify one or more situations representing a conflict of interest, according to a new study.

The findings reflect limited awareness in low-income countries about what scenarios constitute a conflict of interest, first author, Khalid El Bairi, MD, said during an interview. “There is a lack of training in ethics and integrity in medical schools [in countries in Africa], so people are not informed about conflicts of interest,” continued Dr. El Bairi, who presented the new research at the annual meeting of the American Society of Clinical Oncology. “There is also a lack of policies in universities and hospitals to guide clinicians about conflict of interest reporting.”

Overall, 58.5% of survey participants categorized honoraria as a conflict of interest that required disclosure, while 50% said the same of gifts from pharmaceutical representatives, and 44.5% identified travel grants for attending conferences as conflicts of interests. The report was published in JCO Global Oncology. Less often considered conflicts of interest were personal and institutional research funding, trips to conferences, consulting or advisory roles, food and beverages, expert testimony, and sample drugs provided by the pharmaceutical industry.

Just 24% of participants indicated that all of the listed items were deemed conflicts of interest. The survey — called Oncology Transparency Under Scrutiny and Tracking, or ONCOTRUST-1 — considered the perceptions of 200 oncologists, about 70% of whom practice in low- and middle-income countries.

What’s more, 37.5% of respondents identified fear of losing financial support as a reason not to report a conflict of interest. Still, 75% indicated that industry-sponsored speaking does not affect treatment decisions, and 60% said conflicts of interest do not impair objective appraisal of clinical trials.

Dr. El Bairi, a research associate in the department of medical oncology at Mohammed VI University Hospital, Oujda, Morocco, and his colleagues undertook the study in part because of an editorial published in The Lancet Oncology last year. First author Fidel Rubagumya, MD, a consultant oncologist and director of research at Rwanda Military Hospital, Kigali, and colleagues called for more research on the ties between oncologists and industry in Africa. The ONCOTRUST-1 findings set the stage for a planned follow-up study, which aims to compare views surrounding conflicts of interests between oncologists in different economic settings.
 

Open Payments Houses US Physicians’ Conflicts of Interest

To be sure, many authors of research published in major US journals are based outside of the United States. According to JAMA Network Open, 69% of submissions to the journal are from international authors. However, Dr. El Bairi also raised other potential signs of industry influence that he said need global discussion, such as the role of pharmaceutical companies in presentations of clinical trial findings at large cancer societies’ conferences, a shift toward progression-free survival as the endpoint in clinical cancer trials, and the rise of third-party writing assistance.

“There are two sides of the story,” Dr. El Bairi said. “The good side is that unfortunately, sometimes [industry money is] the only way for African oncologists to go abroad for training, to conferences for their continuous medical education. The bad is now we may harm patients, we might harm science by having conflicts of interest not reported.”

Unlike other countries, the United States has plentiful data on the scale of physicians’ financial conflicts of interest in the form of the Open Payments platform. Championed by Sen. Chuck Grassley (R-Iowa), the federal repository of payments to doctors and teaching hospitals by drug and medical device companies was established as part of the Affordable Care Act (ACA).

The health care reform law, which passed in 2010, requires pharmaceutical companies and medical device makers to report this information.

From 2013 to 2021, the pharmaceutical and medical device industry paid physicians $12.1 billion, according to a research letter published in JAMA in March of 2024 that reviewed Open Payments data.

Ranked by specialty, hematologists and oncologists received the fourth-largest amount of money in aggregate, the study shows. Their total of $825.8 million trailed only physicians in orthopedics ($1.36 billion), neurology and psychiatry ($1.32 billion) and cardiology ($1.29 billion). What’s more, this specialty had the biggest share of physicians taking industry money, with 74.2% of hematologists and oncologists receiving payments.

The payments from industry include fees for consulting services and speaking, as well as food and beverages, travel and lodging, education, gifts, grants, and honoraria.

Joseph S. Ross, MD, MHS, one of the JAMA study’s coauthors, said in an interview that the continued prevalence of such funding runs counter to the expectation behind the measure, which was that transparency would lead to physicians’ becoming less likely to accept a payment.

“We as a profession need to take a cold hard look in the mirror,” he said, referring to physicians in general.

Dr. Ross, professor of medicine at Yale University School of Medicine, New Haven, Connecticut, said he hopes that the profession will self-police, and that patients will make a bigger deal of the issue. Still, he acknowledged that “the vast majority” of patient advocacy groups, too, are funded by the pharmaceutical industry.
 

 

 

Exposing Industry Payments May Have Perverse Effect

A growing body of research explores the effect that physicians’ financial relationships with pharmaceutical companies can have on their prescribing practices. Indeed, oncologists taking industry payments seem to be more likely to prescribe nonrecommended and low-value drugs in some clinical settings, according to a study published in The BMJ last year.

That study’s first author, Aaron P. Mitchell, MD, a medical oncologist and assistant attending physician at Memorial Sloan Kettering Cancer Center, New York City, suggested in an interview that exposing industry payments to the sunlight may have had a perverse effect on physicians.

“There’s this idea of having license to do something,” Dr. Mitchell said, speaking broadly about human psychology rather than drawing on empirical data. “You might feel a little less bad about then prescribing more of that company’s drug, because the disclosure has already been done.”

The influence of pharmaceutical industry money on oncologists goes beyond what’s prescribed to which treatments get studied, approved, and recommended by guidelines, Dr. Mitchell said. He was also first author of a 2016 paper published in JAMA Oncology that found 86% of authors of the National Comprehensive Cancer Network guidelines had at least one conflict of interest reported on Open Systems in 2014.

Meanwhile, the fact that physicians’ payments from industry are a matter of public record on Open Systems has not guaranteed that doctors will disclose their conflicts of interest in other forums. A study published in JAMA earlier this year, for which Dr. Mitchell served as first author, found that almost one in three physicians endorsing drugs and devices on the social media platform X failed to disclose that the manufacturer paid them.

The lack of disclosure seems to extend beyond social media. A 2018 study published in JAMA Oncology found that 32% of oncologist authors of clinical drug trials for drugs approved over a 20-month period from 2016 to 2017 did not fully disclose payments from the trial sponsor when checked against the Open Payments database.

A lion’s share of industry payments within oncology appears to be going to a small group of high-profile physicians, suggested a 2022 study published in JCO Oncology Practice. It found that just 1% of all US oncologists accounted for 37% of industry payments, with each receiving more than $100,000 a year.
 

Experts: Professional Societies Should Further Limit Industry Payments

While partnerships between drug companies and physicians are necessary and have often been positive, more than disclosure is needed to minimize the risk of patient harm, according to an editorial published in March in JCO Oncology Practice. In it, Nina Niu Sanford, MD, a radiation oncologist UT Southwestern Medical Center, Dallas, and Bishal Gyawali, MD, PhD, a medical oncologist at Queen’s University, Kingston, Ontario, Canada, argue that following a specific blueprint could help mitigate financial conflicts of interest.

For starters, Dr. Sanford and Dr. Gyawali contend in the editorial that the maximum general payment NCCN members are allowed to receive from industry should be $0, compared with a current bar of $20,000 from a single entity or $50,000 from all external entities combined. They also urge professional societies to follow the current policy of the American Society of Clinical Oncology and ban members serving in their leadership from receiving any general payments from the industry.

The authors further suggest that investigators of clinical trials should be barred from holding stock for the drug or product while it is under study and that editorialists should not have conflicts of interest with the company whose drug or product they are discussing.

Pharmaceutical money can harm patients in ways that are not always obvious, Dr. Gyawali said in an interview.

“It can dominate the conversation by removing critical viewpoints from these top people about certain drugs,” he said. “It’s not always about saying good things about the drug.”

For instance, he suggested, a doctor receiving payments from Pfizer might openly criticize perceived flaws in drugs from other companies but refrain from weighing in negatively on a Pfizer drug.

From 2016 to 2018, industry made general payments to more than 52,000 physicians for 137 unique cancer drugs, according to a separate 2021 study published in the Journal of Cancer Policy, for which Dr. Gyawali served as one of the coauthors.

The results suggest that pharmaceutical money affects the entire cancer system, not relatively few oncology leaders. The amounts and dollar values grew each year covered by the study, to nearly 466,000 payments totaling $98.5 million in 2018.

Adriane Fugh-Berman, MD, professor of pharmacology and physiology at Georgetown University, Washington, DC, and director of PharmedOut, a Georgetown-based project that advances evidence-based prescribing and educates healthcare professionals about pharmaceutical marketing practices, has called for a ban on industry gifts to physicians.

When a publication asks physicians to disclose relevant conflicts of interest, physicians may choose not to disclose, because they don’t feel that their conflicts are relevant, Dr. Fugh-Berman said. Drug and device makers have also grown sophisticated about how they work with physicians, she suggested. “It’s illegal to market a drug before it comes on the market, but it’s not illegal to market the disease,” said Dr. Fugh-Berman, noting that drugmakers often work on long timelines.

“The doctor is going around saying we don’t have good therapies. They’re not pushing a drug. And so they feel totally fine about it.”

Anecdotally, Dr. Fugh-Berman noted that, if anything, speaking fees and similar payments only improve doctors’ reputations. She said that’s especially true if the physicians are paid by multiple companies, on the supposed theory that their conflicts of interest cancel each other out.

“I’m not defending this,” added Dr. Fugh-Berman, observing that, at the end of the day, such conflicts may go against the interests of patients.

“Sometimes the best drugs are older, generic, cheap drugs, and if oncologists or other specialists are only choosing among the most promoted drugs, they’re not necessarily choosing the best drugs.”

Beyond any prestige, doctors have other possible nonfinancial incentives for receiving industry payments. “It’s the relationships,” Dr. Fugh-Berman said. “Companies are very good at offering friendship.”

Dr. El Bairi reported NCODA leadership and honoraria along with expert testimony through techspert.io. Dr. Ross reported that he is a deputy editor of JAMA but was not involved in decisions regarding acceptance of or the review of the manuscript he authored and discussed in this article. Dr. Ross also reported receiving grants from the Food and Drug Administration, Johnson & Johnson, the Medical Device Innovation Consortium, the Agency for Healthcare Research and Quality, and the National Heart, Lung, and Blood Institute. He was an expert witness in a qui tam suit alleging violations of the False Claims Act and Anti-Kickback Statute against Biogen that was settled in 2022. Dr. Mitchell reported no relevant financial relationships. Dr. Gyawali reported a consulting or advisory role with Vivio Health. Dr. Fugh-Berman reported being an expert witness for plaintiffs in complaints about drug and device marketing practices.

Publications
Publications
Topics
Article Type
Sections
Article Source

FROM ASCO 2024

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

ASCO 2024: An Expert’s Top Hematology Highlights

Article Type
Changed
Thu, 07/11/2024 - 14:01

Research presented at the annual meeting of the American Society of Clinical Oncology (ASCO) has the potential to change practice — and assumptions — about acute myeloid leukemia (AML), chronic myeloid leukemia (CML), and blood cancer as a whole, according to the chief science officer of the American Cancer Society.

In an interview following the conference, Arif H. Kamal, MD, MBA, MHS, who practices hematology-oncology at Duke University, Durham, North Carolina, recapped several landmark studies and discussed their lessons for clinicians.


Question: You’ve highlighted a randomized, multisite clinical trialled by a researcher from Massachusetts General Hospital in Boston. The researchers enrolled 115 adult patients with AML or high-risk myelodysplastic syndrome (MDS) who were receiving non–intensive care to usual care or regular meetings with palliative care clinicians (monthly as outpatients and at least twice weekly as inpatients). Among those who died (61.7%), those in the intervention group had their end-of-life preferences documented much earlier (41 days before death vs. 1.5 days, P < .001). They were also more likely to have documented end-of-life care preferences (96.5% vs. 68.4%, P < .001) and less likely to have been hospitalized within the last month of life (70.6% vs. 91.9%, P = .031). Why did this study strike you as especially important?

Dr. Kamal: A few studies have now shown better outcomes in hematology after the use of early palliative care. This has been shown not only in transplant patients but also in non-transplant patients with hematologic malignancies. As a result, you’re seeing a shift toward regular integration of palliative care.

The historical concern has been that palliative care takes the foot off the gas pedal. Another way to look at it is that palliative care helps keep the foot on the gas pedal.


Q: Should the focus be on all hematologic cancer patients or just on those who are more severe cases or whose illness is terminal?

Dr. Kamal: The focus is on patients with acute progressive leukemias rather than those with indolent, long-standing lymphomas. This a reflection of severity and complexity: In leukemia, you can be someone really sick all of a sudden and require intensive treatment.


Q: What’s new about this kind of research?

Dr. Kamal: We’re learning how palliative care is valuable in all cancers, but particularly in blood cancers, where it has historically not been studied. The groundbreaking studies in palliative care over the last 20 years have largely been in solid tumors such as lung cancers and colorectal cancers.


Q: What is unique about the patient experience in hematologic cancers compared to solid tumor cancers?

Dr. Kamal: Blood cancers are a relatively new place to integrate palliative care, but what we’re finding is that it may be even more needed than in solid tumors in terms of improving outcomes.

In pancreatic cancer, you may not know if something is going to work, but it is going to take you months to figure it out. In leukemia, there can be a lot of dynamism: You’re going to find out in a matter of days. You have to be able to pivot really quickly to the next thing, go to transplant very quickly and urgently, or make a decision to pursue supportive care.

This really compresses the normal issues like uncertainty and emotional anxiety that a pancreatic cancer patient may process over a year. Leukemic patients may need to process that over 2, 3, or 4 weeks. Palliative care can be there to help the patient to process options.


Q: You also highlighted the industry-funded phase 3 ASC4FIRST study into asciminib (Scemblix) in newly diagnosed patients with CML. The trial was led by a researcher from the South Australian Health and Medical Research Institute and the University of Adelaide, Australia. Asciminib, a STAMP inhibitor, is FDA-approved for certain CML indications. In an intention-to-treat analysis, the new study finds better major molecular response at 48 weeks for the drug vs. investigator-selected tyrosine kinase inhibitors (67.7% vs. 49.0%, P < .001). What do these findings tell you?

Dr. Kamal: CML has been a disease where you had Gleevec — imatinib — and additional options that were all in the second-line or third-line setting after failure. Now, you’re seeing durable responses across the board: an expansion of options and potentially new options in the first-line setting.

[Editor’s note: For more about asciminib, check commentaries from physicians who spoke to Medscape and ASCO Daily News.]



Q: What makes this drug unique?

Dr. Kamal: CML was the leader in helping us to understand that if you identify a mutation, you can create a medication against it. Now, what we’re finding out is that there are other ways to work around mutations. Asciminib is not affected by the most common mutations that lend to drug resistance in the classic drugs that target BCR-ABL cells like imatinib.



Q: Finally, you spotlighted a retrospective study led by researchers at Case Western Reserve University that explored rates of obesity-related cancers — including multiple myeloma — in patients with BMI ≥ 35 who took glucagon-like protein-1 receptor agonists (GLP-1 RAs) or underwent bariatric surgery. Both strategies were linked to lower risk of the cancers vs. no intervention (GLP-1 RAs, hazard ratio [HR] = 0.61; 95% CI 0.46-0.81, and bariatric surgery, HR = 0.78; 95% CI 0.67-0.91). What did you learn from this research?

Dr. Kamal: When we think about risk reduction for cancer, we generally think about hormone-driven cancers. Blood cancers are not typically hormone-driven.

This study is hinting at that idea that healthy weight across the board will reduce your cancer risk even in blood cancers, and pharmacologic interventions to reduce your weight may also reduce that cancer risk.



Q: So weight-loss drugs such as Ozempic could potentially lower the risk of hematologic cancer?

Dr. Kamal: We’re going to need more data on this, and you wouldn’t take it for that reason. But there may be a story here that says get to a healthy weight — it doesn’t matter how you do it — and your risk of all cancers goes down.

Dr. Kamal has no disclosures to report.

Meeting/Event
Publications
Topics
Sections
Meeting/Event
Meeting/Event

Research presented at the annual meeting of the American Society of Clinical Oncology (ASCO) has the potential to change practice — and assumptions — about acute myeloid leukemia (AML), chronic myeloid leukemia (CML), and blood cancer as a whole, according to the chief science officer of the American Cancer Society.

In an interview following the conference, Arif H. Kamal, MD, MBA, MHS, who practices hematology-oncology at Duke University, Durham, North Carolina, recapped several landmark studies and discussed their lessons for clinicians.


Question: You’ve highlighted a randomized, multisite clinical trialled by a researcher from Massachusetts General Hospital in Boston. The researchers enrolled 115 adult patients with AML or high-risk myelodysplastic syndrome (MDS) who were receiving non–intensive care to usual care or regular meetings with palliative care clinicians (monthly as outpatients and at least twice weekly as inpatients). Among those who died (61.7%), those in the intervention group had their end-of-life preferences documented much earlier (41 days before death vs. 1.5 days, P < .001). They were also more likely to have documented end-of-life care preferences (96.5% vs. 68.4%, P < .001) and less likely to have been hospitalized within the last month of life (70.6% vs. 91.9%, P = .031). Why did this study strike you as especially important?

Dr. Kamal: A few studies have now shown better outcomes in hematology after the use of early palliative care. This has been shown not only in transplant patients but also in non-transplant patients with hematologic malignancies. As a result, you’re seeing a shift toward regular integration of palliative care.

The historical concern has been that palliative care takes the foot off the gas pedal. Another way to look at it is that palliative care helps keep the foot on the gas pedal.


Q: Should the focus be on all hematologic cancer patients or just on those who are more severe cases or whose illness is terminal?

Dr. Kamal: The focus is on patients with acute progressive leukemias rather than those with indolent, long-standing lymphomas. This a reflection of severity and complexity: In leukemia, you can be someone really sick all of a sudden and require intensive treatment.


Q: What’s new about this kind of research?

Dr. Kamal: We’re learning how palliative care is valuable in all cancers, but particularly in blood cancers, where it has historically not been studied. The groundbreaking studies in palliative care over the last 20 years have largely been in solid tumors such as lung cancers and colorectal cancers.


Q: What is unique about the patient experience in hematologic cancers compared to solid tumor cancers?

Dr. Kamal: Blood cancers are a relatively new place to integrate palliative care, but what we’re finding is that it may be even more needed than in solid tumors in terms of improving outcomes.

In pancreatic cancer, you may not know if something is going to work, but it is going to take you months to figure it out. In leukemia, there can be a lot of dynamism: You’re going to find out in a matter of days. You have to be able to pivot really quickly to the next thing, go to transplant very quickly and urgently, or make a decision to pursue supportive care.

This really compresses the normal issues like uncertainty and emotional anxiety that a pancreatic cancer patient may process over a year. Leukemic patients may need to process that over 2, 3, or 4 weeks. Palliative care can be there to help the patient to process options.


Q: You also highlighted the industry-funded phase 3 ASC4FIRST study into asciminib (Scemblix) in newly diagnosed patients with CML. The trial was led by a researcher from the South Australian Health and Medical Research Institute and the University of Adelaide, Australia. Asciminib, a STAMP inhibitor, is FDA-approved for certain CML indications. In an intention-to-treat analysis, the new study finds better major molecular response at 48 weeks for the drug vs. investigator-selected tyrosine kinase inhibitors (67.7% vs. 49.0%, P < .001). What do these findings tell you?

Dr. Kamal: CML has been a disease where you had Gleevec — imatinib — and additional options that were all in the second-line or third-line setting after failure. Now, you’re seeing durable responses across the board: an expansion of options and potentially new options in the first-line setting.

[Editor’s note: For more about asciminib, check commentaries from physicians who spoke to Medscape and ASCO Daily News.]



Q: What makes this drug unique?

Dr. Kamal: CML was the leader in helping us to understand that if you identify a mutation, you can create a medication against it. Now, what we’re finding out is that there are other ways to work around mutations. Asciminib is not affected by the most common mutations that lend to drug resistance in the classic drugs that target BCR-ABL cells like imatinib.



Q: Finally, you spotlighted a retrospective study led by researchers at Case Western Reserve University that explored rates of obesity-related cancers — including multiple myeloma — in patients with BMI ≥ 35 who took glucagon-like protein-1 receptor agonists (GLP-1 RAs) or underwent bariatric surgery. Both strategies were linked to lower risk of the cancers vs. no intervention (GLP-1 RAs, hazard ratio [HR] = 0.61; 95% CI 0.46-0.81, and bariatric surgery, HR = 0.78; 95% CI 0.67-0.91). What did you learn from this research?

Dr. Kamal: When we think about risk reduction for cancer, we generally think about hormone-driven cancers. Blood cancers are not typically hormone-driven.

This study is hinting at that idea that healthy weight across the board will reduce your cancer risk even in blood cancers, and pharmacologic interventions to reduce your weight may also reduce that cancer risk.



Q: So weight-loss drugs such as Ozempic could potentially lower the risk of hematologic cancer?

Dr. Kamal: We’re going to need more data on this, and you wouldn’t take it for that reason. But there may be a story here that says get to a healthy weight — it doesn’t matter how you do it — and your risk of all cancers goes down.

Dr. Kamal has no disclosures to report.

Research presented at the annual meeting of the American Society of Clinical Oncology (ASCO) has the potential to change practice — and assumptions — about acute myeloid leukemia (AML), chronic myeloid leukemia (CML), and blood cancer as a whole, according to the chief science officer of the American Cancer Society.

In an interview following the conference, Arif H. Kamal, MD, MBA, MHS, who practices hematology-oncology at Duke University, Durham, North Carolina, recapped several landmark studies and discussed their lessons for clinicians.


Question: You’ve highlighted a randomized, multisite clinical trialled by a researcher from Massachusetts General Hospital in Boston. The researchers enrolled 115 adult patients with AML or high-risk myelodysplastic syndrome (MDS) who were receiving non–intensive care to usual care or regular meetings with palliative care clinicians (monthly as outpatients and at least twice weekly as inpatients). Among those who died (61.7%), those in the intervention group had their end-of-life preferences documented much earlier (41 days before death vs. 1.5 days, P < .001). They were also more likely to have documented end-of-life care preferences (96.5% vs. 68.4%, P < .001) and less likely to have been hospitalized within the last month of life (70.6% vs. 91.9%, P = .031). Why did this study strike you as especially important?

Dr. Kamal: A few studies have now shown better outcomes in hematology after the use of early palliative care. This has been shown not only in transplant patients but also in non-transplant patients with hematologic malignancies. As a result, you’re seeing a shift toward regular integration of palliative care.

The historical concern has been that palliative care takes the foot off the gas pedal. Another way to look at it is that palliative care helps keep the foot on the gas pedal.


Q: Should the focus be on all hematologic cancer patients or just on those who are more severe cases or whose illness is terminal?

Dr. Kamal: The focus is on patients with acute progressive leukemias rather than those with indolent, long-standing lymphomas. This a reflection of severity and complexity: In leukemia, you can be someone really sick all of a sudden and require intensive treatment.


Q: What’s new about this kind of research?

Dr. Kamal: We’re learning how palliative care is valuable in all cancers, but particularly in blood cancers, where it has historically not been studied. The groundbreaking studies in palliative care over the last 20 years have largely been in solid tumors such as lung cancers and colorectal cancers.


Q: What is unique about the patient experience in hematologic cancers compared to solid tumor cancers?

Dr. Kamal: Blood cancers are a relatively new place to integrate palliative care, but what we’re finding is that it may be even more needed than in solid tumors in terms of improving outcomes.

In pancreatic cancer, you may not know if something is going to work, but it is going to take you months to figure it out. In leukemia, there can be a lot of dynamism: You’re going to find out in a matter of days. You have to be able to pivot really quickly to the next thing, go to transplant very quickly and urgently, or make a decision to pursue supportive care.

This really compresses the normal issues like uncertainty and emotional anxiety that a pancreatic cancer patient may process over a year. Leukemic patients may need to process that over 2, 3, or 4 weeks. Palliative care can be there to help the patient to process options.


Q: You also highlighted the industry-funded phase 3 ASC4FIRST study into asciminib (Scemblix) in newly diagnosed patients with CML. The trial was led by a researcher from the South Australian Health and Medical Research Institute and the University of Adelaide, Australia. Asciminib, a STAMP inhibitor, is FDA-approved for certain CML indications. In an intention-to-treat analysis, the new study finds better major molecular response at 48 weeks for the drug vs. investigator-selected tyrosine kinase inhibitors (67.7% vs. 49.0%, P < .001). What do these findings tell you?

Dr. Kamal: CML has been a disease where you had Gleevec — imatinib — and additional options that were all in the second-line or third-line setting after failure. Now, you’re seeing durable responses across the board: an expansion of options and potentially new options in the first-line setting.

[Editor’s note: For more about asciminib, check commentaries from physicians who spoke to Medscape and ASCO Daily News.]



Q: What makes this drug unique?

Dr. Kamal: CML was the leader in helping us to understand that if you identify a mutation, you can create a medication against it. Now, what we’re finding out is that there are other ways to work around mutations. Asciminib is not affected by the most common mutations that lend to drug resistance in the classic drugs that target BCR-ABL cells like imatinib.



Q: Finally, you spotlighted a retrospective study led by researchers at Case Western Reserve University that explored rates of obesity-related cancers — including multiple myeloma — in patients with BMI ≥ 35 who took glucagon-like protein-1 receptor agonists (GLP-1 RAs) or underwent bariatric surgery. Both strategies were linked to lower risk of the cancers vs. no intervention (GLP-1 RAs, hazard ratio [HR] = 0.61; 95% CI 0.46-0.81, and bariatric surgery, HR = 0.78; 95% CI 0.67-0.91). What did you learn from this research?

Dr. Kamal: When we think about risk reduction for cancer, we generally think about hormone-driven cancers. Blood cancers are not typically hormone-driven.

This study is hinting at that idea that healthy weight across the board will reduce your cancer risk even in blood cancers, and pharmacologic interventions to reduce your weight may also reduce that cancer risk.



Q: So weight-loss drugs such as Ozempic could potentially lower the risk of hematologic cancer?

Dr. Kamal: We’re going to need more data on this, and you wouldn’t take it for that reason. But there may be a story here that says get to a healthy weight — it doesn’t matter how you do it — and your risk of all cancers goes down.

Dr. Kamal has no disclosures to report.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Should Cancer Trial Eligibility Become More Inclusive?

Article Type
Changed
Wed, 07/10/2024 - 17:00

Patients with treatment-refractory cancers who did not meet eligibility criteria for a pan-cancer clinical trial but received waivers allowing them to participate had similar outcomes to patients who participated without waivers, a new analysis revealed.

The study, published online in Clinical Cancer Research, highlighted the potential benefits of broadening eligibility criteria for clinical trials.

“It is well known that results in an ‘ideal’ population do not always translate to the real-world population,” senior author Hans Gelderblom, MD, chair of the Department of Medical Oncology at the Leiden University Medical Center, Leiden, the Netherlands, said in a press release. “Eligibility criteria are often too strict, and educated exemptions by experienced investigators can help individual patients, especially in a last-resort trial.”

Although experts have expressed interest in improving trial inclusivity, it’s unclear how doing so might impact treatment safety and efficacy.

In the Drug Rediscovery Protocol (DRUP), Dr. Gelderblom and colleagues examined the impact of broadening trial eligibility on patient outcomes. DRUP is an ongoing Dutch national, multicenter, pan-cancer, nonrandomized clinical trial in which patients are treated off-label with approved molecularly targeted or immunotherapies.

In the trial, 1019 patients with treatment-refractory disease were matched to one of the available study drugs based on their tumor molecular profile and enrolled in parallel cohorts. Cohorts were defined by tumor type, molecular profile, and study drug.

Among these patients, 82 patients — 8% of the cohort — were granted waivers to participate. Most waivers (45%) were granted as exceptions to general- or drug-related eligibility criteria, often because of out-of-range lab results. Other categories included treatment and testing exceptions, as well as out-of-window testing. 

The researchers then compared safety and efficacy outcomes between the 82 participants granted waivers and the 937 who did not receive waivers. 

Overall, Dr. Gelderblom’s team found that the rate of serious adverse events was similar between patients who received a waiver and those who did not: 39% vs 41%, respectively.

A relationship between waivers and serious adverse events was deemed “unlikely” for 86% of patients and “possible” for 14%. In two cases concerning a direct relationship, for instance, patients who received waivers for decreased hemoglobin levels developed anemia.

The rate of clinical benefit — defined as an objective response or stable disease for at least 16 weeks — was similar between the groups. Overall, 40% of patients who received a waiver (33 of 82) had a clinical benefit vs 33% of patients without a waiver (P = .43). Median overall survival for patients that received a waiver was also similar — 11 months in the waiver group and 8 months in the nonwaiver group (hazard ratio, 0.87; P = .33).

“Safety and clinical benefit were preserved in patients for whom a waiver was granted,” the authors concluded.

The study had several limitations. The diversity of cancer types, treatments, and reasons for protocol exemptions precluded subgroup analyses. In addition, because the decision to grant waivers depended in large part on the likelihood of clinical benefit, “it is possible that patients who received waivers were positively selected for clinical benefit compared with the general study population,” the authors wrote.

So, “although the clinical benefit rate of the patient group for whom a waiver was granted appears to be slightly higher, this difference might be explained by the selection process of the central study team, in which each waiver request was carefully considered, weighing the risks and potential benefits for the patient in question,” the authors explained.

Overall, “these findings advocate for a broader and more inclusive design when establishing novel trials, paving the way for a more effective and tailored application of cancer therapies in patients with advanced or refractory disease,” Dr. Gelderblom said.

Commenting on the study, Bishal Gyawali, MD, PhD, said that “relaxing eligibility criteria is important, and I support this. Trials should include patients that are more representative of the real-world, so that results are generalizable.”

However, “the paper overemphasized efficacy,” said Dr. Gyawali, from Queen’s University, Kingston, Ontario, Canada. The sample size of waiver-granted patients was small, plus “the clinical benefit rate is not a marker of efficacy.

“The response rate is somewhat better, but for a heterogeneous study with multiple targets and drugs, it is difficult to say much about treatment effects here,” Dr. Gyawali added. Overall, “we shouldn’t read too much into treatment benefits based on these numbers.”

Funding for the study was provided by the Stelvio for Life Foundation, the Dutch Cancer Society, Amgen, AstraZeneca, Bayer, Boehringer Ingelheim, Bristol Myers Squibb, pharma&, Eisai Co., Ipsen, Merck Sharp & Dohme, Novartis, Pfizer, and Roche. Dr. Gelderblom declared no conflicts of interest, and Dr. Gyawali declared no conflicts of interest related to his comment.
 

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

Patients with treatment-refractory cancers who did not meet eligibility criteria for a pan-cancer clinical trial but received waivers allowing them to participate had similar outcomes to patients who participated without waivers, a new analysis revealed.

The study, published online in Clinical Cancer Research, highlighted the potential benefits of broadening eligibility criteria for clinical trials.

“It is well known that results in an ‘ideal’ population do not always translate to the real-world population,” senior author Hans Gelderblom, MD, chair of the Department of Medical Oncology at the Leiden University Medical Center, Leiden, the Netherlands, said in a press release. “Eligibility criteria are often too strict, and educated exemptions by experienced investigators can help individual patients, especially in a last-resort trial.”

Although experts have expressed interest in improving trial inclusivity, it’s unclear how doing so might impact treatment safety and efficacy.

In the Drug Rediscovery Protocol (DRUP), Dr. Gelderblom and colleagues examined the impact of broadening trial eligibility on patient outcomes. DRUP is an ongoing Dutch national, multicenter, pan-cancer, nonrandomized clinical trial in which patients are treated off-label with approved molecularly targeted or immunotherapies.

In the trial, 1019 patients with treatment-refractory disease were matched to one of the available study drugs based on their tumor molecular profile and enrolled in parallel cohorts. Cohorts were defined by tumor type, molecular profile, and study drug.

Among these patients, 82 patients — 8% of the cohort — were granted waivers to participate. Most waivers (45%) were granted as exceptions to general- or drug-related eligibility criteria, often because of out-of-range lab results. Other categories included treatment and testing exceptions, as well as out-of-window testing. 

The researchers then compared safety and efficacy outcomes between the 82 participants granted waivers and the 937 who did not receive waivers. 

Overall, Dr. Gelderblom’s team found that the rate of serious adverse events was similar between patients who received a waiver and those who did not: 39% vs 41%, respectively.

A relationship between waivers and serious adverse events was deemed “unlikely” for 86% of patients and “possible” for 14%. In two cases concerning a direct relationship, for instance, patients who received waivers for decreased hemoglobin levels developed anemia.

The rate of clinical benefit — defined as an objective response or stable disease for at least 16 weeks — was similar between the groups. Overall, 40% of patients who received a waiver (33 of 82) had a clinical benefit vs 33% of patients without a waiver (P = .43). Median overall survival for patients that received a waiver was also similar — 11 months in the waiver group and 8 months in the nonwaiver group (hazard ratio, 0.87; P = .33).

“Safety and clinical benefit were preserved in patients for whom a waiver was granted,” the authors concluded.

The study had several limitations. The diversity of cancer types, treatments, and reasons for protocol exemptions precluded subgroup analyses. In addition, because the decision to grant waivers depended in large part on the likelihood of clinical benefit, “it is possible that patients who received waivers were positively selected for clinical benefit compared with the general study population,” the authors wrote.

So, “although the clinical benefit rate of the patient group for whom a waiver was granted appears to be slightly higher, this difference might be explained by the selection process of the central study team, in which each waiver request was carefully considered, weighing the risks and potential benefits for the patient in question,” the authors explained.

Overall, “these findings advocate for a broader and more inclusive design when establishing novel trials, paving the way for a more effective and tailored application of cancer therapies in patients with advanced or refractory disease,” Dr. Gelderblom said.

Commenting on the study, Bishal Gyawali, MD, PhD, said that “relaxing eligibility criteria is important, and I support this. Trials should include patients that are more representative of the real-world, so that results are generalizable.”

However, “the paper overemphasized efficacy,” said Dr. Gyawali, from Queen’s University, Kingston, Ontario, Canada. The sample size of waiver-granted patients was small, plus “the clinical benefit rate is not a marker of efficacy.

“The response rate is somewhat better, but for a heterogeneous study with multiple targets and drugs, it is difficult to say much about treatment effects here,” Dr. Gyawali added. Overall, “we shouldn’t read too much into treatment benefits based on these numbers.”

Funding for the study was provided by the Stelvio for Life Foundation, the Dutch Cancer Society, Amgen, AstraZeneca, Bayer, Boehringer Ingelheim, Bristol Myers Squibb, pharma&, Eisai Co., Ipsen, Merck Sharp & Dohme, Novartis, Pfizer, and Roche. Dr. Gelderblom declared no conflicts of interest, and Dr. Gyawali declared no conflicts of interest related to his comment.
 

A version of this article appeared on Medscape.com.

Patients with treatment-refractory cancers who did not meet eligibility criteria for a pan-cancer clinical trial but received waivers allowing them to participate had similar outcomes to patients who participated without waivers, a new analysis revealed.

The study, published online in Clinical Cancer Research, highlighted the potential benefits of broadening eligibility criteria for clinical trials.

“It is well known that results in an ‘ideal’ population do not always translate to the real-world population,” senior author Hans Gelderblom, MD, chair of the Department of Medical Oncology at the Leiden University Medical Center, Leiden, the Netherlands, said in a press release. “Eligibility criteria are often too strict, and educated exemptions by experienced investigators can help individual patients, especially in a last-resort trial.”

Although experts have expressed interest in improving trial inclusivity, it’s unclear how doing so might impact treatment safety and efficacy.

In the Drug Rediscovery Protocol (DRUP), Dr. Gelderblom and colleagues examined the impact of broadening trial eligibility on patient outcomes. DRUP is an ongoing Dutch national, multicenter, pan-cancer, nonrandomized clinical trial in which patients are treated off-label with approved molecularly targeted or immunotherapies.

In the trial, 1019 patients with treatment-refractory disease were matched to one of the available study drugs based on their tumor molecular profile and enrolled in parallel cohorts. Cohorts were defined by tumor type, molecular profile, and study drug.

Among these patients, 82 patients — 8% of the cohort — were granted waivers to participate. Most waivers (45%) were granted as exceptions to general- or drug-related eligibility criteria, often because of out-of-range lab results. Other categories included treatment and testing exceptions, as well as out-of-window testing. 

The researchers then compared safety and efficacy outcomes between the 82 participants granted waivers and the 937 who did not receive waivers. 

Overall, Dr. Gelderblom’s team found that the rate of serious adverse events was similar between patients who received a waiver and those who did not: 39% vs 41%, respectively.

A relationship between waivers and serious adverse events was deemed “unlikely” for 86% of patients and “possible” for 14%. In two cases concerning a direct relationship, for instance, patients who received waivers for decreased hemoglobin levels developed anemia.

The rate of clinical benefit — defined as an objective response or stable disease for at least 16 weeks — was similar between the groups. Overall, 40% of patients who received a waiver (33 of 82) had a clinical benefit vs 33% of patients without a waiver (P = .43). Median overall survival for patients that received a waiver was also similar — 11 months in the waiver group and 8 months in the nonwaiver group (hazard ratio, 0.87; P = .33).

“Safety and clinical benefit were preserved in patients for whom a waiver was granted,” the authors concluded.

The study had several limitations. The diversity of cancer types, treatments, and reasons for protocol exemptions precluded subgroup analyses. In addition, because the decision to grant waivers depended in large part on the likelihood of clinical benefit, “it is possible that patients who received waivers were positively selected for clinical benefit compared with the general study population,” the authors wrote.

So, “although the clinical benefit rate of the patient group for whom a waiver was granted appears to be slightly higher, this difference might be explained by the selection process of the central study team, in which each waiver request was carefully considered, weighing the risks and potential benefits for the patient in question,” the authors explained.

Overall, “these findings advocate for a broader and more inclusive design when establishing novel trials, paving the way for a more effective and tailored application of cancer therapies in patients with advanced or refractory disease,” Dr. Gelderblom said.

Commenting on the study, Bishal Gyawali, MD, PhD, said that “relaxing eligibility criteria is important, and I support this. Trials should include patients that are more representative of the real-world, so that results are generalizable.”

However, “the paper overemphasized efficacy,” said Dr. Gyawali, from Queen’s University, Kingston, Ontario, Canada. The sample size of waiver-granted patients was small, plus “the clinical benefit rate is not a marker of efficacy.

“The response rate is somewhat better, but for a heterogeneous study with multiple targets and drugs, it is difficult to say much about treatment effects here,” Dr. Gyawali added. Overall, “we shouldn’t read too much into treatment benefits based on these numbers.”

Funding for the study was provided by the Stelvio for Life Foundation, the Dutch Cancer Society, Amgen, AstraZeneca, Bayer, Boehringer Ingelheim, Bristol Myers Squibb, pharma&, Eisai Co., Ipsen, Merck Sharp & Dohme, Novartis, Pfizer, and Roche. Dr. Gelderblom declared no conflicts of interest, and Dr. Gyawali declared no conflicts of interest related to his comment.
 

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article