User login
What Are the Ethics of Sex and Romance for Older Adults in Nursing Homes?
This transcript has been edited for clarity.
I had a case a couple years ago in which I found myself completely at odds with the person complaining. A daughter came to me and said [paraphrasing], look, my dad is in a nursing home, and he’s just there for care that he needs, but he’s mentally competent. He’s enjoying watching television, playing games. He plays bridge and does many things. The nursing home is letting him have a romantic relationship with a woman who’s also in the nursing home. I think you, ethicist, should both intervene and try to stop that, and write more about the immorality of facilities like nursing homes or other long-term care settings permitting romance or sexual relations to take place.
I was reminded of that case because a report recently appeared that sexually transmitted diseases are on the rise among the elderly, both in nursing homes and in other settings. This obviously is linked up to another technological advance: the erectile dysfunction drugs.
I’m sure there are many men who, at one point in their lives, could not engage in sexual activity due to impotence. We have found a treatment for erectile dysfunction. Loads and loads of men are using it, and we forget that some of them are going to be older. The rate of impotence goes up directly with aging. If you’re in a nursing home, home care, or wherever you are, you may find yourself able to engage in sex in a way that your dad or your granddad may not have been.
We also know — and I found this out when I was tracking sales of erectile dysfunction drugs — that some of these older men are going to visit prostitutes. That’s another route, unsafe sex, for sexual diseases to be spreading into various older communities.
Morally, I think every individual who is competent and wishes to engage in a romantic or sexual relationship should be able to do so. If they’re within a marriage and they want to resume sexual activity because they get better or they can use these drugs, well, that’s great. If they’re single and they’re just living with others and they form an interesting romantic relationship, why shouldn’t they be allowed to engage in sex?
It is not only something that I didn’t agree with the complaining daughter about, but also I think some of these facilities should make more rooms for privacy and more opportunity for intimacy. It’s not like we should tell granddad that he’s living in a college dorm and try to make sure that his roommate doesn’t come in if he’s going to have his girlfriend over.
Are there ethical issues? Sure. Obviously, we should remember, if we have older patients, to talk to them about sexually transmitted diseases as part of a discussion of their sex life. We shouldn’t presume that they’re not doing something. We should presume that they might be, and then remind them about safe sex, particularly if they’re going to use third parties like prostitutes.
Competency becomes important. It’s one thing to have a mutually agreed upon romantic relationship. It’s another thing if somebody is taking advantage of someone who has Alzheimer’s or severe mental dysfunction and they’re not consenting.
How do we determine that and how do we manage that? I think people who are incompetent need to be protected from sexual advances unless they have a relative or someone who says they can engage if they enjoy it and it brings them pleasure. I wouldn’t just have people who are vulnerable, exploited, or acting in a predatory way toward others.
As I said, we need to rethink the design of where older people are living, whether it’s assisted living, nursing home living, or wherever, just to give them the opportunity to have a full life, as any individual would have once they’re past the age of majority, no matter who they want to have romance with and what they want to do in terms of how far that intimacy goes.
Sadly, I didn’t agree with the daughter who came to me and asked me to stop it. I wouldn’t stop it nor would I publish against it. There are risks that we ought to be aware of, including exploiting vulnerable people if they can’t consent, and the danger of transmission of disease, as would be true in any group that might engage in high-risk behavior.
Another risk may be injury if someone is frail and can’t physically sustain sexual intimacy because they’re just too frail to do it. We also need to be sure to address the issue of sexuality with patients to make sure they know what’s going on, what risks there are, what rights they have, and so on.
At the end of the day, I’m not in the camp that says, “Just say no” when it comes to sex among the elderly.
Dr. Caplan is director, Division of Medical Ethics, New York University Langone Medical Center, New York. He has served as a director, officer, partner, employee, advisor, consultant, or trustee for Johnson & Johnson’s Panel for Compassionate Drug Use (unpaid position); he also serves as a contributing author and advisor for Medscape.
A version of this article first appeared on Medscape.com.
This transcript has been edited for clarity.
I had a case a couple years ago in which I found myself completely at odds with the person complaining. A daughter came to me and said [paraphrasing], look, my dad is in a nursing home, and he’s just there for care that he needs, but he’s mentally competent. He’s enjoying watching television, playing games. He plays bridge and does many things. The nursing home is letting him have a romantic relationship with a woman who’s also in the nursing home. I think you, ethicist, should both intervene and try to stop that, and write more about the immorality of facilities like nursing homes or other long-term care settings permitting romance or sexual relations to take place.
I was reminded of that case because a report recently appeared that sexually transmitted diseases are on the rise among the elderly, both in nursing homes and in other settings. This obviously is linked up to another technological advance: the erectile dysfunction drugs.
I’m sure there are many men who, at one point in their lives, could not engage in sexual activity due to impotence. We have found a treatment for erectile dysfunction. Loads and loads of men are using it, and we forget that some of them are going to be older. The rate of impotence goes up directly with aging. If you’re in a nursing home, home care, or wherever you are, you may find yourself able to engage in sex in a way that your dad or your granddad may not have been.
We also know — and I found this out when I was tracking sales of erectile dysfunction drugs — that some of these older men are going to visit prostitutes. That’s another route, unsafe sex, for sexual diseases to be spreading into various older communities.
Morally, I think every individual who is competent and wishes to engage in a romantic or sexual relationship should be able to do so. If they’re within a marriage and they want to resume sexual activity because they get better or they can use these drugs, well, that’s great. If they’re single and they’re just living with others and they form an interesting romantic relationship, why shouldn’t they be allowed to engage in sex?
It is not only something that I didn’t agree with the complaining daughter about, but also I think some of these facilities should make more rooms for privacy and more opportunity for intimacy. It’s not like we should tell granddad that he’s living in a college dorm and try to make sure that his roommate doesn’t come in if he’s going to have his girlfriend over.
Are there ethical issues? Sure. Obviously, we should remember, if we have older patients, to talk to them about sexually transmitted diseases as part of a discussion of their sex life. We shouldn’t presume that they’re not doing something. We should presume that they might be, and then remind them about safe sex, particularly if they’re going to use third parties like prostitutes.
Competency becomes important. It’s one thing to have a mutually agreed upon romantic relationship. It’s another thing if somebody is taking advantage of someone who has Alzheimer’s or severe mental dysfunction and they’re not consenting.
How do we determine that and how do we manage that? I think people who are incompetent need to be protected from sexual advances unless they have a relative or someone who says they can engage if they enjoy it and it brings them pleasure. I wouldn’t just have people who are vulnerable, exploited, or acting in a predatory way toward others.
As I said, we need to rethink the design of where older people are living, whether it’s assisted living, nursing home living, or wherever, just to give them the opportunity to have a full life, as any individual would have once they’re past the age of majority, no matter who they want to have romance with and what they want to do in terms of how far that intimacy goes.
Sadly, I didn’t agree with the daughter who came to me and asked me to stop it. I wouldn’t stop it nor would I publish against it. There are risks that we ought to be aware of, including exploiting vulnerable people if they can’t consent, and the danger of transmission of disease, as would be true in any group that might engage in high-risk behavior.
Another risk may be injury if someone is frail and can’t physically sustain sexual intimacy because they’re just too frail to do it. We also need to be sure to address the issue of sexuality with patients to make sure they know what’s going on, what risks there are, what rights they have, and so on.
At the end of the day, I’m not in the camp that says, “Just say no” when it comes to sex among the elderly.
Dr. Caplan is director, Division of Medical Ethics, New York University Langone Medical Center, New York. He has served as a director, officer, partner, employee, advisor, consultant, or trustee for Johnson & Johnson’s Panel for Compassionate Drug Use (unpaid position); he also serves as a contributing author and advisor for Medscape.
A version of this article first appeared on Medscape.com.
This transcript has been edited for clarity.
I had a case a couple years ago in which I found myself completely at odds with the person complaining. A daughter came to me and said [paraphrasing], look, my dad is in a nursing home, and he’s just there for care that he needs, but he’s mentally competent. He’s enjoying watching television, playing games. He plays bridge and does many things. The nursing home is letting him have a romantic relationship with a woman who’s also in the nursing home. I think you, ethicist, should both intervene and try to stop that, and write more about the immorality of facilities like nursing homes or other long-term care settings permitting romance or sexual relations to take place.
I was reminded of that case because a report recently appeared that sexually transmitted diseases are on the rise among the elderly, both in nursing homes and in other settings. This obviously is linked up to another technological advance: the erectile dysfunction drugs.
I’m sure there are many men who, at one point in their lives, could not engage in sexual activity due to impotence. We have found a treatment for erectile dysfunction. Loads and loads of men are using it, and we forget that some of them are going to be older. The rate of impotence goes up directly with aging. If you’re in a nursing home, home care, or wherever you are, you may find yourself able to engage in sex in a way that your dad or your granddad may not have been.
We also know — and I found this out when I was tracking sales of erectile dysfunction drugs — that some of these older men are going to visit prostitutes. That’s another route, unsafe sex, for sexual diseases to be spreading into various older communities.
Morally, I think every individual who is competent and wishes to engage in a romantic or sexual relationship should be able to do so. If they’re within a marriage and they want to resume sexual activity because they get better or they can use these drugs, well, that’s great. If they’re single and they’re just living with others and they form an interesting romantic relationship, why shouldn’t they be allowed to engage in sex?
It is not only something that I didn’t agree with the complaining daughter about, but also I think some of these facilities should make more rooms for privacy and more opportunity for intimacy. It’s not like we should tell granddad that he’s living in a college dorm and try to make sure that his roommate doesn’t come in if he’s going to have his girlfriend over.
Are there ethical issues? Sure. Obviously, we should remember, if we have older patients, to talk to them about sexually transmitted diseases as part of a discussion of their sex life. We shouldn’t presume that they’re not doing something. We should presume that they might be, and then remind them about safe sex, particularly if they’re going to use third parties like prostitutes.
Competency becomes important. It’s one thing to have a mutually agreed upon romantic relationship. It’s another thing if somebody is taking advantage of someone who has Alzheimer’s or severe mental dysfunction and they’re not consenting.
How do we determine that and how do we manage that? I think people who are incompetent need to be protected from sexual advances unless they have a relative or someone who says they can engage if they enjoy it and it brings them pleasure. I wouldn’t just have people who are vulnerable, exploited, or acting in a predatory way toward others.
As I said, we need to rethink the design of where older people are living, whether it’s assisted living, nursing home living, or wherever, just to give them the opportunity to have a full life, as any individual would have once they’re past the age of majority, no matter who they want to have romance with and what they want to do in terms of how far that intimacy goes.
Sadly, I didn’t agree with the daughter who came to me and asked me to stop it. I wouldn’t stop it nor would I publish against it. There are risks that we ought to be aware of, including exploiting vulnerable people if they can’t consent, and the danger of transmission of disease, as would be true in any group that might engage in high-risk behavior.
Another risk may be injury if someone is frail and can’t physically sustain sexual intimacy because they’re just too frail to do it. We also need to be sure to address the issue of sexuality with patients to make sure they know what’s going on, what risks there are, what rights they have, and so on.
At the end of the day, I’m not in the camp that says, “Just say no” when it comes to sex among the elderly.
Dr. Caplan is director, Division of Medical Ethics, New York University Langone Medical Center, New York. He has served as a director, officer, partner, employee, advisor, consultant, or trustee for Johnson & Johnson’s Panel for Compassionate Drug Use (unpaid position); he also serves as a contributing author and advisor for Medscape.
A version of this article first appeared on Medscape.com.
Strong Sibling Link With Autism Spectrum Disorder
a study published in Pediatrics.
according toWhen a baby had more than one older sibling with autism, the family recurrence rate rose to 36.9%, the study found.
The researchers, led by Sally Ozonoff, PhD, Department of Psychiatry and Behavioral Sciences at University of California Davis Health in Sacramento, analyzed data from 1,605 infants who had an older sibling with ASD using data from the global Baby Siblings Research Consortium.
They calculated that the rate of autism recurrence is seven times higher in families who already have one autistic child than in the general population, which points to the importance of close developmental observance in infants born in families with autistic children, particularly male infants in those families. This study replicated a 2011 study, also led by Dr. Ozonoff, which found a similar rate of familial recurrence.
Differences by Sex and Race
Dr. Ozonoff’s team found that sex and race played a part in likelihood of recurrence. Younger siblings of females with ASD were much more likely to develop the disorder (34.7%) than siblings of boys (22.5%). And male younger siblings were more likely to have ASD than girls (25.3% vs. 13.1%).
Additionally, ASD recurrence in White families was 17.8% while across other races collectively the recurrence rate was 25%.
Links with Maternal Education
Differences by maternal education were also striking. Recurrence was 32.6% when mothers had a high school or less education; 25.5% with some college; 19.7 with a college degree; and 16.9% with a graduate degree. The parental education revealed a significant effect only for mothers (P < .01); paternal education was not significant (P = .09).
Suzanne Rybczynski, MD, chief medical officer at East Tennessee Children’s Hospital in Knoxville, who was not part of the study, praised the study for following babies over time, “doing serial evaluation using two very standard tools in diagnosing autism and developmental delay.”
The babies were evaluated as early as 6 months of age, for up to seven visits. A final assessment was made at 36 months.
Dr. Rybczynski said it was interesting to see that, although ASD prevalence has increased substantially from the 2011 study (0.9%-2.8%), the findings regarding the sibling link have been consistent (18.7% in the 2011 study to 20.2% now).
Eliminating Biases
Dr. Rybczynski noted the current study also used diagnoses only from autism experts, which strengthened the findings, noting the potential for overdiagnosis when interviews are with the parents. “This really eliminates those biases.”
The authors explained the factors driving the need to update recurrence rate studies, including the growth in the prevalence of ASD in the last decade to 1 in 36. That may be caused partly by “greater awareness and identification of autistic females and cognitively able, verbal children.”
Also, new diagnostic criteria have been published, with different diagnostic thresholds since the last study. This study, they noted, had a sample size twice as large and more diverse than the 2011 sample.
The size and the diversity are particularly important, Dr. Rybczynski said, as it helps support more recent findings that ASD is not as heavily centered in White males as previously thought.
“We need to make sure we’re monitoring all children, especially from groups where there’s at least one older sibling or multiple siblings with autism or a sister with autism,” she said. The findings of this study are important not just for pediatricians but for families and all who have professional interactions with children.
Dr. Ozonoff reports travel reimbursements and honoraria from Autism Speaks and the Autism Science Foundation and book royalties from Guilford Press. One coauthor has served as a paid consultant to F. Hoffmann–La Roche and Servier and has received royalties from Sage Publications and Guilford Publications. Another is supported by the Stollery Children’s Hospital Foundation Chair in Autism. One coauthor reported a consulting agreement with EarliTec Diagnostics and book royalties from Wiley. A fourth coauthor has received funding from the Simons Foundation and consults for the Beasley Law Firm and Linus Technology. Dr. Rybczynski reported no relevant financial relationships.
a study published in Pediatrics.
according toWhen a baby had more than one older sibling with autism, the family recurrence rate rose to 36.9%, the study found.
The researchers, led by Sally Ozonoff, PhD, Department of Psychiatry and Behavioral Sciences at University of California Davis Health in Sacramento, analyzed data from 1,605 infants who had an older sibling with ASD using data from the global Baby Siblings Research Consortium.
They calculated that the rate of autism recurrence is seven times higher in families who already have one autistic child than in the general population, which points to the importance of close developmental observance in infants born in families with autistic children, particularly male infants in those families. This study replicated a 2011 study, also led by Dr. Ozonoff, which found a similar rate of familial recurrence.
Differences by Sex and Race
Dr. Ozonoff’s team found that sex and race played a part in likelihood of recurrence. Younger siblings of females with ASD were much more likely to develop the disorder (34.7%) than siblings of boys (22.5%). And male younger siblings were more likely to have ASD than girls (25.3% vs. 13.1%).
Additionally, ASD recurrence in White families was 17.8% while across other races collectively the recurrence rate was 25%.
Links with Maternal Education
Differences by maternal education were also striking. Recurrence was 32.6% when mothers had a high school or less education; 25.5% with some college; 19.7 with a college degree; and 16.9% with a graduate degree. The parental education revealed a significant effect only for mothers (P < .01); paternal education was not significant (P = .09).
Suzanne Rybczynski, MD, chief medical officer at East Tennessee Children’s Hospital in Knoxville, who was not part of the study, praised the study for following babies over time, “doing serial evaluation using two very standard tools in diagnosing autism and developmental delay.”
The babies were evaluated as early as 6 months of age, for up to seven visits. A final assessment was made at 36 months.
Dr. Rybczynski said it was interesting to see that, although ASD prevalence has increased substantially from the 2011 study (0.9%-2.8%), the findings regarding the sibling link have been consistent (18.7% in the 2011 study to 20.2% now).
Eliminating Biases
Dr. Rybczynski noted the current study also used diagnoses only from autism experts, which strengthened the findings, noting the potential for overdiagnosis when interviews are with the parents. “This really eliminates those biases.”
The authors explained the factors driving the need to update recurrence rate studies, including the growth in the prevalence of ASD in the last decade to 1 in 36. That may be caused partly by “greater awareness and identification of autistic females and cognitively able, verbal children.”
Also, new diagnostic criteria have been published, with different diagnostic thresholds since the last study. This study, they noted, had a sample size twice as large and more diverse than the 2011 sample.
The size and the diversity are particularly important, Dr. Rybczynski said, as it helps support more recent findings that ASD is not as heavily centered in White males as previously thought.
“We need to make sure we’re monitoring all children, especially from groups where there’s at least one older sibling or multiple siblings with autism or a sister with autism,” she said. The findings of this study are important not just for pediatricians but for families and all who have professional interactions with children.
Dr. Ozonoff reports travel reimbursements and honoraria from Autism Speaks and the Autism Science Foundation and book royalties from Guilford Press. One coauthor has served as a paid consultant to F. Hoffmann–La Roche and Servier and has received royalties from Sage Publications and Guilford Publications. Another is supported by the Stollery Children’s Hospital Foundation Chair in Autism. One coauthor reported a consulting agreement with EarliTec Diagnostics and book royalties from Wiley. A fourth coauthor has received funding from the Simons Foundation and consults for the Beasley Law Firm and Linus Technology. Dr. Rybczynski reported no relevant financial relationships.
a study published in Pediatrics.
according toWhen a baby had more than one older sibling with autism, the family recurrence rate rose to 36.9%, the study found.
The researchers, led by Sally Ozonoff, PhD, Department of Psychiatry and Behavioral Sciences at University of California Davis Health in Sacramento, analyzed data from 1,605 infants who had an older sibling with ASD using data from the global Baby Siblings Research Consortium.
They calculated that the rate of autism recurrence is seven times higher in families who already have one autistic child than in the general population, which points to the importance of close developmental observance in infants born in families with autistic children, particularly male infants in those families. This study replicated a 2011 study, also led by Dr. Ozonoff, which found a similar rate of familial recurrence.
Differences by Sex and Race
Dr. Ozonoff’s team found that sex and race played a part in likelihood of recurrence. Younger siblings of females with ASD were much more likely to develop the disorder (34.7%) than siblings of boys (22.5%). And male younger siblings were more likely to have ASD than girls (25.3% vs. 13.1%).
Additionally, ASD recurrence in White families was 17.8% while across other races collectively the recurrence rate was 25%.
Links with Maternal Education
Differences by maternal education were also striking. Recurrence was 32.6% when mothers had a high school or less education; 25.5% with some college; 19.7 with a college degree; and 16.9% with a graduate degree. The parental education revealed a significant effect only for mothers (P < .01); paternal education was not significant (P = .09).
Suzanne Rybczynski, MD, chief medical officer at East Tennessee Children’s Hospital in Knoxville, who was not part of the study, praised the study for following babies over time, “doing serial evaluation using two very standard tools in diagnosing autism and developmental delay.”
The babies were evaluated as early as 6 months of age, for up to seven visits. A final assessment was made at 36 months.
Dr. Rybczynski said it was interesting to see that, although ASD prevalence has increased substantially from the 2011 study (0.9%-2.8%), the findings regarding the sibling link have been consistent (18.7% in the 2011 study to 20.2% now).
Eliminating Biases
Dr. Rybczynski noted the current study also used diagnoses only from autism experts, which strengthened the findings, noting the potential for overdiagnosis when interviews are with the parents. “This really eliminates those biases.”
The authors explained the factors driving the need to update recurrence rate studies, including the growth in the prevalence of ASD in the last decade to 1 in 36. That may be caused partly by “greater awareness and identification of autistic females and cognitively able, verbal children.”
Also, new diagnostic criteria have been published, with different diagnostic thresholds since the last study. This study, they noted, had a sample size twice as large and more diverse than the 2011 sample.
The size and the diversity are particularly important, Dr. Rybczynski said, as it helps support more recent findings that ASD is not as heavily centered in White males as previously thought.
“We need to make sure we’re monitoring all children, especially from groups where there’s at least one older sibling or multiple siblings with autism or a sister with autism,” she said. The findings of this study are important not just for pediatricians but for families and all who have professional interactions with children.
Dr. Ozonoff reports travel reimbursements and honoraria from Autism Speaks and the Autism Science Foundation and book royalties from Guilford Press. One coauthor has served as a paid consultant to F. Hoffmann–La Roche and Servier and has received royalties from Sage Publications and Guilford Publications. Another is supported by the Stollery Children’s Hospital Foundation Chair in Autism. One coauthor reported a consulting agreement with EarliTec Diagnostics and book royalties from Wiley. A fourth coauthor has received funding from the Simons Foundation and consults for the Beasley Law Firm and Linus Technology. Dr. Rybczynski reported no relevant financial relationships.
FROM PEDIATRICS
Guidance on How Best to Manage Opioid Risks in Older Adults
Polypharmacy and slow metabolism of drugs create a high risk among older adults for substance use disorder, raising the odds of intentional and unintentional overdoses. However, screening, assessment, and treatment for substance use disorder occurs less often in younger adults.
Rates of overdose from opioids increased the most among people aged 65 years and older from 2021 to 2022, compared with among younger age groups. Meanwhile, recent data show less than half older adults with opioid use disorder (OUD) receive care for the condition.
“Nobody is immune to developing some kind of use disorder, so don’t just assume that because someone’s 80 years old that there’s no way that they have a problem,” said Sara Meyer, PharmD, a medication safety pharmacist at Novant Health in Winston-Salem, North Carolina. “You never know who’s going to potentially have an issue.”
in an effort to reduce addiction and overdoses.
Older Adults Have Unique Needs
A major challenge of treating older adults is their high incidence of chronic pain and multiple complex chronic conditions. As a result, some of the nonopioid medications clinicians might otherwise prescribe, like nonsteroidal anti-inflammatory drugs, cannot be used, according to Caroline Goldzweig, MD, chief medical officer of the Cedars-Sinai Medical Network in Los Angeles, California.
“Before you know it, the only thing left is an opiate, so you can sometimes be between a rock and a hard place,” she said.
But for adults older than 65 years, opioids can carry problematic side effects, including sedation, cognitive impairment, falls, and fractures.
With those factors in mind, part of a yearly checkup or wellness visit should include time to discuss how a patient is managing their chronic pain, according to Timothy Anderson, MD, an assistant professor of medicine at the University of Pittsburgh, Pittsburgh, Pennsylvania, and codirector of the Prescribing Wisely Lab, a research collaboration between that institution and Beth Israel Deaconess Medical Center in Boston.
When considering a prescription for pain medication, Dr. Anderson said he evaluates the potential worst, best, and average outcomes for a patient. Nonopioid options should always be considered first-line treatment. Patients and physicians often struggle with balancing an option that meets a patient’s goals for pain relief but does not put them at a risk for adverse outcomes, he said.
Greater Risk
Older adults experience neurophysiologic effects different from younger people, said Benjamin Han, MD, a geriatrician and addiction medicine specialist at the University of California, San Diego.
Seniors also absorb, metabolize, and excrete drugs differently, sometimes affected by decreased production of gastric acid, lean body mass, and renal function. Coupled with complications of other chronic conditions or medications, diagnosing problematic opioid use or OUD can be one of the most challenging experiences in geriatrics, Dr. Han said.
As a result, OUD is often underdiagnosed in these patients, he said. Single-item screening tools like the TAPS and OWLS can be used to assess if the benefits of an opioid outweigh a patient’s risk for addiction.
Dr. Han finds medications like buprenorphine to be relatively safe and effective, along with nonpharmacologic interventions like physical therapy. He also advised clinicians to provide patients with opioid-overdose reversal agents.
“Naloxone is only used for reversing opioid withdrawal, but it is important to ensure that any patient at risk for an overdose, including being on chronic opioids, is provided naloxone and educated on preventing opioid overdoses,” he said.
Steroid injections and medications that target specific pathways, such as neuropathic pain, can be helpful in primary care for these older patients, according to Pooja Lagisetty, MD, an internal medicine physician at Michigan Medicine and a research scientist at VA Ann Arbor Health Care, Ann Arbor, Michigan.
She often recommends to her patients online programs that help them maintain strength and mobility, as well as low-impact exercises like tai chi, for pain management.
“This will ensure a much more balanced, patient-centered conversation with whatever decisions you and your patient come to,” Dr. Lagisetty said.
New Protocols for Pain Management in Older Adults
At the health system level, clinicians can use treatment agreements for patients taking opioids. At Novant, patients must attest they agree to take the medications only as prescribed and from a specified pharmacy. They promise not to seek opioids from other sources, to submit to random drug screenings, and to communicate regularly with their clinician about any health issues.
If a patient violates any part of this agreement, their clinician can stop the treatment. The system encourages clinicians to help patients find additional care for substance abuse disorder or pain management if it occurs.
Over the past 2 years, Novant also developed an AI prediction model, which generates a score for the risk a patient has in developing substance use disorder or experiencing an overdose within a year of initial opioid prescription. The model was validated by an internal team at the system but has not been independently certified.
If a patient has a high-risk score, their clinician considers additional risk mitigation strategies, such as seeing the patient more frequently or using an abuse deterrent formulation of an opioid. They also have the option of referring the patient to specialists in addiction medicine or neurology. Opioids are not necessarily withheld, according to Dr. Meyer. The tool is now used by clinicians during Medicare annual wellness visits.
And coming later this year are new protocols for pain management in patients aged 80 years and older. Clinicians will target a 50% dose reduction, compared with what a younger patient might receive to account for physiologic differences.
“We know that especially with some opioids like morphine, they’re not going to metabolize that the same way a young person with a young kidney will, so we’re trying to set the clinician up to select a lower starting dose for patients that are older,” Dr. Meyer said.
In 2017, the system implemented a program to reduce prescription of opioids to less than 350 morphine milligram equivalents (MME) per order following any kind of surgery. The health system compared numbers of prescriptions written among surgical colleagues and met with them to discuss alternative approaches. Novant said it continues to monitor the data and follow-up with surgeons who are not in alignment with the goal.
Between 2017 and 2019, patients switching to lower doses after surgeries rose by 20%.
Across the country at Cedars-Sinai Medical Network, leadership in 2016 made the move to deprescribe opioids or lower doses of the drugs to less than 90 MME per day, in accordance with Centers for Disease Control and Prevention guidelines established that year. Patients were referred to their pain program for support and for nonopioid interventions. Pharmacists worked closely with clinicians on safely tapering these medications in patients taking high doses.
The program worked, according to Dr. Goldzweig. Dr. Goldzweig could only find two patients currently taking high-dose opioids in the system’s database out of more than 7000 patients with Medicare Advantage insurance coverage.
“There will always be some patients who have no alternative than opioids, but we established some discipline with urine tox screens and pain agreements, and over time, we’ve been able to reduce the number of high-risk opioid prescriptions,” she said.
A version of this article first appeared on Medscape.com.
Polypharmacy and slow metabolism of drugs create a high risk among older adults for substance use disorder, raising the odds of intentional and unintentional overdoses. However, screening, assessment, and treatment for substance use disorder occurs less often in younger adults.
Rates of overdose from opioids increased the most among people aged 65 years and older from 2021 to 2022, compared with among younger age groups. Meanwhile, recent data show less than half older adults with opioid use disorder (OUD) receive care for the condition.
“Nobody is immune to developing some kind of use disorder, so don’t just assume that because someone’s 80 years old that there’s no way that they have a problem,” said Sara Meyer, PharmD, a medication safety pharmacist at Novant Health in Winston-Salem, North Carolina. “You never know who’s going to potentially have an issue.”
in an effort to reduce addiction and overdoses.
Older Adults Have Unique Needs
A major challenge of treating older adults is their high incidence of chronic pain and multiple complex chronic conditions. As a result, some of the nonopioid medications clinicians might otherwise prescribe, like nonsteroidal anti-inflammatory drugs, cannot be used, according to Caroline Goldzweig, MD, chief medical officer of the Cedars-Sinai Medical Network in Los Angeles, California.
“Before you know it, the only thing left is an opiate, so you can sometimes be between a rock and a hard place,” she said.
But for adults older than 65 years, opioids can carry problematic side effects, including sedation, cognitive impairment, falls, and fractures.
With those factors in mind, part of a yearly checkup or wellness visit should include time to discuss how a patient is managing their chronic pain, according to Timothy Anderson, MD, an assistant professor of medicine at the University of Pittsburgh, Pittsburgh, Pennsylvania, and codirector of the Prescribing Wisely Lab, a research collaboration between that institution and Beth Israel Deaconess Medical Center in Boston.
When considering a prescription for pain medication, Dr. Anderson said he evaluates the potential worst, best, and average outcomes for a patient. Nonopioid options should always be considered first-line treatment. Patients and physicians often struggle with balancing an option that meets a patient’s goals for pain relief but does not put them at a risk for adverse outcomes, he said.
Greater Risk
Older adults experience neurophysiologic effects different from younger people, said Benjamin Han, MD, a geriatrician and addiction medicine specialist at the University of California, San Diego.
Seniors also absorb, metabolize, and excrete drugs differently, sometimes affected by decreased production of gastric acid, lean body mass, and renal function. Coupled with complications of other chronic conditions or medications, diagnosing problematic opioid use or OUD can be one of the most challenging experiences in geriatrics, Dr. Han said.
As a result, OUD is often underdiagnosed in these patients, he said. Single-item screening tools like the TAPS and OWLS can be used to assess if the benefits of an opioid outweigh a patient’s risk for addiction.
Dr. Han finds medications like buprenorphine to be relatively safe and effective, along with nonpharmacologic interventions like physical therapy. He also advised clinicians to provide patients with opioid-overdose reversal agents.
“Naloxone is only used for reversing opioid withdrawal, but it is important to ensure that any patient at risk for an overdose, including being on chronic opioids, is provided naloxone and educated on preventing opioid overdoses,” he said.
Steroid injections and medications that target specific pathways, such as neuropathic pain, can be helpful in primary care for these older patients, according to Pooja Lagisetty, MD, an internal medicine physician at Michigan Medicine and a research scientist at VA Ann Arbor Health Care, Ann Arbor, Michigan.
She often recommends to her patients online programs that help them maintain strength and mobility, as well as low-impact exercises like tai chi, for pain management.
“This will ensure a much more balanced, patient-centered conversation with whatever decisions you and your patient come to,” Dr. Lagisetty said.
New Protocols for Pain Management in Older Adults
At the health system level, clinicians can use treatment agreements for patients taking opioids. At Novant, patients must attest they agree to take the medications only as prescribed and from a specified pharmacy. They promise not to seek opioids from other sources, to submit to random drug screenings, and to communicate regularly with their clinician about any health issues.
If a patient violates any part of this agreement, their clinician can stop the treatment. The system encourages clinicians to help patients find additional care for substance abuse disorder or pain management if it occurs.
Over the past 2 years, Novant also developed an AI prediction model, which generates a score for the risk a patient has in developing substance use disorder or experiencing an overdose within a year of initial opioid prescription. The model was validated by an internal team at the system but has not been independently certified.
If a patient has a high-risk score, their clinician considers additional risk mitigation strategies, such as seeing the patient more frequently or using an abuse deterrent formulation of an opioid. They also have the option of referring the patient to specialists in addiction medicine or neurology. Opioids are not necessarily withheld, according to Dr. Meyer. The tool is now used by clinicians during Medicare annual wellness visits.
And coming later this year are new protocols for pain management in patients aged 80 years and older. Clinicians will target a 50% dose reduction, compared with what a younger patient might receive to account for physiologic differences.
“We know that especially with some opioids like morphine, they’re not going to metabolize that the same way a young person with a young kidney will, so we’re trying to set the clinician up to select a lower starting dose for patients that are older,” Dr. Meyer said.
In 2017, the system implemented a program to reduce prescription of opioids to less than 350 morphine milligram equivalents (MME) per order following any kind of surgery. The health system compared numbers of prescriptions written among surgical colleagues and met with them to discuss alternative approaches. Novant said it continues to monitor the data and follow-up with surgeons who are not in alignment with the goal.
Between 2017 and 2019, patients switching to lower doses after surgeries rose by 20%.
Across the country at Cedars-Sinai Medical Network, leadership in 2016 made the move to deprescribe opioids or lower doses of the drugs to less than 90 MME per day, in accordance with Centers for Disease Control and Prevention guidelines established that year. Patients were referred to their pain program for support and for nonopioid interventions. Pharmacists worked closely with clinicians on safely tapering these medications in patients taking high doses.
The program worked, according to Dr. Goldzweig. Dr. Goldzweig could only find two patients currently taking high-dose opioids in the system’s database out of more than 7000 patients with Medicare Advantage insurance coverage.
“There will always be some patients who have no alternative than opioids, but we established some discipline with urine tox screens and pain agreements, and over time, we’ve been able to reduce the number of high-risk opioid prescriptions,” she said.
A version of this article first appeared on Medscape.com.
Polypharmacy and slow metabolism of drugs create a high risk among older adults for substance use disorder, raising the odds of intentional and unintentional overdoses. However, screening, assessment, and treatment for substance use disorder occurs less often in younger adults.
Rates of overdose from opioids increased the most among people aged 65 years and older from 2021 to 2022, compared with among younger age groups. Meanwhile, recent data show less than half older adults with opioid use disorder (OUD) receive care for the condition.
“Nobody is immune to developing some kind of use disorder, so don’t just assume that because someone’s 80 years old that there’s no way that they have a problem,” said Sara Meyer, PharmD, a medication safety pharmacist at Novant Health in Winston-Salem, North Carolina. “You never know who’s going to potentially have an issue.”
in an effort to reduce addiction and overdoses.
Older Adults Have Unique Needs
A major challenge of treating older adults is their high incidence of chronic pain and multiple complex chronic conditions. As a result, some of the nonopioid medications clinicians might otherwise prescribe, like nonsteroidal anti-inflammatory drugs, cannot be used, according to Caroline Goldzweig, MD, chief medical officer of the Cedars-Sinai Medical Network in Los Angeles, California.
“Before you know it, the only thing left is an opiate, so you can sometimes be between a rock and a hard place,” she said.
But for adults older than 65 years, opioids can carry problematic side effects, including sedation, cognitive impairment, falls, and fractures.
With those factors in mind, part of a yearly checkup or wellness visit should include time to discuss how a patient is managing their chronic pain, according to Timothy Anderson, MD, an assistant professor of medicine at the University of Pittsburgh, Pittsburgh, Pennsylvania, and codirector of the Prescribing Wisely Lab, a research collaboration between that institution and Beth Israel Deaconess Medical Center in Boston.
When considering a prescription for pain medication, Dr. Anderson said he evaluates the potential worst, best, and average outcomes for a patient. Nonopioid options should always be considered first-line treatment. Patients and physicians often struggle with balancing an option that meets a patient’s goals for pain relief but does not put them at a risk for adverse outcomes, he said.
Greater Risk
Older adults experience neurophysiologic effects different from younger people, said Benjamin Han, MD, a geriatrician and addiction medicine specialist at the University of California, San Diego.
Seniors also absorb, metabolize, and excrete drugs differently, sometimes affected by decreased production of gastric acid, lean body mass, and renal function. Coupled with complications of other chronic conditions or medications, diagnosing problematic opioid use or OUD can be one of the most challenging experiences in geriatrics, Dr. Han said.
As a result, OUD is often underdiagnosed in these patients, he said. Single-item screening tools like the TAPS and OWLS can be used to assess if the benefits of an opioid outweigh a patient’s risk for addiction.
Dr. Han finds medications like buprenorphine to be relatively safe and effective, along with nonpharmacologic interventions like physical therapy. He also advised clinicians to provide patients with opioid-overdose reversal agents.
“Naloxone is only used for reversing opioid withdrawal, but it is important to ensure that any patient at risk for an overdose, including being on chronic opioids, is provided naloxone and educated on preventing opioid overdoses,” he said.
Steroid injections and medications that target specific pathways, such as neuropathic pain, can be helpful in primary care for these older patients, according to Pooja Lagisetty, MD, an internal medicine physician at Michigan Medicine and a research scientist at VA Ann Arbor Health Care, Ann Arbor, Michigan.
She often recommends to her patients online programs that help them maintain strength and mobility, as well as low-impact exercises like tai chi, for pain management.
“This will ensure a much more balanced, patient-centered conversation with whatever decisions you and your patient come to,” Dr. Lagisetty said.
New Protocols for Pain Management in Older Adults
At the health system level, clinicians can use treatment agreements for patients taking opioids. At Novant, patients must attest they agree to take the medications only as prescribed and from a specified pharmacy. They promise not to seek opioids from other sources, to submit to random drug screenings, and to communicate regularly with their clinician about any health issues.
If a patient violates any part of this agreement, their clinician can stop the treatment. The system encourages clinicians to help patients find additional care for substance abuse disorder or pain management if it occurs.
Over the past 2 years, Novant also developed an AI prediction model, which generates a score for the risk a patient has in developing substance use disorder or experiencing an overdose within a year of initial opioid prescription. The model was validated by an internal team at the system but has not been independently certified.
If a patient has a high-risk score, their clinician considers additional risk mitigation strategies, such as seeing the patient more frequently or using an abuse deterrent formulation of an opioid. They also have the option of referring the patient to specialists in addiction medicine or neurology. Opioids are not necessarily withheld, according to Dr. Meyer. The tool is now used by clinicians during Medicare annual wellness visits.
And coming later this year are new protocols for pain management in patients aged 80 years and older. Clinicians will target a 50% dose reduction, compared with what a younger patient might receive to account for physiologic differences.
“We know that especially with some opioids like morphine, they’re not going to metabolize that the same way a young person with a young kidney will, so we’re trying to set the clinician up to select a lower starting dose for patients that are older,” Dr. Meyer said.
In 2017, the system implemented a program to reduce prescription of opioids to less than 350 morphine milligram equivalents (MME) per order following any kind of surgery. The health system compared numbers of prescriptions written among surgical colleagues and met with them to discuss alternative approaches. Novant said it continues to monitor the data and follow-up with surgeons who are not in alignment with the goal.
Between 2017 and 2019, patients switching to lower doses after surgeries rose by 20%.
Across the country at Cedars-Sinai Medical Network, leadership in 2016 made the move to deprescribe opioids or lower doses of the drugs to less than 90 MME per day, in accordance with Centers for Disease Control and Prevention guidelines established that year. Patients were referred to their pain program for support and for nonopioid interventions. Pharmacists worked closely with clinicians on safely tapering these medications in patients taking high doses.
The program worked, according to Dr. Goldzweig. Dr. Goldzweig could only find two patients currently taking high-dose opioids in the system’s database out of more than 7000 patients with Medicare Advantage insurance coverage.
“There will always be some patients who have no alternative than opioids, but we established some discipline with urine tox screens and pain agreements, and over time, we’ve been able to reduce the number of high-risk opioid prescriptions,” she said.
A version of this article first appeared on Medscape.com.
School Avoidance
The start of the school year is a time that is always full of anticipation and even anxiety. Who will my teachers be? Will I be in classes with friends? Have some of my friends changed over the summer? Will the work be too hard? For some children this anxiety will be so intense that they will resist going back to school. School avoidance is very important to identify and address quickly, as it can intensify and threaten development. Each day of school missed due to accommodating to a child’s anxiety makes a return to school more difficult and less likely. Days can easily become weeks and even months of missed school. A child who misses a substantial amount of school is inevitably going to face developmental delays: academic, social, behavioral and emotional. The pediatrician is often brought into these situations early, as when a child complains of vague physical symptoms that are keeping him or her from school or when a previously calm child becomes inconsolable about going to school in the mornings. With a thoughtful assessment of the potential causes of school avoidance, you can help almost all children return to school successfully.
School Refusal
Sustained school avoidance is now called “school refusal,” a term coined in the late 1990s to describe a school attendance problem driven by emotional distress, as opposed to truancy. It affects up to 15% of children (depending on the operational definition) and seems to peak in the earliest years of elementary school and again in early high school. These are not occasional absences, but missing over 80% of classroom time in a 2-week period. It is also marked by the presence of an anxiety disorder and the absence of conduct disorder. Often in such cases the parents are aware of their child’s whereabouts and motivated to return them to school. Youth with school refusal experience social and academic consequences in the short term and, over the long term, have shown problems with social, family, and professional performance, along with higher rates of major depressive disorder than is seen in the general population. Early identification of these children can make addressing the underlying distress and return to school much easier than attempts to treat after weeks or months out of school.
Identifying the Problem
With younger children, school avoidance is most commonly associated with an anxious temperament or an underlying anxiety disorder, such as separation anxiety disorder or social phobia. A family history of anxiety may contribute or impact a parent’s approach to the issue. Children often present with vague somatic concerns that are genuine symptoms of anxiety (upset stomach, headache). A screening instrument such as the Screen for Child Anxiety Related Disorders (SCARED) can be helpful, but so is inquiring about sleep and other anxiety symptoms. Do the symptoms remit on weekends or in after-school hours? Are there other environmental factors that may be stressing younger children: Are they being teased or bullied at school? Are they struggling to find friends in a new classroom? Might they be having trouble with reading or other new tasks? Perhaps they are afraid of walking to school alone. Has there been a recent change or stress at home, such as a move or parental illness? Younger children may feel more anxious about separating from parents in the face of stress. But when parents accommodate a child’s wish to avoid school, the child’s anxiety, briefly relieved, grows more persistent, gets rewarded by parental attention, and reinforces their reluctance to try new things.
Adolescents may be facing more complex challenges that lead to school avoidance. They may have an undiagnosed anxiety or mood disorder, perhaps complicated by substance abuse that is presenting as an inability to perform at school or to manage the challenge of keeping up with higher workloads. They may be facing complex situations with friends, bullying, or rejection. Those adolescents who are prone to procrastination may avoid school to manage their workload and their distress, which can then become tangled up with symptoms of anxiety and dysphoria. Missing school compounds this problem rather than solving it. Adolescents outside of the structure of school, hungry for socializing and new experiences, often turn to social media for entertainment. Days without exercise and nights without adequate sleep can make mood, attention, and anxiety symptoms worse while overdue work grows. Parents often fear that setting limits or “pushing” their stuck and miserable child may make them more depressed or even suicidal.
Accommodating the Problem Will Likely Make It Worse
It is worth noting that children with a genuine medical illness can also experience school avoidance. Temperamentally anxious children who stay home for several days with a febrile illness may find it overwhelming to return to school as they have become so comfortable at home. Adolescents may have fallen behind with work and find themselves unable to set a schedule and return to more structure. Youth who are managing a known mood or anxiety disorder often have low motivation or high anxiety and want to wait to feel entirely better before returning to school. Youth with a chronic condition such as severe allergies or a sustained viral infection may be anxious about managing symptoms at school. Their parents may have kept them home to be safe or until they feel better, unwittingly making the school avoidance worse.
Formulating a Management Plan
When you suspect school avoidance is present, the critical first step is to engage the parents alongside their child. Without their understanding of the nature of this behavior, it will continue. Start by acknowledging the real physical and emotional symptoms their child is experiencing; it is important that parents and patients not feel that they are being told this is “just” a psychological problem. Children rarely feign illness or manipulate; they genuinely feel bad enough to stay home. It is important that they understand this is a common problem that will get worse unless it is addressed directly. If you believe they are suffering from a mood or anxiety disorder, talk about treatment options and consider getting started with treatment while finding a therapist to participate in their care. Help everyone listen to the child or teenager to understand any realistic basis for anxiety and attempt to address it (e.g. address bullying, provide a tutor, support a parent dependent on the child, etc.)
You can partner with parents and the school to provide the child with structure and support to make the return to school manageable. Frame the challenge of “demagnetizing” home and “remagnetizing” school. When they are at home, there should be no screen time except to catch up or keep up with homework. The child should not be in bed all day unless he or she has a fever. There needs to be close attention paid to maintaining a regular routine, with bedtime and wake time, meals with family, and regular exercise. This may mean turning off the Wi-Fi while a child is at home and parents are at work and providing them with books.
Work with the school to make getting into school and staying there as easy as possible. If a child has very high distress or has been out of school for a long time, he or she may need to return gradually; perhaps aim for the child to spend an hour at school for the first few days and then gradually work up to half and full days. Younger children may benefit from having a “buddy” who meets them outside and enters school with them. This can help avoid intense emotional scenes with parents that heighten distress and lead to accommodation. The child can identify a preferred teacher (or librarian, coach, or school nurse). When they feel overwhelmed, they can have a “break” with that teacher to avoid leaving school altogether. If they enjoy sports, music, or art, emphasize these classes or practices as part of their return to school.
Remind parents and your patients that it is not a matter of making the distress better first and then returning to school. They can be in treatment for an illness and manage returning to school at the same time. Indeed, the distress around school will only get better by getting back to school. This is hard! Ask about previous challenges they have managed or mastered and remind them that this is no different. Providing parents with knowledge and support will help them to be validating of their children without accommodating their wish to avoid discomfort. This support of your patient and the parents is the first step in helping them manage a difficult period and stay on their healthiest developmental trajectory.
Dr. Swick is physician in chief at Ohana, Center for Child and Adolescent Behavioral Health, Community Hospital of the Monterey (Calif.) Peninsula. Dr. Jellinek is professor emeritus of psychiatry and pediatrics, Harvard Medical School, Boston. Email them at [email protected].
The start of the school year is a time that is always full of anticipation and even anxiety. Who will my teachers be? Will I be in classes with friends? Have some of my friends changed over the summer? Will the work be too hard? For some children this anxiety will be so intense that they will resist going back to school. School avoidance is very important to identify and address quickly, as it can intensify and threaten development. Each day of school missed due to accommodating to a child’s anxiety makes a return to school more difficult and less likely. Days can easily become weeks and even months of missed school. A child who misses a substantial amount of school is inevitably going to face developmental delays: academic, social, behavioral and emotional. The pediatrician is often brought into these situations early, as when a child complains of vague physical symptoms that are keeping him or her from school or when a previously calm child becomes inconsolable about going to school in the mornings. With a thoughtful assessment of the potential causes of school avoidance, you can help almost all children return to school successfully.
School Refusal
Sustained school avoidance is now called “school refusal,” a term coined in the late 1990s to describe a school attendance problem driven by emotional distress, as opposed to truancy. It affects up to 15% of children (depending on the operational definition) and seems to peak in the earliest years of elementary school and again in early high school. These are not occasional absences, but missing over 80% of classroom time in a 2-week period. It is also marked by the presence of an anxiety disorder and the absence of conduct disorder. Often in such cases the parents are aware of their child’s whereabouts and motivated to return them to school. Youth with school refusal experience social and academic consequences in the short term and, over the long term, have shown problems with social, family, and professional performance, along with higher rates of major depressive disorder than is seen in the general population. Early identification of these children can make addressing the underlying distress and return to school much easier than attempts to treat after weeks or months out of school.
Identifying the Problem
With younger children, school avoidance is most commonly associated with an anxious temperament or an underlying anxiety disorder, such as separation anxiety disorder or social phobia. A family history of anxiety may contribute or impact a parent’s approach to the issue. Children often present with vague somatic concerns that are genuine symptoms of anxiety (upset stomach, headache). A screening instrument such as the Screen for Child Anxiety Related Disorders (SCARED) can be helpful, but so is inquiring about sleep and other anxiety symptoms. Do the symptoms remit on weekends or in after-school hours? Are there other environmental factors that may be stressing younger children: Are they being teased or bullied at school? Are they struggling to find friends in a new classroom? Might they be having trouble with reading or other new tasks? Perhaps they are afraid of walking to school alone. Has there been a recent change or stress at home, such as a move or parental illness? Younger children may feel more anxious about separating from parents in the face of stress. But when parents accommodate a child’s wish to avoid school, the child’s anxiety, briefly relieved, grows more persistent, gets rewarded by parental attention, and reinforces their reluctance to try new things.
Adolescents may be facing more complex challenges that lead to school avoidance. They may have an undiagnosed anxiety or mood disorder, perhaps complicated by substance abuse that is presenting as an inability to perform at school or to manage the challenge of keeping up with higher workloads. They may be facing complex situations with friends, bullying, or rejection. Those adolescents who are prone to procrastination may avoid school to manage their workload and their distress, which can then become tangled up with symptoms of anxiety and dysphoria. Missing school compounds this problem rather than solving it. Adolescents outside of the structure of school, hungry for socializing and new experiences, often turn to social media for entertainment. Days without exercise and nights without adequate sleep can make mood, attention, and anxiety symptoms worse while overdue work grows. Parents often fear that setting limits or “pushing” their stuck and miserable child may make them more depressed or even suicidal.
Accommodating the Problem Will Likely Make It Worse
It is worth noting that children with a genuine medical illness can also experience school avoidance. Temperamentally anxious children who stay home for several days with a febrile illness may find it overwhelming to return to school as they have become so comfortable at home. Adolescents may have fallen behind with work and find themselves unable to set a schedule and return to more structure. Youth who are managing a known mood or anxiety disorder often have low motivation or high anxiety and want to wait to feel entirely better before returning to school. Youth with a chronic condition such as severe allergies or a sustained viral infection may be anxious about managing symptoms at school. Their parents may have kept them home to be safe or until they feel better, unwittingly making the school avoidance worse.
Formulating a Management Plan
When you suspect school avoidance is present, the critical first step is to engage the parents alongside their child. Without their understanding of the nature of this behavior, it will continue. Start by acknowledging the real physical and emotional symptoms their child is experiencing; it is important that parents and patients not feel that they are being told this is “just” a psychological problem. Children rarely feign illness or manipulate; they genuinely feel bad enough to stay home. It is important that they understand this is a common problem that will get worse unless it is addressed directly. If you believe they are suffering from a mood or anxiety disorder, talk about treatment options and consider getting started with treatment while finding a therapist to participate in their care. Help everyone listen to the child or teenager to understand any realistic basis for anxiety and attempt to address it (e.g. address bullying, provide a tutor, support a parent dependent on the child, etc.)
You can partner with parents and the school to provide the child with structure and support to make the return to school manageable. Frame the challenge of “demagnetizing” home and “remagnetizing” school. When they are at home, there should be no screen time except to catch up or keep up with homework. The child should not be in bed all day unless he or she has a fever. There needs to be close attention paid to maintaining a regular routine, with bedtime and wake time, meals with family, and regular exercise. This may mean turning off the Wi-Fi while a child is at home and parents are at work and providing them with books.
Work with the school to make getting into school and staying there as easy as possible. If a child has very high distress or has been out of school for a long time, he or she may need to return gradually; perhaps aim for the child to spend an hour at school for the first few days and then gradually work up to half and full days. Younger children may benefit from having a “buddy” who meets them outside and enters school with them. This can help avoid intense emotional scenes with parents that heighten distress and lead to accommodation. The child can identify a preferred teacher (or librarian, coach, or school nurse). When they feel overwhelmed, they can have a “break” with that teacher to avoid leaving school altogether. If they enjoy sports, music, or art, emphasize these classes or practices as part of their return to school.
Remind parents and your patients that it is not a matter of making the distress better first and then returning to school. They can be in treatment for an illness and manage returning to school at the same time. Indeed, the distress around school will only get better by getting back to school. This is hard! Ask about previous challenges they have managed or mastered and remind them that this is no different. Providing parents with knowledge and support will help them to be validating of their children without accommodating their wish to avoid discomfort. This support of your patient and the parents is the first step in helping them manage a difficult period and stay on their healthiest developmental trajectory.
Dr. Swick is physician in chief at Ohana, Center for Child and Adolescent Behavioral Health, Community Hospital of the Monterey (Calif.) Peninsula. Dr. Jellinek is professor emeritus of psychiatry and pediatrics, Harvard Medical School, Boston. Email them at [email protected].
The start of the school year is a time that is always full of anticipation and even anxiety. Who will my teachers be? Will I be in classes with friends? Have some of my friends changed over the summer? Will the work be too hard? For some children this anxiety will be so intense that they will resist going back to school. School avoidance is very important to identify and address quickly, as it can intensify and threaten development. Each day of school missed due to accommodating to a child’s anxiety makes a return to school more difficult and less likely. Days can easily become weeks and even months of missed school. A child who misses a substantial amount of school is inevitably going to face developmental delays: academic, social, behavioral and emotional. The pediatrician is often brought into these situations early, as when a child complains of vague physical symptoms that are keeping him or her from school or when a previously calm child becomes inconsolable about going to school in the mornings. With a thoughtful assessment of the potential causes of school avoidance, you can help almost all children return to school successfully.
School Refusal
Sustained school avoidance is now called “school refusal,” a term coined in the late 1990s to describe a school attendance problem driven by emotional distress, as opposed to truancy. It affects up to 15% of children (depending on the operational definition) and seems to peak in the earliest years of elementary school and again in early high school. These are not occasional absences, but missing over 80% of classroom time in a 2-week period. It is also marked by the presence of an anxiety disorder and the absence of conduct disorder. Often in such cases the parents are aware of their child’s whereabouts and motivated to return them to school. Youth with school refusal experience social and academic consequences in the short term and, over the long term, have shown problems with social, family, and professional performance, along with higher rates of major depressive disorder than is seen in the general population. Early identification of these children can make addressing the underlying distress and return to school much easier than attempts to treat after weeks or months out of school.
Identifying the Problem
With younger children, school avoidance is most commonly associated with an anxious temperament or an underlying anxiety disorder, such as separation anxiety disorder or social phobia. A family history of anxiety may contribute or impact a parent’s approach to the issue. Children often present with vague somatic concerns that are genuine symptoms of anxiety (upset stomach, headache). A screening instrument such as the Screen for Child Anxiety Related Disorders (SCARED) can be helpful, but so is inquiring about sleep and other anxiety symptoms. Do the symptoms remit on weekends or in after-school hours? Are there other environmental factors that may be stressing younger children: Are they being teased or bullied at school? Are they struggling to find friends in a new classroom? Might they be having trouble with reading or other new tasks? Perhaps they are afraid of walking to school alone. Has there been a recent change or stress at home, such as a move or parental illness? Younger children may feel more anxious about separating from parents in the face of stress. But when parents accommodate a child’s wish to avoid school, the child’s anxiety, briefly relieved, grows more persistent, gets rewarded by parental attention, and reinforces their reluctance to try new things.
Adolescents may be facing more complex challenges that lead to school avoidance. They may have an undiagnosed anxiety or mood disorder, perhaps complicated by substance abuse that is presenting as an inability to perform at school or to manage the challenge of keeping up with higher workloads. They may be facing complex situations with friends, bullying, or rejection. Those adolescents who are prone to procrastination may avoid school to manage their workload and their distress, which can then become tangled up with symptoms of anxiety and dysphoria. Missing school compounds this problem rather than solving it. Adolescents outside of the structure of school, hungry for socializing and new experiences, often turn to social media for entertainment. Days without exercise and nights without adequate sleep can make mood, attention, and anxiety symptoms worse while overdue work grows. Parents often fear that setting limits or “pushing” their stuck and miserable child may make them more depressed or even suicidal.
Accommodating the Problem Will Likely Make It Worse
It is worth noting that children with a genuine medical illness can also experience school avoidance. Temperamentally anxious children who stay home for several days with a febrile illness may find it overwhelming to return to school as they have become so comfortable at home. Adolescents may have fallen behind with work and find themselves unable to set a schedule and return to more structure. Youth who are managing a known mood or anxiety disorder often have low motivation or high anxiety and want to wait to feel entirely better before returning to school. Youth with a chronic condition such as severe allergies or a sustained viral infection may be anxious about managing symptoms at school. Their parents may have kept them home to be safe or until they feel better, unwittingly making the school avoidance worse.
Formulating a Management Plan
When you suspect school avoidance is present, the critical first step is to engage the parents alongside their child. Without their understanding of the nature of this behavior, it will continue. Start by acknowledging the real physical and emotional symptoms their child is experiencing; it is important that parents and patients not feel that they are being told this is “just” a psychological problem. Children rarely feign illness or manipulate; they genuinely feel bad enough to stay home. It is important that they understand this is a common problem that will get worse unless it is addressed directly. If you believe they are suffering from a mood or anxiety disorder, talk about treatment options and consider getting started with treatment while finding a therapist to participate in their care. Help everyone listen to the child or teenager to understand any realistic basis for anxiety and attempt to address it (e.g. address bullying, provide a tutor, support a parent dependent on the child, etc.)
You can partner with parents and the school to provide the child with structure and support to make the return to school manageable. Frame the challenge of “demagnetizing” home and “remagnetizing” school. When they are at home, there should be no screen time except to catch up or keep up with homework. The child should not be in bed all day unless he or she has a fever. There needs to be close attention paid to maintaining a regular routine, with bedtime and wake time, meals with family, and regular exercise. This may mean turning off the Wi-Fi while a child is at home and parents are at work and providing them with books.
Work with the school to make getting into school and staying there as easy as possible. If a child has very high distress or has been out of school for a long time, he or she may need to return gradually; perhaps aim for the child to spend an hour at school for the first few days and then gradually work up to half and full days. Younger children may benefit from having a “buddy” who meets them outside and enters school with them. This can help avoid intense emotional scenes with parents that heighten distress and lead to accommodation. The child can identify a preferred teacher (or librarian, coach, or school nurse). When they feel overwhelmed, they can have a “break” with that teacher to avoid leaving school altogether. If they enjoy sports, music, or art, emphasize these classes or practices as part of their return to school.
Remind parents and your patients that it is not a matter of making the distress better first and then returning to school. They can be in treatment for an illness and manage returning to school at the same time. Indeed, the distress around school will only get better by getting back to school. This is hard! Ask about previous challenges they have managed or mastered and remind them that this is no different. Providing parents with knowledge and support will help them to be validating of their children without accommodating their wish to avoid discomfort. This support of your patient and the parents is the first step in helping them manage a difficult period and stay on their healthiest developmental trajectory.
Dr. Swick is physician in chief at Ohana, Center for Child and Adolescent Behavioral Health, Community Hospital of the Monterey (Calif.) Peninsula. Dr. Jellinek is professor emeritus of psychiatry and pediatrics, Harvard Medical School, Boston. Email them at [email protected].
New Mid-Year Vaccine Recommendations From ACIP
This transcript has been edited for clarity.
ACIP, the CDC’s Advisory Committee on Immunization Practices, met for 3 days in June. New vaccines and new recommendations for respiratory syncytial virus (RSV), flu, COVID, and a new pneumococcal vaccine were revealed.
RSV Protection
We’ll begin with RSV vaccines for adults aged 60 or older. For this group, shared clinical decision-making is out; it no longer applies. New, more specific recommendations from ACIP for RSV vaccines are both age based and risk based. The age-based recommendation applies to those aged 75 or older, who should receive a single RSV vaccine dose. If they have already received a dose under the old recommendation, they don’t need another one, at least for now.
The risk-based recommendation applies to adults from age 60 up to 75, but only for those with risk factors for severe RSV. These risk factors include lung disease, heart disease, immunocompromise, diabetes, obesity with a BMI of 40 or more, neurologic conditions, neuromuscular conditions, chronic kidney disease, liver disorders, hematologic disorders, frailty, and living in a nursing home or other long-term care facility. Those aged 60-75 with these risk factors should receive the RSV vaccine, and those without them should not receive it. The best time to get the RSV vaccine is late summer, but early fall administration with other adult vaccines is allowed and is acceptable.
Vaccine safety concerns were top of mind as ACIP members began their deliberations. Possible safety concerns for RSV vaccines have been detected for Guillain-Barré syndrome, atrial fibrillation, and idiopathic thrombocytopenic purpura. Safety surveillance updates are still interim and inconclusive. These signals still need further study and clarification.
Two RSV vaccines have been on the market: one by Pfizer, called Abrysvo, which does not contain an adjuvant; and another one by GSK, called Arexvy, which does contain an adjuvant. With the recent FDA approval of Moderna’s new mRNA RSV vaccine, mRESVIA, there are now three RSV vaccines licensed for those 60 or older. Arexvy is now FDA approved for adults in their 50s. That just happened in early June, but ACIP doesn’t currently recommend it for this fifty-something age group, even for those at high risk for severe RSV disease. This may change with greater clarification of potential vaccine safety concerns.
There is also news about protecting babies from RSV. RSV is the most common cause of hospitalization for infants in the United States, and most hospitalizations for RSV are in healthy, full-term infants. We now have two ways to protect babies: a dose of RSV vaccine given to mom, or a dose of the long-acting monoclonal antibody nirsevimab given to the baby. ACIP clarified that those who received a dose of maternal RSV vaccine during a previous pregnancy are not recommended to receive additional doses during future pregnancies, but infants born to those who were vaccinated for RSV during a prior pregnancy can receive nirsevimab, which is recommended for infants up to 8 months of age during their first RSV season, and for high-risk infants and toddlers aged 8-19 months during their second RSV season.
Last RSV season, supplies of nirsevimab were limited and doses had to be prioritized. No supply problems are anticipated for the upcoming season. A study published in March showed that nirsevimab was 90% effective at preventing RSV-associated hospitalization for infants in their first RSV season.
COVID
Here’s what’s new for COVID vaccines. A new-formula COVID vaccine will be ready for fall. ACIP voted unanimously to recommend a dose of the updated 2024-2025 COVID vaccine for everyone aged 6 months or older. This is a universal recommendation, just like the one we have for flu. But understand that even though COVID has waned, it’s still more deadly than flu. Most Americans now have some immunity against COVID, but this immunity wanes with time, and it also wanes as the virus keeps changing. These updated vaccines provide an incremental boost to our immunity for the new formula for fall. FDA has directed manufacturers to use a monovalent JN.1 lineage formula, with a preference for the KP.2 strain.
Older adults (aged 75 or older) and children under 6 months old are hit hardest by COVID. The littlest ones are too young to be vaccinated, but they can get protection from maternal vaccination. The uptake for last year’s COVID vaccine has been disappointing. Only 22.5% of adults and 14% of children received a dose of the updated shot. Focus-group discussions highlight the importance of a physician recommendation. Adults and children who receive a healthcare provider’s recommendation to get the COVID vaccine are more likely to get vaccinated.
Pneumococcal Vaccines
On June 17, 2024, a new pneumococcal vaccine, PCV21, was FDA approved for those aged 18 or older under an accelerated-approval pathway. ACIP voted to keep it simple and recommends PCV21 as an option for adults aged 19 or older who currently have an indication to receive a dose of PCV. This new PCV21 vaccine is indicated for prevention of both invasive pneumococcal disease (IPD) and pneumococcal pneumonia. Its brand name is Capvaxive and it’s made by Merck. IPD includes bacteremia, pneumonia, pneumococcal bacteremia, and meningitis.
There are two basic types of pneumococcal vaccines: polysaccharide vaccines (PPSV), which do not produce memory B cells; and PCV conjugate vaccines, which do trigger memory B-cell production and therefore induce greater long-term immunity. PCV21 covers 11 unique serotypes not in PCV20. This is important because many cases of adult disease are caused by subtypes not covered by other FDA-approved pneumococcal vaccines. PCV21 has greater coverage of the serotypes that cause invasive disease in adults as compared with PCV20. PCV20 covers up to 58% of those strains, while PCV21 covers up to 84% of strains responsible for invasive disease in adults. But there’s one serotype missing in PCV21, which may limit the groups who receive it. PCV21 does not cover serotype 4, a major cause of IPD in certain populations. Adults experiencing homelessness are 100-300 times more likely to develop IPD due to serotype 4. So are adults in Alaska, especially Alaska Natives. They have an 88-fold increase in serotype 4 invasive disease. Serotype 4 is covered by other pneumococcal vaccines, so for these patients, PCV20 is likely a better high-valent conjugate vaccine option than PCV21.
Flu Vaccines
What’s new for flu? Everyone aged 6 months or older needs a seasonal flu vaccination every year. That’s not new, but there are two new things coming this fall: (1) The seasonal flu vaccine is going trivalent. FDA has removed the Yamagata flu B strain because it no longer appears to be circulating. (2) ACIP made a special off-label recommendation to boost flu protection for solid organ transplant recipients ages 18-64 who are on immunosuppressive medications. These high-risk patients now have the off-label option of receiving one of the higher-dose flu vaccines, including high-dose and adjuvanted flu vaccines, which are FDA approved only for those 65 or older.
Sandra Adamson Fryhofer, Adjunct Clinical Associate Professor of Medicine, Emory University School of Medicine, Atlanta, Georgia, has disclosed the following relevant financial relationships: Serve(d) as a director, officer, partner, employee, advisor, consultant, or trustee for American Medical Association; Medical Association of Atlanta; ACIP liaison. Received income in an amount equal to or greater than $250 from American College of Physicians; Medscape; American Medical Association.
A version of this article first appeared on Medscape.com.
This transcript has been edited for clarity.
ACIP, the CDC’s Advisory Committee on Immunization Practices, met for 3 days in June. New vaccines and new recommendations for respiratory syncytial virus (RSV), flu, COVID, and a new pneumococcal vaccine were revealed.
RSV Protection
We’ll begin with RSV vaccines for adults aged 60 or older. For this group, shared clinical decision-making is out; it no longer applies. New, more specific recommendations from ACIP for RSV vaccines are both age based and risk based. The age-based recommendation applies to those aged 75 or older, who should receive a single RSV vaccine dose. If they have already received a dose under the old recommendation, they don’t need another one, at least for now.
The risk-based recommendation applies to adults from age 60 up to 75, but only for those with risk factors for severe RSV. These risk factors include lung disease, heart disease, immunocompromise, diabetes, obesity with a BMI of 40 or more, neurologic conditions, neuromuscular conditions, chronic kidney disease, liver disorders, hematologic disorders, frailty, and living in a nursing home or other long-term care facility. Those aged 60-75 with these risk factors should receive the RSV vaccine, and those without them should not receive it. The best time to get the RSV vaccine is late summer, but early fall administration with other adult vaccines is allowed and is acceptable.
Vaccine safety concerns were top of mind as ACIP members began their deliberations. Possible safety concerns for RSV vaccines have been detected for Guillain-Barré syndrome, atrial fibrillation, and idiopathic thrombocytopenic purpura. Safety surveillance updates are still interim and inconclusive. These signals still need further study and clarification.
Two RSV vaccines have been on the market: one by Pfizer, called Abrysvo, which does not contain an adjuvant; and another one by GSK, called Arexvy, which does contain an adjuvant. With the recent FDA approval of Moderna’s new mRNA RSV vaccine, mRESVIA, there are now three RSV vaccines licensed for those 60 or older. Arexvy is now FDA approved for adults in their 50s. That just happened in early June, but ACIP doesn’t currently recommend it for this fifty-something age group, even for those at high risk for severe RSV disease. This may change with greater clarification of potential vaccine safety concerns.
There is also news about protecting babies from RSV. RSV is the most common cause of hospitalization for infants in the United States, and most hospitalizations for RSV are in healthy, full-term infants. We now have two ways to protect babies: a dose of RSV vaccine given to mom, or a dose of the long-acting monoclonal antibody nirsevimab given to the baby. ACIP clarified that those who received a dose of maternal RSV vaccine during a previous pregnancy are not recommended to receive additional doses during future pregnancies, but infants born to those who were vaccinated for RSV during a prior pregnancy can receive nirsevimab, which is recommended for infants up to 8 months of age during their first RSV season, and for high-risk infants and toddlers aged 8-19 months during their second RSV season.
Last RSV season, supplies of nirsevimab were limited and doses had to be prioritized. No supply problems are anticipated for the upcoming season. A study published in March showed that nirsevimab was 90% effective at preventing RSV-associated hospitalization for infants in their first RSV season.
COVID
Here’s what’s new for COVID vaccines. A new-formula COVID vaccine will be ready for fall. ACIP voted unanimously to recommend a dose of the updated 2024-2025 COVID vaccine for everyone aged 6 months or older. This is a universal recommendation, just like the one we have for flu. But understand that even though COVID has waned, it’s still more deadly than flu. Most Americans now have some immunity against COVID, but this immunity wanes with time, and it also wanes as the virus keeps changing. These updated vaccines provide an incremental boost to our immunity for the new formula for fall. FDA has directed manufacturers to use a monovalent JN.1 lineage formula, with a preference for the KP.2 strain.
Older adults (aged 75 or older) and children under 6 months old are hit hardest by COVID. The littlest ones are too young to be vaccinated, but they can get protection from maternal vaccination. The uptake for last year’s COVID vaccine has been disappointing. Only 22.5% of adults and 14% of children received a dose of the updated shot. Focus-group discussions highlight the importance of a physician recommendation. Adults and children who receive a healthcare provider’s recommendation to get the COVID vaccine are more likely to get vaccinated.
Pneumococcal Vaccines
On June 17, 2024, a new pneumococcal vaccine, PCV21, was FDA approved for those aged 18 or older under an accelerated-approval pathway. ACIP voted to keep it simple and recommends PCV21 as an option for adults aged 19 or older who currently have an indication to receive a dose of PCV. This new PCV21 vaccine is indicated for prevention of both invasive pneumococcal disease (IPD) and pneumococcal pneumonia. Its brand name is Capvaxive and it’s made by Merck. IPD includes bacteremia, pneumonia, pneumococcal bacteremia, and meningitis.
There are two basic types of pneumococcal vaccines: polysaccharide vaccines (PPSV), which do not produce memory B cells; and PCV conjugate vaccines, which do trigger memory B-cell production and therefore induce greater long-term immunity. PCV21 covers 11 unique serotypes not in PCV20. This is important because many cases of adult disease are caused by subtypes not covered by other FDA-approved pneumococcal vaccines. PCV21 has greater coverage of the serotypes that cause invasive disease in adults as compared with PCV20. PCV20 covers up to 58% of those strains, while PCV21 covers up to 84% of strains responsible for invasive disease in adults. But there’s one serotype missing in PCV21, which may limit the groups who receive it. PCV21 does not cover serotype 4, a major cause of IPD in certain populations. Adults experiencing homelessness are 100-300 times more likely to develop IPD due to serotype 4. So are adults in Alaska, especially Alaska Natives. They have an 88-fold increase in serotype 4 invasive disease. Serotype 4 is covered by other pneumococcal vaccines, so for these patients, PCV20 is likely a better high-valent conjugate vaccine option than PCV21.
Flu Vaccines
What’s new for flu? Everyone aged 6 months or older needs a seasonal flu vaccination every year. That’s not new, but there are two new things coming this fall: (1) The seasonal flu vaccine is going trivalent. FDA has removed the Yamagata flu B strain because it no longer appears to be circulating. (2) ACIP made a special off-label recommendation to boost flu protection for solid organ transplant recipients ages 18-64 who are on immunosuppressive medications. These high-risk patients now have the off-label option of receiving one of the higher-dose flu vaccines, including high-dose and adjuvanted flu vaccines, which are FDA approved only for those 65 or older.
Sandra Adamson Fryhofer, Adjunct Clinical Associate Professor of Medicine, Emory University School of Medicine, Atlanta, Georgia, has disclosed the following relevant financial relationships: Serve(d) as a director, officer, partner, employee, advisor, consultant, or trustee for American Medical Association; Medical Association of Atlanta; ACIP liaison. Received income in an amount equal to or greater than $250 from American College of Physicians; Medscape; American Medical Association.
A version of this article first appeared on Medscape.com.
This transcript has been edited for clarity.
ACIP, the CDC’s Advisory Committee on Immunization Practices, met for 3 days in June. New vaccines and new recommendations for respiratory syncytial virus (RSV), flu, COVID, and a new pneumococcal vaccine were revealed.
RSV Protection
We’ll begin with RSV vaccines for adults aged 60 or older. For this group, shared clinical decision-making is out; it no longer applies. New, more specific recommendations from ACIP for RSV vaccines are both age based and risk based. The age-based recommendation applies to those aged 75 or older, who should receive a single RSV vaccine dose. If they have already received a dose under the old recommendation, they don’t need another one, at least for now.
The risk-based recommendation applies to adults from age 60 up to 75, but only for those with risk factors for severe RSV. These risk factors include lung disease, heart disease, immunocompromise, diabetes, obesity with a BMI of 40 or more, neurologic conditions, neuromuscular conditions, chronic kidney disease, liver disorders, hematologic disorders, frailty, and living in a nursing home or other long-term care facility. Those aged 60-75 with these risk factors should receive the RSV vaccine, and those without them should not receive it. The best time to get the RSV vaccine is late summer, but early fall administration with other adult vaccines is allowed and is acceptable.
Vaccine safety concerns were top of mind as ACIP members began their deliberations. Possible safety concerns for RSV vaccines have been detected for Guillain-Barré syndrome, atrial fibrillation, and idiopathic thrombocytopenic purpura. Safety surveillance updates are still interim and inconclusive. These signals still need further study and clarification.
Two RSV vaccines have been on the market: one by Pfizer, called Abrysvo, which does not contain an adjuvant; and another one by GSK, called Arexvy, which does contain an adjuvant. With the recent FDA approval of Moderna’s new mRNA RSV vaccine, mRESVIA, there are now three RSV vaccines licensed for those 60 or older. Arexvy is now FDA approved for adults in their 50s. That just happened in early June, but ACIP doesn’t currently recommend it for this fifty-something age group, even for those at high risk for severe RSV disease. This may change with greater clarification of potential vaccine safety concerns.
There is also news about protecting babies from RSV. RSV is the most common cause of hospitalization for infants in the United States, and most hospitalizations for RSV are in healthy, full-term infants. We now have two ways to protect babies: a dose of RSV vaccine given to mom, or a dose of the long-acting monoclonal antibody nirsevimab given to the baby. ACIP clarified that those who received a dose of maternal RSV vaccine during a previous pregnancy are not recommended to receive additional doses during future pregnancies, but infants born to those who were vaccinated for RSV during a prior pregnancy can receive nirsevimab, which is recommended for infants up to 8 months of age during their first RSV season, and for high-risk infants and toddlers aged 8-19 months during their second RSV season.
Last RSV season, supplies of nirsevimab were limited and doses had to be prioritized. No supply problems are anticipated for the upcoming season. A study published in March showed that nirsevimab was 90% effective at preventing RSV-associated hospitalization for infants in their first RSV season.
COVID
Here’s what’s new for COVID vaccines. A new-formula COVID vaccine will be ready for fall. ACIP voted unanimously to recommend a dose of the updated 2024-2025 COVID vaccine for everyone aged 6 months or older. This is a universal recommendation, just like the one we have for flu. But understand that even though COVID has waned, it’s still more deadly than flu. Most Americans now have some immunity against COVID, but this immunity wanes with time, and it also wanes as the virus keeps changing. These updated vaccines provide an incremental boost to our immunity for the new formula for fall. FDA has directed manufacturers to use a monovalent JN.1 lineage formula, with a preference for the KP.2 strain.
Older adults (aged 75 or older) and children under 6 months old are hit hardest by COVID. The littlest ones are too young to be vaccinated, but they can get protection from maternal vaccination. The uptake for last year’s COVID vaccine has been disappointing. Only 22.5% of adults and 14% of children received a dose of the updated shot. Focus-group discussions highlight the importance of a physician recommendation. Adults and children who receive a healthcare provider’s recommendation to get the COVID vaccine are more likely to get vaccinated.
Pneumococcal Vaccines
On June 17, 2024, a new pneumococcal vaccine, PCV21, was FDA approved for those aged 18 or older under an accelerated-approval pathway. ACIP voted to keep it simple and recommends PCV21 as an option for adults aged 19 or older who currently have an indication to receive a dose of PCV. This new PCV21 vaccine is indicated for prevention of both invasive pneumococcal disease (IPD) and pneumococcal pneumonia. Its brand name is Capvaxive and it’s made by Merck. IPD includes bacteremia, pneumonia, pneumococcal bacteremia, and meningitis.
There are two basic types of pneumococcal vaccines: polysaccharide vaccines (PPSV), which do not produce memory B cells; and PCV conjugate vaccines, which do trigger memory B-cell production and therefore induce greater long-term immunity. PCV21 covers 11 unique serotypes not in PCV20. This is important because many cases of adult disease are caused by subtypes not covered by other FDA-approved pneumococcal vaccines. PCV21 has greater coverage of the serotypes that cause invasive disease in adults as compared with PCV20. PCV20 covers up to 58% of those strains, while PCV21 covers up to 84% of strains responsible for invasive disease in adults. But there’s one serotype missing in PCV21, which may limit the groups who receive it. PCV21 does not cover serotype 4, a major cause of IPD in certain populations. Adults experiencing homelessness are 100-300 times more likely to develop IPD due to serotype 4. So are adults in Alaska, especially Alaska Natives. They have an 88-fold increase in serotype 4 invasive disease. Serotype 4 is covered by other pneumococcal vaccines, so for these patients, PCV20 is likely a better high-valent conjugate vaccine option than PCV21.
Flu Vaccines
What’s new for flu? Everyone aged 6 months or older needs a seasonal flu vaccination every year. That’s not new, but there are two new things coming this fall: (1) The seasonal flu vaccine is going trivalent. FDA has removed the Yamagata flu B strain because it no longer appears to be circulating. (2) ACIP made a special off-label recommendation to boost flu protection for solid organ transplant recipients ages 18-64 who are on immunosuppressive medications. These high-risk patients now have the off-label option of receiving one of the higher-dose flu vaccines, including high-dose and adjuvanted flu vaccines, which are FDA approved only for those 65 or older.
Sandra Adamson Fryhofer, Adjunct Clinical Associate Professor of Medicine, Emory University School of Medicine, Atlanta, Georgia, has disclosed the following relevant financial relationships: Serve(d) as a director, officer, partner, employee, advisor, consultant, or trustee for American Medical Association; Medical Association of Atlanta; ACIP liaison. Received income in an amount equal to or greater than $250 from American College of Physicians; Medscape; American Medical Association.
A version of this article first appeared on Medscape.com.
Prescribing Epilepsy Meds in Pregnancy: ‘We Can Do Better,’ Experts Say
HELSINKI, FINLAND — When it comes to caring for women with epilepsy who become pregnant, there is a great deal of room for improvement, experts say.
“Too many women with epilepsy receive information about epilepsy and pregnancy only after pregnancy. We can do better,” Torbjörn Tomson, MD, PhD, senior professor of neurology and epileptology, Karolinska Institutet, Stockholm, Sweden, told delegates attending the Congress of the European Academy of Neurology 2024.
The goal in epilepsy is to maintain seizure control while minimizing exposure to potentially teratogenic medications, Dr. Tomson said. He added that pregnancy planning in women with epilepsy is important but also conceded that most pregnancies in this patient population are unplanned.
Overall, it’s important to tell patients that “there is a high likelihood of an uneventful pregnancy and a healthy offspring,” he said.
In recent years, new data have emerged on the risks to the fetus with exposure to different antiseizure medications (ASMs), said Dr. Tomson. This has led regulators, such as the US Food and Drug Administration and the European Medicines Agency, to issue restrictions on the use of some ASMs, particularly valproate and topiramate, in females of childbearing age.
Session chair Marte Bjørk, MD, PhD, of the Department of Neurology of Haukeland University Hospital, Bergen, Norway, questioned whether the latest recommendations from regulatory authorities have “sacrificed seizure control at the expense of teratogenic safety.”
To an extent, this is true, said Dr. Tomson, “as the regulations prioritize fetal health over women’s health.” However, “we have not seen poorer seizure control with newer medications” in recent datasets.
It’s about good planning, said Dr. Bjork, who is responsible for the clinical guidelines for treatment of epilepsy in pregnancy in Norway.
Start With Folic Acid
One simple measure is to ensure that all women with epilepsy of childbearing age are prescribed low-dose folic acid, Dr. Tomson said — even those who report that they are not considering pregnancy.
When it comes to folic acid, recently published guidelines on ASM use during pregnancy are relatively straightforward, he said.
The data do not show that folic acid reduces the risk for major congenital malformations, but they do show that it improves neurocognitive outcomes in children of mothers who received folic acid supplements prior to and throughout pregnancy.
Dr. Tomson said the new American Academy of Neurology (AAN) guidelines recommend a dosage of 0.4 mg/d, which balances the demonstrated benefits of supplementation and potential negative consequences of high doses of folic acid.
“Consider 0.4 mg of folic acid for all women on ASMs that are of childbearing potential, whether they become pregnant or not,” he said. However, well-designed, preferably randomized, studies are needed to better define the optimal folic acid dosing for pregnancy in women with epilepsy.
Choosing the Right ASM
The choice of the most appropriate ASM in pregnancy is based on the potential for an individual drug to cause major congenital malformations and, in more recent years, the likelihood that a woman with epilepsy is using any other medications associated with neurodevelopmental disorders in offspring.
Balanced against this must be the effect of pregnancy on seizure control, and the maternal and fetal risks associated with seizures during pregnancy.
“There are ways to optimize seizure control and to reduce teratogenic risks,” said Dr. Tomson, adding that the new AAN guidelines provide updated evidence-based conclusions on this topic.
The good news is that “there has been almost a 40% decline in the rate of major congenital malformations associated with ASM use in pregnancy, in parallel with a shift from use of ASMs such as carbamazepine and valproate to lamotrigine and levetiracetam.” The latter two medications are associated with a much lower risk for such birth defects, he added.
This is based on the average rate of major congenital malformations in the EURAP registry that tracks the comparative risk for major fetal malformations after ASM use during pregnancy in over 40 countries. The latest reporting from the registry shows that this risk has decreased from 6.1% in 1998-2004 to 3.7% in 2015-2022.
Taking valproate during pregnancy is associated with a significantly increased risk for neurodevelopmental outcomes, including autism spectrum disorder. However, the jury is still out on whether topiramate escalates the risk for neurodevelopmental disorders, because findings across studies have been inconsistent.
Overall, the AAN guidance, and similar advice from European regulatory authorities, is that valproate is associated with high risk for major congenital malformations and neurodevelopmental disorders. Topiramate has also been shown to increase the risk for major congenital malformations. Consequently, these two anticonvulsants are generally contraindicated in pregnancy, Dr. Tomson noted.
On the other hand, levetiracetam, lamotrigine, and oxcarbazepine seem to be the safest ASMs with respect to congenital malformation risk, and lamotrigine has the best documented safety profile when it comes to the risk for neurodevelopmental disorders.
Although there are newer ASMs on the market, including brivaracetam, cannabidiol, cenobamate, eslicarbazepine acetate, fenfluramine, lacosamide, perampanel, and zonisamide, at this juncture data on the risk potential of these agents are insufficient.
“For some of these newer meds, we don’t even have a single exposure in our large databases, even if you combine them all. We need to collect more data, and that will take time,” Dr. Tomson said.
Dose Optimization
Dose optimization of ASMs is also important — and for this to be accurate, it’s important to document an individual’s optimal ASM serum levels before pregnancy that can be used as a baseline target during pregnancy. However, Dr. Tomson noted, this information is not always available.
He pointed out that, with many ASMs, there can be a significant decline in serum concentration levels during pregnancy, which can increase seizure risk.
To address the uncertainty surrounding this issue, Dr. Tomson recommended that physicians consider future pregnancy when prescribing ASMs to women of childbearing age. He also advised discussing contraception with these patients, even if they indicate they are not currently planning to conceive.
The data clearly show the importance of planning a pregnancy so that the most appropriate and safest medications are prescribed, he said.
Dr. Tomson reported receiving research support, on behalf of EURAP, from Accord, Angelini, Bial, EcuPharma, Eisai, GlaxoSmithKline, Glenmark, GW Pharma, Hazz, Sanofi, Teva, USB, Zentiva, and SF Group. He has received speakers’ honoraria from Angelini, Eisai, and UCB. Dr. Bjørk reports receiving speakers’ honoraria from Pfizer, Eisai, AbbVie, Best Practice, Lilly, Novartis, and Teva. She has received unrestricted educational grants from The Research Council of Norway, the Research Council of the Nordic Countries (NordForsk), and the Norwegian Epilepsy Association. She has received consulting honoraria from Novartis and is on the advisory board of Eisai, Lundbeck, Angelini Pharma, and Jazz Pharmaceuticals. Dr. Bjørk also received institutional grants from marked authorization holders of valproate.
A version of this article first appeared on Medscape.com.
HELSINKI, FINLAND — When it comes to caring for women with epilepsy who become pregnant, there is a great deal of room for improvement, experts say.
“Too many women with epilepsy receive information about epilepsy and pregnancy only after pregnancy. We can do better,” Torbjörn Tomson, MD, PhD, senior professor of neurology and epileptology, Karolinska Institutet, Stockholm, Sweden, told delegates attending the Congress of the European Academy of Neurology 2024.
The goal in epilepsy is to maintain seizure control while minimizing exposure to potentially teratogenic medications, Dr. Tomson said. He added that pregnancy planning in women with epilepsy is important but also conceded that most pregnancies in this patient population are unplanned.
Overall, it’s important to tell patients that “there is a high likelihood of an uneventful pregnancy and a healthy offspring,” he said.
In recent years, new data have emerged on the risks to the fetus with exposure to different antiseizure medications (ASMs), said Dr. Tomson. This has led regulators, such as the US Food and Drug Administration and the European Medicines Agency, to issue restrictions on the use of some ASMs, particularly valproate and topiramate, in females of childbearing age.
Session chair Marte Bjørk, MD, PhD, of the Department of Neurology of Haukeland University Hospital, Bergen, Norway, questioned whether the latest recommendations from regulatory authorities have “sacrificed seizure control at the expense of teratogenic safety.”
To an extent, this is true, said Dr. Tomson, “as the regulations prioritize fetal health over women’s health.” However, “we have not seen poorer seizure control with newer medications” in recent datasets.
It’s about good planning, said Dr. Bjork, who is responsible for the clinical guidelines for treatment of epilepsy in pregnancy in Norway.
Start With Folic Acid
One simple measure is to ensure that all women with epilepsy of childbearing age are prescribed low-dose folic acid, Dr. Tomson said — even those who report that they are not considering pregnancy.
When it comes to folic acid, recently published guidelines on ASM use during pregnancy are relatively straightforward, he said.
The data do not show that folic acid reduces the risk for major congenital malformations, but they do show that it improves neurocognitive outcomes in children of mothers who received folic acid supplements prior to and throughout pregnancy.
Dr. Tomson said the new American Academy of Neurology (AAN) guidelines recommend a dosage of 0.4 mg/d, which balances the demonstrated benefits of supplementation and potential negative consequences of high doses of folic acid.
“Consider 0.4 mg of folic acid for all women on ASMs that are of childbearing potential, whether they become pregnant or not,” he said. However, well-designed, preferably randomized, studies are needed to better define the optimal folic acid dosing for pregnancy in women with epilepsy.
Choosing the Right ASM
The choice of the most appropriate ASM in pregnancy is based on the potential for an individual drug to cause major congenital malformations and, in more recent years, the likelihood that a woman with epilepsy is using any other medications associated with neurodevelopmental disorders in offspring.
Balanced against this must be the effect of pregnancy on seizure control, and the maternal and fetal risks associated with seizures during pregnancy.
“There are ways to optimize seizure control and to reduce teratogenic risks,” said Dr. Tomson, adding that the new AAN guidelines provide updated evidence-based conclusions on this topic.
The good news is that “there has been almost a 40% decline in the rate of major congenital malformations associated with ASM use in pregnancy, in parallel with a shift from use of ASMs such as carbamazepine and valproate to lamotrigine and levetiracetam.” The latter two medications are associated with a much lower risk for such birth defects, he added.
This is based on the average rate of major congenital malformations in the EURAP registry that tracks the comparative risk for major fetal malformations after ASM use during pregnancy in over 40 countries. The latest reporting from the registry shows that this risk has decreased from 6.1% in 1998-2004 to 3.7% in 2015-2022.
Taking valproate during pregnancy is associated with a significantly increased risk for neurodevelopmental outcomes, including autism spectrum disorder. However, the jury is still out on whether topiramate escalates the risk for neurodevelopmental disorders, because findings across studies have been inconsistent.
Overall, the AAN guidance, and similar advice from European regulatory authorities, is that valproate is associated with high risk for major congenital malformations and neurodevelopmental disorders. Topiramate has also been shown to increase the risk for major congenital malformations. Consequently, these two anticonvulsants are generally contraindicated in pregnancy, Dr. Tomson noted.
On the other hand, levetiracetam, lamotrigine, and oxcarbazepine seem to be the safest ASMs with respect to congenital malformation risk, and lamotrigine has the best documented safety profile when it comes to the risk for neurodevelopmental disorders.
Although there are newer ASMs on the market, including brivaracetam, cannabidiol, cenobamate, eslicarbazepine acetate, fenfluramine, lacosamide, perampanel, and zonisamide, at this juncture data on the risk potential of these agents are insufficient.
“For some of these newer meds, we don’t even have a single exposure in our large databases, even if you combine them all. We need to collect more data, and that will take time,” Dr. Tomson said.
Dose Optimization
Dose optimization of ASMs is also important — and for this to be accurate, it’s important to document an individual’s optimal ASM serum levels before pregnancy that can be used as a baseline target during pregnancy. However, Dr. Tomson noted, this information is not always available.
He pointed out that, with many ASMs, there can be a significant decline in serum concentration levels during pregnancy, which can increase seizure risk.
To address the uncertainty surrounding this issue, Dr. Tomson recommended that physicians consider future pregnancy when prescribing ASMs to women of childbearing age. He also advised discussing contraception with these patients, even if they indicate they are not currently planning to conceive.
The data clearly show the importance of planning a pregnancy so that the most appropriate and safest medications are prescribed, he said.
Dr. Tomson reported receiving research support, on behalf of EURAP, from Accord, Angelini, Bial, EcuPharma, Eisai, GlaxoSmithKline, Glenmark, GW Pharma, Hazz, Sanofi, Teva, USB, Zentiva, and SF Group. He has received speakers’ honoraria from Angelini, Eisai, and UCB. Dr. Bjørk reports receiving speakers’ honoraria from Pfizer, Eisai, AbbVie, Best Practice, Lilly, Novartis, and Teva. She has received unrestricted educational grants from The Research Council of Norway, the Research Council of the Nordic Countries (NordForsk), and the Norwegian Epilepsy Association. She has received consulting honoraria from Novartis and is on the advisory board of Eisai, Lundbeck, Angelini Pharma, and Jazz Pharmaceuticals. Dr. Bjørk also received institutional grants from marked authorization holders of valproate.
A version of this article first appeared on Medscape.com.
HELSINKI, FINLAND — When it comes to caring for women with epilepsy who become pregnant, there is a great deal of room for improvement, experts say.
“Too many women with epilepsy receive information about epilepsy and pregnancy only after pregnancy. We can do better,” Torbjörn Tomson, MD, PhD, senior professor of neurology and epileptology, Karolinska Institutet, Stockholm, Sweden, told delegates attending the Congress of the European Academy of Neurology 2024.
The goal in epilepsy is to maintain seizure control while minimizing exposure to potentially teratogenic medications, Dr. Tomson said. He added that pregnancy planning in women with epilepsy is important but also conceded that most pregnancies in this patient population are unplanned.
Overall, it’s important to tell patients that “there is a high likelihood of an uneventful pregnancy and a healthy offspring,” he said.
In recent years, new data have emerged on the risks to the fetus with exposure to different antiseizure medications (ASMs), said Dr. Tomson. This has led regulators, such as the US Food and Drug Administration and the European Medicines Agency, to issue restrictions on the use of some ASMs, particularly valproate and topiramate, in females of childbearing age.
Session chair Marte Bjørk, MD, PhD, of the Department of Neurology of Haukeland University Hospital, Bergen, Norway, questioned whether the latest recommendations from regulatory authorities have “sacrificed seizure control at the expense of teratogenic safety.”
To an extent, this is true, said Dr. Tomson, “as the regulations prioritize fetal health over women’s health.” However, “we have not seen poorer seizure control with newer medications” in recent datasets.
It’s about good planning, said Dr. Bjork, who is responsible for the clinical guidelines for treatment of epilepsy in pregnancy in Norway.
Start With Folic Acid
One simple measure is to ensure that all women with epilepsy of childbearing age are prescribed low-dose folic acid, Dr. Tomson said — even those who report that they are not considering pregnancy.
When it comes to folic acid, recently published guidelines on ASM use during pregnancy are relatively straightforward, he said.
The data do not show that folic acid reduces the risk for major congenital malformations, but they do show that it improves neurocognitive outcomes in children of mothers who received folic acid supplements prior to and throughout pregnancy.
Dr. Tomson said the new American Academy of Neurology (AAN) guidelines recommend a dosage of 0.4 mg/d, which balances the demonstrated benefits of supplementation and potential negative consequences of high doses of folic acid.
“Consider 0.4 mg of folic acid for all women on ASMs that are of childbearing potential, whether they become pregnant or not,” he said. However, well-designed, preferably randomized, studies are needed to better define the optimal folic acid dosing for pregnancy in women with epilepsy.
Choosing the Right ASM
The choice of the most appropriate ASM in pregnancy is based on the potential for an individual drug to cause major congenital malformations and, in more recent years, the likelihood that a woman with epilepsy is using any other medications associated with neurodevelopmental disorders in offspring.
Balanced against this must be the effect of pregnancy on seizure control, and the maternal and fetal risks associated with seizures during pregnancy.
“There are ways to optimize seizure control and to reduce teratogenic risks,” said Dr. Tomson, adding that the new AAN guidelines provide updated evidence-based conclusions on this topic.
The good news is that “there has been almost a 40% decline in the rate of major congenital malformations associated with ASM use in pregnancy, in parallel with a shift from use of ASMs such as carbamazepine and valproate to lamotrigine and levetiracetam.” The latter two medications are associated with a much lower risk for such birth defects, he added.
This is based on the average rate of major congenital malformations in the EURAP registry that tracks the comparative risk for major fetal malformations after ASM use during pregnancy in over 40 countries. The latest reporting from the registry shows that this risk has decreased from 6.1% in 1998-2004 to 3.7% in 2015-2022.
Taking valproate during pregnancy is associated with a significantly increased risk for neurodevelopmental outcomes, including autism spectrum disorder. However, the jury is still out on whether topiramate escalates the risk for neurodevelopmental disorders, because findings across studies have been inconsistent.
Overall, the AAN guidance, and similar advice from European regulatory authorities, is that valproate is associated with high risk for major congenital malformations and neurodevelopmental disorders. Topiramate has also been shown to increase the risk for major congenital malformations. Consequently, these two anticonvulsants are generally contraindicated in pregnancy, Dr. Tomson noted.
On the other hand, levetiracetam, lamotrigine, and oxcarbazepine seem to be the safest ASMs with respect to congenital malformation risk, and lamotrigine has the best documented safety profile when it comes to the risk for neurodevelopmental disorders.
Although there are newer ASMs on the market, including brivaracetam, cannabidiol, cenobamate, eslicarbazepine acetate, fenfluramine, lacosamide, perampanel, and zonisamide, at this juncture data on the risk potential of these agents are insufficient.
“For some of these newer meds, we don’t even have a single exposure in our large databases, even if you combine them all. We need to collect more data, and that will take time,” Dr. Tomson said.
Dose Optimization
Dose optimization of ASMs is also important — and for this to be accurate, it’s important to document an individual’s optimal ASM serum levels before pregnancy that can be used as a baseline target during pregnancy. However, Dr. Tomson noted, this information is not always available.
He pointed out that, with many ASMs, there can be a significant decline in serum concentration levels during pregnancy, which can increase seizure risk.
To address the uncertainty surrounding this issue, Dr. Tomson recommended that physicians consider future pregnancy when prescribing ASMs to women of childbearing age. He also advised discussing contraception with these patients, even if they indicate they are not currently planning to conceive.
The data clearly show the importance of planning a pregnancy so that the most appropriate and safest medications are prescribed, he said.
Dr. Tomson reported receiving research support, on behalf of EURAP, from Accord, Angelini, Bial, EcuPharma, Eisai, GlaxoSmithKline, Glenmark, GW Pharma, Hazz, Sanofi, Teva, USB, Zentiva, and SF Group. He has received speakers’ honoraria from Angelini, Eisai, and UCB. Dr. Bjørk reports receiving speakers’ honoraria from Pfizer, Eisai, AbbVie, Best Practice, Lilly, Novartis, and Teva. She has received unrestricted educational grants from The Research Council of Norway, the Research Council of the Nordic Countries (NordForsk), and the Norwegian Epilepsy Association. She has received consulting honoraria from Novartis and is on the advisory board of Eisai, Lundbeck, Angelini Pharma, and Jazz Pharmaceuticals. Dr. Bjørk also received institutional grants from marked authorization holders of valproate.
A version of this article first appeared on Medscape.com.
FROM EAN 2024
Buprenorphine One of Many Options For Pain Relief In Oldest Adults
Some degree of pain is inevitable in older individuals, and as people pass 80 years of age, the harms of medications used to control chronic pain increase. Pain-reducing medication use in this age group may cause inflammation, gastric bleeding, kidney damage, or constipation.
These risks may lead some clinicians to avoid aggressive pain treatment in their eldest patients, resulting in unnecessary suffering.
“Pain causes harm beyond just the physical suffering associated with it,” said Diane Meier, MD, a geriatrician and palliative care specialist at Mount Sinai Medicine in New York City who treats many people in their 80s and 90s.
Downstream effects of untreated pain could include a loss of mobility and isolation, Dr. Meier said. And, as these harms are mounting, some clinicians may avoid using an analgesic that could bring great relief: buprenorphine.
“People think about buprenorphine like they think about methadone,” Dr. Meier said, as something prescribed to treat substance use disorder. In reality, it is an effective analgesic in other situations.
Buprenorphine is better at treating chronic pain than other opioids that carry a higher addiction risk and often cause constipation in elderly patients. Buprenorphine is easier on the kidneys and has a lower addiction risk than opioids like oxycodone.
The transdermal patch form of buprenorphine (Butrans, PurduePharma) is changed weekly and starts at low doses.
“There’s an adage in geriatrics: start low and go slow,” said Jessica Merlin, MD, PhD, a palliative care and addiction medicine physician at the University of Pittsburgh Medical Center in Pittsburgh, Pennsylvania.
Dr. Merlin recommends beginning elderly patients with chronic pain on a 10-microgram/hour dose of Butrans, among the lowest doses available. Physicians could monitor side effects, which will generally be mild, with the aim of never increasing the dose if pain is managed.
Nonpharmacologic Remedies, Drug Considerations
“Nonpharmacologic therapy is very underutilized,” Dr. Merlin said, even though multiple alternatives to medications can improve chronic pain symptoms at any age.
Cognitive-behavioral therapy or acceptance and commitment therapy can both help people reduce the impact of pain, Dr. Merlin said. And for people who can do so, physical therapy programs, yoga, or tai chi are all ways to strengthen the body’s defenses against pain, Dr. Merlin added.
Sometimes medication is necessary, however.
“You can’t get an older person to participate in rehab if they are in severe pain,” Dr. Meier said, adding that judicious use of medications should go hand in hand with nonpharmacologic treatment.
When medications are unavoidable, internist Douglas S. Paauw, MD, starts with topical injections at the site of the pain — a troublesome joint, for example — rather than systemic medications that affect multiple organs and the brain.
“We try not to flood their body with meds” for localized problems, Dr. Paauw said, whose goal when treating elderly patients with pain is to improve their daily functioning and quality of life.
Dr. Paauw works at the University of Washington in Seattle and treats people who are approaching 100 years old. As some of his patients have grown older, Dr. Paauw’s interest in effective pain management has grown; he thinks that all internists and family medicine physician need to know how to manage chronic pain in their eldest patients.
“Were you able to play with your grandkid? Were you able to go grocery shopping? Were you able to take a walk outside?” These are the kinds of improvements Dr. Paauw hopes to see in older patients, recognizing that the wear and tear of life — orthopedic stresses or healed fractures that cause lingering pain — make it impossible for many older people to be pain free.
Pain is often spread throughout the body rather than focusing at one point, which requires systemic medications if physical therapy and similar approaches have not reduced pain. Per American Geriatrics Society (AGS) guidelines, in this situation Dr. Paauw starts with acetaminophen (Tylenol) as the lowest-risk systemic pain treatment.
Dr. Pauuw often counsels older patients to begin with 2 grams/day of acetaminophen and then progress to 3 grams if the lower dose has manageable side effects, rather than the standard dose of 4 grams that he feels is geared toward younger patients.
When acetaminophen doesn’t reduce pain sufficiently, or aggravates inflammation, Dr. Paauw may use the nerve pain medication pregabalin, or the antidepressant duloxetine — especially if the pain appears to be neuropathic.
Tricyclic antidepressants used to be recommended for neuropathic pain in older adults, but are now on the AGS’s Beers Criteria of drugs to avoid in elderly patients due to risk of causing dizziness or cardiac stress. Dr. Paauw might still use a tricyclic, but only after a careful risk-benefit analysis.
Nonsteroidal anti-inflammatory drugs (NSAIDs) like ibuprofen (Motrin) or naproxen (Aleve) could work in short bursts, Dr. Paauw said, although they may cause stomach bleeding or kidney damage in older patients.
This is why NSAIDs are not recommended by the AGS for chronic pain management. And opioids like oxycodone don’t work long at low doses, often leading to dose escalation and addiction.
“The American Geriatrics Society really puts opioids down at the bottom of the list,” Dr. Paauw said, to be used “judiciously and rarely.”
Opioids may interact with other drugs to increase risk of a fall, Dr. Meier added, making them inadvisable for older patients who live alone.
“That’s why knowing something about buprenorphine is so important,” Dr. Meier said.
Dr. Meier and Dr. Paauw are on the editorial board for Internal Medicine News. Dr. Merlin is a trainer for the Center to Advance Palliative Care, which Dr. Meier founded.
Some degree of pain is inevitable in older individuals, and as people pass 80 years of age, the harms of medications used to control chronic pain increase. Pain-reducing medication use in this age group may cause inflammation, gastric bleeding, kidney damage, or constipation.
These risks may lead some clinicians to avoid aggressive pain treatment in their eldest patients, resulting in unnecessary suffering.
“Pain causes harm beyond just the physical suffering associated with it,” said Diane Meier, MD, a geriatrician and palliative care specialist at Mount Sinai Medicine in New York City who treats many people in their 80s and 90s.
Downstream effects of untreated pain could include a loss of mobility and isolation, Dr. Meier said. And, as these harms are mounting, some clinicians may avoid using an analgesic that could bring great relief: buprenorphine.
“People think about buprenorphine like they think about methadone,” Dr. Meier said, as something prescribed to treat substance use disorder. In reality, it is an effective analgesic in other situations.
Buprenorphine is better at treating chronic pain than other opioids that carry a higher addiction risk and often cause constipation in elderly patients. Buprenorphine is easier on the kidneys and has a lower addiction risk than opioids like oxycodone.
The transdermal patch form of buprenorphine (Butrans, PurduePharma) is changed weekly and starts at low doses.
“There’s an adage in geriatrics: start low and go slow,” said Jessica Merlin, MD, PhD, a palliative care and addiction medicine physician at the University of Pittsburgh Medical Center in Pittsburgh, Pennsylvania.
Dr. Merlin recommends beginning elderly patients with chronic pain on a 10-microgram/hour dose of Butrans, among the lowest doses available. Physicians could monitor side effects, which will generally be mild, with the aim of never increasing the dose if pain is managed.
Nonpharmacologic Remedies, Drug Considerations
“Nonpharmacologic therapy is very underutilized,” Dr. Merlin said, even though multiple alternatives to medications can improve chronic pain symptoms at any age.
Cognitive-behavioral therapy or acceptance and commitment therapy can both help people reduce the impact of pain, Dr. Merlin said. And for people who can do so, physical therapy programs, yoga, or tai chi are all ways to strengthen the body’s defenses against pain, Dr. Merlin added.
Sometimes medication is necessary, however.
“You can’t get an older person to participate in rehab if they are in severe pain,” Dr. Meier said, adding that judicious use of medications should go hand in hand with nonpharmacologic treatment.
When medications are unavoidable, internist Douglas S. Paauw, MD, starts with topical injections at the site of the pain — a troublesome joint, for example — rather than systemic medications that affect multiple organs and the brain.
“We try not to flood their body with meds” for localized problems, Dr. Paauw said, whose goal when treating elderly patients with pain is to improve their daily functioning and quality of life.
Dr. Paauw works at the University of Washington in Seattle and treats people who are approaching 100 years old. As some of his patients have grown older, Dr. Paauw’s interest in effective pain management has grown; he thinks that all internists and family medicine physician need to know how to manage chronic pain in their eldest patients.
“Were you able to play with your grandkid? Were you able to go grocery shopping? Were you able to take a walk outside?” These are the kinds of improvements Dr. Paauw hopes to see in older patients, recognizing that the wear and tear of life — orthopedic stresses or healed fractures that cause lingering pain — make it impossible for many older people to be pain free.
Pain is often spread throughout the body rather than focusing at one point, which requires systemic medications if physical therapy and similar approaches have not reduced pain. Per American Geriatrics Society (AGS) guidelines, in this situation Dr. Paauw starts with acetaminophen (Tylenol) as the lowest-risk systemic pain treatment.
Dr. Pauuw often counsels older patients to begin with 2 grams/day of acetaminophen and then progress to 3 grams if the lower dose has manageable side effects, rather than the standard dose of 4 grams that he feels is geared toward younger patients.
When acetaminophen doesn’t reduce pain sufficiently, or aggravates inflammation, Dr. Paauw may use the nerve pain medication pregabalin, or the antidepressant duloxetine — especially if the pain appears to be neuropathic.
Tricyclic antidepressants used to be recommended for neuropathic pain in older adults, but are now on the AGS’s Beers Criteria of drugs to avoid in elderly patients due to risk of causing dizziness or cardiac stress. Dr. Paauw might still use a tricyclic, but only after a careful risk-benefit analysis.
Nonsteroidal anti-inflammatory drugs (NSAIDs) like ibuprofen (Motrin) or naproxen (Aleve) could work in short bursts, Dr. Paauw said, although they may cause stomach bleeding or kidney damage in older patients.
This is why NSAIDs are not recommended by the AGS for chronic pain management. And opioids like oxycodone don’t work long at low doses, often leading to dose escalation and addiction.
“The American Geriatrics Society really puts opioids down at the bottom of the list,” Dr. Paauw said, to be used “judiciously and rarely.”
Opioids may interact with other drugs to increase risk of a fall, Dr. Meier added, making them inadvisable for older patients who live alone.
“That’s why knowing something about buprenorphine is so important,” Dr. Meier said.
Dr. Meier and Dr. Paauw are on the editorial board for Internal Medicine News. Dr. Merlin is a trainer for the Center to Advance Palliative Care, which Dr. Meier founded.
Some degree of pain is inevitable in older individuals, and as people pass 80 years of age, the harms of medications used to control chronic pain increase. Pain-reducing medication use in this age group may cause inflammation, gastric bleeding, kidney damage, or constipation.
These risks may lead some clinicians to avoid aggressive pain treatment in their eldest patients, resulting in unnecessary suffering.
“Pain causes harm beyond just the physical suffering associated with it,” said Diane Meier, MD, a geriatrician and palliative care specialist at Mount Sinai Medicine in New York City who treats many people in their 80s and 90s.
Downstream effects of untreated pain could include a loss of mobility and isolation, Dr. Meier said. And, as these harms are mounting, some clinicians may avoid using an analgesic that could bring great relief: buprenorphine.
“People think about buprenorphine like they think about methadone,” Dr. Meier said, as something prescribed to treat substance use disorder. In reality, it is an effective analgesic in other situations.
Buprenorphine is better at treating chronic pain than other opioids that carry a higher addiction risk and often cause constipation in elderly patients. Buprenorphine is easier on the kidneys and has a lower addiction risk than opioids like oxycodone.
The transdermal patch form of buprenorphine (Butrans, PurduePharma) is changed weekly and starts at low doses.
“There’s an adage in geriatrics: start low and go slow,” said Jessica Merlin, MD, PhD, a palliative care and addiction medicine physician at the University of Pittsburgh Medical Center in Pittsburgh, Pennsylvania.
Dr. Merlin recommends beginning elderly patients with chronic pain on a 10-microgram/hour dose of Butrans, among the lowest doses available. Physicians could monitor side effects, which will generally be mild, with the aim of never increasing the dose if pain is managed.
Nonpharmacologic Remedies, Drug Considerations
“Nonpharmacologic therapy is very underutilized,” Dr. Merlin said, even though multiple alternatives to medications can improve chronic pain symptoms at any age.
Cognitive-behavioral therapy or acceptance and commitment therapy can both help people reduce the impact of pain, Dr. Merlin said. And for people who can do so, physical therapy programs, yoga, or tai chi are all ways to strengthen the body’s defenses against pain, Dr. Merlin added.
Sometimes medication is necessary, however.
“You can’t get an older person to participate in rehab if they are in severe pain,” Dr. Meier said, adding that judicious use of medications should go hand in hand with nonpharmacologic treatment.
When medications are unavoidable, internist Douglas S. Paauw, MD, starts with topical injections at the site of the pain — a troublesome joint, for example — rather than systemic medications that affect multiple organs and the brain.
“We try not to flood their body with meds” for localized problems, Dr. Paauw said, whose goal when treating elderly patients with pain is to improve their daily functioning and quality of life.
Dr. Paauw works at the University of Washington in Seattle and treats people who are approaching 100 years old. As some of his patients have grown older, Dr. Paauw’s interest in effective pain management has grown; he thinks that all internists and family medicine physician need to know how to manage chronic pain in their eldest patients.
“Were you able to play with your grandkid? Were you able to go grocery shopping? Were you able to take a walk outside?” These are the kinds of improvements Dr. Paauw hopes to see in older patients, recognizing that the wear and tear of life — orthopedic stresses or healed fractures that cause lingering pain — make it impossible for many older people to be pain free.
Pain is often spread throughout the body rather than focusing at one point, which requires systemic medications if physical therapy and similar approaches have not reduced pain. Per American Geriatrics Society (AGS) guidelines, in this situation Dr. Paauw starts with acetaminophen (Tylenol) as the lowest-risk systemic pain treatment.
Dr. Pauuw often counsels older patients to begin with 2 grams/day of acetaminophen and then progress to 3 grams if the lower dose has manageable side effects, rather than the standard dose of 4 grams that he feels is geared toward younger patients.
When acetaminophen doesn’t reduce pain sufficiently, or aggravates inflammation, Dr. Paauw may use the nerve pain medication pregabalin, or the antidepressant duloxetine — especially if the pain appears to be neuropathic.
Tricyclic antidepressants used to be recommended for neuropathic pain in older adults, but are now on the AGS’s Beers Criteria of drugs to avoid in elderly patients due to risk of causing dizziness or cardiac stress. Dr. Paauw might still use a tricyclic, but only after a careful risk-benefit analysis.
Nonsteroidal anti-inflammatory drugs (NSAIDs) like ibuprofen (Motrin) or naproxen (Aleve) could work in short bursts, Dr. Paauw said, although they may cause stomach bleeding or kidney damage in older patients.
This is why NSAIDs are not recommended by the AGS for chronic pain management. And opioids like oxycodone don’t work long at low doses, often leading to dose escalation and addiction.
“The American Geriatrics Society really puts opioids down at the bottom of the list,” Dr. Paauw said, to be used “judiciously and rarely.”
Opioids may interact with other drugs to increase risk of a fall, Dr. Meier added, making them inadvisable for older patients who live alone.
“That’s why knowing something about buprenorphine is so important,” Dr. Meier said.
Dr. Meier and Dr. Paauw are on the editorial board for Internal Medicine News. Dr. Merlin is a trainer for the Center to Advance Palliative Care, which Dr. Meier founded.
Summer Is Not Over: Let's Talk About Recreational Water–Associated Illnesses
Recently I was in Wyoming. As I rode down the Snake River, the guide pointed out tree trunks that had been chewed on by beavers. Days later I joined a local friend for a hike to Taggart Lake. Upon reaching the end of the trail as I began to cast my eyes on the magnificent scenery, I could not help but notice several children, including toddlers, playing in the fresh warm water. The next thing out of my friend’s mouth was “You know there is Giardia in there.” Little did she know, she and the guide had just helped me select a topic for ID Consult.
Giardia, aka ”beaver fever,” was discussed in detail in this column as part of the differential of a diarrheal illness by Christopher J. Harrison, MD. However, it is the perfect time of year to revisit other recreational water–associated illnesses.
Infections acquired during recreational water activity can lead to illnesses involving the gastrointestinal tract, central nervous system, respiratory tract, skin, eyes, and ears. Pathogens, chemicals, and toxins are transmitted by ingestion, contact with contaminated water or a sick individual or animal, and inhalation of aerosols. The National Waterborne Disease and Outbreak Surveillance System (WBDOSS) collects data on waterborne disease and outbreaks associated with recreational water, drinking water, and environmental and undetermined exposures to water. All reporting to the Centers for Disease Control and Prevention (CDC) is voluntary. However, mandatory pathogen reporting requirements can vary by state. Ideally, once an agency has completed the outbreak investigation, the definitive cause and source will be determined, and interventions to prevent future outbreaks implemented.
Treated Versus Untreated Water
One useful way to help narrow the etiology of a patient’s symptoms is to consider those illnesses associated with treated water venues (e.g., pools, hot tubs, water parks) versus untreated water venues (e.g., rivers, lakes, oceans). Parents may forget to offer that information since they may not perceive a connection between water exposure and the illness, especially if they traveled within the US.
In 2021, the CDC reported results of data submitted between 2015 and 2019 from treated recreational water facilities. Of the 208 outbreaks, most (96%) were associated with public pools, hot tubs, or water playgrounds. These outbreaks resulted in at least 3,646 cases of illness, 286 hospitalizations, and 13 deaths. Overall infectious etiologies were the primary cause of illness. Of the 155 outbreaks with a confirmed etiology, Cryptosporidium was the causative pathogen in 49% of the outbreaks and accounted for 84% (2,492) of cases, while Legionella caused 42% of outbreaks, accounted for 13% (354) of cases, and was responsible for all 13 deaths. Slightly more than half (107 of 208) of the outbreaks started between June-August with Cryptosporidium accounting for 63 of the outbreaks during that period. A little more than one-third were associated with a hotel or resort. The majority of hotel recreational water–associated illnesses was associated with hot tubs. Of the 53 outbreaks without a confirmed etiology, 20 were suspected to have a chemical related etiology (excess chlorine, altered pool chemistry).
In contrast, there were 140 untreated recreational water outbreaks reported between 2000 and 2014 from 35 states and Guam involving 4,958 cases and 2 deaths. The etiology was confirmed for 103 (74%) outbreaks including 5 that had multiple etiologies and 8 due to toxins or chemicals; 7 of 8 toxins were from harmful algal blooms. Enteric pathogens were the etiology in 84% of outbreaks including: Norovirus (n = 1459), Shigella (n = 362) Avian schistosomes (n = 345), Cryptosporidium (n = 314) and Escherichia coli (n = 155).There were 24 cases of Giardia. The two deaths were due to Naegleria fowleri. The top 2 settings for these outbreaks were public parks (36%) and beaches (32%) with most outbreaks (n = 117) being associated with a lake /pond venue. Most outbreaks began between June and August.
The major differences between the two types of recreational water–associated illnesses are their most common settings and etiologies. With that in mind, let us briefly review the most common etiology from each venue.
Treated Water Venue: Cryptosporidiosis
Cryptosporidium is an oocyst-forming protozoa that causes a self-limited watery, nonbloody diarrhea which usually resolves within 10-14 days. Most patients have associated abdominal cramps, fever, and vomiting although infected persons can be asymptomatic. Infection in the immunocompromised potentially can lead to profuse and prolonged diarrhea. Oocysts are excreted in the feces of infected hosts and as little as 10 can cause infection. They can survive extreme environmental conditions in water and soil for several months and even survive up to 7 days in a properly chlorinated pool. Transmission occurs between humans via contaminated food and water or from infected animals. Oocysts have been isolated in raw or unpasteurized milk and apple cider. Incidence is highest in children 1 through 4 years of age.
Diagnosis today is usually via molecular methods (nucleic acid amplification tests, aka NAATs), due to their high sensitivity and specificity and is the preferred method. These tests can identify multiple gastrointestinal tract pathogens with a single assay. Diagnosis by microscopy or fecal immunoassay antigens are still available. Treatment is supportive in most cases. If needed, a 3-day course of nitazoxanide can be prescribed. Immunocompromised patients should be managed in consultation with an infectious disease specialist.
Untreated Water Venue: Norovirus
Norovirus is a viral illness characterized by the abrupt onset of vomiting and/or watery diarrhea, usually associated with nausea and abdominal cramps. Symptoms persist 24-72 hours, however they may be prolonged in the immunocompromised and persons at the extremes of the age spectrum. Norovirus has replaced rotavirus as the major cause of medically attended gastroenteritis. While a major cause of recreational water–associated illnesses, high attack rates also occur in semi closed communities including cruise ships, childcare centers, and schools. Transmission is fecal-oral, vomitus oral, person to person, by ingestion of contaminated food and water or touching contaminated surfaces with subsequent touching of the mouth. Asymptomatic viral shedding may occur, especially in children. Prolonged shedding (> 6 mos.) has been reported in immunocompromised hosts.
Molecular diagnosis with stool is utilized most often. Treatment is supportive.
Take Home Message
When evaluating your patients for an acute gastrointestinal illness, consider water-related activities and their potential for being the source. Encourage patients not to ignore posted advisories on beaches, to not swim if they have diarrhea, not to swallow the water they swim in and to minimize water entering their nose while swimming in warm freshwater. If you start seeing several patients with similar symptoms and/or etiology, consider contacting your local or state health department. It could be the beginning of an outbreak.
Dr. Word is a pediatric infectious disease specialist and director of the Houston Travel Medicine Clinic. She has no relevant financial disclosures.
Suggested Readings
Graciaa DS et al. Outbreaks Associated with Untreated Recreational Water — United States, 2000–2014. MMWR Morb Mortal Wkly Rep. 2018 Jun 29;67(25):701-706. doi: 10.15585/mmwr.mm6725a1.
Hlavsa MC et al. Outbreaks Associated with Treated Recreational Water — United States, 2015–2019. MMWR Morb Mortal Wkly Rep. 2021;70:733–738. doi: 10.15585/mmwr.mm7020a1.
Kimberlin DW et al., eds. Red Book Report of the Committee on Infectious Diseases. 33rd ed. American Academy of Pediatrics. 2024. Cryptosporidiosis, p 338-40 and Norovirus, p 622-624.Waterborne Outbreaks Summary Reports. CDC. 2024 April 18.
Recently I was in Wyoming. As I rode down the Snake River, the guide pointed out tree trunks that had been chewed on by beavers. Days later I joined a local friend for a hike to Taggart Lake. Upon reaching the end of the trail as I began to cast my eyes on the magnificent scenery, I could not help but notice several children, including toddlers, playing in the fresh warm water. The next thing out of my friend’s mouth was “You know there is Giardia in there.” Little did she know, she and the guide had just helped me select a topic for ID Consult.
Giardia, aka ”beaver fever,” was discussed in detail in this column as part of the differential of a diarrheal illness by Christopher J. Harrison, MD. However, it is the perfect time of year to revisit other recreational water–associated illnesses.
Infections acquired during recreational water activity can lead to illnesses involving the gastrointestinal tract, central nervous system, respiratory tract, skin, eyes, and ears. Pathogens, chemicals, and toxins are transmitted by ingestion, contact with contaminated water or a sick individual or animal, and inhalation of aerosols. The National Waterborne Disease and Outbreak Surveillance System (WBDOSS) collects data on waterborne disease and outbreaks associated with recreational water, drinking water, and environmental and undetermined exposures to water. All reporting to the Centers for Disease Control and Prevention (CDC) is voluntary. However, mandatory pathogen reporting requirements can vary by state. Ideally, once an agency has completed the outbreak investigation, the definitive cause and source will be determined, and interventions to prevent future outbreaks implemented.
Treated Versus Untreated Water
One useful way to help narrow the etiology of a patient’s symptoms is to consider those illnesses associated with treated water venues (e.g., pools, hot tubs, water parks) versus untreated water venues (e.g., rivers, lakes, oceans). Parents may forget to offer that information since they may not perceive a connection between water exposure and the illness, especially if they traveled within the US.
In 2021, the CDC reported results of data submitted between 2015 and 2019 from treated recreational water facilities. Of the 208 outbreaks, most (96%) were associated with public pools, hot tubs, or water playgrounds. These outbreaks resulted in at least 3,646 cases of illness, 286 hospitalizations, and 13 deaths. Overall infectious etiologies were the primary cause of illness. Of the 155 outbreaks with a confirmed etiology, Cryptosporidium was the causative pathogen in 49% of the outbreaks and accounted for 84% (2,492) of cases, while Legionella caused 42% of outbreaks, accounted for 13% (354) of cases, and was responsible for all 13 deaths. Slightly more than half (107 of 208) of the outbreaks started between June-August with Cryptosporidium accounting for 63 of the outbreaks during that period. A little more than one-third were associated with a hotel or resort. The majority of hotel recreational water–associated illnesses was associated with hot tubs. Of the 53 outbreaks without a confirmed etiology, 20 were suspected to have a chemical related etiology (excess chlorine, altered pool chemistry).
In contrast, there were 140 untreated recreational water outbreaks reported between 2000 and 2014 from 35 states and Guam involving 4,958 cases and 2 deaths. The etiology was confirmed for 103 (74%) outbreaks including 5 that had multiple etiologies and 8 due to toxins or chemicals; 7 of 8 toxins were from harmful algal blooms. Enteric pathogens were the etiology in 84% of outbreaks including: Norovirus (n = 1459), Shigella (n = 362) Avian schistosomes (n = 345), Cryptosporidium (n = 314) and Escherichia coli (n = 155).There were 24 cases of Giardia. The two deaths were due to Naegleria fowleri. The top 2 settings for these outbreaks were public parks (36%) and beaches (32%) with most outbreaks (n = 117) being associated with a lake /pond venue. Most outbreaks began between June and August.
The major differences between the two types of recreational water–associated illnesses are their most common settings and etiologies. With that in mind, let us briefly review the most common etiology from each venue.
Treated Water Venue: Cryptosporidiosis
Cryptosporidium is an oocyst-forming protozoa that causes a self-limited watery, nonbloody diarrhea which usually resolves within 10-14 days. Most patients have associated abdominal cramps, fever, and vomiting although infected persons can be asymptomatic. Infection in the immunocompromised potentially can lead to profuse and prolonged diarrhea. Oocysts are excreted in the feces of infected hosts and as little as 10 can cause infection. They can survive extreme environmental conditions in water and soil for several months and even survive up to 7 days in a properly chlorinated pool. Transmission occurs between humans via contaminated food and water or from infected animals. Oocysts have been isolated in raw or unpasteurized milk and apple cider. Incidence is highest in children 1 through 4 years of age.
Diagnosis today is usually via molecular methods (nucleic acid amplification tests, aka NAATs), due to their high sensitivity and specificity and is the preferred method. These tests can identify multiple gastrointestinal tract pathogens with a single assay. Diagnosis by microscopy or fecal immunoassay antigens are still available. Treatment is supportive in most cases. If needed, a 3-day course of nitazoxanide can be prescribed. Immunocompromised patients should be managed in consultation with an infectious disease specialist.
Untreated Water Venue: Norovirus
Norovirus is a viral illness characterized by the abrupt onset of vomiting and/or watery diarrhea, usually associated with nausea and abdominal cramps. Symptoms persist 24-72 hours, however they may be prolonged in the immunocompromised and persons at the extremes of the age spectrum. Norovirus has replaced rotavirus as the major cause of medically attended gastroenteritis. While a major cause of recreational water–associated illnesses, high attack rates also occur in semi closed communities including cruise ships, childcare centers, and schools. Transmission is fecal-oral, vomitus oral, person to person, by ingestion of contaminated food and water or touching contaminated surfaces with subsequent touching of the mouth. Asymptomatic viral shedding may occur, especially in children. Prolonged shedding (> 6 mos.) has been reported in immunocompromised hosts.
Molecular diagnosis with stool is utilized most often. Treatment is supportive.
Take Home Message
When evaluating your patients for an acute gastrointestinal illness, consider water-related activities and their potential for being the source. Encourage patients not to ignore posted advisories on beaches, to not swim if they have diarrhea, not to swallow the water they swim in and to minimize water entering their nose while swimming in warm freshwater. If you start seeing several patients with similar symptoms and/or etiology, consider contacting your local or state health department. It could be the beginning of an outbreak.
Dr. Word is a pediatric infectious disease specialist and director of the Houston Travel Medicine Clinic. She has no relevant financial disclosures.
Suggested Readings
Graciaa DS et al. Outbreaks Associated with Untreated Recreational Water — United States, 2000–2014. MMWR Morb Mortal Wkly Rep. 2018 Jun 29;67(25):701-706. doi: 10.15585/mmwr.mm6725a1.
Hlavsa MC et al. Outbreaks Associated with Treated Recreational Water — United States, 2015–2019. MMWR Morb Mortal Wkly Rep. 2021;70:733–738. doi: 10.15585/mmwr.mm7020a1.
Kimberlin DW et al., eds. Red Book Report of the Committee on Infectious Diseases. 33rd ed. American Academy of Pediatrics. 2024. Cryptosporidiosis, p 338-40 and Norovirus, p 622-624.Waterborne Outbreaks Summary Reports. CDC. 2024 April 18.
Recently I was in Wyoming. As I rode down the Snake River, the guide pointed out tree trunks that had been chewed on by beavers. Days later I joined a local friend for a hike to Taggart Lake. Upon reaching the end of the trail as I began to cast my eyes on the magnificent scenery, I could not help but notice several children, including toddlers, playing in the fresh warm water. The next thing out of my friend’s mouth was “You know there is Giardia in there.” Little did she know, she and the guide had just helped me select a topic for ID Consult.
Giardia, aka ”beaver fever,” was discussed in detail in this column as part of the differential of a diarrheal illness by Christopher J. Harrison, MD. However, it is the perfect time of year to revisit other recreational water–associated illnesses.
Infections acquired during recreational water activity can lead to illnesses involving the gastrointestinal tract, central nervous system, respiratory tract, skin, eyes, and ears. Pathogens, chemicals, and toxins are transmitted by ingestion, contact with contaminated water or a sick individual or animal, and inhalation of aerosols. The National Waterborne Disease and Outbreak Surveillance System (WBDOSS) collects data on waterborne disease and outbreaks associated with recreational water, drinking water, and environmental and undetermined exposures to water. All reporting to the Centers for Disease Control and Prevention (CDC) is voluntary. However, mandatory pathogen reporting requirements can vary by state. Ideally, once an agency has completed the outbreak investigation, the definitive cause and source will be determined, and interventions to prevent future outbreaks implemented.
Treated Versus Untreated Water
One useful way to help narrow the etiology of a patient’s symptoms is to consider those illnesses associated with treated water venues (e.g., pools, hot tubs, water parks) versus untreated water venues (e.g., rivers, lakes, oceans). Parents may forget to offer that information since they may not perceive a connection between water exposure and the illness, especially if they traveled within the US.
In 2021, the CDC reported results of data submitted between 2015 and 2019 from treated recreational water facilities. Of the 208 outbreaks, most (96%) were associated with public pools, hot tubs, or water playgrounds. These outbreaks resulted in at least 3,646 cases of illness, 286 hospitalizations, and 13 deaths. Overall infectious etiologies were the primary cause of illness. Of the 155 outbreaks with a confirmed etiology, Cryptosporidium was the causative pathogen in 49% of the outbreaks and accounted for 84% (2,492) of cases, while Legionella caused 42% of outbreaks, accounted for 13% (354) of cases, and was responsible for all 13 deaths. Slightly more than half (107 of 208) of the outbreaks started between June-August with Cryptosporidium accounting for 63 of the outbreaks during that period. A little more than one-third were associated with a hotel or resort. The majority of hotel recreational water–associated illnesses was associated with hot tubs. Of the 53 outbreaks without a confirmed etiology, 20 were suspected to have a chemical related etiology (excess chlorine, altered pool chemistry).
In contrast, there were 140 untreated recreational water outbreaks reported between 2000 and 2014 from 35 states and Guam involving 4,958 cases and 2 deaths. The etiology was confirmed for 103 (74%) outbreaks including 5 that had multiple etiologies and 8 due to toxins or chemicals; 7 of 8 toxins were from harmful algal blooms. Enteric pathogens were the etiology in 84% of outbreaks including: Norovirus (n = 1459), Shigella (n = 362) Avian schistosomes (n = 345), Cryptosporidium (n = 314) and Escherichia coli (n = 155).There were 24 cases of Giardia. The two deaths were due to Naegleria fowleri. The top 2 settings for these outbreaks were public parks (36%) and beaches (32%) with most outbreaks (n = 117) being associated with a lake /pond venue. Most outbreaks began between June and August.
The major differences between the two types of recreational water–associated illnesses are their most common settings and etiologies. With that in mind, let us briefly review the most common etiology from each venue.
Treated Water Venue: Cryptosporidiosis
Cryptosporidium is an oocyst-forming protozoa that causes a self-limited watery, nonbloody diarrhea which usually resolves within 10-14 days. Most patients have associated abdominal cramps, fever, and vomiting although infected persons can be asymptomatic. Infection in the immunocompromised potentially can lead to profuse and prolonged diarrhea. Oocysts are excreted in the feces of infected hosts and as little as 10 can cause infection. They can survive extreme environmental conditions in water and soil for several months and even survive up to 7 days in a properly chlorinated pool. Transmission occurs between humans via contaminated food and water or from infected animals. Oocysts have been isolated in raw or unpasteurized milk and apple cider. Incidence is highest in children 1 through 4 years of age.
Diagnosis today is usually via molecular methods (nucleic acid amplification tests, aka NAATs), due to their high sensitivity and specificity and is the preferred method. These tests can identify multiple gastrointestinal tract pathogens with a single assay. Diagnosis by microscopy or fecal immunoassay antigens are still available. Treatment is supportive in most cases. If needed, a 3-day course of nitazoxanide can be prescribed. Immunocompromised patients should be managed in consultation with an infectious disease specialist.
Untreated Water Venue: Norovirus
Norovirus is a viral illness characterized by the abrupt onset of vomiting and/or watery diarrhea, usually associated with nausea and abdominal cramps. Symptoms persist 24-72 hours, however they may be prolonged in the immunocompromised and persons at the extremes of the age spectrum. Norovirus has replaced rotavirus as the major cause of medically attended gastroenteritis. While a major cause of recreational water–associated illnesses, high attack rates also occur in semi closed communities including cruise ships, childcare centers, and schools. Transmission is fecal-oral, vomitus oral, person to person, by ingestion of contaminated food and water or touching contaminated surfaces with subsequent touching of the mouth. Asymptomatic viral shedding may occur, especially in children. Prolonged shedding (> 6 mos.) has been reported in immunocompromised hosts.
Molecular diagnosis with stool is utilized most often. Treatment is supportive.
Take Home Message
When evaluating your patients for an acute gastrointestinal illness, consider water-related activities and their potential for being the source. Encourage patients not to ignore posted advisories on beaches, to not swim if they have diarrhea, not to swallow the water they swim in and to minimize water entering their nose while swimming in warm freshwater. If you start seeing several patients with similar symptoms and/or etiology, consider contacting your local or state health department. It could be the beginning of an outbreak.
Dr. Word is a pediatric infectious disease specialist and director of the Houston Travel Medicine Clinic. She has no relevant financial disclosures.
Suggested Readings
Graciaa DS et al. Outbreaks Associated with Untreated Recreational Water — United States, 2000–2014. MMWR Morb Mortal Wkly Rep. 2018 Jun 29;67(25):701-706. doi: 10.15585/mmwr.mm6725a1.
Hlavsa MC et al. Outbreaks Associated with Treated Recreational Water — United States, 2015–2019. MMWR Morb Mortal Wkly Rep. 2021;70:733–738. doi: 10.15585/mmwr.mm7020a1.
Kimberlin DW et al., eds. Red Book Report of the Committee on Infectious Diseases. 33rd ed. American Academy of Pediatrics. 2024. Cryptosporidiosis, p 338-40 and Norovirus, p 622-624.Waterborne Outbreaks Summary Reports. CDC. 2024 April 18.
Three AI Technologies Poised to Transform IBD Care
By now, it is widely accepted that artificial intelligence (AI) will reshape contemporary medicine. The question is simply when this hypothetical will become an everyday reality. For gastroenterologists involved in the management of inflammatory bowel disease (IBD), the waiting period may be ending.
AI “is the next step in clinical care,” Jacob Kurowski, MD, medical director of pediatric inflammatory bowel diseases at Cleveland Clinic Children’s in Cleveland, Ohio, said in an interview.
“In terms of technological breakthroughs, this is like going from some of the more rigid endoscopies to high-definition and white-light endoscopy or the upgrade from paper charts to the electronic medical record (EMR), but instead of making your life more difficult, it will actually make it a lot easier,” said Dr. Kurowski, who has researched and lectured on AI applications in IBD.
Simply put, “AI is when algorithms use data to simulate human intelligence,” said Seth A. Gross, MD, clinical chief in the Division of Gastroenterology and Hepatology at NYU Langone Health and a professor at NYU Grossman School of Medicine, New York City, who has studied the use of AI for polyp detection.
IBD is ideally served by AI because to diagnose and manage the disease, gastroenterologists must gather, analyze, and weave together a particularly heterogeneous mix of information — from blood tests and imaging to patient-reported symptoms and family history — often stored in different places or formats. And to ensure patient participation in their care plans, gastroenterologists also need to help them understand this complex disease.
Because of their potential to aid gastroenterologists with these tasks, three core AI technologies — some of which already have commercial applications — are likely to become foundational in clinical practice in the coming years: Image analysis and processing, natural language processing (NLP), and generative AI, according to experts familiar with AI research in IBD.
Image Analysis and Processing
One of AI’s most promising applications for IBD care is in medical image and video processing and analysis. Emerging AI tools convert the essential elements of medical images into mathematical features, which they then use to train and refine themselves. The ultimate goal is to provide fast, accurate, and granular results without inter- and intraobserver variation and human potential for bias.
Today’s techniques don’t quantify IBD very well because they’re qualitative and subjective, Ryan Stidham, MD, associate professor of gastroenterology and computational medicine and bioinformatics at the University of Michigan, Ann Arbor, and a leading researcher in AI applications in IBD, said in an interview.
“Even standardized scoring systems used by the US Food and Drug Administration and the European Medicines Agency to assess disease severity and measure therapeutic response are still pretty crude systems — not because of the gastroenterologists interpreting them, who are smart — but because it’s a very difficult task to quantify these features on imaging,” he said.
Another appeal of the technology in IBD care is that it has capabilities, including complex pattern recognition, beyond those of physicians.
“What we can’t do is things such as tediously measure every single ulcer, count how many different disease features are seen throughout the entire colon, where they are and how they’re spatially correlated, or what are their color patterns,” Dr. Stidham said. “We don’t have the time, feasibility, or, frankly, the energy and cognitive attention span to be able to do that for one patient, let alone every patient.”
AI-based disease activity assessments have yielded promising results across multiple imaging systems. The technology has advanced rapidly in the last decade and is beginning to demonstrate the ability to replicate near perfectly the endoscopic interpretation of human experts.
In separate studies, AI models had high levels of agreement with experienced reviewers on Mayo endoscopic scores and ulcerative colitis endoscopic index of severity scores, and they reduced the review time of pan-enteric capsule endoscopy among patients with suspected Crohn’s disease from a range of 26-39 minutes to 3.2 minutes per patient.
A report from the PiCaSSO study showed that an AI-guided system could distinguish remission/inflammation using histologic assessments of ulcerative colitis biopsies with an accuracy rate close to that of human reviewers.
In Crohn’s disease, research indicates that cross-sectional enterography imaging could potentially be made more precise with AI, providing hope that radiologists will be freed from this time-consuming task.
“As of today, several commercial companies are producing tools that can take an endoscopic image or a full-motion video and more or less give you a standardized score that would be akin to what an expert would give you on review of a colonoscopy,” Dr. Stidham said.
This is not to say there isn’t room for improvement.
“There’s probably still a bit of work to do when looking for the difference between inflammation and adenoma,” said Dr. Kurowski. “But it’s coming sooner rather than later.”
NLP
NLP — a subset of applied machine learning that essentially teaches computers to read — enables automated systems to go through existing digital information, including text like clinical notes, and extract, interpret, and quantify it in a fraction of the time required by clinicians.
One area this type of AI can help in IBD care is by automating EMR chart reviews. Currently, clinicians often must conduct time-consuming reviews to gather and read all the information they need to manage the care of patients with the disease.
Evidence suggests that this task takes a considerable toll. In a 2023 report, gastroenterologists cited hassles with EMRs and too much time spent at work among the main contributors to burnout.
NLP used on entire EMR systems could be used to improve overall IBD care.
“We have 30-40 years of EMRs available at our fingertips. These reams of clinical data are just sitting out there and provide a longitudinal narrative of what’s happened to every patient and the changes in their treatment course,” Dr. Stidham said.
Results from several studies involving NLP are promising. Automated chart review models enhanced with NLP have been shown to be better at identifying patients with Crohn’s disease or ulcerative colitis and at detecting and inferring the activity status of extraintestinal manifestations of IBD than models using only medical codes.
Additional examples of NLP applications that could save physicians’ time and energy in everyday practice include automatically generating clinical notes, summarizing patient interactions, and flagging important information for follow-up.
For time-strapped, overburdened clinicians, NLP may even restore the core aspects of care that first attracted them to the profession, Dr. Kurowski noted.
“It might actually be the next best step to get physicians away from the computer and back to being face to face with the patient, which I think is one of the biggest complaints of everybody in the modern EMR world in that we live in,” he said.
Generative AI
Patient education likely will be reshaped by emerging AI applications that can generate digital materials in a conversational tone. These generative AI tools, including advanced chatbots, are powered by large-language models, a type of machine learning that is trained on vast amounts of text data to understand and generate natural language.
This technology will be familiar to anyone who has interacted with OpenAI’s ChatGPT, which after getting a “prompt” — a question or request — from a user provides a conversational-sounding reply.
“Chatbots have been around for a while, but what’s new is that they now can understand and generate language that’s far more realistic,” Dr. Stidham said. “Plus, they can be trained on clinical scenarios so that it can put individual patients into context when having that digital, AI-powered conversation.”
In IBD, chatbots are being used to educate patients, for example, by answering their questions before they undergo colonoscopy. In a recent analysis, the best performer of three chatbots answered 91.4% of common precolonoscopy questions accurately. Other research determined that chatbot responses to colonoscopy questions were comparable with those provided by gastroenterologists.
Dr. Stidham and colleagues have seen the technology’s potential firsthand at the University of Michigan, where they’ve successfully deployed commercial chatbots to interact with patients prior to colonoscopy.
“It’s a force multiplier, in that these chatbots are essentially allowing us to expand our staff without bringing in more humans,” he said.
Despite fears that AI will threaten healthcare jobs, that isn’t an issue in today’s environment where “we can’t hire enough help,” Dr. Stidham said.
However, this technology isn’t fully ready for large-scale implementation, he added.
“ChatGPT may be ready for general medicine, but it’s not taking care of my gastroenterology patients (yet),” Dr. Stidham and coauthors wrote in a recent article. Among their concerns was the inability of ChatGPT versions 3 and 4 to pass the American College of Gastroenterology’s self-assessment test.
Preparing for the Future of AI
One proactive step is engaging with professional societies and initiatives aimed at guiding AI implementation.
One such initiative is the American Society for Gastrointestinal Endoscopy’s AI Task Force, which is led by Dr. Gross.
“The AI Task Force, which has recently evolved into an AI institute, believes in responsible AI,” Dr. Gross said. “The group highlights the importance of transparency and partnership with all key stakeholders to ensure that AI development and integration deliver improved care to GI patients.”
Dr. Kurowski, for one, believes that as AI gets even better at quantifying patient data, it will usher in the long-sought era of personalized care.
“I think it actually moves us into the realm of talking about a cure for certain people with IBD, for certain subtypes of the disease,” he said. “AI is going to be much more your friend and less of your foe than anything else you’ve seen in the modern era of medicine.”
A version of this article first appeared on Medscape.com.
By now, it is widely accepted that artificial intelligence (AI) will reshape contemporary medicine. The question is simply when this hypothetical will become an everyday reality. For gastroenterologists involved in the management of inflammatory bowel disease (IBD), the waiting period may be ending.
AI “is the next step in clinical care,” Jacob Kurowski, MD, medical director of pediatric inflammatory bowel diseases at Cleveland Clinic Children’s in Cleveland, Ohio, said in an interview.
“In terms of technological breakthroughs, this is like going from some of the more rigid endoscopies to high-definition and white-light endoscopy or the upgrade from paper charts to the electronic medical record (EMR), but instead of making your life more difficult, it will actually make it a lot easier,” said Dr. Kurowski, who has researched and lectured on AI applications in IBD.
Simply put, “AI is when algorithms use data to simulate human intelligence,” said Seth A. Gross, MD, clinical chief in the Division of Gastroenterology and Hepatology at NYU Langone Health and a professor at NYU Grossman School of Medicine, New York City, who has studied the use of AI for polyp detection.
IBD is ideally served by AI because to diagnose and manage the disease, gastroenterologists must gather, analyze, and weave together a particularly heterogeneous mix of information — from blood tests and imaging to patient-reported symptoms and family history — often stored in different places or formats. And to ensure patient participation in their care plans, gastroenterologists also need to help them understand this complex disease.
Because of their potential to aid gastroenterologists with these tasks, three core AI technologies — some of which already have commercial applications — are likely to become foundational in clinical practice in the coming years: Image analysis and processing, natural language processing (NLP), and generative AI, according to experts familiar with AI research in IBD.
Image Analysis and Processing
One of AI’s most promising applications for IBD care is in medical image and video processing and analysis. Emerging AI tools convert the essential elements of medical images into mathematical features, which they then use to train and refine themselves. The ultimate goal is to provide fast, accurate, and granular results without inter- and intraobserver variation and human potential for bias.
Today’s techniques don’t quantify IBD very well because they’re qualitative and subjective, Ryan Stidham, MD, associate professor of gastroenterology and computational medicine and bioinformatics at the University of Michigan, Ann Arbor, and a leading researcher in AI applications in IBD, said in an interview.
“Even standardized scoring systems used by the US Food and Drug Administration and the European Medicines Agency to assess disease severity and measure therapeutic response are still pretty crude systems — not because of the gastroenterologists interpreting them, who are smart — but because it’s a very difficult task to quantify these features on imaging,” he said.
Another appeal of the technology in IBD care is that it has capabilities, including complex pattern recognition, beyond those of physicians.
“What we can’t do is things such as tediously measure every single ulcer, count how many different disease features are seen throughout the entire colon, where they are and how they’re spatially correlated, or what are their color patterns,” Dr. Stidham said. “We don’t have the time, feasibility, or, frankly, the energy and cognitive attention span to be able to do that for one patient, let alone every patient.”
AI-based disease activity assessments have yielded promising results across multiple imaging systems. The technology has advanced rapidly in the last decade and is beginning to demonstrate the ability to replicate near perfectly the endoscopic interpretation of human experts.
In separate studies, AI models had high levels of agreement with experienced reviewers on Mayo endoscopic scores and ulcerative colitis endoscopic index of severity scores, and they reduced the review time of pan-enteric capsule endoscopy among patients with suspected Crohn’s disease from a range of 26-39 minutes to 3.2 minutes per patient.
A report from the PiCaSSO study showed that an AI-guided system could distinguish remission/inflammation using histologic assessments of ulcerative colitis biopsies with an accuracy rate close to that of human reviewers.
In Crohn’s disease, research indicates that cross-sectional enterography imaging could potentially be made more precise with AI, providing hope that radiologists will be freed from this time-consuming task.
“As of today, several commercial companies are producing tools that can take an endoscopic image or a full-motion video and more or less give you a standardized score that would be akin to what an expert would give you on review of a colonoscopy,” Dr. Stidham said.
This is not to say there isn’t room for improvement.
“There’s probably still a bit of work to do when looking for the difference between inflammation and adenoma,” said Dr. Kurowski. “But it’s coming sooner rather than later.”
NLP
NLP — a subset of applied machine learning that essentially teaches computers to read — enables automated systems to go through existing digital information, including text like clinical notes, and extract, interpret, and quantify it in a fraction of the time required by clinicians.
One area this type of AI can help in IBD care is by automating EMR chart reviews. Currently, clinicians often must conduct time-consuming reviews to gather and read all the information they need to manage the care of patients with the disease.
Evidence suggests that this task takes a considerable toll. In a 2023 report, gastroenterologists cited hassles with EMRs and too much time spent at work among the main contributors to burnout.
NLP used on entire EMR systems could be used to improve overall IBD care.
“We have 30-40 years of EMRs available at our fingertips. These reams of clinical data are just sitting out there and provide a longitudinal narrative of what’s happened to every patient and the changes in their treatment course,” Dr. Stidham said.
Results from several studies involving NLP are promising. Automated chart review models enhanced with NLP have been shown to be better at identifying patients with Crohn’s disease or ulcerative colitis and at detecting and inferring the activity status of extraintestinal manifestations of IBD than models using only medical codes.
Additional examples of NLP applications that could save physicians’ time and energy in everyday practice include automatically generating clinical notes, summarizing patient interactions, and flagging important information for follow-up.
For time-strapped, overburdened clinicians, NLP may even restore the core aspects of care that first attracted them to the profession, Dr. Kurowski noted.
“It might actually be the next best step to get physicians away from the computer and back to being face to face with the patient, which I think is one of the biggest complaints of everybody in the modern EMR world in that we live in,” he said.
Generative AI
Patient education likely will be reshaped by emerging AI applications that can generate digital materials in a conversational tone. These generative AI tools, including advanced chatbots, are powered by large-language models, a type of machine learning that is trained on vast amounts of text data to understand and generate natural language.
This technology will be familiar to anyone who has interacted with OpenAI’s ChatGPT, which after getting a “prompt” — a question or request — from a user provides a conversational-sounding reply.
“Chatbots have been around for a while, but what’s new is that they now can understand and generate language that’s far more realistic,” Dr. Stidham said. “Plus, they can be trained on clinical scenarios so that it can put individual patients into context when having that digital, AI-powered conversation.”
In IBD, chatbots are being used to educate patients, for example, by answering their questions before they undergo colonoscopy. In a recent analysis, the best performer of three chatbots answered 91.4% of common precolonoscopy questions accurately. Other research determined that chatbot responses to colonoscopy questions were comparable with those provided by gastroenterologists.
Dr. Stidham and colleagues have seen the technology’s potential firsthand at the University of Michigan, where they’ve successfully deployed commercial chatbots to interact with patients prior to colonoscopy.
“It’s a force multiplier, in that these chatbots are essentially allowing us to expand our staff without bringing in more humans,” he said.
Despite fears that AI will threaten healthcare jobs, that isn’t an issue in today’s environment where “we can’t hire enough help,” Dr. Stidham said.
However, this technology isn’t fully ready for large-scale implementation, he added.
“ChatGPT may be ready for general medicine, but it’s not taking care of my gastroenterology patients (yet),” Dr. Stidham and coauthors wrote in a recent article. Among their concerns was the inability of ChatGPT versions 3 and 4 to pass the American College of Gastroenterology’s self-assessment test.
Preparing for the Future of AI
One proactive step is engaging with professional societies and initiatives aimed at guiding AI implementation.
One such initiative is the American Society for Gastrointestinal Endoscopy’s AI Task Force, which is led by Dr. Gross.
“The AI Task Force, which has recently evolved into an AI institute, believes in responsible AI,” Dr. Gross said. “The group highlights the importance of transparency and partnership with all key stakeholders to ensure that AI development and integration deliver improved care to GI patients.”
Dr. Kurowski, for one, believes that as AI gets even better at quantifying patient data, it will usher in the long-sought era of personalized care.
“I think it actually moves us into the realm of talking about a cure for certain people with IBD, for certain subtypes of the disease,” he said. “AI is going to be much more your friend and less of your foe than anything else you’ve seen in the modern era of medicine.”
A version of this article first appeared on Medscape.com.
By now, it is widely accepted that artificial intelligence (AI) will reshape contemporary medicine. The question is simply when this hypothetical will become an everyday reality. For gastroenterologists involved in the management of inflammatory bowel disease (IBD), the waiting period may be ending.
AI “is the next step in clinical care,” Jacob Kurowski, MD, medical director of pediatric inflammatory bowel diseases at Cleveland Clinic Children’s in Cleveland, Ohio, said in an interview.
“In terms of technological breakthroughs, this is like going from some of the more rigid endoscopies to high-definition and white-light endoscopy or the upgrade from paper charts to the electronic medical record (EMR), but instead of making your life more difficult, it will actually make it a lot easier,” said Dr. Kurowski, who has researched and lectured on AI applications in IBD.
Simply put, “AI is when algorithms use data to simulate human intelligence,” said Seth A. Gross, MD, clinical chief in the Division of Gastroenterology and Hepatology at NYU Langone Health and a professor at NYU Grossman School of Medicine, New York City, who has studied the use of AI for polyp detection.
IBD is ideally served by AI because to diagnose and manage the disease, gastroenterologists must gather, analyze, and weave together a particularly heterogeneous mix of information — from blood tests and imaging to patient-reported symptoms and family history — often stored in different places or formats. And to ensure patient participation in their care plans, gastroenterologists also need to help them understand this complex disease.
Because of their potential to aid gastroenterologists with these tasks, three core AI technologies — some of which already have commercial applications — are likely to become foundational in clinical practice in the coming years: Image analysis and processing, natural language processing (NLP), and generative AI, according to experts familiar with AI research in IBD.
Image Analysis and Processing
One of AI’s most promising applications for IBD care is in medical image and video processing and analysis. Emerging AI tools convert the essential elements of medical images into mathematical features, which they then use to train and refine themselves. The ultimate goal is to provide fast, accurate, and granular results without inter- and intraobserver variation and human potential for bias.
Today’s techniques don’t quantify IBD very well because they’re qualitative and subjective, Ryan Stidham, MD, associate professor of gastroenterology and computational medicine and bioinformatics at the University of Michigan, Ann Arbor, and a leading researcher in AI applications in IBD, said in an interview.
“Even standardized scoring systems used by the US Food and Drug Administration and the European Medicines Agency to assess disease severity and measure therapeutic response are still pretty crude systems — not because of the gastroenterologists interpreting them, who are smart — but because it’s a very difficult task to quantify these features on imaging,” he said.
Another appeal of the technology in IBD care is that it has capabilities, including complex pattern recognition, beyond those of physicians.
“What we can’t do is things such as tediously measure every single ulcer, count how many different disease features are seen throughout the entire colon, where they are and how they’re spatially correlated, or what are their color patterns,” Dr. Stidham said. “We don’t have the time, feasibility, or, frankly, the energy and cognitive attention span to be able to do that for one patient, let alone every patient.”
AI-based disease activity assessments have yielded promising results across multiple imaging systems. The technology has advanced rapidly in the last decade and is beginning to demonstrate the ability to replicate near perfectly the endoscopic interpretation of human experts.
In separate studies, AI models had high levels of agreement with experienced reviewers on Mayo endoscopic scores and ulcerative colitis endoscopic index of severity scores, and they reduced the review time of pan-enteric capsule endoscopy among patients with suspected Crohn’s disease from a range of 26-39 minutes to 3.2 minutes per patient.
A report from the PiCaSSO study showed that an AI-guided system could distinguish remission/inflammation using histologic assessments of ulcerative colitis biopsies with an accuracy rate close to that of human reviewers.
In Crohn’s disease, research indicates that cross-sectional enterography imaging could potentially be made more precise with AI, providing hope that radiologists will be freed from this time-consuming task.
“As of today, several commercial companies are producing tools that can take an endoscopic image or a full-motion video and more or less give you a standardized score that would be akin to what an expert would give you on review of a colonoscopy,” Dr. Stidham said.
This is not to say there isn’t room for improvement.
“There’s probably still a bit of work to do when looking for the difference between inflammation and adenoma,” said Dr. Kurowski. “But it’s coming sooner rather than later.”
NLP
NLP — a subset of applied machine learning that essentially teaches computers to read — enables automated systems to go through existing digital information, including text like clinical notes, and extract, interpret, and quantify it in a fraction of the time required by clinicians.
One area this type of AI can help in IBD care is by automating EMR chart reviews. Currently, clinicians often must conduct time-consuming reviews to gather and read all the information they need to manage the care of patients with the disease.
Evidence suggests that this task takes a considerable toll. In a 2023 report, gastroenterologists cited hassles with EMRs and too much time spent at work among the main contributors to burnout.
NLP used on entire EMR systems could be used to improve overall IBD care.
“We have 30-40 years of EMRs available at our fingertips. These reams of clinical data are just sitting out there and provide a longitudinal narrative of what’s happened to every patient and the changes in their treatment course,” Dr. Stidham said.
Results from several studies involving NLP are promising. Automated chart review models enhanced with NLP have been shown to be better at identifying patients with Crohn’s disease or ulcerative colitis and at detecting and inferring the activity status of extraintestinal manifestations of IBD than models using only medical codes.
Additional examples of NLP applications that could save physicians’ time and energy in everyday practice include automatically generating clinical notes, summarizing patient interactions, and flagging important information for follow-up.
For time-strapped, overburdened clinicians, NLP may even restore the core aspects of care that first attracted them to the profession, Dr. Kurowski noted.
“It might actually be the next best step to get physicians away from the computer and back to being face to face with the patient, which I think is one of the biggest complaints of everybody in the modern EMR world in that we live in,” he said.
Generative AI
Patient education likely will be reshaped by emerging AI applications that can generate digital materials in a conversational tone. These generative AI tools, including advanced chatbots, are powered by large-language models, a type of machine learning that is trained on vast amounts of text data to understand and generate natural language.
This technology will be familiar to anyone who has interacted with OpenAI’s ChatGPT, which after getting a “prompt” — a question or request — from a user provides a conversational-sounding reply.
“Chatbots have been around for a while, but what’s new is that they now can understand and generate language that’s far more realistic,” Dr. Stidham said. “Plus, they can be trained on clinical scenarios so that it can put individual patients into context when having that digital, AI-powered conversation.”
In IBD, chatbots are being used to educate patients, for example, by answering their questions before they undergo colonoscopy. In a recent analysis, the best performer of three chatbots answered 91.4% of common precolonoscopy questions accurately. Other research determined that chatbot responses to colonoscopy questions were comparable with those provided by gastroenterologists.
Dr. Stidham and colleagues have seen the technology’s potential firsthand at the University of Michigan, where they’ve successfully deployed commercial chatbots to interact with patients prior to colonoscopy.
“It’s a force multiplier, in that these chatbots are essentially allowing us to expand our staff without bringing in more humans,” he said.
Despite fears that AI will threaten healthcare jobs, that isn’t an issue in today’s environment where “we can’t hire enough help,” Dr. Stidham said.
However, this technology isn’t fully ready for large-scale implementation, he added.
“ChatGPT may be ready for general medicine, but it’s not taking care of my gastroenterology patients (yet),” Dr. Stidham and coauthors wrote in a recent article. Among their concerns was the inability of ChatGPT versions 3 and 4 to pass the American College of Gastroenterology’s self-assessment test.
Preparing for the Future of AI
One proactive step is engaging with professional societies and initiatives aimed at guiding AI implementation.
One such initiative is the American Society for Gastrointestinal Endoscopy’s AI Task Force, which is led by Dr. Gross.
“The AI Task Force, which has recently evolved into an AI institute, believes in responsible AI,” Dr. Gross said. “The group highlights the importance of transparency and partnership with all key stakeholders to ensure that AI development and integration deliver improved care to GI patients.”
Dr. Kurowski, for one, believes that as AI gets even better at quantifying patient data, it will usher in the long-sought era of personalized care.
“I think it actually moves us into the realm of talking about a cure for certain people with IBD, for certain subtypes of the disease,” he said. “AI is going to be much more your friend and less of your foe than anything else you’ve seen in the modern era of medicine.”
A version of this article first appeared on Medscape.com.
A Fitbit for the Gut May Aid in Detection of GI Disorders
, new research revealed.
Traditional methods for locating, measuring, and monitoring gasses associated with such disorders as irritable bowel syndrome, inflammatory bowel disease, food intolerances, and gastric cancers are often invasive and typically require hospital-based procedures.
This experimental system, developed by a team at the University of Southern California’s Viterbi School of Engineering, Los Angeles, represents “a significant step forward in ingestible technology,” according to principal investigator Yasser Khan, PhD, and colleagues.
The novel ingestible could someday serve as a “Fitbit for the gut” and aid in early disease detection, Dr. Khan said.
The team’s work was published online in Cell Reports Physical Science.
Real-Time Tracking
While wearables with sensors are a promising way to monitor body functions, the ability to track ingestible devices once they are inside the body has been limited.
To solve this problem, the researchers developed a system that includes a wearable coil (placed on a T-shirt for this study) and an ingestible pill with a 3D-printed shell made from a biocompatible resin.
The pill is equipped with a gas-permeable membrane, an optical gas-sensing membrane, an optical filter, and a printed circuit board that houses its electronic components. The gas sensor can detect oxygen in the 0%-20% range and ammonia in the 0-100 ppm concentration range.
The researchers developed various algorithms and conducted experiments to test the system’s ability to decode the pill’s location in a human gut model and in an ex vivo animal intestine. To simulate the in vivo environment, they tested the system in an agar phantom solution, which enabled them to track the pill’s movement.
So, how does it work?
Simply put, once the patient ingests the pill, a phone application connects to the pill over Bluetooth and sends a command to initiate the target gas and magnetic field measurements.
Next, the wearable coil generates a magnetic field, which is captured by a magnetic sensor on the pill, enabling the pill’s location to be decoded in real time.
Then, using optical absorption spectroscopy with a light-emitting diode, a photodiode, and the pill’s gas-sensing membrane, gasses such as oxygen and ammonia can be measured and mapped in 3D while the pill is in the gut.
Notably, elevated levels of ammonia, which is produced by Helicobacter pylori, could serve as a signal for peptic ulcers, gastric cancer, or irritable bowel syndrome, Dr. Khan said.
“The ingestible system with the wearable coil is both compact and practical, offering a clear path for application in human health,” he said. The work also could “empower patients to conveniently assess their GI gas profiles from home and manage their digestive health.”
The next step is to test the wearable in animal models to assess, among other factors, whether the gas-sensing system “will operate properly in biological tissue and whether clogging or coating with GI liquids and food particles causes sensor fouling and affects the measurement accuracy,” Dr. Khan and colleagues noted.
Dr. Khan acknowledges support from USC Viterbi School of Engineering. A provisional patent application has been filed based on the technology described in this work. During the preparation of this work, the authors used ChatGPT to check for grammatical errors in the writing. After using this tool, the authors reviewed and edited the content as needed and take full responsibility for the content of the publication.
A version of this article first appeared on Medscape.com.
, new research revealed.
Traditional methods for locating, measuring, and monitoring gasses associated with such disorders as irritable bowel syndrome, inflammatory bowel disease, food intolerances, and gastric cancers are often invasive and typically require hospital-based procedures.
This experimental system, developed by a team at the University of Southern California’s Viterbi School of Engineering, Los Angeles, represents “a significant step forward in ingestible technology,” according to principal investigator Yasser Khan, PhD, and colleagues.
The novel ingestible could someday serve as a “Fitbit for the gut” and aid in early disease detection, Dr. Khan said.
The team’s work was published online in Cell Reports Physical Science.
Real-Time Tracking
While wearables with sensors are a promising way to monitor body functions, the ability to track ingestible devices once they are inside the body has been limited.
To solve this problem, the researchers developed a system that includes a wearable coil (placed on a T-shirt for this study) and an ingestible pill with a 3D-printed shell made from a biocompatible resin.
The pill is equipped with a gas-permeable membrane, an optical gas-sensing membrane, an optical filter, and a printed circuit board that houses its electronic components. The gas sensor can detect oxygen in the 0%-20% range and ammonia in the 0-100 ppm concentration range.
The researchers developed various algorithms and conducted experiments to test the system’s ability to decode the pill’s location in a human gut model and in an ex vivo animal intestine. To simulate the in vivo environment, they tested the system in an agar phantom solution, which enabled them to track the pill’s movement.
So, how does it work?
Simply put, once the patient ingests the pill, a phone application connects to the pill over Bluetooth and sends a command to initiate the target gas and magnetic field measurements.
Next, the wearable coil generates a magnetic field, which is captured by a magnetic sensor on the pill, enabling the pill’s location to be decoded in real time.
Then, using optical absorption spectroscopy with a light-emitting diode, a photodiode, and the pill’s gas-sensing membrane, gasses such as oxygen and ammonia can be measured and mapped in 3D while the pill is in the gut.
Notably, elevated levels of ammonia, which is produced by Helicobacter pylori, could serve as a signal for peptic ulcers, gastric cancer, or irritable bowel syndrome, Dr. Khan said.
“The ingestible system with the wearable coil is both compact and practical, offering a clear path for application in human health,” he said. The work also could “empower patients to conveniently assess their GI gas profiles from home and manage their digestive health.”
The next step is to test the wearable in animal models to assess, among other factors, whether the gas-sensing system “will operate properly in biological tissue and whether clogging or coating with GI liquids and food particles causes sensor fouling and affects the measurement accuracy,” Dr. Khan and colleagues noted.
Dr. Khan acknowledges support from USC Viterbi School of Engineering. A provisional patent application has been filed based on the technology described in this work. During the preparation of this work, the authors used ChatGPT to check for grammatical errors in the writing. After using this tool, the authors reviewed and edited the content as needed and take full responsibility for the content of the publication.
A version of this article first appeared on Medscape.com.
, new research revealed.
Traditional methods for locating, measuring, and monitoring gasses associated with such disorders as irritable bowel syndrome, inflammatory bowel disease, food intolerances, and gastric cancers are often invasive and typically require hospital-based procedures.
This experimental system, developed by a team at the University of Southern California’s Viterbi School of Engineering, Los Angeles, represents “a significant step forward in ingestible technology,” according to principal investigator Yasser Khan, PhD, and colleagues.
The novel ingestible could someday serve as a “Fitbit for the gut” and aid in early disease detection, Dr. Khan said.
The team’s work was published online in Cell Reports Physical Science.
Real-Time Tracking
While wearables with sensors are a promising way to monitor body functions, the ability to track ingestible devices once they are inside the body has been limited.
To solve this problem, the researchers developed a system that includes a wearable coil (placed on a T-shirt for this study) and an ingestible pill with a 3D-printed shell made from a biocompatible resin.
The pill is equipped with a gas-permeable membrane, an optical gas-sensing membrane, an optical filter, and a printed circuit board that houses its electronic components. The gas sensor can detect oxygen in the 0%-20% range and ammonia in the 0-100 ppm concentration range.
The researchers developed various algorithms and conducted experiments to test the system’s ability to decode the pill’s location in a human gut model and in an ex vivo animal intestine. To simulate the in vivo environment, they tested the system in an agar phantom solution, which enabled them to track the pill’s movement.
So, how does it work?
Simply put, once the patient ingests the pill, a phone application connects to the pill over Bluetooth and sends a command to initiate the target gas and magnetic field measurements.
Next, the wearable coil generates a magnetic field, which is captured by a magnetic sensor on the pill, enabling the pill’s location to be decoded in real time.
Then, using optical absorption spectroscopy with a light-emitting diode, a photodiode, and the pill’s gas-sensing membrane, gasses such as oxygen and ammonia can be measured and mapped in 3D while the pill is in the gut.
Notably, elevated levels of ammonia, which is produced by Helicobacter pylori, could serve as a signal for peptic ulcers, gastric cancer, or irritable bowel syndrome, Dr. Khan said.
“The ingestible system with the wearable coil is both compact and practical, offering a clear path for application in human health,” he said. The work also could “empower patients to conveniently assess their GI gas profiles from home and manage their digestive health.”
The next step is to test the wearable in animal models to assess, among other factors, whether the gas-sensing system “will operate properly in biological tissue and whether clogging or coating with GI liquids and food particles causes sensor fouling and affects the measurement accuracy,” Dr. Khan and colleagues noted.
Dr. Khan acknowledges support from USC Viterbi School of Engineering. A provisional patent application has been filed based on the technology described in this work. During the preparation of this work, the authors used ChatGPT to check for grammatical errors in the writing. After using this tool, the authors reviewed and edited the content as needed and take full responsibility for the content of the publication.
A version of this article first appeared on Medscape.com.
FROM CELL REPORTS PHYSICAL SCIENCE