Listeriosis During Pregnancy Can Be Fatal for the Fetus

Article Type
Changed
Wed, 09/04/2024 - 13:34

 

Listeriosis during pregnancy, when invasive, can be fatal for the fetus, with a rate of fetal loss or neonatal death of 29%, investigators reported in an article alerting clinicians to this condition.

The article was prompted when the Reproductive Infectious Diseases team at The University of British Columbia in Vancouver, British Columbia, Canada, “received many phone calls from concerned doctors and patients after the plant-based milk recall in early July,” Jeffrey Man Hay Wong, MD, told this news organization. “With such concerns, we updated our British Columbia guidelines for our patients but quickly realized that our recommendations would be useful across the country.”

The article was published online in the Canadian Medical Association Journal.


 

Five Key Points

Dr. Wong and colleagues provided the following five points and recommendations:

First, invasive listeriosis (bacteremia or meningitis) in pregnancy can have major fetal consequences, including fetal loss or neonatal death in 29% of cases. Affected patients can be asymptomatic or experience gastrointestinal symptoms, myalgias, fevers, acute respiratory distress syndrome, or sepsis.

Second, pregnant people should avoid foods at a high risk for Listeria monocytogenes contamination, including unpasteurized dairy products, luncheon meats, refrigerated meat spreads, and prepared salads. They also should stay aware of Health Canada recalls.

Third, it is not necessary to investigate or treat patients who may have ingested contaminated food but are asymptomatic. Listeriosis can present at 2-3 months after exposure because the incubation period can be as long as 70 days.

Fourth, for patients with mild gastroenteritis or flu-like symptoms who may have ingested contaminated food, obtaining blood cultures or starting a 2-week course of oral amoxicillin (500 mg, three times daily) could be considered.

Fifth, for patients with fever and possible exposure to L monocytogenes, blood cultures should be drawn immediately, and high-dose ampicillin should be initiated, along with electronic fetal heart rate monitoring.

“While choosing safer foods in pregnancy is recommended, it is most important to be aware of Health Canada food recalls and pay attention to symptoms if you’ve ingested these foods,” said Dr. Wong. “Working with the BC Centre for Disease Control, our teams are actively monitoring for cases of listeriosis in pregnancy here in British Columbia.

“Thankfully,” he said, “there haven’t been any confirmed cases in British Columbia related to the plant-based milk recall, though the bacteria’s incubation period can be up to 70 days in pregnancy.”
 

No Increase Suspected

Commenting on the article, Khady Diouf, MD, director of global obstetrics and gynecology at Brigham and Women’s Hospital in Boston, said, “It summarizes the main management, which is based mostly on expert opinion.”

US clinicians also should be reminded about listeriosis in pregnancy, she noted, pointing to “helpful guidance” from the American College of Obstetrics and Gynecology.

Although the United States similarly experienced a recent listeriosis outbreak resulting from contaminated deli meats, both Dr. Wong and Dr. Diouf said that these outbreaks do not seem to signal an increase in listeriosis cases overall.

“Food-borne listeriosis seems to come in waves,” said Dr. Wong. “At a public health level, we certainly have better surveillance programs for Listeria infections. In 2023, Health Canada updated its Policy on L monocytogenes in ready-to-eat foods, which emphasizes the good manufacturing practices recommended for food processing environments to identify outbreaks earlier.”

“I think we get these recalls yearly, and this has been the case for as long as I can remember,” Dr. Diouf agreed.

No funding was declared, and the authors declared no relevant financial relationships.

 

 

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

 

Listeriosis during pregnancy, when invasive, can be fatal for the fetus, with a rate of fetal loss or neonatal death of 29%, investigators reported in an article alerting clinicians to this condition.

The article was prompted when the Reproductive Infectious Diseases team at The University of British Columbia in Vancouver, British Columbia, Canada, “received many phone calls from concerned doctors and patients after the plant-based milk recall in early July,” Jeffrey Man Hay Wong, MD, told this news organization. “With such concerns, we updated our British Columbia guidelines for our patients but quickly realized that our recommendations would be useful across the country.”

The article was published online in the Canadian Medical Association Journal.


 

Five Key Points

Dr. Wong and colleagues provided the following five points and recommendations:

First, invasive listeriosis (bacteremia or meningitis) in pregnancy can have major fetal consequences, including fetal loss or neonatal death in 29% of cases. Affected patients can be asymptomatic or experience gastrointestinal symptoms, myalgias, fevers, acute respiratory distress syndrome, or sepsis.

Second, pregnant people should avoid foods at a high risk for Listeria monocytogenes contamination, including unpasteurized dairy products, luncheon meats, refrigerated meat spreads, and prepared salads. They also should stay aware of Health Canada recalls.

Third, it is not necessary to investigate or treat patients who may have ingested contaminated food but are asymptomatic. Listeriosis can present at 2-3 months after exposure because the incubation period can be as long as 70 days.

Fourth, for patients with mild gastroenteritis or flu-like symptoms who may have ingested contaminated food, obtaining blood cultures or starting a 2-week course of oral amoxicillin (500 mg, three times daily) could be considered.

Fifth, for patients with fever and possible exposure to L monocytogenes, blood cultures should be drawn immediately, and high-dose ampicillin should be initiated, along with electronic fetal heart rate monitoring.

“While choosing safer foods in pregnancy is recommended, it is most important to be aware of Health Canada food recalls and pay attention to symptoms if you’ve ingested these foods,” said Dr. Wong. “Working with the BC Centre for Disease Control, our teams are actively monitoring for cases of listeriosis in pregnancy here in British Columbia.

“Thankfully,” he said, “there haven’t been any confirmed cases in British Columbia related to the plant-based milk recall, though the bacteria’s incubation period can be up to 70 days in pregnancy.”
 

No Increase Suspected

Commenting on the article, Khady Diouf, MD, director of global obstetrics and gynecology at Brigham and Women’s Hospital in Boston, said, “It summarizes the main management, which is based mostly on expert opinion.”

US clinicians also should be reminded about listeriosis in pregnancy, she noted, pointing to “helpful guidance” from the American College of Obstetrics and Gynecology.

Although the United States similarly experienced a recent listeriosis outbreak resulting from contaminated deli meats, both Dr. Wong and Dr. Diouf said that these outbreaks do not seem to signal an increase in listeriosis cases overall.

“Food-borne listeriosis seems to come in waves,” said Dr. Wong. “At a public health level, we certainly have better surveillance programs for Listeria infections. In 2023, Health Canada updated its Policy on L monocytogenes in ready-to-eat foods, which emphasizes the good manufacturing practices recommended for food processing environments to identify outbreaks earlier.”

“I think we get these recalls yearly, and this has been the case for as long as I can remember,” Dr. Diouf agreed.

No funding was declared, and the authors declared no relevant financial relationships.

 

 

A version of this article first appeared on Medscape.com.

 

Listeriosis during pregnancy, when invasive, can be fatal for the fetus, with a rate of fetal loss or neonatal death of 29%, investigators reported in an article alerting clinicians to this condition.

The article was prompted when the Reproductive Infectious Diseases team at The University of British Columbia in Vancouver, British Columbia, Canada, “received many phone calls from concerned doctors and patients after the plant-based milk recall in early July,” Jeffrey Man Hay Wong, MD, told this news organization. “With such concerns, we updated our British Columbia guidelines for our patients but quickly realized that our recommendations would be useful across the country.”

The article was published online in the Canadian Medical Association Journal.


 

Five Key Points

Dr. Wong and colleagues provided the following five points and recommendations:

First, invasive listeriosis (bacteremia or meningitis) in pregnancy can have major fetal consequences, including fetal loss or neonatal death in 29% of cases. Affected patients can be asymptomatic or experience gastrointestinal symptoms, myalgias, fevers, acute respiratory distress syndrome, or sepsis.

Second, pregnant people should avoid foods at a high risk for Listeria monocytogenes contamination, including unpasteurized dairy products, luncheon meats, refrigerated meat spreads, and prepared salads. They also should stay aware of Health Canada recalls.

Third, it is not necessary to investigate or treat patients who may have ingested contaminated food but are asymptomatic. Listeriosis can present at 2-3 months after exposure because the incubation period can be as long as 70 days.

Fourth, for patients with mild gastroenteritis or flu-like symptoms who may have ingested contaminated food, obtaining blood cultures or starting a 2-week course of oral amoxicillin (500 mg, three times daily) could be considered.

Fifth, for patients with fever and possible exposure to L monocytogenes, blood cultures should be drawn immediately, and high-dose ampicillin should be initiated, along with electronic fetal heart rate monitoring.

“While choosing safer foods in pregnancy is recommended, it is most important to be aware of Health Canada food recalls and pay attention to symptoms if you’ve ingested these foods,” said Dr. Wong. “Working with the BC Centre for Disease Control, our teams are actively monitoring for cases of listeriosis in pregnancy here in British Columbia.

“Thankfully,” he said, “there haven’t been any confirmed cases in British Columbia related to the plant-based milk recall, though the bacteria’s incubation period can be up to 70 days in pregnancy.”
 

No Increase Suspected

Commenting on the article, Khady Diouf, MD, director of global obstetrics and gynecology at Brigham and Women’s Hospital in Boston, said, “It summarizes the main management, which is based mostly on expert opinion.”

US clinicians also should be reminded about listeriosis in pregnancy, she noted, pointing to “helpful guidance” from the American College of Obstetrics and Gynecology.

Although the United States similarly experienced a recent listeriosis outbreak resulting from contaminated deli meats, both Dr. Wong and Dr. Diouf said that these outbreaks do not seem to signal an increase in listeriosis cases overall.

“Food-borne listeriosis seems to come in waves,” said Dr. Wong. “At a public health level, we certainly have better surveillance programs for Listeria infections. In 2023, Health Canada updated its Policy on L monocytogenes in ready-to-eat foods, which emphasizes the good manufacturing practices recommended for food processing environments to identify outbreaks earlier.”

“I think we get these recalls yearly, and this has been the case for as long as I can remember,” Dr. Diouf agreed.

No funding was declared, and the authors declared no relevant financial relationships.

 

 

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Article Source

FROM THE CANADIAN MEDICAL ASSOCIATION JOURNAL

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

HIIT May Best Moderate Exercise for Poststroke Fitness

Article Type
Changed
Tue, 08/27/2024 - 12:04

Repeated 1-minute bursts of high-intensity interval training (HIIT) are more effective than conventional moderate, continuous exercise for improving aerobic fitness after stroke, according to a multicenter randomized controlled trial.

“We hoped that we would see improvements in cardiovascular fitness after HIIT and anticipated that these improvements would be greater than in the moderate-intensity group, but we were pleasantly surprised by the degree of improvement we observed,” said Ada Tang, PT, PhD, associate professor of health sciences at McMaster University in Hamilton, Ontario, Canada. “The improvements seen in the HIIT group were twofold higher than in the other group.”

The results were published in Stroke.
 

Clinically Meaningful

Researchers compared the effects of 12 weeks of short-interval HIIT with those of moderate-intensity continuous training (MICT) on peak oxygen uptake (VO2peak), cardiovascular risk factors, and mobility outcomes after stroke.

They randomly assigned participants to receive 3 days per week of HIIT or traditional moderate exercise sessions for 12 weeks. Participants’ mean age was 65 years, and 39% were women. They enrolled at a mean age of 1.8 years after sustaining a mild stroke.

A total of 42 participants were randomized to HIIT and 40 to MICT. There were no significant differences between the groups at baseline, and both groups exercised on adaptive recumbent steppers, which are suitable for stroke survivors with varying abilities.

The short-interval HIIT protocol involved 10 1-minute intervals of high-intensity exercise, interspersed with nine 1-minute low-intensity intervals, for a total of 19 minutes. HIIT intervals targeted 80% heart rate reserve (HRR) and progressed by 10% every 4 weeks up to 100% HRR. The low-intensity intervals targeted 30% HRR.

The traditional MICT protocol for stroke rehabilitation targeted 40% HRR for 20 minutes and progressed by 10% HRR and 5 minutes every 4 weeks, up to 60% HRR for 30 minutes.

The HIIT group’s cardiorespiratory fitness levels (VO2peak) improved twice as much as those of the MICT group: 3.5 mL of oxygen consumed in 1 minute per kg of body weight (mL/kg/min) compared with 1.8 mL/kg/min.

Of note, changes in VO2peak from baseline remained above the clinically important threshold of 1.0 mL/kg/min at 8-week follow-up in the HIIT group (1.71 mL/kg/min) but not in the MICT group (0.67 mL/kg/min).

Both groups increased their 6-minute walk test distances by 8.8 m at 12 weeks and by 18.5 m at 20 weeks. No between-group differences were found for cardiovascular risk or mobility outcomes, and no adverse events occurred in either group.

On average, the HIIT group spent 36% of total training time exercising at intensities above 80% HRR throughout the intervention, while the MICT group spent 42% of time at intensities of 40%-59% HRR.

The study was limited by a small sample size of high-functioning individuals who sustained a mild stroke. Enrollment was halted for 2 years due to the COVID-19 lockdowns, limiting the study’s statistical power.

Nevertheless, the authors concluded, “Given that a lack of time is a significant barrier to the implementation of aerobic exercise in stroke clinical practice, our findings suggest that short-interval HIIT may be an effective alternative to traditional MICT for improving VO2peak after stroke, with potential clinically meaningful benefits sustained in the short-term.”

“Our findings show that a short HIIT protocol is possible in people with stroke, which is exciting to see,” said Tang. “But there are different factors that clinicians should consider before recommending this training for their patients, such as their health status and their physical status. Stroke rehabilitation specialists, including stroke physical therapists, can advise on how to proceed to ensure the safety and effectiveness of HIIT.”
 

 

 

Selected Patients May Benefit

“Broad implementation of this intervention may be premature without further research,” said Ryan Glatt, CPT, senior brain health coach and director of the FitBrain Program at Pacific Neuroscience Institute in Santa Monica, California. “The study focused on relatively high-functioning stroke survivors, which raises questions about the applicability of the results to those with more severe impairments.” Mr. Glatt did not participate in the research.

“Additional studies are needed to confirm whether these findings are applicable to more diverse and severely affected populations and to assess the long-term sustainability of the benefits observed,” he said. “Also, the lack of significant improvements in other critical outcomes, such as mobility, suggests limitations in the broader application of HIIT for stroke rehabilitation.”

“While HIIT shows potential, it should be approached with caution,” Mr. Glatt continued. “It may benefit select patients, but replacing traditional exercise protocols with HIIT should not be done in all cases. More robust evidence and careful consideration of individual patient needs are essential.”

This study was funded by an operating grant from the Canadian Institutes of Health Research. Dr. Tang reported grants from the Canadian Institutes of Health Research, the Physiotherapy Foundation of Canada, and the Heart and Stroke Foundation of Canada. Mr. Glatt declared no relevant financial relationships.
 

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

Repeated 1-minute bursts of high-intensity interval training (HIIT) are more effective than conventional moderate, continuous exercise for improving aerobic fitness after stroke, according to a multicenter randomized controlled trial.

“We hoped that we would see improvements in cardiovascular fitness after HIIT and anticipated that these improvements would be greater than in the moderate-intensity group, but we were pleasantly surprised by the degree of improvement we observed,” said Ada Tang, PT, PhD, associate professor of health sciences at McMaster University in Hamilton, Ontario, Canada. “The improvements seen in the HIIT group were twofold higher than in the other group.”

The results were published in Stroke.
 

Clinically Meaningful

Researchers compared the effects of 12 weeks of short-interval HIIT with those of moderate-intensity continuous training (MICT) on peak oxygen uptake (VO2peak), cardiovascular risk factors, and mobility outcomes after stroke.

They randomly assigned participants to receive 3 days per week of HIIT or traditional moderate exercise sessions for 12 weeks. Participants’ mean age was 65 years, and 39% were women. They enrolled at a mean age of 1.8 years after sustaining a mild stroke.

A total of 42 participants were randomized to HIIT and 40 to MICT. There were no significant differences between the groups at baseline, and both groups exercised on adaptive recumbent steppers, which are suitable for stroke survivors with varying abilities.

The short-interval HIIT protocol involved 10 1-minute intervals of high-intensity exercise, interspersed with nine 1-minute low-intensity intervals, for a total of 19 minutes. HIIT intervals targeted 80% heart rate reserve (HRR) and progressed by 10% every 4 weeks up to 100% HRR. The low-intensity intervals targeted 30% HRR.

The traditional MICT protocol for stroke rehabilitation targeted 40% HRR for 20 minutes and progressed by 10% HRR and 5 minutes every 4 weeks, up to 60% HRR for 30 minutes.

The HIIT group’s cardiorespiratory fitness levels (VO2peak) improved twice as much as those of the MICT group: 3.5 mL of oxygen consumed in 1 minute per kg of body weight (mL/kg/min) compared with 1.8 mL/kg/min.

Of note, changes in VO2peak from baseline remained above the clinically important threshold of 1.0 mL/kg/min at 8-week follow-up in the HIIT group (1.71 mL/kg/min) but not in the MICT group (0.67 mL/kg/min).

Both groups increased their 6-minute walk test distances by 8.8 m at 12 weeks and by 18.5 m at 20 weeks. No between-group differences were found for cardiovascular risk or mobility outcomes, and no adverse events occurred in either group.

On average, the HIIT group spent 36% of total training time exercising at intensities above 80% HRR throughout the intervention, while the MICT group spent 42% of time at intensities of 40%-59% HRR.

The study was limited by a small sample size of high-functioning individuals who sustained a mild stroke. Enrollment was halted for 2 years due to the COVID-19 lockdowns, limiting the study’s statistical power.

Nevertheless, the authors concluded, “Given that a lack of time is a significant barrier to the implementation of aerobic exercise in stroke clinical practice, our findings suggest that short-interval HIIT may be an effective alternative to traditional MICT for improving VO2peak after stroke, with potential clinically meaningful benefits sustained in the short-term.”

“Our findings show that a short HIIT protocol is possible in people with stroke, which is exciting to see,” said Tang. “But there are different factors that clinicians should consider before recommending this training for their patients, such as their health status and their physical status. Stroke rehabilitation specialists, including stroke physical therapists, can advise on how to proceed to ensure the safety and effectiveness of HIIT.”
 

 

 

Selected Patients May Benefit

“Broad implementation of this intervention may be premature without further research,” said Ryan Glatt, CPT, senior brain health coach and director of the FitBrain Program at Pacific Neuroscience Institute in Santa Monica, California. “The study focused on relatively high-functioning stroke survivors, which raises questions about the applicability of the results to those with more severe impairments.” Mr. Glatt did not participate in the research.

“Additional studies are needed to confirm whether these findings are applicable to more diverse and severely affected populations and to assess the long-term sustainability of the benefits observed,” he said. “Also, the lack of significant improvements in other critical outcomes, such as mobility, suggests limitations in the broader application of HIIT for stroke rehabilitation.”

“While HIIT shows potential, it should be approached with caution,” Mr. Glatt continued. “It may benefit select patients, but replacing traditional exercise protocols with HIIT should not be done in all cases. More robust evidence and careful consideration of individual patient needs are essential.”

This study was funded by an operating grant from the Canadian Institutes of Health Research. Dr. Tang reported grants from the Canadian Institutes of Health Research, the Physiotherapy Foundation of Canada, and the Heart and Stroke Foundation of Canada. Mr. Glatt declared no relevant financial relationships.
 

A version of this article appeared on Medscape.com.

Repeated 1-minute bursts of high-intensity interval training (HIIT) are more effective than conventional moderate, continuous exercise for improving aerobic fitness after stroke, according to a multicenter randomized controlled trial.

“We hoped that we would see improvements in cardiovascular fitness after HIIT and anticipated that these improvements would be greater than in the moderate-intensity group, but we were pleasantly surprised by the degree of improvement we observed,” said Ada Tang, PT, PhD, associate professor of health sciences at McMaster University in Hamilton, Ontario, Canada. “The improvements seen in the HIIT group were twofold higher than in the other group.”

The results were published in Stroke.
 

Clinically Meaningful

Researchers compared the effects of 12 weeks of short-interval HIIT with those of moderate-intensity continuous training (MICT) on peak oxygen uptake (VO2peak), cardiovascular risk factors, and mobility outcomes after stroke.

They randomly assigned participants to receive 3 days per week of HIIT or traditional moderate exercise sessions for 12 weeks. Participants’ mean age was 65 years, and 39% were women. They enrolled at a mean age of 1.8 years after sustaining a mild stroke.

A total of 42 participants were randomized to HIIT and 40 to MICT. There were no significant differences between the groups at baseline, and both groups exercised on adaptive recumbent steppers, which are suitable for stroke survivors with varying abilities.

The short-interval HIIT protocol involved 10 1-minute intervals of high-intensity exercise, interspersed with nine 1-minute low-intensity intervals, for a total of 19 minutes. HIIT intervals targeted 80% heart rate reserve (HRR) and progressed by 10% every 4 weeks up to 100% HRR. The low-intensity intervals targeted 30% HRR.

The traditional MICT protocol for stroke rehabilitation targeted 40% HRR for 20 minutes and progressed by 10% HRR and 5 minutes every 4 weeks, up to 60% HRR for 30 minutes.

The HIIT group’s cardiorespiratory fitness levels (VO2peak) improved twice as much as those of the MICT group: 3.5 mL of oxygen consumed in 1 minute per kg of body weight (mL/kg/min) compared with 1.8 mL/kg/min.

Of note, changes in VO2peak from baseline remained above the clinically important threshold of 1.0 mL/kg/min at 8-week follow-up in the HIIT group (1.71 mL/kg/min) but not in the MICT group (0.67 mL/kg/min).

Both groups increased their 6-minute walk test distances by 8.8 m at 12 weeks and by 18.5 m at 20 weeks. No between-group differences were found for cardiovascular risk or mobility outcomes, and no adverse events occurred in either group.

On average, the HIIT group spent 36% of total training time exercising at intensities above 80% HRR throughout the intervention, while the MICT group spent 42% of time at intensities of 40%-59% HRR.

The study was limited by a small sample size of high-functioning individuals who sustained a mild stroke. Enrollment was halted for 2 years due to the COVID-19 lockdowns, limiting the study’s statistical power.

Nevertheless, the authors concluded, “Given that a lack of time is a significant barrier to the implementation of aerobic exercise in stroke clinical practice, our findings suggest that short-interval HIIT may be an effective alternative to traditional MICT for improving VO2peak after stroke, with potential clinically meaningful benefits sustained in the short-term.”

“Our findings show that a short HIIT protocol is possible in people with stroke, which is exciting to see,” said Tang. “But there are different factors that clinicians should consider before recommending this training for their patients, such as their health status and their physical status. Stroke rehabilitation specialists, including stroke physical therapists, can advise on how to proceed to ensure the safety and effectiveness of HIIT.”
 

 

 

Selected Patients May Benefit

“Broad implementation of this intervention may be premature without further research,” said Ryan Glatt, CPT, senior brain health coach and director of the FitBrain Program at Pacific Neuroscience Institute in Santa Monica, California. “The study focused on relatively high-functioning stroke survivors, which raises questions about the applicability of the results to those with more severe impairments.” Mr. Glatt did not participate in the research.

“Additional studies are needed to confirm whether these findings are applicable to more diverse and severely affected populations and to assess the long-term sustainability of the benefits observed,” he said. “Also, the lack of significant improvements in other critical outcomes, such as mobility, suggests limitations in the broader application of HIIT for stroke rehabilitation.”

“While HIIT shows potential, it should be approached with caution,” Mr. Glatt continued. “It may benefit select patients, but replacing traditional exercise protocols with HIIT should not be done in all cases. More robust evidence and careful consideration of individual patient needs are essential.”

This study was funded by an operating grant from the Canadian Institutes of Health Research. Dr. Tang reported grants from the Canadian Institutes of Health Research, the Physiotherapy Foundation of Canada, and the Heart and Stroke Foundation of Canada. Mr. Glatt declared no relevant financial relationships.
 

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Will Compounding ‘Best Practices’ Guide Reassure Clinicians?

Article Type
Changed
Thu, 08/22/2024 - 12:34

A new “best practices” guide released by the Alliance for Pharmacy Compounding (APC) aims to educate compounding pharmacists and reassure prescribers about the ethical, legal, and practical considerations that must be addressed to ensure quality standards and protect patients’ health.

Endocrinologists have expressed skepticism about the quality of compounded drugs, particularly the popular glucagon-like peptide 1 (GLP-1) semaglutide. The Food and Drug Administration (FDA) recently issued an alert linking hospitalizations to overdoses of compounded semaglutide.

“This document goes beyond today’s media-grabbing shortages,” APC Board Chair-Elect Gina Besteman, RPh, of Belmar Pharma Solutions told this news organization. “We developed these best practices to apply to all shortage drug compounding, and especially in this moment when so many are compounding GLP-1s. These serve as a reminder about what compliance and care look like.”

Prescribers determine whether a patient needs a compounded medication, not pharmacists, Ms. Besteman noted. “A patient-specific prescription order must be authorized for a compounded medication to be dispensed. Prescribers should ensure pharmacies they work with regularly check the FDA Drug Shortage List, as compounding of ‘essential copies’ of FDA-approved drugs is only allowed when a drug is listed as ‘currently in shortage.’ ”
 

Framework for Compounding

“With fake and illegal online stores popping up, it’s critical for legitimate, state-licensed compounding pharmacies to maintain the profession’s high standards,” the APC said in a media communication.

Highlights of its best practices, which are directed toward 503A state-licensed compounding pharmacies, include the following, among others:

  • Pharmacies should check the FDA drug shortage list prior to preparing a copy of an FDA-approved drug and maintain documentation to demonstrate to regulators that the drug was in shortage at the time it was compounded.
  • Pharmacies may only source active pharmaceutical ingredients (APIs) from state-licensed wholesalers who purchase from FDA-registered manufacturers or order directly from FDA-registered manufacturers.
  • Verify from the wholesaler that the manufacturer is registered with the FDA and the API meets all the requirements of section 503A, and that both hold the appropriate permits or licenses in their home state and the shipped to state.
  • Adhere to USP Chapter <797> testing requirements for sterility, endotoxin, stability, particulate, antimicrobial effectiveness, and container closure integrity studies.
  • Counseling must be offered to the patient or the patient’s agent/caregiver. Providing written information that assists in the understanding of how to properly use the compounded medication is advised.
  • Instructions should be written in a way that a layperson can understand (especially directions including dosage titrations and conversions between milligrams and milliliters or units).
  • Like all medications, compounded drugs can only be prescribed in the presence of a valid patient-practitioner relationship and can only be dispensed by a pharmacy after receipt of a valid patient-specific prescription order.
  • When marketing, never make claims of safety or efficacy of the compounded product.
  • Advertising that patients will/may save money using compounded medications, compared with manufactured products is not allowed.

“Compounding FDA-approved drugs during shortages is nothing new — pharmacies have been doing it well before GLP-1s came on the scene, and they’ll continue long after this current shortage ends,” Ms. Besteman said. “Prescribers should be aware of APC’s guidelines because they provide a framework for ethically and legally compounding medications during drug shortages.

“To paraphrase The Police,” she concluded, “every move you make, every step you take, they’ll be watching you. Make sure they see those best practices in action.”
 

‘Reduces the Risks’

Commenting on the best practices guidance, Ivania Rizo, MD, director of Obesity Medicine and Diabetes and clinical colead at Boston Medical Center’s Health Equity Accelerator in Massachusetts, said: “These best practices will hopefully make a difference in the quality of compounded drugs.”

“The emphasis on rigorous testing of APIs and adherence to USP standards is particularly important for maintaining drug quality,” she noted. “This structured approach reduces the risk of variability and ensures that compounded drugs meet high-quality standards, thus enhancing their reliability.”

“Knowing that compounding pharmacies are adhering to rigorous standards for sourcing, testing, and compounding can at least reassure clinicians that specific steps are being taken for the safety and efficacy of these medications,” she said. “The transparency in documenting compliance with FDA guidelines and maintaining high-quality control measures can enhance trust among healthcare providers.”

Although clinicians are likely to have more confidence in compounded drugs when these best practices are followed, she said, “overall, we all hope that the shortages of medications such as tirzepatide are resolved promptly, allowing patients to access FDA-approved drugs without the need for compounding.”

“While the implementation of best practices for compounding during shortages is a positive and necessary step, our ultimate goal remains to address and resolve these shortages in the near future,” she concluded.

Dr. Rizo declared no competing interests.

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

A new “best practices” guide released by the Alliance for Pharmacy Compounding (APC) aims to educate compounding pharmacists and reassure prescribers about the ethical, legal, and practical considerations that must be addressed to ensure quality standards and protect patients’ health.

Endocrinologists have expressed skepticism about the quality of compounded drugs, particularly the popular glucagon-like peptide 1 (GLP-1) semaglutide. The Food and Drug Administration (FDA) recently issued an alert linking hospitalizations to overdoses of compounded semaglutide.

“This document goes beyond today’s media-grabbing shortages,” APC Board Chair-Elect Gina Besteman, RPh, of Belmar Pharma Solutions told this news organization. “We developed these best practices to apply to all shortage drug compounding, and especially in this moment when so many are compounding GLP-1s. These serve as a reminder about what compliance and care look like.”

Prescribers determine whether a patient needs a compounded medication, not pharmacists, Ms. Besteman noted. “A patient-specific prescription order must be authorized for a compounded medication to be dispensed. Prescribers should ensure pharmacies they work with regularly check the FDA Drug Shortage List, as compounding of ‘essential copies’ of FDA-approved drugs is only allowed when a drug is listed as ‘currently in shortage.’ ”
 

Framework for Compounding

“With fake and illegal online stores popping up, it’s critical for legitimate, state-licensed compounding pharmacies to maintain the profession’s high standards,” the APC said in a media communication.

Highlights of its best practices, which are directed toward 503A state-licensed compounding pharmacies, include the following, among others:

  • Pharmacies should check the FDA drug shortage list prior to preparing a copy of an FDA-approved drug and maintain documentation to demonstrate to regulators that the drug was in shortage at the time it was compounded.
  • Pharmacies may only source active pharmaceutical ingredients (APIs) from state-licensed wholesalers who purchase from FDA-registered manufacturers or order directly from FDA-registered manufacturers.
  • Verify from the wholesaler that the manufacturer is registered with the FDA and the API meets all the requirements of section 503A, and that both hold the appropriate permits or licenses in their home state and the shipped to state.
  • Adhere to USP Chapter <797> testing requirements for sterility, endotoxin, stability, particulate, antimicrobial effectiveness, and container closure integrity studies.
  • Counseling must be offered to the patient or the patient’s agent/caregiver. Providing written information that assists in the understanding of how to properly use the compounded medication is advised.
  • Instructions should be written in a way that a layperson can understand (especially directions including dosage titrations and conversions between milligrams and milliliters or units).
  • Like all medications, compounded drugs can only be prescribed in the presence of a valid patient-practitioner relationship and can only be dispensed by a pharmacy after receipt of a valid patient-specific prescription order.
  • When marketing, never make claims of safety or efficacy of the compounded product.
  • Advertising that patients will/may save money using compounded medications, compared with manufactured products is not allowed.

“Compounding FDA-approved drugs during shortages is nothing new — pharmacies have been doing it well before GLP-1s came on the scene, and they’ll continue long after this current shortage ends,” Ms. Besteman said. “Prescribers should be aware of APC’s guidelines because they provide a framework for ethically and legally compounding medications during drug shortages.

“To paraphrase The Police,” she concluded, “every move you make, every step you take, they’ll be watching you. Make sure they see those best practices in action.”
 

‘Reduces the Risks’

Commenting on the best practices guidance, Ivania Rizo, MD, director of Obesity Medicine and Diabetes and clinical colead at Boston Medical Center’s Health Equity Accelerator in Massachusetts, said: “These best practices will hopefully make a difference in the quality of compounded drugs.”

“The emphasis on rigorous testing of APIs and adherence to USP standards is particularly important for maintaining drug quality,” she noted. “This structured approach reduces the risk of variability and ensures that compounded drugs meet high-quality standards, thus enhancing their reliability.”

“Knowing that compounding pharmacies are adhering to rigorous standards for sourcing, testing, and compounding can at least reassure clinicians that specific steps are being taken for the safety and efficacy of these medications,” she said. “The transparency in documenting compliance with FDA guidelines and maintaining high-quality control measures can enhance trust among healthcare providers.”

Although clinicians are likely to have more confidence in compounded drugs when these best practices are followed, she said, “overall, we all hope that the shortages of medications such as tirzepatide are resolved promptly, allowing patients to access FDA-approved drugs without the need for compounding.”

“While the implementation of best practices for compounding during shortages is a positive and necessary step, our ultimate goal remains to address and resolve these shortages in the near future,” she concluded.

Dr. Rizo declared no competing interests.

A version of this article first appeared on Medscape.com.

A new “best practices” guide released by the Alliance for Pharmacy Compounding (APC) aims to educate compounding pharmacists and reassure prescribers about the ethical, legal, and practical considerations that must be addressed to ensure quality standards and protect patients’ health.

Endocrinologists have expressed skepticism about the quality of compounded drugs, particularly the popular glucagon-like peptide 1 (GLP-1) semaglutide. The Food and Drug Administration (FDA) recently issued an alert linking hospitalizations to overdoses of compounded semaglutide.

“This document goes beyond today’s media-grabbing shortages,” APC Board Chair-Elect Gina Besteman, RPh, of Belmar Pharma Solutions told this news organization. “We developed these best practices to apply to all shortage drug compounding, and especially in this moment when so many are compounding GLP-1s. These serve as a reminder about what compliance and care look like.”

Prescribers determine whether a patient needs a compounded medication, not pharmacists, Ms. Besteman noted. “A patient-specific prescription order must be authorized for a compounded medication to be dispensed. Prescribers should ensure pharmacies they work with regularly check the FDA Drug Shortage List, as compounding of ‘essential copies’ of FDA-approved drugs is only allowed when a drug is listed as ‘currently in shortage.’ ”
 

Framework for Compounding

“With fake and illegal online stores popping up, it’s critical for legitimate, state-licensed compounding pharmacies to maintain the profession’s high standards,” the APC said in a media communication.

Highlights of its best practices, which are directed toward 503A state-licensed compounding pharmacies, include the following, among others:

  • Pharmacies should check the FDA drug shortage list prior to preparing a copy of an FDA-approved drug and maintain documentation to demonstrate to regulators that the drug was in shortage at the time it was compounded.
  • Pharmacies may only source active pharmaceutical ingredients (APIs) from state-licensed wholesalers who purchase from FDA-registered manufacturers or order directly from FDA-registered manufacturers.
  • Verify from the wholesaler that the manufacturer is registered with the FDA and the API meets all the requirements of section 503A, and that both hold the appropriate permits or licenses in their home state and the shipped to state.
  • Adhere to USP Chapter <797> testing requirements for sterility, endotoxin, stability, particulate, antimicrobial effectiveness, and container closure integrity studies.
  • Counseling must be offered to the patient or the patient’s agent/caregiver. Providing written information that assists in the understanding of how to properly use the compounded medication is advised.
  • Instructions should be written in a way that a layperson can understand (especially directions including dosage titrations and conversions between milligrams and milliliters or units).
  • Like all medications, compounded drugs can only be prescribed in the presence of a valid patient-practitioner relationship and can only be dispensed by a pharmacy after receipt of a valid patient-specific prescription order.
  • When marketing, never make claims of safety or efficacy of the compounded product.
  • Advertising that patients will/may save money using compounded medications, compared with manufactured products is not allowed.

“Compounding FDA-approved drugs during shortages is nothing new — pharmacies have been doing it well before GLP-1s came on the scene, and they’ll continue long after this current shortage ends,” Ms. Besteman said. “Prescribers should be aware of APC’s guidelines because they provide a framework for ethically and legally compounding medications during drug shortages.

“To paraphrase The Police,” she concluded, “every move you make, every step you take, they’ll be watching you. Make sure they see those best practices in action.”
 

‘Reduces the Risks’

Commenting on the best practices guidance, Ivania Rizo, MD, director of Obesity Medicine and Diabetes and clinical colead at Boston Medical Center’s Health Equity Accelerator in Massachusetts, said: “These best practices will hopefully make a difference in the quality of compounded drugs.”

“The emphasis on rigorous testing of APIs and adherence to USP standards is particularly important for maintaining drug quality,” she noted. “This structured approach reduces the risk of variability and ensures that compounded drugs meet high-quality standards, thus enhancing their reliability.”

“Knowing that compounding pharmacies are adhering to rigorous standards for sourcing, testing, and compounding can at least reassure clinicians that specific steps are being taken for the safety and efficacy of these medications,” she said. “The transparency in documenting compliance with FDA guidelines and maintaining high-quality control measures can enhance trust among healthcare providers.”

Although clinicians are likely to have more confidence in compounded drugs when these best practices are followed, she said, “overall, we all hope that the shortages of medications such as tirzepatide are resolved promptly, allowing patients to access FDA-approved drugs without the need for compounding.”

“While the implementation of best practices for compounding during shortages is a positive and necessary step, our ultimate goal remains to address and resolve these shortages in the near future,” she concluded.

Dr. Rizo declared no competing interests.

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Could Dry Fasting Aid in Metabolic Disorders, Diabetes?

Article Type
Changed
Thu, 08/15/2024 - 16:05

Dry fasting, the practice of going without food and water, has enthusiastic advocates on TikTokX, YouTube, and other social media platforms. Devotees claim a wide range of health effects, but medical professionals advise caution to ensure that the practice does more good than harm, especially for individuals with diabetes. 

Purported benefits and risks vary, depending on who is following the regimen and how long they abstain from food and water. Advocates on social media assert that dry fasting makes “intuition skyrocket” and puts autophagy on “overdrive.” Although such statements may rev up followers, there is little evidence to support these and many other dry-fasting claims. In fact, several physicians warned about unintended consequences.

“I had one patient who followed this fasting method often, and over time she developed kidney stones that led to a severe infection,” said Deena Adimoolam, MD, an endocrinologist in private practice in New York City and New Jersey. “Lack of both water and food can fuel hunger and increase the likelihood of overeating or binge eating once the fast is completed, which does not lead to weight loss. Untreated dehydration can lead to loss of consciousness.”

“For individuals with type 2 diabetes, dehydration can exacerbate hyperglycemia and increase the risk of complications such as diabetic ketoacidosis (DKA),” said Abeer Bader, lead clinical nutrition specialist at the Massachusetts General Hospital Weight Center in Boston. “Research also consistently shows that adequate hydration is crucial for maintaining physical and cognitive performance.”

Dry fasting also can lead to electrolyte imbalances, and the risk is higher for those with diabetes due to potential underlying kidney issues, Ms. Bader noted. “Prolonged dry fasting can result in nutrient deficiencies. For individuals with diabetes, maintaining adequate nutrition is crucial to manage blood sugar levels and overall health. The lack of both food and water can exacerbate deficiencies.”

Joanne Bruno, MD, an endocrinologist at NYU Langone Health, added, “Certain medications used for the management of type 2 diabetes, such as SGLT2 inhibitors, can cause dehydration. It is critical that patients stay well hydrated while on these medications to avoid serious side effects such as euglycemic DKA.”
 

What Exactly Is Dry Fasting?

Defining dry fasting, like any kind of fasting, has remained a challenge, according to authors of the first international consensus on fasting terminology, published on July 25 in Cell Metabolism. The clinical terminology “has remained heterogeneous and often confusing, with similar terms being used to define different fasting regimens ... reflecting the manifold contexts in which fasting is practiced.”

Indeed, dry fasting was among the most discussed terms by the consensus panel and went through several rounds before the panelists came to agreement. A few experts were critical of the practice, whereas those familiar with religious fasting traditions, such as during Ramadan, were clear about the importance of including this term in the consensus process.

“The dissent was resolved by the clarification that this form of fasting has historical and geographical extensions and that the present consensus process did not aim at evaluating therapeutic effectiveness or safety for any term defined,” the authors wrote.

The panel concluded that dry fasting is not the same as total or complete fasting because the latter can include water (such as water-only fasting). Their final definition of dry fasting is ‘’a fasting regimen during which a voluntary abstinence from all foods and beverages, including water, is practiced for a certain period of time.’’

Different types of fasting regimens, such as intermittent fasting, may include dry fasting, in which case it is referred to as “intermittent dry fasting.” This is defined in the consensus as intermittent fasting regimens that involve abstaining from food and fluid intake during the fasting interval, which typically lasts 9-20 hours. 

Most dry fasts, including religious ones, are maintained for a specific interval and are followed by a refeeding period. These fasts are not starvation, defined as no food or water intake for days.
 

 

 

What the Evidence Says

All that said, dry fasting by any other name remains dry fasting. “Abundant” evidence from animal studies suggests the potential of various types of fasting for disease prevention and treatment in humans, noted the authors of the consensus report, Along with the risks described above, small studies have explored short-term effects in people, all of which have yet to be established by larger and longer-term studies.

In a recent small study, researchers at Baylor College of Medicine, Houston, Texas, reported that dawn-to-dusk dry fasting for 30 days reduced levels of inflammatory cytokines in the 13 participants with a high body mass index. Earlier work by the group showed that dawn-to-dusk dry fasting for 30 days induced “anti-atherosclerotic, anti-inflammatory, and anti-tumorigenic proteome” in peripheral blood mononuclear cells of 14 individuals with metabolic syndrome (The researchers declined to comment for this article.)

Importantly, the health effects can vary among individuals for unknown reasons, found a recent cross-sectional study of fasting blood glucose (FBG) changes in 181 patients with type 2 diabetes during Ramadan intermittent fasting (RIF), which involves dry fasting during daylight hours for 1 month. The researchers classified participants into three groups: reduced average FBG levels (44%), no change in FBG levels (24%), and increased FBG levels (32%). The authors wrote that further studies are needed to identify factors associated with the differences and to identify “those who are great candidates for RIF.”

In contrast to some of the concerns expressed by clinicians, an exploratory study of daytime dry fasting among 34 healthy Baha’i volunteers in Germany concluded that the 19-day regimen “is safe, has no negative effects on hydration, can improve fat metabolism and can cause transient phase shifts of circadian rhythms.” The authors acknowledge that a larger number and more diverse participants are needed to validate the findings and assess the impact on long-term health.
 

What to Advise Patients

For patients who want to fast as part of their weight loss regimen or to help manage diabetes, clinicians can consider suggesting “alternate ways of eating that might achieve similar goals,” Ms. Bader said. One is intermittent fasting without dry fasting: the 16:8 method (16 hours of fasting, 8 hours of eating) or the 5:2 method (normal eating for 5 days, reduced calorie intake for 2 days), which can support improved insulin sensitivity and metabolic health.

Caloric restriction can also work if the patient maintains a balanced diet that includes all essential nutrients, she said. A low-carbohydrate diet that focuses on limiting carbohydrate intake while increasing consumption of lean proteins and healthy fats has been shown to lower blood sugar levels and improve insulin sensitivity.

Other healthy strategies for patients include the Mediterranean diet, which emphasizes whole grains, fruits, vegetables, nuts, seeds, olive oil, and lean proteins such as fish, or a similar plant-based diet with less animal protein. Ms. Bader advises cultivating mindful eating, which involves paying attention to hunger and fullness cues, making thoughtful food choices, and focusing on being present during meals.

“Each of these dietary strategies offers potential benefits for managing type 2 diabetes and improving overall health,” Ms. Bader said. “I have not had any patients who have tried dry fasting specifically. However, I have encountered scenarios where individuals abstained from food and beverages due to religious practices. In those cases, we focused on ensuring that they maintained proper hydration and balanced nutrition during their eating periods to manage their diabetes effectively and prevent complications.”

Overall, Dr. Adimoolam suggests that clinicians help patients find a weight-loss plan that works best for them based on understanding the calories in the foods they like and don’t like. For fasting regimens, patients can be encouraged to choose one with fluids when possible, as well as intervals of time to fast and eat that work best for their lifestyle.

Ms. Bader, Dr. Bruno, and Dr. Adimoolam report no relevant conflicts.
 

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

Dry fasting, the practice of going without food and water, has enthusiastic advocates on TikTokX, YouTube, and other social media platforms. Devotees claim a wide range of health effects, but medical professionals advise caution to ensure that the practice does more good than harm, especially for individuals with diabetes. 

Purported benefits and risks vary, depending on who is following the regimen and how long they abstain from food and water. Advocates on social media assert that dry fasting makes “intuition skyrocket” and puts autophagy on “overdrive.” Although such statements may rev up followers, there is little evidence to support these and many other dry-fasting claims. In fact, several physicians warned about unintended consequences.

“I had one patient who followed this fasting method often, and over time she developed kidney stones that led to a severe infection,” said Deena Adimoolam, MD, an endocrinologist in private practice in New York City and New Jersey. “Lack of both water and food can fuel hunger and increase the likelihood of overeating or binge eating once the fast is completed, which does not lead to weight loss. Untreated dehydration can lead to loss of consciousness.”

“For individuals with type 2 diabetes, dehydration can exacerbate hyperglycemia and increase the risk of complications such as diabetic ketoacidosis (DKA),” said Abeer Bader, lead clinical nutrition specialist at the Massachusetts General Hospital Weight Center in Boston. “Research also consistently shows that adequate hydration is crucial for maintaining physical and cognitive performance.”

Dry fasting also can lead to electrolyte imbalances, and the risk is higher for those with diabetes due to potential underlying kidney issues, Ms. Bader noted. “Prolonged dry fasting can result in nutrient deficiencies. For individuals with diabetes, maintaining adequate nutrition is crucial to manage blood sugar levels and overall health. The lack of both food and water can exacerbate deficiencies.”

Joanne Bruno, MD, an endocrinologist at NYU Langone Health, added, “Certain medications used for the management of type 2 diabetes, such as SGLT2 inhibitors, can cause dehydration. It is critical that patients stay well hydrated while on these medications to avoid serious side effects such as euglycemic DKA.”
 

What Exactly Is Dry Fasting?

Defining dry fasting, like any kind of fasting, has remained a challenge, according to authors of the first international consensus on fasting terminology, published on July 25 in Cell Metabolism. The clinical terminology “has remained heterogeneous and often confusing, with similar terms being used to define different fasting regimens ... reflecting the manifold contexts in which fasting is practiced.”

Indeed, dry fasting was among the most discussed terms by the consensus panel and went through several rounds before the panelists came to agreement. A few experts were critical of the practice, whereas those familiar with religious fasting traditions, such as during Ramadan, were clear about the importance of including this term in the consensus process.

“The dissent was resolved by the clarification that this form of fasting has historical and geographical extensions and that the present consensus process did not aim at evaluating therapeutic effectiveness or safety for any term defined,” the authors wrote.

The panel concluded that dry fasting is not the same as total or complete fasting because the latter can include water (such as water-only fasting). Their final definition of dry fasting is ‘’a fasting regimen during which a voluntary abstinence from all foods and beverages, including water, is practiced for a certain period of time.’’

Different types of fasting regimens, such as intermittent fasting, may include dry fasting, in which case it is referred to as “intermittent dry fasting.” This is defined in the consensus as intermittent fasting regimens that involve abstaining from food and fluid intake during the fasting interval, which typically lasts 9-20 hours. 

Most dry fasts, including religious ones, are maintained for a specific interval and are followed by a refeeding period. These fasts are not starvation, defined as no food or water intake for days.
 

 

 

What the Evidence Says

All that said, dry fasting by any other name remains dry fasting. “Abundant” evidence from animal studies suggests the potential of various types of fasting for disease prevention and treatment in humans, noted the authors of the consensus report, Along with the risks described above, small studies have explored short-term effects in people, all of which have yet to be established by larger and longer-term studies.

In a recent small study, researchers at Baylor College of Medicine, Houston, Texas, reported that dawn-to-dusk dry fasting for 30 days reduced levels of inflammatory cytokines in the 13 participants with a high body mass index. Earlier work by the group showed that dawn-to-dusk dry fasting for 30 days induced “anti-atherosclerotic, anti-inflammatory, and anti-tumorigenic proteome” in peripheral blood mononuclear cells of 14 individuals with metabolic syndrome (The researchers declined to comment for this article.)

Importantly, the health effects can vary among individuals for unknown reasons, found a recent cross-sectional study of fasting blood glucose (FBG) changes in 181 patients with type 2 diabetes during Ramadan intermittent fasting (RIF), which involves dry fasting during daylight hours for 1 month. The researchers classified participants into three groups: reduced average FBG levels (44%), no change in FBG levels (24%), and increased FBG levels (32%). The authors wrote that further studies are needed to identify factors associated with the differences and to identify “those who are great candidates for RIF.”

In contrast to some of the concerns expressed by clinicians, an exploratory study of daytime dry fasting among 34 healthy Baha’i volunteers in Germany concluded that the 19-day regimen “is safe, has no negative effects on hydration, can improve fat metabolism and can cause transient phase shifts of circadian rhythms.” The authors acknowledge that a larger number and more diverse participants are needed to validate the findings and assess the impact on long-term health.
 

What to Advise Patients

For patients who want to fast as part of their weight loss regimen or to help manage diabetes, clinicians can consider suggesting “alternate ways of eating that might achieve similar goals,” Ms. Bader said. One is intermittent fasting without dry fasting: the 16:8 method (16 hours of fasting, 8 hours of eating) or the 5:2 method (normal eating for 5 days, reduced calorie intake for 2 days), which can support improved insulin sensitivity and metabolic health.

Caloric restriction can also work if the patient maintains a balanced diet that includes all essential nutrients, she said. A low-carbohydrate diet that focuses on limiting carbohydrate intake while increasing consumption of lean proteins and healthy fats has been shown to lower blood sugar levels and improve insulin sensitivity.

Other healthy strategies for patients include the Mediterranean diet, which emphasizes whole grains, fruits, vegetables, nuts, seeds, olive oil, and lean proteins such as fish, or a similar plant-based diet with less animal protein. Ms. Bader advises cultivating mindful eating, which involves paying attention to hunger and fullness cues, making thoughtful food choices, and focusing on being present during meals.

“Each of these dietary strategies offers potential benefits for managing type 2 diabetes and improving overall health,” Ms. Bader said. “I have not had any patients who have tried dry fasting specifically. However, I have encountered scenarios where individuals abstained from food and beverages due to religious practices. In those cases, we focused on ensuring that they maintained proper hydration and balanced nutrition during their eating periods to manage their diabetes effectively and prevent complications.”

Overall, Dr. Adimoolam suggests that clinicians help patients find a weight-loss plan that works best for them based on understanding the calories in the foods they like and don’t like. For fasting regimens, patients can be encouraged to choose one with fluids when possible, as well as intervals of time to fast and eat that work best for their lifestyle.

Ms. Bader, Dr. Bruno, and Dr. Adimoolam report no relevant conflicts.
 

A version of this article appeared on Medscape.com.

Dry fasting, the practice of going without food and water, has enthusiastic advocates on TikTokX, YouTube, and other social media platforms. Devotees claim a wide range of health effects, but medical professionals advise caution to ensure that the practice does more good than harm, especially for individuals with diabetes. 

Purported benefits and risks vary, depending on who is following the regimen and how long they abstain from food and water. Advocates on social media assert that dry fasting makes “intuition skyrocket” and puts autophagy on “overdrive.” Although such statements may rev up followers, there is little evidence to support these and many other dry-fasting claims. In fact, several physicians warned about unintended consequences.

“I had one patient who followed this fasting method often, and over time she developed kidney stones that led to a severe infection,” said Deena Adimoolam, MD, an endocrinologist in private practice in New York City and New Jersey. “Lack of both water and food can fuel hunger and increase the likelihood of overeating or binge eating once the fast is completed, which does not lead to weight loss. Untreated dehydration can lead to loss of consciousness.”

“For individuals with type 2 diabetes, dehydration can exacerbate hyperglycemia and increase the risk of complications such as diabetic ketoacidosis (DKA),” said Abeer Bader, lead clinical nutrition specialist at the Massachusetts General Hospital Weight Center in Boston. “Research also consistently shows that adequate hydration is crucial for maintaining physical and cognitive performance.”

Dry fasting also can lead to electrolyte imbalances, and the risk is higher for those with diabetes due to potential underlying kidney issues, Ms. Bader noted. “Prolonged dry fasting can result in nutrient deficiencies. For individuals with diabetes, maintaining adequate nutrition is crucial to manage blood sugar levels and overall health. The lack of both food and water can exacerbate deficiencies.”

Joanne Bruno, MD, an endocrinologist at NYU Langone Health, added, “Certain medications used for the management of type 2 diabetes, such as SGLT2 inhibitors, can cause dehydration. It is critical that patients stay well hydrated while on these medications to avoid serious side effects such as euglycemic DKA.”
 

What Exactly Is Dry Fasting?

Defining dry fasting, like any kind of fasting, has remained a challenge, according to authors of the first international consensus on fasting terminology, published on July 25 in Cell Metabolism. The clinical terminology “has remained heterogeneous and often confusing, with similar terms being used to define different fasting regimens ... reflecting the manifold contexts in which fasting is practiced.”

Indeed, dry fasting was among the most discussed terms by the consensus panel and went through several rounds before the panelists came to agreement. A few experts were critical of the practice, whereas those familiar with religious fasting traditions, such as during Ramadan, were clear about the importance of including this term in the consensus process.

“The dissent was resolved by the clarification that this form of fasting has historical and geographical extensions and that the present consensus process did not aim at evaluating therapeutic effectiveness or safety for any term defined,” the authors wrote.

The panel concluded that dry fasting is not the same as total or complete fasting because the latter can include water (such as water-only fasting). Their final definition of dry fasting is ‘’a fasting regimen during which a voluntary abstinence from all foods and beverages, including water, is practiced for a certain period of time.’’

Different types of fasting regimens, such as intermittent fasting, may include dry fasting, in which case it is referred to as “intermittent dry fasting.” This is defined in the consensus as intermittent fasting regimens that involve abstaining from food and fluid intake during the fasting interval, which typically lasts 9-20 hours. 

Most dry fasts, including religious ones, are maintained for a specific interval and are followed by a refeeding period. These fasts are not starvation, defined as no food or water intake for days.
 

 

 

What the Evidence Says

All that said, dry fasting by any other name remains dry fasting. “Abundant” evidence from animal studies suggests the potential of various types of fasting for disease prevention and treatment in humans, noted the authors of the consensus report, Along with the risks described above, small studies have explored short-term effects in people, all of which have yet to be established by larger and longer-term studies.

In a recent small study, researchers at Baylor College of Medicine, Houston, Texas, reported that dawn-to-dusk dry fasting for 30 days reduced levels of inflammatory cytokines in the 13 participants with a high body mass index. Earlier work by the group showed that dawn-to-dusk dry fasting for 30 days induced “anti-atherosclerotic, anti-inflammatory, and anti-tumorigenic proteome” in peripheral blood mononuclear cells of 14 individuals with metabolic syndrome (The researchers declined to comment for this article.)

Importantly, the health effects can vary among individuals for unknown reasons, found a recent cross-sectional study of fasting blood glucose (FBG) changes in 181 patients with type 2 diabetes during Ramadan intermittent fasting (RIF), which involves dry fasting during daylight hours for 1 month. The researchers classified participants into three groups: reduced average FBG levels (44%), no change in FBG levels (24%), and increased FBG levels (32%). The authors wrote that further studies are needed to identify factors associated with the differences and to identify “those who are great candidates for RIF.”

In contrast to some of the concerns expressed by clinicians, an exploratory study of daytime dry fasting among 34 healthy Baha’i volunteers in Germany concluded that the 19-day regimen “is safe, has no negative effects on hydration, can improve fat metabolism and can cause transient phase shifts of circadian rhythms.” The authors acknowledge that a larger number and more diverse participants are needed to validate the findings and assess the impact on long-term health.
 

What to Advise Patients

For patients who want to fast as part of their weight loss regimen or to help manage diabetes, clinicians can consider suggesting “alternate ways of eating that might achieve similar goals,” Ms. Bader said. One is intermittent fasting without dry fasting: the 16:8 method (16 hours of fasting, 8 hours of eating) or the 5:2 method (normal eating for 5 days, reduced calorie intake for 2 days), which can support improved insulin sensitivity and metabolic health.

Caloric restriction can also work if the patient maintains a balanced diet that includes all essential nutrients, she said. A low-carbohydrate diet that focuses on limiting carbohydrate intake while increasing consumption of lean proteins and healthy fats has been shown to lower blood sugar levels and improve insulin sensitivity.

Other healthy strategies for patients include the Mediterranean diet, which emphasizes whole grains, fruits, vegetables, nuts, seeds, olive oil, and lean proteins such as fish, or a similar plant-based diet with less animal protein. Ms. Bader advises cultivating mindful eating, which involves paying attention to hunger and fullness cues, making thoughtful food choices, and focusing on being present during meals.

“Each of these dietary strategies offers potential benefits for managing type 2 diabetes and improving overall health,” Ms. Bader said. “I have not had any patients who have tried dry fasting specifically. However, I have encountered scenarios where individuals abstained from food and beverages due to religious practices. In those cases, we focused on ensuring that they maintained proper hydration and balanced nutrition during their eating periods to manage their diabetes effectively and prevent complications.”

Overall, Dr. Adimoolam suggests that clinicians help patients find a weight-loss plan that works best for them based on understanding the calories in the foods they like and don’t like. For fasting regimens, patients can be encouraged to choose one with fluids when possible, as well as intervals of time to fast and eat that work best for their lifestyle.

Ms. Bader, Dr. Bruno, and Dr. Adimoolam report no relevant conflicts.
 

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

PPI Prophylaxis Prevents GI Bleed in Ventilated Patients

Article Type
Changed
Fri, 08/09/2024 - 09:51

Proton pump inhibitor (PPI) prophylaxis in patients undergoing mechanical ventilation can prevent upper gastrointestinal (GI) bleeding and appears to have no effect on mortality, according to a randomized trial and a systematic review led by researchers at McMaster University, Hamilton, Ontario, Canada.

Patients in the intensive care unit (ICU) who need mechanical ventilation typically are given a PPI, such as pantoprazole, to prevent upper GI bleeding caused by stress-induced stomach ulcers, but some evidence suggested that their use might increase the risk for pneumonia and death in the most severely ill patients.

As a result, recent guidelines have issued only weak recommendations for stress ulcer prophylaxis, especially with PPIs, in critically ill patients at a high risk for bleeding, Deborah Cook, MD, professor of medicine at McMaster University, and colleagues noted.

Dr. Deborah Cook


To address clinical questions, they investigated the efficacy and safety of PPIs to prevent upper GI bleeding in critically ill patients.

Both the randomized trial in The New England Journal of Medicine and the systematic review  in NEJM Evidence were published online in June.

Significantly Lower Bleeding Risk

The REVISE trial, conducted in eight countries, compared pantoprazole 40 mg daily with placebo in critically ill adults on mechanical ventilation.

The primary efficacy outcome was clinically important upper GI bleeding in the ICU at 90 days, and the primary safety outcome was death from any cause at 90 days.

A total of 4821 patients in 68 ICUs were randomly assigned to the pantoprazole group or placebo group.

Clinically important upper GI bleeding occurred in 25 patients (1%) receiving pantoprazole and in 84 patients (3.5%) receiving placebo. At 90 days, 696 patients (29.1%) in the pantoprazole group died, as did 734 (30.9%) in the placebo group.

No significant differences were found on key secondary outcomes, including ventilator-associated pneumonia and Clostridioides difficile infection in the hospital.

The authors concluded that pantoprazole resulted in a significantly lower risk for clinically important upper GI bleeding than placebo, and it had no significant effect on mortality.
 

Disease Severity as a Possible Factor

The systematic review included 12 randomized controlled trials comparing PPIs with placebo or no prophylaxis for stress ulcers in a total of 9533 critically ill adults. The researchers performed meta-analyses and assessed the certainty of the evidence. They also conducted a subgroup analysis combining within-trial subgroup data from the two largest trials.

They found that PPIs were associated with a reduced incidence of clinically important upper GI bleeding (relative risk [RR], 0.51, with high certainty evidence) and may have little or no effect on mortality (RR, 0.99, with low-certainty evidence).

However, the within-trial subgroup analysis with intermediate credibility suggested that the effect of PPIs on mortality may differ based on disease severity. The results also raised the possibility that PPI use may decrease 90-day mortality in less severely ill patients (RR, 0.89) and increase mortality in more severely ill patients (RR, 1.08). The mechanisms behind this possible signal are likely multifactorial, the authors noted.

In addition, the review found that PPIs may have no effect on pneumonia, duration of ICU stay, or duration of hospital stay, and little or no effect on C difficile infection or duration of mechanical ventilation (low-certainty evidence).

“Physicians, nurses, and pharmacists working in the ICU setting will use this information in practice right away, and the trial results and the updated meta-analysis will be incorporated into international practice guidelines,” Dr. Cook said.

Both studies had limitations. The REVISE trial did not include patient-reported disability outcomes, and the results may not be generalizable to patients with unassisted breathing. The systematic review included studies with diverse definitions of bleeding and pneumonia, and with mortality reported at different milestones, without considering competing risk analyses. Patient-important GI bleeding was available in only one trial. Other potential side effects of PPIs, such as infection with multidrug-resistant organisms, were not reported.

In an editorial accompanying both studies, Samuel M. Brown, MD, a pulmonologist and vice president of research at Intermountain Health, Salt Lake City, Utah, said that the REVISE trial was “well designed and executed, with generalizable eligibility criteria and excellent experimental separation.” He said the researchers had shown that PPIs “slightly but significantly” decrease the risk of important GI bleeding and have a “decent chance” of slightly decreasing mortality in less severely ill patients during mechanical ventilation. At the same time, he noted, PPIs “do not decrease — and may slightly increase — mortality” in severely ill patients.

Dr. Samuel Brown


Dr. Brown wrote that, in his own practice, he intends to prescribe prophylactic PPIs to patients during mechanical ventilation “if they have an APACHE II score of less than 25” or a reasonable equivalent. The APACHE II scoring system is a point-based system that estimates a patient’s risk of death while in an ICU.

“For sicker patients, I would probably reserve the use of proton-pump inhibitors for those who are being treated with antiplatelet agents, especially in the presence of therapeutic anticoagulants,” he added.

REVISE was supported by numerous grants from organizations in several countries. No funding was specified for the systematic review. Author disclosures and other supplementary materials are available with the full text of the article.

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

Proton pump inhibitor (PPI) prophylaxis in patients undergoing mechanical ventilation can prevent upper gastrointestinal (GI) bleeding and appears to have no effect on mortality, according to a randomized trial and a systematic review led by researchers at McMaster University, Hamilton, Ontario, Canada.

Patients in the intensive care unit (ICU) who need mechanical ventilation typically are given a PPI, such as pantoprazole, to prevent upper GI bleeding caused by stress-induced stomach ulcers, but some evidence suggested that their use might increase the risk for pneumonia and death in the most severely ill patients.

As a result, recent guidelines have issued only weak recommendations for stress ulcer prophylaxis, especially with PPIs, in critically ill patients at a high risk for bleeding, Deborah Cook, MD, professor of medicine at McMaster University, and colleagues noted.

Dr. Deborah Cook


To address clinical questions, they investigated the efficacy and safety of PPIs to prevent upper GI bleeding in critically ill patients.

Both the randomized trial in The New England Journal of Medicine and the systematic review  in NEJM Evidence were published online in June.

Significantly Lower Bleeding Risk

The REVISE trial, conducted in eight countries, compared pantoprazole 40 mg daily with placebo in critically ill adults on mechanical ventilation.

The primary efficacy outcome was clinically important upper GI bleeding in the ICU at 90 days, and the primary safety outcome was death from any cause at 90 days.

A total of 4821 patients in 68 ICUs were randomly assigned to the pantoprazole group or placebo group.

Clinically important upper GI bleeding occurred in 25 patients (1%) receiving pantoprazole and in 84 patients (3.5%) receiving placebo. At 90 days, 696 patients (29.1%) in the pantoprazole group died, as did 734 (30.9%) in the placebo group.

No significant differences were found on key secondary outcomes, including ventilator-associated pneumonia and Clostridioides difficile infection in the hospital.

The authors concluded that pantoprazole resulted in a significantly lower risk for clinically important upper GI bleeding than placebo, and it had no significant effect on mortality.
 

Disease Severity as a Possible Factor

The systematic review included 12 randomized controlled trials comparing PPIs with placebo or no prophylaxis for stress ulcers in a total of 9533 critically ill adults. The researchers performed meta-analyses and assessed the certainty of the evidence. They also conducted a subgroup analysis combining within-trial subgroup data from the two largest trials.

They found that PPIs were associated with a reduced incidence of clinically important upper GI bleeding (relative risk [RR], 0.51, with high certainty evidence) and may have little or no effect on mortality (RR, 0.99, with low-certainty evidence).

However, the within-trial subgroup analysis with intermediate credibility suggested that the effect of PPIs on mortality may differ based on disease severity. The results also raised the possibility that PPI use may decrease 90-day mortality in less severely ill patients (RR, 0.89) and increase mortality in more severely ill patients (RR, 1.08). The mechanisms behind this possible signal are likely multifactorial, the authors noted.

In addition, the review found that PPIs may have no effect on pneumonia, duration of ICU stay, or duration of hospital stay, and little or no effect on C difficile infection or duration of mechanical ventilation (low-certainty evidence).

“Physicians, nurses, and pharmacists working in the ICU setting will use this information in practice right away, and the trial results and the updated meta-analysis will be incorporated into international practice guidelines,” Dr. Cook said.

Both studies had limitations. The REVISE trial did not include patient-reported disability outcomes, and the results may not be generalizable to patients with unassisted breathing. The systematic review included studies with diverse definitions of bleeding and pneumonia, and with mortality reported at different milestones, without considering competing risk analyses. Patient-important GI bleeding was available in only one trial. Other potential side effects of PPIs, such as infection with multidrug-resistant organisms, were not reported.

In an editorial accompanying both studies, Samuel M. Brown, MD, a pulmonologist and vice president of research at Intermountain Health, Salt Lake City, Utah, said that the REVISE trial was “well designed and executed, with generalizable eligibility criteria and excellent experimental separation.” He said the researchers had shown that PPIs “slightly but significantly” decrease the risk of important GI bleeding and have a “decent chance” of slightly decreasing mortality in less severely ill patients during mechanical ventilation. At the same time, he noted, PPIs “do not decrease — and may slightly increase — mortality” in severely ill patients.

Dr. Samuel Brown


Dr. Brown wrote that, in his own practice, he intends to prescribe prophylactic PPIs to patients during mechanical ventilation “if they have an APACHE II score of less than 25” or a reasonable equivalent. The APACHE II scoring system is a point-based system that estimates a patient’s risk of death while in an ICU.

“For sicker patients, I would probably reserve the use of proton-pump inhibitors for those who are being treated with antiplatelet agents, especially in the presence of therapeutic anticoagulants,” he added.

REVISE was supported by numerous grants from organizations in several countries. No funding was specified for the systematic review. Author disclosures and other supplementary materials are available with the full text of the article.

A version of this article first appeared on Medscape.com.

Proton pump inhibitor (PPI) prophylaxis in patients undergoing mechanical ventilation can prevent upper gastrointestinal (GI) bleeding and appears to have no effect on mortality, according to a randomized trial and a systematic review led by researchers at McMaster University, Hamilton, Ontario, Canada.

Patients in the intensive care unit (ICU) who need mechanical ventilation typically are given a PPI, such as pantoprazole, to prevent upper GI bleeding caused by stress-induced stomach ulcers, but some evidence suggested that their use might increase the risk for pneumonia and death in the most severely ill patients.

As a result, recent guidelines have issued only weak recommendations for stress ulcer prophylaxis, especially with PPIs, in critically ill patients at a high risk for bleeding, Deborah Cook, MD, professor of medicine at McMaster University, and colleagues noted.

Dr. Deborah Cook


To address clinical questions, they investigated the efficacy and safety of PPIs to prevent upper GI bleeding in critically ill patients.

Both the randomized trial in The New England Journal of Medicine and the systematic review  in NEJM Evidence were published online in June.

Significantly Lower Bleeding Risk

The REVISE trial, conducted in eight countries, compared pantoprazole 40 mg daily with placebo in critically ill adults on mechanical ventilation.

The primary efficacy outcome was clinically important upper GI bleeding in the ICU at 90 days, and the primary safety outcome was death from any cause at 90 days.

A total of 4821 patients in 68 ICUs were randomly assigned to the pantoprazole group or placebo group.

Clinically important upper GI bleeding occurred in 25 patients (1%) receiving pantoprazole and in 84 patients (3.5%) receiving placebo. At 90 days, 696 patients (29.1%) in the pantoprazole group died, as did 734 (30.9%) in the placebo group.

No significant differences were found on key secondary outcomes, including ventilator-associated pneumonia and Clostridioides difficile infection in the hospital.

The authors concluded that pantoprazole resulted in a significantly lower risk for clinically important upper GI bleeding than placebo, and it had no significant effect on mortality.
 

Disease Severity as a Possible Factor

The systematic review included 12 randomized controlled trials comparing PPIs with placebo or no prophylaxis for stress ulcers in a total of 9533 critically ill adults. The researchers performed meta-analyses and assessed the certainty of the evidence. They also conducted a subgroup analysis combining within-trial subgroup data from the two largest trials.

They found that PPIs were associated with a reduced incidence of clinically important upper GI bleeding (relative risk [RR], 0.51, with high certainty evidence) and may have little or no effect on mortality (RR, 0.99, with low-certainty evidence).

However, the within-trial subgroup analysis with intermediate credibility suggested that the effect of PPIs on mortality may differ based on disease severity. The results also raised the possibility that PPI use may decrease 90-day mortality in less severely ill patients (RR, 0.89) and increase mortality in more severely ill patients (RR, 1.08). The mechanisms behind this possible signal are likely multifactorial, the authors noted.

In addition, the review found that PPIs may have no effect on pneumonia, duration of ICU stay, or duration of hospital stay, and little or no effect on C difficile infection or duration of mechanical ventilation (low-certainty evidence).

“Physicians, nurses, and pharmacists working in the ICU setting will use this information in practice right away, and the trial results and the updated meta-analysis will be incorporated into international practice guidelines,” Dr. Cook said.

Both studies had limitations. The REVISE trial did not include patient-reported disability outcomes, and the results may not be generalizable to patients with unassisted breathing. The systematic review included studies with diverse definitions of bleeding and pneumonia, and with mortality reported at different milestones, without considering competing risk analyses. Patient-important GI bleeding was available in only one trial. Other potential side effects of PPIs, such as infection with multidrug-resistant organisms, were not reported.

In an editorial accompanying both studies, Samuel M. Brown, MD, a pulmonologist and vice president of research at Intermountain Health, Salt Lake City, Utah, said that the REVISE trial was “well designed and executed, with generalizable eligibility criteria and excellent experimental separation.” He said the researchers had shown that PPIs “slightly but significantly” decrease the risk of important GI bleeding and have a “decent chance” of slightly decreasing mortality in less severely ill patients during mechanical ventilation. At the same time, he noted, PPIs “do not decrease — and may slightly increase — mortality” in severely ill patients.

Dr. Samuel Brown


Dr. Brown wrote that, in his own practice, he intends to prescribe prophylactic PPIs to patients during mechanical ventilation “if they have an APACHE II score of less than 25” or a reasonable equivalent. The APACHE II scoring system is a point-based system that estimates a patient’s risk of death while in an ICU.

“For sicker patients, I would probably reserve the use of proton-pump inhibitors for those who are being treated with antiplatelet agents, especially in the presence of therapeutic anticoagulants,” he added.

REVISE was supported by numerous grants from organizations in several countries. No funding was specified for the systematic review. Author disclosures and other supplementary materials are available with the full text of the article.

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Article Source

FROM THE NEW ENGLAND JOURNAL OF MEDICINE

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

How Does ‘Eat Less, Move More’ Promote Obesity Bias?

Article Type
Changed
Thu, 08/08/2024 - 11:04

Experts are debating whether and how to define obesity, but clinicians’ attitudes and behavior toward patients with obesity don’t seem to be undergoing similar scrutiny.

“Despite scientific evidence to the contrary, the prevailing view in society is that obesity is a choice that can be reversed by voluntary decisions to eat less and exercise more,” a multidisciplinary group of 36 international experts wrote in a joint consensus statement for ending the stigma of obesity, published a few years ago in Nature Medicine. “These assumptions mislead public health policies, confuse messages in popular media, undermine access to evidence-based treatments, and compromise advances in research.”

These assumptions also affect how clinicians view and treat their patients.

A systematic review and meta-analysis from Australia using 27 different outcomes to assess weight bias found that “medical doctors, nurses, dietitians, psychologists, physiotherapists, occupational therapists, speech pathologists, podiatrists, and exercise physiologists hold implicit and/or explicit weight-biased attitudes toward people with obesity.”

Another recent systematic review, this one from Brazil, found that obesity bias affected both clinical decision-making and quality of care. Patients with obesity had fewer screening exams for cancer, less-frequent treatment intensification in the management of obesity, and fewer pelvic exams. The authors concluded that their findings “reveal the urgent necessity for reflection and development of strategies to mitigate the adverse impacts” of obesity bias.

“Weight is one of those things that gets judged because it can be seen,” Obesity Society Spokesperson Peminda Cabandugama, MD, of Cleveland Clinic, told this news organization. “People just look at someone with overweight and say, ‘That person needs to eat less and exercise more.’ ”
 

How Obesity Bias Manifests

The Obesity Action Coalition (OAC), a partner organization to the consensus statement, defines weight bias as “negative attitudes, beliefs, judgments, stereotypes, and discriminatory acts aimed at individuals simply because of their weight. It can be overt or subtle and occur in any setting, including employment, healthcare, education, mass media, and relationships with family and friends.”

The organization notes that weight bias takes many forms, including verbal, written, media, and online.

The consensus statement authors offer these definitions, which encompass the manifestations of obesity bias: Weight stigma refers to “social devaluation and denigration of individuals because of their excess body weight and can lead to negative attitudes, stereotypes, prejudice, and discrimination.” 

Weight discrimination refers to “overt forms of weight-based prejudice and unfair treatment (biased behaviors) toward individuals with overweight or obesity.” The authors noted that some public health efforts “openly embrace stigmatization of individuals with obesity based on the assumption that shame will motivate them to change behavior and achieve weight loss through a self-directed diet and increased physical exercise.”

The result: “Individuals with obesity face not only increased risk of serious medical complications but also a pervasive, resilient form of social stigma. Often perceived (without evidence) as lazy, gluttonous, lacking will power and self-discipline, individuals with overweight or obesity are vulnerable to stigma and discrimination in the workplace, education, healthcare settings, and society in general.”

“Obesity bias is so pervasive that the most common thing I hear when I ask a patient why they’re referred to me is ‘my doctor wants me to lose weight,’” Dr. Cabandugama said. “And the first thing I ask them is ‘what do you want to do?’ They come in because they’ve already been judged, and more often than not, in ways that come across as derogatory or punitive — like it’s their fault.”

 

 

 

Why It Persists

Experts say a big part of the problem is the lack of obesity education in medical school. A recent survey study found that medical schools are not prioritizing obesity in their curricula. Among 40 medical schools responding to the survey, only 10% said they believed their students were “very prepared” to manage patients with obesity, and one third had no obesity education program in place with no plans to develop one.

“Most healthcare providers do not get much meaningful education on obesity during medical school or postgraduate training, and many of their opinions may be influenced by the pervasive weight bias that exists in society,” affirmed Jaime Almandoz, MD, medical director of Weight Wellness Program and associate professor of internal medicine at UT Southwestern Medical Center in Dallas. “We need to prioritize updating education and certification curricula to reflect the current science.”

Small wonder that a recent comparison of explicit weight bias among US resident physicians from 49 medical schools across 16 clinical specialties found “problematic levels” of weight bias — eg, anti-fat blame, anti-fat dislike, and other negative attitudes toward patients — in all specialties. 
 

What to Do

To counteract the stigma, when working with patients who have overweight, “We need to be respectful of them, their bodies, and their health wishes,” Dr. Almandoz told this news organization. “Clinicians should always ask for permission to discuss their weight and frame weight or BMI in the context of health, not just an arbitrary number or goal.”

“Many people with obesity have had traumatic and stigmatizing experiences with well-intentioned healthcare providers,” he noted. “This can lead to the avoidance of routine healthcare and screenings and potential exacerbations and maladaptive health behaviors.”

“Be mindful of the environment that you and your office create for people with obesity,” he advised. “Consider getting additional education and information about weight bias.”

The OAC has resources on obesity bias, including steps clinicians can take to reduce the impact. These include, among others: Encouraging patients to share their experiences of stigma to help them feel less isolated in these experiences; helping them identify ways to effectively cope with stigma, such as using positive “self-talk” and obtaining social support from others; and encouraging participation in activities that they may have restricted due to feelings of shame about their weight.

Clinicians can also improve the physical and social environment of their practice by having bathrooms that are easily negotiated by heavier individuals, sturdy armless chairs in waiting rooms, offices with large exam tables, gowns and blood pressure cuffs in appropriate sizes, and “weight-friendly” reading materials rather than fashion magazines with thin supermodels.

Importantly, clinicians need to address the issue of weight bias within themselves, their medical staff, and colleagues, according to the OAC. To be effective and empathic with individuals affected by obesity “requires honest self-examination of one’s own attitudes and weight bias.”

Dr. Almandoz reported being a consultant/advisory board member for Novo Nordisk, Boehringer Ingelheim, and Eli Lilly and Company. Dr. Cabandugama reported no competing interests. 
 

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

Experts are debating whether and how to define obesity, but clinicians’ attitudes and behavior toward patients with obesity don’t seem to be undergoing similar scrutiny.

“Despite scientific evidence to the contrary, the prevailing view in society is that obesity is a choice that can be reversed by voluntary decisions to eat less and exercise more,” a multidisciplinary group of 36 international experts wrote in a joint consensus statement for ending the stigma of obesity, published a few years ago in Nature Medicine. “These assumptions mislead public health policies, confuse messages in popular media, undermine access to evidence-based treatments, and compromise advances in research.”

These assumptions also affect how clinicians view and treat their patients.

A systematic review and meta-analysis from Australia using 27 different outcomes to assess weight bias found that “medical doctors, nurses, dietitians, psychologists, physiotherapists, occupational therapists, speech pathologists, podiatrists, and exercise physiologists hold implicit and/or explicit weight-biased attitudes toward people with obesity.”

Another recent systematic review, this one from Brazil, found that obesity bias affected both clinical decision-making and quality of care. Patients with obesity had fewer screening exams for cancer, less-frequent treatment intensification in the management of obesity, and fewer pelvic exams. The authors concluded that their findings “reveal the urgent necessity for reflection and development of strategies to mitigate the adverse impacts” of obesity bias.

“Weight is one of those things that gets judged because it can be seen,” Obesity Society Spokesperson Peminda Cabandugama, MD, of Cleveland Clinic, told this news organization. “People just look at someone with overweight and say, ‘That person needs to eat less and exercise more.’ ”
 

How Obesity Bias Manifests

The Obesity Action Coalition (OAC), a partner organization to the consensus statement, defines weight bias as “negative attitudes, beliefs, judgments, stereotypes, and discriminatory acts aimed at individuals simply because of their weight. It can be overt or subtle and occur in any setting, including employment, healthcare, education, mass media, and relationships with family and friends.”

The organization notes that weight bias takes many forms, including verbal, written, media, and online.

The consensus statement authors offer these definitions, which encompass the manifestations of obesity bias: Weight stigma refers to “social devaluation and denigration of individuals because of their excess body weight and can lead to negative attitudes, stereotypes, prejudice, and discrimination.” 

Weight discrimination refers to “overt forms of weight-based prejudice and unfair treatment (biased behaviors) toward individuals with overweight or obesity.” The authors noted that some public health efforts “openly embrace stigmatization of individuals with obesity based on the assumption that shame will motivate them to change behavior and achieve weight loss through a self-directed diet and increased physical exercise.”

The result: “Individuals with obesity face not only increased risk of serious medical complications but also a pervasive, resilient form of social stigma. Often perceived (without evidence) as lazy, gluttonous, lacking will power and self-discipline, individuals with overweight or obesity are vulnerable to stigma and discrimination in the workplace, education, healthcare settings, and society in general.”

“Obesity bias is so pervasive that the most common thing I hear when I ask a patient why they’re referred to me is ‘my doctor wants me to lose weight,’” Dr. Cabandugama said. “And the first thing I ask them is ‘what do you want to do?’ They come in because they’ve already been judged, and more often than not, in ways that come across as derogatory or punitive — like it’s their fault.”

 

 

 

Why It Persists

Experts say a big part of the problem is the lack of obesity education in medical school. A recent survey study found that medical schools are not prioritizing obesity in their curricula. Among 40 medical schools responding to the survey, only 10% said they believed their students were “very prepared” to manage patients with obesity, and one third had no obesity education program in place with no plans to develop one.

“Most healthcare providers do not get much meaningful education on obesity during medical school or postgraduate training, and many of their opinions may be influenced by the pervasive weight bias that exists in society,” affirmed Jaime Almandoz, MD, medical director of Weight Wellness Program and associate professor of internal medicine at UT Southwestern Medical Center in Dallas. “We need to prioritize updating education and certification curricula to reflect the current science.”

Small wonder that a recent comparison of explicit weight bias among US resident physicians from 49 medical schools across 16 clinical specialties found “problematic levels” of weight bias — eg, anti-fat blame, anti-fat dislike, and other negative attitudes toward patients — in all specialties. 
 

What to Do

To counteract the stigma, when working with patients who have overweight, “We need to be respectful of them, their bodies, and their health wishes,” Dr. Almandoz told this news organization. “Clinicians should always ask for permission to discuss their weight and frame weight or BMI in the context of health, not just an arbitrary number or goal.”

“Many people with obesity have had traumatic and stigmatizing experiences with well-intentioned healthcare providers,” he noted. “This can lead to the avoidance of routine healthcare and screenings and potential exacerbations and maladaptive health behaviors.”

“Be mindful of the environment that you and your office create for people with obesity,” he advised. “Consider getting additional education and information about weight bias.”

The OAC has resources on obesity bias, including steps clinicians can take to reduce the impact. These include, among others: Encouraging patients to share their experiences of stigma to help them feel less isolated in these experiences; helping them identify ways to effectively cope with stigma, such as using positive “self-talk” and obtaining social support from others; and encouraging participation in activities that they may have restricted due to feelings of shame about their weight.

Clinicians can also improve the physical and social environment of their practice by having bathrooms that are easily negotiated by heavier individuals, sturdy armless chairs in waiting rooms, offices with large exam tables, gowns and blood pressure cuffs in appropriate sizes, and “weight-friendly” reading materials rather than fashion magazines with thin supermodels.

Importantly, clinicians need to address the issue of weight bias within themselves, their medical staff, and colleagues, according to the OAC. To be effective and empathic with individuals affected by obesity “requires honest self-examination of one’s own attitudes and weight bias.”

Dr. Almandoz reported being a consultant/advisory board member for Novo Nordisk, Boehringer Ingelheim, and Eli Lilly and Company. Dr. Cabandugama reported no competing interests. 
 

A version of this article first appeared on Medscape.com.

Experts are debating whether and how to define obesity, but clinicians’ attitudes and behavior toward patients with obesity don’t seem to be undergoing similar scrutiny.

“Despite scientific evidence to the contrary, the prevailing view in society is that obesity is a choice that can be reversed by voluntary decisions to eat less and exercise more,” a multidisciplinary group of 36 international experts wrote in a joint consensus statement for ending the stigma of obesity, published a few years ago in Nature Medicine. “These assumptions mislead public health policies, confuse messages in popular media, undermine access to evidence-based treatments, and compromise advances in research.”

These assumptions also affect how clinicians view and treat their patients.

A systematic review and meta-analysis from Australia using 27 different outcomes to assess weight bias found that “medical doctors, nurses, dietitians, psychologists, physiotherapists, occupational therapists, speech pathologists, podiatrists, and exercise physiologists hold implicit and/or explicit weight-biased attitudes toward people with obesity.”

Another recent systematic review, this one from Brazil, found that obesity bias affected both clinical decision-making and quality of care. Patients with obesity had fewer screening exams for cancer, less-frequent treatment intensification in the management of obesity, and fewer pelvic exams. The authors concluded that their findings “reveal the urgent necessity for reflection and development of strategies to mitigate the adverse impacts” of obesity bias.

“Weight is one of those things that gets judged because it can be seen,” Obesity Society Spokesperson Peminda Cabandugama, MD, of Cleveland Clinic, told this news organization. “People just look at someone with overweight and say, ‘That person needs to eat less and exercise more.’ ”
 

How Obesity Bias Manifests

The Obesity Action Coalition (OAC), a partner organization to the consensus statement, defines weight bias as “negative attitudes, beliefs, judgments, stereotypes, and discriminatory acts aimed at individuals simply because of their weight. It can be overt or subtle and occur in any setting, including employment, healthcare, education, mass media, and relationships with family and friends.”

The organization notes that weight bias takes many forms, including verbal, written, media, and online.

The consensus statement authors offer these definitions, which encompass the manifestations of obesity bias: Weight stigma refers to “social devaluation and denigration of individuals because of their excess body weight and can lead to negative attitudes, stereotypes, prejudice, and discrimination.” 

Weight discrimination refers to “overt forms of weight-based prejudice and unfair treatment (biased behaviors) toward individuals with overweight or obesity.” The authors noted that some public health efforts “openly embrace stigmatization of individuals with obesity based on the assumption that shame will motivate them to change behavior and achieve weight loss through a self-directed diet and increased physical exercise.”

The result: “Individuals with obesity face not only increased risk of serious medical complications but also a pervasive, resilient form of social stigma. Often perceived (without evidence) as lazy, gluttonous, lacking will power and self-discipline, individuals with overweight or obesity are vulnerable to stigma and discrimination in the workplace, education, healthcare settings, and society in general.”

“Obesity bias is so pervasive that the most common thing I hear when I ask a patient why they’re referred to me is ‘my doctor wants me to lose weight,’” Dr. Cabandugama said. “And the first thing I ask them is ‘what do you want to do?’ They come in because they’ve already been judged, and more often than not, in ways that come across as derogatory or punitive — like it’s their fault.”

 

 

 

Why It Persists

Experts say a big part of the problem is the lack of obesity education in medical school. A recent survey study found that medical schools are not prioritizing obesity in their curricula. Among 40 medical schools responding to the survey, only 10% said they believed their students were “very prepared” to manage patients with obesity, and one third had no obesity education program in place with no plans to develop one.

“Most healthcare providers do not get much meaningful education on obesity during medical school or postgraduate training, and many of their opinions may be influenced by the pervasive weight bias that exists in society,” affirmed Jaime Almandoz, MD, medical director of Weight Wellness Program and associate professor of internal medicine at UT Southwestern Medical Center in Dallas. “We need to prioritize updating education and certification curricula to reflect the current science.”

Small wonder that a recent comparison of explicit weight bias among US resident physicians from 49 medical schools across 16 clinical specialties found “problematic levels” of weight bias — eg, anti-fat blame, anti-fat dislike, and other negative attitudes toward patients — in all specialties. 
 

What to Do

To counteract the stigma, when working with patients who have overweight, “We need to be respectful of them, their bodies, and their health wishes,” Dr. Almandoz told this news organization. “Clinicians should always ask for permission to discuss their weight and frame weight or BMI in the context of health, not just an arbitrary number or goal.”

“Many people with obesity have had traumatic and stigmatizing experiences with well-intentioned healthcare providers,” he noted. “This can lead to the avoidance of routine healthcare and screenings and potential exacerbations and maladaptive health behaviors.”

“Be mindful of the environment that you and your office create for people with obesity,” he advised. “Consider getting additional education and information about weight bias.”

The OAC has resources on obesity bias, including steps clinicians can take to reduce the impact. These include, among others: Encouraging patients to share their experiences of stigma to help them feel less isolated in these experiences; helping them identify ways to effectively cope with stigma, such as using positive “self-talk” and obtaining social support from others; and encouraging participation in activities that they may have restricted due to feelings of shame about their weight.

Clinicians can also improve the physical and social environment of their practice by having bathrooms that are easily negotiated by heavier individuals, sturdy armless chairs in waiting rooms, offices with large exam tables, gowns and blood pressure cuffs in appropriate sizes, and “weight-friendly” reading materials rather than fashion magazines with thin supermodels.

Importantly, clinicians need to address the issue of weight bias within themselves, their medical staff, and colleagues, according to the OAC. To be effective and empathic with individuals affected by obesity “requires honest self-examination of one’s own attitudes and weight bias.”

Dr. Almandoz reported being a consultant/advisory board member for Novo Nordisk, Boehringer Ingelheim, and Eli Lilly and Company. Dr. Cabandugama reported no competing interests. 
 

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Gut Microbiota Tied to Food Addiction Vulnerability

Article Type
Changed
Wed, 08/07/2024 - 10:32

 

TOPLINE:

Researchers have identified specific gut microbiota associated with vulnerability to food addiction and others that might be protective against the disorder.

METHODOLOGY:

  • Food addiction, characterized by a loss of control over food intake, may promote obesity and alter gut microbiota composition.
  • Researchers used the Yale Food Addiction Scale 2.0 criteria to classify extreme food addiction and nonaddiction in mouse models and humans.
  • The gut microbiota between addicted and nonaddicted mice were compared to identify factors related to food addiction in the murine model. Researchers subsequently gave mice drinking water with the prebiotics lactulose or rhamnose and the bacterium Blautia wexlerae, which has been associated with a reduced risk for obesity and diabetes.
  • Gut microbiota signatures were also analyzed in 15 individuals with food addiction and 13 matched controls.

TAKEAWAY:

  • In both humans and mice, gut microbiome signatures suggested possible nonbeneficial effects of bacteria in the Proteobacteria phylum and potential protective effects of Actinobacteria against the development of food addiction.
  • In correlational analyses, decreased relative abundance of the species B wexlerae was observed in addicted humans and of the Blautia genus in addicted mice.
  • Administration of the nondigestible carbohydrates lactulose and rhamnose, known to favor Blautia growth, led to increased relative abundance of Blautia in mouse feces, as well as “dramatic improvements” in food addiction.
  • In functional validation experiments, oral administration of B wexlerae in mice led to similar improvement.

IN PRACTICE:

“This novel understanding of the role of gut microbiota in the development of food addiction may open new approaches for developing biomarkers and innovative therapies for food addiction and related eating disorders,” the authors wrote.

SOURCE:

The study, led by Solveiga Samulėnaitė, a doctoral student at Vilnius University, Vilnius, Lithuania, was published online in Gut.

LIMITATIONS:

Further research is needed to elucidate the exact mechanisms underlying the potential use of gut microbiota for treating food addiction and to test the safety and efficacy in humans.

DISCLOSURES:

This work was supported by La Caixa Health and numerous grants from Spanish ministries and institutions and the European Union. No competing interests were declared.

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

 

TOPLINE:

Researchers have identified specific gut microbiota associated with vulnerability to food addiction and others that might be protective against the disorder.

METHODOLOGY:

  • Food addiction, characterized by a loss of control over food intake, may promote obesity and alter gut microbiota composition.
  • Researchers used the Yale Food Addiction Scale 2.0 criteria to classify extreme food addiction and nonaddiction in mouse models and humans.
  • The gut microbiota between addicted and nonaddicted mice were compared to identify factors related to food addiction in the murine model. Researchers subsequently gave mice drinking water with the prebiotics lactulose or rhamnose and the bacterium Blautia wexlerae, which has been associated with a reduced risk for obesity and diabetes.
  • Gut microbiota signatures were also analyzed in 15 individuals with food addiction and 13 matched controls.

TAKEAWAY:

  • In both humans and mice, gut microbiome signatures suggested possible nonbeneficial effects of bacteria in the Proteobacteria phylum and potential protective effects of Actinobacteria against the development of food addiction.
  • In correlational analyses, decreased relative abundance of the species B wexlerae was observed in addicted humans and of the Blautia genus in addicted mice.
  • Administration of the nondigestible carbohydrates lactulose and rhamnose, known to favor Blautia growth, led to increased relative abundance of Blautia in mouse feces, as well as “dramatic improvements” in food addiction.
  • In functional validation experiments, oral administration of B wexlerae in mice led to similar improvement.

IN PRACTICE:

“This novel understanding of the role of gut microbiota in the development of food addiction may open new approaches for developing biomarkers and innovative therapies for food addiction and related eating disorders,” the authors wrote.

SOURCE:

The study, led by Solveiga Samulėnaitė, a doctoral student at Vilnius University, Vilnius, Lithuania, was published online in Gut.

LIMITATIONS:

Further research is needed to elucidate the exact mechanisms underlying the potential use of gut microbiota for treating food addiction and to test the safety and efficacy in humans.

DISCLOSURES:

This work was supported by La Caixa Health and numerous grants from Spanish ministries and institutions and the European Union. No competing interests were declared.

A version of this article first appeared on Medscape.com.

 

TOPLINE:

Researchers have identified specific gut microbiota associated with vulnerability to food addiction and others that might be protective against the disorder.

METHODOLOGY:

  • Food addiction, characterized by a loss of control over food intake, may promote obesity and alter gut microbiota composition.
  • Researchers used the Yale Food Addiction Scale 2.0 criteria to classify extreme food addiction and nonaddiction in mouse models and humans.
  • The gut microbiota between addicted and nonaddicted mice were compared to identify factors related to food addiction in the murine model. Researchers subsequently gave mice drinking water with the prebiotics lactulose or rhamnose and the bacterium Blautia wexlerae, which has been associated with a reduced risk for obesity and diabetes.
  • Gut microbiota signatures were also analyzed in 15 individuals with food addiction and 13 matched controls.

TAKEAWAY:

  • In both humans and mice, gut microbiome signatures suggested possible nonbeneficial effects of bacteria in the Proteobacteria phylum and potential protective effects of Actinobacteria against the development of food addiction.
  • In correlational analyses, decreased relative abundance of the species B wexlerae was observed in addicted humans and of the Blautia genus in addicted mice.
  • Administration of the nondigestible carbohydrates lactulose and rhamnose, known to favor Blautia growth, led to increased relative abundance of Blautia in mouse feces, as well as “dramatic improvements” in food addiction.
  • In functional validation experiments, oral administration of B wexlerae in mice led to similar improvement.

IN PRACTICE:

“This novel understanding of the role of gut microbiota in the development of food addiction may open new approaches for developing biomarkers and innovative therapies for food addiction and related eating disorders,” the authors wrote.

SOURCE:

The study, led by Solveiga Samulėnaitė, a doctoral student at Vilnius University, Vilnius, Lithuania, was published online in Gut.

LIMITATIONS:

Further research is needed to elucidate the exact mechanisms underlying the potential use of gut microbiota for treating food addiction and to test the safety and efficacy in humans.

DISCLOSURES:

This work was supported by La Caixa Health and numerous grants from Spanish ministries and institutions and the European Union. No competing interests were declared.

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Shortage of Blood Bottles Could Disrupt Care

Article Type
Changed
Tue, 07/30/2024 - 16:10

Hospitals and laboratories across the United States are grappling with a shortage of Becton Dickinson BACTEC blood culture bottles that threatens to extend at least until September.

In a health advisory, the Centers for Disease Control and Prevention (CDC) warned that the critical shortage could lead to “delays in diagnosis, misdiagnosis, or other challenges” in the management of patients with infectious diseases.

Most blood cultures in the United States are performed using continuous-monitoring blood culture systems; the Becton Dickinson system is used in about half of all US laboratories and is only compatible with the brand’s BACTEC blood culture media bottles.

Healthcare providers, laboratories, healthcare facility administrators, and state, tribal, local, and territorial health departments affected by the shortage “should immediately begin to assess their situations and develop plans and options to mitigate the potential impact,” according to the health advisory.
 

What to Do

To reduce the impact of the shortage, facilities are urged to:

  • Determine the type of blood culture bottles they have
  • Optimize the use of blood cultures at their facility
  • Take steps to prevent blood culture contamination
  • Ensure that the appropriate volume of blood is collected for culture
  • Assess alternate options for blood cultures
  • Work with a nearby facility or send samples to another laboratory

Health departments are advised to contact hospitals and laboratories in their jurisdictions to determine whether the shortage will affect them. Health departments are also encouraged to educate others on the supply shortage, optimal use of blood cultures, and mechanisms for reporting supply chain shortages or interruptions to the Food and Drug Administration (FDA), as well as to help with communication between laboratories and facilities willing to assist others in need.

To further assist affected providers, the CDC, in collaboration with the Infectious Diseases Society of America, hosted a webinar with speakers from Johns Hopkins University, Massachusetts General Hospital, and Vanderbilt University, who shared what their institutions are doing to cope with the shortage and protect patients.
 

Why It Happened

In June, Becton Dickinson warned its customers that they may experience “intermittent delays” in the supply of some BACTEC blood culture media over the coming months because of reduced availability of plastic bottles from its supplier.

In a July 22 update, the company said the supplier issues were “more complex” than originally communicated and it is taking steps to “resolve this challenge as quickly as possible.”

In July, the FDA published a letter to healthcare providers acknowledging the supply disruptions and recommended strategies to preserve the supply for patients at highest risk.

Becton Dickinson has promised an update by September to this “dynamic and evolving situation.”

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

Hospitals and laboratories across the United States are grappling with a shortage of Becton Dickinson BACTEC blood culture bottles that threatens to extend at least until September.

In a health advisory, the Centers for Disease Control and Prevention (CDC) warned that the critical shortage could lead to “delays in diagnosis, misdiagnosis, or other challenges” in the management of patients with infectious diseases.

Most blood cultures in the United States are performed using continuous-monitoring blood culture systems; the Becton Dickinson system is used in about half of all US laboratories and is only compatible with the brand’s BACTEC blood culture media bottles.

Healthcare providers, laboratories, healthcare facility administrators, and state, tribal, local, and territorial health departments affected by the shortage “should immediately begin to assess their situations and develop plans and options to mitigate the potential impact,” according to the health advisory.
 

What to Do

To reduce the impact of the shortage, facilities are urged to:

  • Determine the type of blood culture bottles they have
  • Optimize the use of blood cultures at their facility
  • Take steps to prevent blood culture contamination
  • Ensure that the appropriate volume of blood is collected for culture
  • Assess alternate options for blood cultures
  • Work with a nearby facility or send samples to another laboratory

Health departments are advised to contact hospitals and laboratories in their jurisdictions to determine whether the shortage will affect them. Health departments are also encouraged to educate others on the supply shortage, optimal use of blood cultures, and mechanisms for reporting supply chain shortages or interruptions to the Food and Drug Administration (FDA), as well as to help with communication between laboratories and facilities willing to assist others in need.

To further assist affected providers, the CDC, in collaboration with the Infectious Diseases Society of America, hosted a webinar with speakers from Johns Hopkins University, Massachusetts General Hospital, and Vanderbilt University, who shared what their institutions are doing to cope with the shortage and protect patients.
 

Why It Happened

In June, Becton Dickinson warned its customers that they may experience “intermittent delays” in the supply of some BACTEC blood culture media over the coming months because of reduced availability of plastic bottles from its supplier.

In a July 22 update, the company said the supplier issues were “more complex” than originally communicated and it is taking steps to “resolve this challenge as quickly as possible.”

In July, the FDA published a letter to healthcare providers acknowledging the supply disruptions and recommended strategies to preserve the supply for patients at highest risk.

Becton Dickinson has promised an update by September to this “dynamic and evolving situation.”

A version of this article appeared on Medscape.com.

Hospitals and laboratories across the United States are grappling with a shortage of Becton Dickinson BACTEC blood culture bottles that threatens to extend at least until September.

In a health advisory, the Centers for Disease Control and Prevention (CDC) warned that the critical shortage could lead to “delays in diagnosis, misdiagnosis, or other challenges” in the management of patients with infectious diseases.

Most blood cultures in the United States are performed using continuous-monitoring blood culture systems; the Becton Dickinson system is used in about half of all US laboratories and is only compatible with the brand’s BACTEC blood culture media bottles.

Healthcare providers, laboratories, healthcare facility administrators, and state, tribal, local, and territorial health departments affected by the shortage “should immediately begin to assess their situations and develop plans and options to mitigate the potential impact,” according to the health advisory.
 

What to Do

To reduce the impact of the shortage, facilities are urged to:

  • Determine the type of blood culture bottles they have
  • Optimize the use of blood cultures at their facility
  • Take steps to prevent blood culture contamination
  • Ensure that the appropriate volume of blood is collected for culture
  • Assess alternate options for blood cultures
  • Work with a nearby facility or send samples to another laboratory

Health departments are advised to contact hospitals and laboratories in their jurisdictions to determine whether the shortage will affect them. Health departments are also encouraged to educate others on the supply shortage, optimal use of blood cultures, and mechanisms for reporting supply chain shortages or interruptions to the Food and Drug Administration (FDA), as well as to help with communication between laboratories and facilities willing to assist others in need.

To further assist affected providers, the CDC, in collaboration with the Infectious Diseases Society of America, hosted a webinar with speakers from Johns Hopkins University, Massachusetts General Hospital, and Vanderbilt University, who shared what their institutions are doing to cope with the shortage and protect patients.
 

Why It Happened

In June, Becton Dickinson warned its customers that they may experience “intermittent delays” in the supply of some BACTEC blood culture media over the coming months because of reduced availability of plastic bottles from its supplier.

In a July 22 update, the company said the supplier issues were “more complex” than originally communicated and it is taking steps to “resolve this challenge as quickly as possible.”

In July, the FDA published a letter to healthcare providers acknowledging the supply disruptions and recommended strategies to preserve the supply for patients at highest risk.

Becton Dickinson has promised an update by September to this “dynamic and evolving situation.”

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Compounded Semaglutide Overdoses Tied to Hospitalizations

Article Type
Changed
Fri, 08/23/2024 - 12:43

Patients are overdosing on compounded semaglutide due to errors in measuring and self-administering the drug and due to clinicians miscalculating doses that may differ from US Food and Drug Administration (FDA)–approved products.

The FDA published an alert on July 26 after receiving reports of dosing errors involving compounded semaglutide injectable products dispensed in multidose vials. Adverse events included gastrointestinal effects, fainting, dehydration, headache, gallstones, and acute pancreatitis. Some patients required hospitalization.
 

Why the Risks?

FDA-approved semaglutide injectable products are dosed in milligrams, have standard concentrations, and are currently only available in prefilled pens.

Compounded semaglutide products may differ from approved products in ways that contribute to potential errors — for example, in multidose vials and prefilled syringes. In addition, product concentrations may vary depending on the compounder, and even a single compounder may offer multiple concentrations of semaglutide.

Instructions for a compounded drug, if provided, may tell users to administer semaglutide injections in “units,” the volume of which may vary depending on the concentration — rather than in milligrams. In some instances, patients received syringes significantly larger than the prescribed volume.
 

Common Errors

The FDA has received reports related to patients mistakenly taking more than the prescribed dose from a multidose vial — sometimes 5-20 times more than the intended dose.

Several reports described clinicians incorrectly calculating the intended dose when converting from milligrams to units or milliliters. In one case, a patient couldn’t get clarity on dosing instructions from the telemedicine provider who prescribed the compounded semaglutide, leading the patient to search online for medical advice. This resulted in the patient taking five times the intended dose.

In another example, one clinician prescribed 20 units instead of two units, affecting three patients who, after receiving 10 times the intended dose, experienced nausea and vomiting.

Another clinician, who also takes semaglutide himself, tried to recalculate his own dose in units and ended up self-administering a dose 10 times higher than intended.

The FDA previously warned about potential risks from the use of compounded drugs during a shortage as is the case with semaglutide. While compounded drugs can “sometimes” be helpful, according to the agency, “compounded drugs pose a higher risk to patients than FDA-approved drugs because compounded drugs do not undergo FDA premarket review for safety, effectiveness, or quality.”

Publications
Topics
Sections

Patients are overdosing on compounded semaglutide due to errors in measuring and self-administering the drug and due to clinicians miscalculating doses that may differ from US Food and Drug Administration (FDA)–approved products.

The FDA published an alert on July 26 after receiving reports of dosing errors involving compounded semaglutide injectable products dispensed in multidose vials. Adverse events included gastrointestinal effects, fainting, dehydration, headache, gallstones, and acute pancreatitis. Some patients required hospitalization.
 

Why the Risks?

FDA-approved semaglutide injectable products are dosed in milligrams, have standard concentrations, and are currently only available in prefilled pens.

Compounded semaglutide products may differ from approved products in ways that contribute to potential errors — for example, in multidose vials and prefilled syringes. In addition, product concentrations may vary depending on the compounder, and even a single compounder may offer multiple concentrations of semaglutide.

Instructions for a compounded drug, if provided, may tell users to administer semaglutide injections in “units,” the volume of which may vary depending on the concentration — rather than in milligrams. In some instances, patients received syringes significantly larger than the prescribed volume.
 

Common Errors

The FDA has received reports related to patients mistakenly taking more than the prescribed dose from a multidose vial — sometimes 5-20 times more than the intended dose.

Several reports described clinicians incorrectly calculating the intended dose when converting from milligrams to units or milliliters. In one case, a patient couldn’t get clarity on dosing instructions from the telemedicine provider who prescribed the compounded semaglutide, leading the patient to search online for medical advice. This resulted in the patient taking five times the intended dose.

In another example, one clinician prescribed 20 units instead of two units, affecting three patients who, after receiving 10 times the intended dose, experienced nausea and vomiting.

Another clinician, who also takes semaglutide himself, tried to recalculate his own dose in units and ended up self-administering a dose 10 times higher than intended.

The FDA previously warned about potential risks from the use of compounded drugs during a shortage as is the case with semaglutide. While compounded drugs can “sometimes” be helpful, according to the agency, “compounded drugs pose a higher risk to patients than FDA-approved drugs because compounded drugs do not undergo FDA premarket review for safety, effectiveness, or quality.”

Patients are overdosing on compounded semaglutide due to errors in measuring and self-administering the drug and due to clinicians miscalculating doses that may differ from US Food and Drug Administration (FDA)–approved products.

The FDA published an alert on July 26 after receiving reports of dosing errors involving compounded semaglutide injectable products dispensed in multidose vials. Adverse events included gastrointestinal effects, fainting, dehydration, headache, gallstones, and acute pancreatitis. Some patients required hospitalization.
 

Why the Risks?

FDA-approved semaglutide injectable products are dosed in milligrams, have standard concentrations, and are currently only available in prefilled pens.

Compounded semaglutide products may differ from approved products in ways that contribute to potential errors — for example, in multidose vials and prefilled syringes. In addition, product concentrations may vary depending on the compounder, and even a single compounder may offer multiple concentrations of semaglutide.

Instructions for a compounded drug, if provided, may tell users to administer semaglutide injections in “units,” the volume of which may vary depending on the concentration — rather than in milligrams. In some instances, patients received syringes significantly larger than the prescribed volume.
 

Common Errors

The FDA has received reports related to patients mistakenly taking more than the prescribed dose from a multidose vial — sometimes 5-20 times more than the intended dose.

Several reports described clinicians incorrectly calculating the intended dose when converting from milligrams to units or milliliters. In one case, a patient couldn’t get clarity on dosing instructions from the telemedicine provider who prescribed the compounded semaglutide, leading the patient to search online for medical advice. This resulted in the patient taking five times the intended dose.

In another example, one clinician prescribed 20 units instead of two units, affecting three patients who, after receiving 10 times the intended dose, experienced nausea and vomiting.

Another clinician, who also takes semaglutide himself, tried to recalculate his own dose in units and ended up self-administering a dose 10 times higher than intended.

The FDA previously warned about potential risks from the use of compounded drugs during a shortage as is the case with semaglutide. While compounded drugs can “sometimes” be helpful, according to the agency, “compounded drugs pose a higher risk to patients than FDA-approved drugs because compounded drugs do not undergo FDA premarket review for safety, effectiveness, or quality.”

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Will Treating High Blood Pressure Curb Dementia Risk?

Article Type
Changed
Thu, 07/25/2024 - 12:35

High blood pressure is an established risk factor for neurodegeneration and cognitive decline. Long-standing evidence shows that treating hypertension can reduce its vascular consequences, but whether that is true for neurodegeneration is less clear.

Valentin Fuster, MD, president of Mount Sinai Fuster Heart Hospital in New York City, told this news organization. “There is no question in the literature that untreated high blood pressure may lead to dementia,” he said. “The open question is whether treating blood pressure is sufficient to decrease or stop the progress of dementia.”

Studies are mixed, but recent research suggests that addressing hypertension does affect the risk for dementia. A secondary analysis of the China Rural Hypertension Control Project reported at the American Heart Association (AHA) Scientific Sessions in 2023 but not yet published showed that the 4-year blood pressure–lowering program in adults aged 40 or older significantly reduced the risk for all-cause dementia and cognitive impairment.

Similarly, a post hoc analysis of the SPRINT MIND trial found that participants aged 50 or older who underwent intensive (< 120 mm Hg) vs standard (< 140 mm Hg) blood pressure lowering had a lower rate of probable dementia or mild cognitive impairment.

Other studies pointing to a benefit included a pooled individual participant analysis of five randomized controlled trials, which found class I evidence to support antihypertensive treatment to reduce the risk for incident dementia, and an earlier systematic review and meta-analysis of the association of blood pressure lowering with newly diagnosed dementia or cognitive impairment.
 

How It Might Work

Some possible mechanisms underlying the connection have emerged.

“Vascular disease caused by hypertension is clearly implicated in one form of dementia, called vascular cognitive impairment and dementia,” Andrew Moran, MD, PhD, associate professor of medicine at Columbia University Vagelos College of Physicians and Surgeons in New York City, told this news organization. “This category includes dementia following a stroke caused by uncontrolled hypertension.” 

“At the same time, we now know that hypertension and other vascular risk factors can also contribute, along with other factors, to developing Alzheimer dementia,” he said. “Even without causing clinically evident stroke, vascular disease from hypertension can lead to subtle damage to the brain via ischemia, microhemorrhage, and atrophy.”

“It is well known that hypertension affects the vasculature, and the vasculature of the brain is not spared,” agreed Eileen Handberg, PhD, ARNP, a member of the Hypertension Workgroup at the American College of Cardiology (ACC) and a professor of medicine and director of the Cardiovascular Clinical Trials Program in the University of Florida, Gainesville, Florida. “Combine this with other mechanisms like inflammation and endothelial dysfunction, and add amyloid accumulation, and there is a deterioration in vascular beds leading to decreased cerebral blood flow,” she said.

Treating hypertension likely helps lower dementia risk through “a combination of reduced risk of stroke and also benefits on blood flow, blood vessel health, and reduction in neurodegeneration,” suggested Mitchell S.V. Elkind, MD, chief clinical science officer and past president of the AHA and a professor of neurology and epidemiology at Columbia University Irving Medical Center in New York City. “Midlife blood pressure elevations are associated with deposition of amyloid in the brain, so controlling blood pressure may reduce amyloid deposits and neurodegeneration.”
 

 

 

Time in Range or Treat to Target?

With respect to dementia risk, does treating hypertension to a specific target make a difference, or is it the time spent in a healthy blood pressure range? 

Observational studies and a post hoc analysis of the SPRINT MIND trial suggest that more time spent in a healthy blood pressure range or more stable blood pressure are associated with lower dementia risk,” Dr. Moran said. Citing results of the CHRC program and SPRINT MIND trial, he suggested that while a dose-response effect (the lower the blood pressure, the lower the dementia risk) hasn’t been definitively demonstrated, it is likely the case.

In his practice, Dr. Moran follows ACC/AHA guidelines and prescribes antihypertensives to get blood pressure below 130/80 mm Hg in individuals with hypertension who have other high-risk factors (cardiovascular disease, diabetes, chronic kidney disease, or high risk for these conditions). “The treatment rule for people with hypertension without these other risk factors is less clear — lowering blood pressure below 140/90 mm Hg is a must; I will discuss with patients whether to go lower than that.”

“The relative contributions of time in range versus treating to a target for blood pressure require further study,” said Dr. Elkind. “It is likely that the cumulative effect of blood pressure over time has a big role to play — and it does seem clear that midlife blood pressure is even more important than blood pressure late in life.”

That said, he added, “In general and all things being equal, I would treat to a blood pressure of < 120/80 mmHg,” given the SPRINT trial findings of greater benefits when treating to this systolic blood pressure goal. “Of course, if patients have side effects such as lightheadedness or dizziness or other medical conditions that require a higher target, then one would need to adjust the treatment targets.”

According to Dr. Fuster, targets should not be the focus because they vary. For example, the ACC/AHA guidelines use < 130/80 mm Hg, whereas the European Society of Hypertension guidelines and those of the American Academy of Family Physicians specify < 140/90 mm Hg and include age-based criteria. Because there are no studies comparing the outcomes of one set of guidelines vs another, Dr. Fuster thinks the focus should be on starting treatment as early as possible to prevent hypertension leading to dementia.

He pointed to the ongoing PESA trial, which uses brain MRI and other tests to characterize longitudinal associations among cerebral glucose metabolism, subclinical atherosclerosis, and cardiovascular risk factors in asymptomatic individuals aged 40-54. Most did not have hypertension at baseline.

recently published analysis of a subcohort of 370 PESA participants found that those with persistent high cardiovascular risk and subclinical carotid atherosclerosis already had signs of brain metabolic decline, “suggesting that maintenance of cardiovascular health during midlife could contribute to reductions in neurodegenerative disease burden later in life,” wrote the investigators.
 

Is It Ever Too Late?

If starting hypertension treatment in midlife can help reduce the risk for cognitive impairment later, can treating later in life also help? “It’s theoretically possible, but it has to be proven,” Dr. Fuster said. “There are no data on whether there’s less chance to prevent the development of dementia if you start treating hypertension at age 70, for example. And we have no idea whether hypertension treatment will prevent progression in those who already have dementia.”

“Treating high blood pressure in older adults could affect the course of further progressive cognitive decline by improving vascular health and preventing strokes, which likely exacerbate nonvascular dementia,” Dr. Elkind suggested. “Most people with dementia have a combination of vascular and nonvascular dementia, so treating reversible causes wherever possible makes a difference.”

Dr. Elkind treats older patients with this in mind, he said, “even though most of the evidence points to the fact that it is blood pressure in middle age, not older age, that seems to have the biggest impact on later-life cognitive decline and dementia.” Like Dr. Fuster, he said, “the best strategy is to identify and treat blood pressure in midlife, before damage to the brain has advanced.”

Dr. Moran noted, “The latest science on dementia causes suggests it is difficult to draw a border between vascular and nonvascular dementia. So, as a practical matter, healthcare providers should consider that hypertension treatment is one of the best ways to prevent any category of dementia. This dementia prevention is added to the well-known benefits of hypertension treatment to prevent heart attacks, strokes, and kidney disease: ‘Healthy heart, healthy brain.’ ”

“Our BP [blood pressure] control rates overall are still abysmal,” Dr. Handberg added. Currently around one in four US adults with hypertension have it under control. Studies have shown that blood pressure control rates of 70%-80% are achievable, she said. “We can’t let patient or provider inertia continue.”

Dr. Handberg, Dr. Elkind, Dr. Moran, and Dr. Fuster declared no relevant conflicts of interest.

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

High blood pressure is an established risk factor for neurodegeneration and cognitive decline. Long-standing evidence shows that treating hypertension can reduce its vascular consequences, but whether that is true for neurodegeneration is less clear.

Valentin Fuster, MD, president of Mount Sinai Fuster Heart Hospital in New York City, told this news organization. “There is no question in the literature that untreated high blood pressure may lead to dementia,” he said. “The open question is whether treating blood pressure is sufficient to decrease or stop the progress of dementia.”

Studies are mixed, but recent research suggests that addressing hypertension does affect the risk for dementia. A secondary analysis of the China Rural Hypertension Control Project reported at the American Heart Association (AHA) Scientific Sessions in 2023 but not yet published showed that the 4-year blood pressure–lowering program in adults aged 40 or older significantly reduced the risk for all-cause dementia and cognitive impairment.

Similarly, a post hoc analysis of the SPRINT MIND trial found that participants aged 50 or older who underwent intensive (< 120 mm Hg) vs standard (< 140 mm Hg) blood pressure lowering had a lower rate of probable dementia or mild cognitive impairment.

Other studies pointing to a benefit included a pooled individual participant analysis of five randomized controlled trials, which found class I evidence to support antihypertensive treatment to reduce the risk for incident dementia, and an earlier systematic review and meta-analysis of the association of blood pressure lowering with newly diagnosed dementia or cognitive impairment.
 

How It Might Work

Some possible mechanisms underlying the connection have emerged.

“Vascular disease caused by hypertension is clearly implicated in one form of dementia, called vascular cognitive impairment and dementia,” Andrew Moran, MD, PhD, associate professor of medicine at Columbia University Vagelos College of Physicians and Surgeons in New York City, told this news organization. “This category includes dementia following a stroke caused by uncontrolled hypertension.” 

“At the same time, we now know that hypertension and other vascular risk factors can also contribute, along with other factors, to developing Alzheimer dementia,” he said. “Even without causing clinically evident stroke, vascular disease from hypertension can lead to subtle damage to the brain via ischemia, microhemorrhage, and atrophy.”

“It is well known that hypertension affects the vasculature, and the vasculature of the brain is not spared,” agreed Eileen Handberg, PhD, ARNP, a member of the Hypertension Workgroup at the American College of Cardiology (ACC) and a professor of medicine and director of the Cardiovascular Clinical Trials Program in the University of Florida, Gainesville, Florida. “Combine this with other mechanisms like inflammation and endothelial dysfunction, and add amyloid accumulation, and there is a deterioration in vascular beds leading to decreased cerebral blood flow,” she said.

Treating hypertension likely helps lower dementia risk through “a combination of reduced risk of stroke and also benefits on blood flow, blood vessel health, and reduction in neurodegeneration,” suggested Mitchell S.V. Elkind, MD, chief clinical science officer and past president of the AHA and a professor of neurology and epidemiology at Columbia University Irving Medical Center in New York City. “Midlife blood pressure elevations are associated with deposition of amyloid in the brain, so controlling blood pressure may reduce amyloid deposits and neurodegeneration.”
 

 

 

Time in Range or Treat to Target?

With respect to dementia risk, does treating hypertension to a specific target make a difference, or is it the time spent in a healthy blood pressure range? 

Observational studies and a post hoc analysis of the SPRINT MIND trial suggest that more time spent in a healthy blood pressure range or more stable blood pressure are associated with lower dementia risk,” Dr. Moran said. Citing results of the CHRC program and SPRINT MIND trial, he suggested that while a dose-response effect (the lower the blood pressure, the lower the dementia risk) hasn’t been definitively demonstrated, it is likely the case.

In his practice, Dr. Moran follows ACC/AHA guidelines and prescribes antihypertensives to get blood pressure below 130/80 mm Hg in individuals with hypertension who have other high-risk factors (cardiovascular disease, diabetes, chronic kidney disease, or high risk for these conditions). “The treatment rule for people with hypertension without these other risk factors is less clear — lowering blood pressure below 140/90 mm Hg is a must; I will discuss with patients whether to go lower than that.”

“The relative contributions of time in range versus treating to a target for blood pressure require further study,” said Dr. Elkind. “It is likely that the cumulative effect of blood pressure over time has a big role to play — and it does seem clear that midlife blood pressure is even more important than blood pressure late in life.”

That said, he added, “In general and all things being equal, I would treat to a blood pressure of < 120/80 mmHg,” given the SPRINT trial findings of greater benefits when treating to this systolic blood pressure goal. “Of course, if patients have side effects such as lightheadedness or dizziness or other medical conditions that require a higher target, then one would need to adjust the treatment targets.”

According to Dr. Fuster, targets should not be the focus because they vary. For example, the ACC/AHA guidelines use < 130/80 mm Hg, whereas the European Society of Hypertension guidelines and those of the American Academy of Family Physicians specify < 140/90 mm Hg and include age-based criteria. Because there are no studies comparing the outcomes of one set of guidelines vs another, Dr. Fuster thinks the focus should be on starting treatment as early as possible to prevent hypertension leading to dementia.

He pointed to the ongoing PESA trial, which uses brain MRI and other tests to characterize longitudinal associations among cerebral glucose metabolism, subclinical atherosclerosis, and cardiovascular risk factors in asymptomatic individuals aged 40-54. Most did not have hypertension at baseline.

recently published analysis of a subcohort of 370 PESA participants found that those with persistent high cardiovascular risk and subclinical carotid atherosclerosis already had signs of brain metabolic decline, “suggesting that maintenance of cardiovascular health during midlife could contribute to reductions in neurodegenerative disease burden later in life,” wrote the investigators.
 

Is It Ever Too Late?

If starting hypertension treatment in midlife can help reduce the risk for cognitive impairment later, can treating later in life also help? “It’s theoretically possible, but it has to be proven,” Dr. Fuster said. “There are no data on whether there’s less chance to prevent the development of dementia if you start treating hypertension at age 70, for example. And we have no idea whether hypertension treatment will prevent progression in those who already have dementia.”

“Treating high blood pressure in older adults could affect the course of further progressive cognitive decline by improving vascular health and preventing strokes, which likely exacerbate nonvascular dementia,” Dr. Elkind suggested. “Most people with dementia have a combination of vascular and nonvascular dementia, so treating reversible causes wherever possible makes a difference.”

Dr. Elkind treats older patients with this in mind, he said, “even though most of the evidence points to the fact that it is blood pressure in middle age, not older age, that seems to have the biggest impact on later-life cognitive decline and dementia.” Like Dr. Fuster, he said, “the best strategy is to identify and treat blood pressure in midlife, before damage to the brain has advanced.”

Dr. Moran noted, “The latest science on dementia causes suggests it is difficult to draw a border between vascular and nonvascular dementia. So, as a practical matter, healthcare providers should consider that hypertension treatment is one of the best ways to prevent any category of dementia. This dementia prevention is added to the well-known benefits of hypertension treatment to prevent heart attacks, strokes, and kidney disease: ‘Healthy heart, healthy brain.’ ”

“Our BP [blood pressure] control rates overall are still abysmal,” Dr. Handberg added. Currently around one in four US adults with hypertension have it under control. Studies have shown that blood pressure control rates of 70%-80% are achievable, she said. “We can’t let patient or provider inertia continue.”

Dr. Handberg, Dr. Elkind, Dr. Moran, and Dr. Fuster declared no relevant conflicts of interest.

A version of this article first appeared on Medscape.com.

High blood pressure is an established risk factor for neurodegeneration and cognitive decline. Long-standing evidence shows that treating hypertension can reduce its vascular consequences, but whether that is true for neurodegeneration is less clear.

Valentin Fuster, MD, president of Mount Sinai Fuster Heart Hospital in New York City, told this news organization. “There is no question in the literature that untreated high blood pressure may lead to dementia,” he said. “The open question is whether treating blood pressure is sufficient to decrease or stop the progress of dementia.”

Studies are mixed, but recent research suggests that addressing hypertension does affect the risk for dementia. A secondary analysis of the China Rural Hypertension Control Project reported at the American Heart Association (AHA) Scientific Sessions in 2023 but not yet published showed that the 4-year blood pressure–lowering program in adults aged 40 or older significantly reduced the risk for all-cause dementia and cognitive impairment.

Similarly, a post hoc analysis of the SPRINT MIND trial found that participants aged 50 or older who underwent intensive (< 120 mm Hg) vs standard (< 140 mm Hg) blood pressure lowering had a lower rate of probable dementia or mild cognitive impairment.

Other studies pointing to a benefit included a pooled individual participant analysis of five randomized controlled trials, which found class I evidence to support antihypertensive treatment to reduce the risk for incident dementia, and an earlier systematic review and meta-analysis of the association of blood pressure lowering with newly diagnosed dementia or cognitive impairment.
 

How It Might Work

Some possible mechanisms underlying the connection have emerged.

“Vascular disease caused by hypertension is clearly implicated in one form of dementia, called vascular cognitive impairment and dementia,” Andrew Moran, MD, PhD, associate professor of medicine at Columbia University Vagelos College of Physicians and Surgeons in New York City, told this news organization. “This category includes dementia following a stroke caused by uncontrolled hypertension.” 

“At the same time, we now know that hypertension and other vascular risk factors can also contribute, along with other factors, to developing Alzheimer dementia,” he said. “Even without causing clinically evident stroke, vascular disease from hypertension can lead to subtle damage to the brain via ischemia, microhemorrhage, and atrophy.”

“It is well known that hypertension affects the vasculature, and the vasculature of the brain is not spared,” agreed Eileen Handberg, PhD, ARNP, a member of the Hypertension Workgroup at the American College of Cardiology (ACC) and a professor of medicine and director of the Cardiovascular Clinical Trials Program in the University of Florida, Gainesville, Florida. “Combine this with other mechanisms like inflammation and endothelial dysfunction, and add amyloid accumulation, and there is a deterioration in vascular beds leading to decreased cerebral blood flow,” she said.

Treating hypertension likely helps lower dementia risk through “a combination of reduced risk of stroke and also benefits on blood flow, blood vessel health, and reduction in neurodegeneration,” suggested Mitchell S.V. Elkind, MD, chief clinical science officer and past president of the AHA and a professor of neurology and epidemiology at Columbia University Irving Medical Center in New York City. “Midlife blood pressure elevations are associated with deposition of amyloid in the brain, so controlling blood pressure may reduce amyloid deposits and neurodegeneration.”
 

 

 

Time in Range or Treat to Target?

With respect to dementia risk, does treating hypertension to a specific target make a difference, or is it the time spent in a healthy blood pressure range? 

Observational studies and a post hoc analysis of the SPRINT MIND trial suggest that more time spent in a healthy blood pressure range or more stable blood pressure are associated with lower dementia risk,” Dr. Moran said. Citing results of the CHRC program and SPRINT MIND trial, he suggested that while a dose-response effect (the lower the blood pressure, the lower the dementia risk) hasn’t been definitively demonstrated, it is likely the case.

In his practice, Dr. Moran follows ACC/AHA guidelines and prescribes antihypertensives to get blood pressure below 130/80 mm Hg in individuals with hypertension who have other high-risk factors (cardiovascular disease, diabetes, chronic kidney disease, or high risk for these conditions). “The treatment rule for people with hypertension without these other risk factors is less clear — lowering blood pressure below 140/90 mm Hg is a must; I will discuss with patients whether to go lower than that.”

“The relative contributions of time in range versus treating to a target for blood pressure require further study,” said Dr. Elkind. “It is likely that the cumulative effect of blood pressure over time has a big role to play — and it does seem clear that midlife blood pressure is even more important than blood pressure late in life.”

That said, he added, “In general and all things being equal, I would treat to a blood pressure of < 120/80 mmHg,” given the SPRINT trial findings of greater benefits when treating to this systolic blood pressure goal. “Of course, if patients have side effects such as lightheadedness or dizziness or other medical conditions that require a higher target, then one would need to adjust the treatment targets.”

According to Dr. Fuster, targets should not be the focus because they vary. For example, the ACC/AHA guidelines use < 130/80 mm Hg, whereas the European Society of Hypertension guidelines and those of the American Academy of Family Physicians specify < 140/90 mm Hg and include age-based criteria. Because there are no studies comparing the outcomes of one set of guidelines vs another, Dr. Fuster thinks the focus should be on starting treatment as early as possible to prevent hypertension leading to dementia.

He pointed to the ongoing PESA trial, which uses brain MRI and other tests to characterize longitudinal associations among cerebral glucose metabolism, subclinical atherosclerosis, and cardiovascular risk factors in asymptomatic individuals aged 40-54. Most did not have hypertension at baseline.

recently published analysis of a subcohort of 370 PESA participants found that those with persistent high cardiovascular risk and subclinical carotid atherosclerosis already had signs of brain metabolic decline, “suggesting that maintenance of cardiovascular health during midlife could contribute to reductions in neurodegenerative disease burden later in life,” wrote the investigators.
 

Is It Ever Too Late?

If starting hypertension treatment in midlife can help reduce the risk for cognitive impairment later, can treating later in life also help? “It’s theoretically possible, but it has to be proven,” Dr. Fuster said. “There are no data on whether there’s less chance to prevent the development of dementia if you start treating hypertension at age 70, for example. And we have no idea whether hypertension treatment will prevent progression in those who already have dementia.”

“Treating high blood pressure in older adults could affect the course of further progressive cognitive decline by improving vascular health and preventing strokes, which likely exacerbate nonvascular dementia,” Dr. Elkind suggested. “Most people with dementia have a combination of vascular and nonvascular dementia, so treating reversible causes wherever possible makes a difference.”

Dr. Elkind treats older patients with this in mind, he said, “even though most of the evidence points to the fact that it is blood pressure in middle age, not older age, that seems to have the biggest impact on later-life cognitive decline and dementia.” Like Dr. Fuster, he said, “the best strategy is to identify and treat blood pressure in midlife, before damage to the brain has advanced.”

Dr. Moran noted, “The latest science on dementia causes suggests it is difficult to draw a border between vascular and nonvascular dementia. So, as a practical matter, healthcare providers should consider that hypertension treatment is one of the best ways to prevent any category of dementia. This dementia prevention is added to the well-known benefits of hypertension treatment to prevent heart attacks, strokes, and kidney disease: ‘Healthy heart, healthy brain.’ ”

“Our BP [blood pressure] control rates overall are still abysmal,” Dr. Handberg added. Currently around one in four US adults with hypertension have it under control. Studies have shown that blood pressure control rates of 70%-80% are achievable, she said. “We can’t let patient or provider inertia continue.”

Dr. Handberg, Dr. Elkind, Dr. Moran, and Dr. Fuster declared no relevant conflicts of interest.

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article