Neuropsychiatric Systemic Lupus Erythematosus

Article Type
Changed
Thu, 12/06/2018 - 10:09
Display Headline
Neuropsychiatric Systemic Lupus Erythematosus

Neuropsychiatric systemic lupus erythematosus (NPSLE) is a diagnostic challenge, requiring both rheumatologic and neurologic assessments. Diagnosis is complicated by the number of forms the disorder can take. The American College of Rheumatology has described case definitions and diagnostic criteria for 19 central/peripheral nervous system syndromes observed in SLE (Arthritis Rheum. 1999;42:599–608). Diagnosis relies on a combination of clinical assessment, laboratory tests, neuropsychological evaluation, and imaging.

“The problem with neuropsychiatric systemic lupus erythematosus in general is that you have to figure out if the symptoms are related to the lupus,” said Dr. Patricia C. Cagnoli, a rheumatologist at the University of Michigan in Ann Arbor. “We don't have any specific imaging technique that can tell you that.” An important element of diagnosis is ruling out other causes of the symptoms: SLE-mediated organ dysfunction, infection, medication side effects, metabolic abnormalities, or an unrelated condition. Imaging can play an important role in ruling out other causes.

The diagnostic approach also depends in part on the presentation. Are the symptoms focal/acute or more diffuse? For example, in the case of acute symptoms, CT can help rule out ischemic strokes, large tumors, and massive bleeds—the most acute and urgent conditions that would require immediate treatment or surgery. “The CT scan will reveal the most obvious abnormalities,” said Dr. Cagnoli. In addition, CT has the advantages of ready availability—CT equipment is in almost every emergency department—and of being quick to perform. If a patient has more diffuse symptoms, infection should be ruled out first with a lumbar puncture in addition to imaging.

“MRI is probably the cornerstone imaging technique to use in the diagnosis of neuropsychiatric lupus,” said Dr. Cagnoli. Multiple imaging sequences and intravenous administration of contrast are employed to accurately delineate abnormal areas in the brain. “More often than not, MRI will reveal several lesions that were not detected by CT scanning.” These areas of new injury are likely capable of responding to treatment and healing in ways that cannot be seen by CT.

MRI also frequently identifies small bright spots in the subcortical white matter that are of uncertain significance and are sometimes referred to as “unidentified bright objects” or UBOs.

“Most of the patients with neuropsychiatric lupus will have these hyperintense white matter lesions, but so do apparently normal individuals. Their presence arouses suspicion, but you cannot be certain whether they are related to lupus,” she said.

However, these lesions are not specific to NPSLE. It's theorized that “one of the mechanisms in lupus is demyelinization, which is the same type of lesion in multiple sclerosis,” Dr. Cagnoli noted. It's not uncommon for patients to have small white-matter lesions on MRI that are considered to be areas of possible demyelinization. In fact, patients are often referred to Dr. Cagnoli's group to help determine if patients have MS or lupus with CNS involvement. There are some more specific findings for MS: The lesions tend to be bigger, to coalesce, and to progress quickly.

“Still, we find ourselves with the neurologists going back and forth many, many times—is it SLE or MS?” Imaging is only part of the picture. “It's the rest of your physical assessment, your clinical impression, your laboratory evaluation that will tell you, in the end, what it is,” she said.

Researchers are starting to use more functional MRI techniques, such as MR spectroscopy, diffusion-weighted imaging, and diffusion tensor imaging (DTI). “What we are trying to determine with those techniques is which patients really have functional abnormalities that the structural MRI is not showing us.”

Researchers are seeing important differences with these techniques, particularly with spectroscopy and DTI. When comparing structural and functional MRI, “you have a normal conventional MRI and you see already evidence of neuronal loss or brain injury in the functional MRI,” said Dr. Cagnoli, who is also the associate director of the Michigan Lupus Program.

The researchers hope to use these techniques to identify patients with preclinical NPSLE-type lesions, in order to begin treatment as early as possible. “Eventually, our hope is that we might be able to treat these patients sooner rather than later,” she said. “One of the problems we have with [NPSLE] is trying to identify those patients” who require earlier and more aggressive treatment, “as opposed to those patients who can benefit from a more conservative approach.”

NPSLE requires treatment not just for the neuropsychiatric symptoms, with antipsychotics for psychosis as an example, but also for the underlying SLE, with immunosuppressants and high doses of corticosteroids. “So you treat the symptom—psychosis is the symptom in this case—but also the underlying mechanism, which is the lupus,” Dr. Cagnoli said.

 

 

The researchers also hope that imaging will shed more light on the underlying mechanism of neuropsychiatric lupus.

For now, though, imaging is only one part of the multipronged diagnostic approach to NPSLE.

NPSLE lesions can be seen on MRI with fluid attenuated inversion recovery (FLAIR), as well as on T2-weighted MRI and T1 MRI with gadolinium contrast. Image courtesy Dr. Pia Maly-Sundgren

NPSLE hyperintense white matter lesions are seen in more detail above. Image courtesy Dr. Patricia C. Cagnoli

Article PDF
Author and Disclosure Information

Publications
Topics
Author and Disclosure Information

Author and Disclosure Information

Article PDF
Article PDF

Neuropsychiatric systemic lupus erythematosus (NPSLE) is a diagnostic challenge, requiring both rheumatologic and neurologic assessments. Diagnosis is complicated by the number of forms the disorder can take. The American College of Rheumatology has described case definitions and diagnostic criteria for 19 central/peripheral nervous system syndromes observed in SLE (Arthritis Rheum. 1999;42:599–608). Diagnosis relies on a combination of clinical assessment, laboratory tests, neuropsychological evaluation, and imaging.

“The problem with neuropsychiatric systemic lupus erythematosus in general is that you have to figure out if the symptoms are related to the lupus,” said Dr. Patricia C. Cagnoli, a rheumatologist at the University of Michigan in Ann Arbor. “We don't have any specific imaging technique that can tell you that.” An important element of diagnosis is ruling out other causes of the symptoms: SLE-mediated organ dysfunction, infection, medication side effects, metabolic abnormalities, or an unrelated condition. Imaging can play an important role in ruling out other causes.

The diagnostic approach also depends in part on the presentation. Are the symptoms focal/acute or more diffuse? For example, in the case of acute symptoms, CT can help rule out ischemic strokes, large tumors, and massive bleeds—the most acute and urgent conditions that would require immediate treatment or surgery. “The CT scan will reveal the most obvious abnormalities,” said Dr. Cagnoli. In addition, CT has the advantages of ready availability—CT equipment is in almost every emergency department—and of being quick to perform. If a patient has more diffuse symptoms, infection should be ruled out first with a lumbar puncture in addition to imaging.

“MRI is probably the cornerstone imaging technique to use in the diagnosis of neuropsychiatric lupus,” said Dr. Cagnoli. Multiple imaging sequences and intravenous administration of contrast are employed to accurately delineate abnormal areas in the brain. “More often than not, MRI will reveal several lesions that were not detected by CT scanning.” These areas of new injury are likely capable of responding to treatment and healing in ways that cannot be seen by CT.

MRI also frequently identifies small bright spots in the subcortical white matter that are of uncertain significance and are sometimes referred to as “unidentified bright objects” or UBOs.

“Most of the patients with neuropsychiatric lupus will have these hyperintense white matter lesions, but so do apparently normal individuals. Their presence arouses suspicion, but you cannot be certain whether they are related to lupus,” she said.

However, these lesions are not specific to NPSLE. It's theorized that “one of the mechanisms in lupus is demyelinization, which is the same type of lesion in multiple sclerosis,” Dr. Cagnoli noted. It's not uncommon for patients to have small white-matter lesions on MRI that are considered to be areas of possible demyelinization. In fact, patients are often referred to Dr. Cagnoli's group to help determine if patients have MS or lupus with CNS involvement. There are some more specific findings for MS: The lesions tend to be bigger, to coalesce, and to progress quickly.

“Still, we find ourselves with the neurologists going back and forth many, many times—is it SLE or MS?” Imaging is only part of the picture. “It's the rest of your physical assessment, your clinical impression, your laboratory evaluation that will tell you, in the end, what it is,” she said.

Researchers are starting to use more functional MRI techniques, such as MR spectroscopy, diffusion-weighted imaging, and diffusion tensor imaging (DTI). “What we are trying to determine with those techniques is which patients really have functional abnormalities that the structural MRI is not showing us.”

Researchers are seeing important differences with these techniques, particularly with spectroscopy and DTI. When comparing structural and functional MRI, “you have a normal conventional MRI and you see already evidence of neuronal loss or brain injury in the functional MRI,” said Dr. Cagnoli, who is also the associate director of the Michigan Lupus Program.

The researchers hope to use these techniques to identify patients with preclinical NPSLE-type lesions, in order to begin treatment as early as possible. “Eventually, our hope is that we might be able to treat these patients sooner rather than later,” she said. “One of the problems we have with [NPSLE] is trying to identify those patients” who require earlier and more aggressive treatment, “as opposed to those patients who can benefit from a more conservative approach.”

NPSLE requires treatment not just for the neuropsychiatric symptoms, with antipsychotics for psychosis as an example, but also for the underlying SLE, with immunosuppressants and high doses of corticosteroids. “So you treat the symptom—psychosis is the symptom in this case—but also the underlying mechanism, which is the lupus,” Dr. Cagnoli said.

 

 

The researchers also hope that imaging will shed more light on the underlying mechanism of neuropsychiatric lupus.

For now, though, imaging is only one part of the multipronged diagnostic approach to NPSLE.

NPSLE lesions can be seen on MRI with fluid attenuated inversion recovery (FLAIR), as well as on T2-weighted MRI and T1 MRI with gadolinium contrast. Image courtesy Dr. Pia Maly-Sundgren

NPSLE hyperintense white matter lesions are seen in more detail above. Image courtesy Dr. Patricia C. Cagnoli

Neuropsychiatric systemic lupus erythematosus (NPSLE) is a diagnostic challenge, requiring both rheumatologic and neurologic assessments. Diagnosis is complicated by the number of forms the disorder can take. The American College of Rheumatology has described case definitions and diagnostic criteria for 19 central/peripheral nervous system syndromes observed in SLE (Arthritis Rheum. 1999;42:599–608). Diagnosis relies on a combination of clinical assessment, laboratory tests, neuropsychological evaluation, and imaging.

“The problem with neuropsychiatric systemic lupus erythematosus in general is that you have to figure out if the symptoms are related to the lupus,” said Dr. Patricia C. Cagnoli, a rheumatologist at the University of Michigan in Ann Arbor. “We don't have any specific imaging technique that can tell you that.” An important element of diagnosis is ruling out other causes of the symptoms: SLE-mediated organ dysfunction, infection, medication side effects, metabolic abnormalities, or an unrelated condition. Imaging can play an important role in ruling out other causes.

The diagnostic approach also depends in part on the presentation. Are the symptoms focal/acute or more diffuse? For example, in the case of acute symptoms, CT can help rule out ischemic strokes, large tumors, and massive bleeds—the most acute and urgent conditions that would require immediate treatment or surgery. “The CT scan will reveal the most obvious abnormalities,” said Dr. Cagnoli. In addition, CT has the advantages of ready availability—CT equipment is in almost every emergency department—and of being quick to perform. If a patient has more diffuse symptoms, infection should be ruled out first with a lumbar puncture in addition to imaging.

“MRI is probably the cornerstone imaging technique to use in the diagnosis of neuropsychiatric lupus,” said Dr. Cagnoli. Multiple imaging sequences and intravenous administration of contrast are employed to accurately delineate abnormal areas in the brain. “More often than not, MRI will reveal several lesions that were not detected by CT scanning.” These areas of new injury are likely capable of responding to treatment and healing in ways that cannot be seen by CT.

MRI also frequently identifies small bright spots in the subcortical white matter that are of uncertain significance and are sometimes referred to as “unidentified bright objects” or UBOs.

“Most of the patients with neuropsychiatric lupus will have these hyperintense white matter lesions, but so do apparently normal individuals. Their presence arouses suspicion, but you cannot be certain whether they are related to lupus,” she said.

However, these lesions are not specific to NPSLE. It's theorized that “one of the mechanisms in lupus is demyelinization, which is the same type of lesion in multiple sclerosis,” Dr. Cagnoli noted. It's not uncommon for patients to have small white-matter lesions on MRI that are considered to be areas of possible demyelinization. In fact, patients are often referred to Dr. Cagnoli's group to help determine if patients have MS or lupus with CNS involvement. There are some more specific findings for MS: The lesions tend to be bigger, to coalesce, and to progress quickly.

“Still, we find ourselves with the neurologists going back and forth many, many times—is it SLE or MS?” Imaging is only part of the picture. “It's the rest of your physical assessment, your clinical impression, your laboratory evaluation that will tell you, in the end, what it is,” she said.

Researchers are starting to use more functional MRI techniques, such as MR spectroscopy, diffusion-weighted imaging, and diffusion tensor imaging (DTI). “What we are trying to determine with those techniques is which patients really have functional abnormalities that the structural MRI is not showing us.”

Researchers are seeing important differences with these techniques, particularly with spectroscopy and DTI. When comparing structural and functional MRI, “you have a normal conventional MRI and you see already evidence of neuronal loss or brain injury in the functional MRI,” said Dr. Cagnoli, who is also the associate director of the Michigan Lupus Program.

The researchers hope to use these techniques to identify patients with preclinical NPSLE-type lesions, in order to begin treatment as early as possible. “Eventually, our hope is that we might be able to treat these patients sooner rather than later,” she said. “One of the problems we have with [NPSLE] is trying to identify those patients” who require earlier and more aggressive treatment, “as opposed to those patients who can benefit from a more conservative approach.”

NPSLE requires treatment not just for the neuropsychiatric symptoms, with antipsychotics for psychosis as an example, but also for the underlying SLE, with immunosuppressants and high doses of corticosteroids. “So you treat the symptom—psychosis is the symptom in this case—but also the underlying mechanism, which is the lupus,” Dr. Cagnoli said.

 

 

The researchers also hope that imaging will shed more light on the underlying mechanism of neuropsychiatric lupus.

For now, though, imaging is only one part of the multipronged diagnostic approach to NPSLE.

NPSLE lesions can be seen on MRI with fluid attenuated inversion recovery (FLAIR), as well as on T2-weighted MRI and T1 MRI with gadolinium contrast. Image courtesy Dr. Pia Maly-Sundgren

NPSLE hyperintense white matter lesions are seen in more detail above. Image courtesy Dr. Patricia C. Cagnoli

Publications
Publications
Topics
Article Type
Display Headline
Neuropsychiatric Systemic Lupus Erythematosus
Display Headline
Neuropsychiatric Systemic Lupus Erythematosus
Article Source

PURLs Copyright

Inside the Article

Article PDF Media

Capturing Elusive Foreign Bodies With Ultrasound

Article Type
Changed
Wed, 12/12/2018 - 19:55
Display Headline
Capturing Elusive Foreign Bodies With Ultrasound

Article PDF
Author and Disclosure Information

Lisa D. Mills, MD, and Christy Butts, MD

Issue
Emergency Medicine - 41(6)
Publications
Topics
Page Number
36-42
Legacy Keywords
foreign body, foreign bodies, ultrasound, radiography, radiolucent, wood, rubber, plastic, glass, metalforeign body, foreign bodies, ultrasound, radiography, radiolucent, wood, rubber, plastic, glass, metal
Sections
Author and Disclosure Information

Lisa D. Mills, MD, and Christy Butts, MD

Author and Disclosure Information

Lisa D. Mills, MD, and Christy Butts, MD

Article PDF
Article PDF

Issue
Emergency Medicine - 41(6)
Issue
Emergency Medicine - 41(6)
Page Number
36-42
Page Number
36-42
Publications
Publications
Topics
Article Type
Display Headline
Capturing Elusive Foreign Bodies With Ultrasound
Display Headline
Capturing Elusive Foreign Bodies With Ultrasound
Legacy Keywords
foreign body, foreign bodies, ultrasound, radiography, radiolucent, wood, rubber, plastic, glass, metalforeign body, foreign bodies, ultrasound, radiography, radiolucent, wood, rubber, plastic, glass, metal
Legacy Keywords
foreign body, foreign bodies, ultrasound, radiography, radiolucent, wood, rubber, plastic, glass, metalforeign body, foreign bodies, ultrasound, radiography, radiolucent, wood, rubber, plastic, glass, metal
Sections
Article Source

PURLs Copyright

Inside the Article

Article PDF Media

Four Patients With Ankle Fractures

Article Type
Changed
Wed, 12/12/2018 - 19:55
Display Headline
Four Patients With Ankle Fractures

Article PDF
Author and Disclosure Information

Keith D. Hentel, MD

Issue
Emergency Medicine - 41(6)
Publications
Topics
Page Number
25-26
Legacy Keywords
ankles, fractures, twisting, osteochondral fractures, calcaneus, avulsions, medial ligaments, Maisonneuve fracturesankles, fractures, twisting, osteochondral fractures, calcaneus, avulsions, medial ligaments, Maisonneuve fractures
Author and Disclosure Information

Keith D. Hentel, MD

Author and Disclosure Information

Keith D. Hentel, MD

Article PDF
Article PDF

Issue
Emergency Medicine - 41(6)
Issue
Emergency Medicine - 41(6)
Page Number
25-26
Page Number
25-26
Publications
Publications
Topics
Article Type
Display Headline
Four Patients With Ankle Fractures
Display Headline
Four Patients With Ankle Fractures
Legacy Keywords
ankles, fractures, twisting, osteochondral fractures, calcaneus, avulsions, medial ligaments, Maisonneuve fracturesankles, fractures, twisting, osteochondral fractures, calcaneus, avulsions, medial ligaments, Maisonneuve fractures
Legacy Keywords
ankles, fractures, twisting, osteochondral fractures, calcaneus, avulsions, medial ligaments, Maisonneuve fracturesankles, fractures, twisting, osteochondral fractures, calcaneus, avulsions, medial ligaments, Maisonneuve fractures
Article Source

PURLs Copyright

Inside the Article

Article PDF Media

Shortness of Breath After Being Stabbed

Article Type
Changed
Wed, 12/12/2018 - 19:55
Display Headline
Shortness of Breath After Being Stabbed

Article PDF
Author and Disclosure Information

Phillips Perera, MD, RDMS, FACEP, Thomas Mailhot, MD, RDMS, and Diku Mandavia, MD, FACEP, FRCPC

Issue
Emergency Medicine - 41(6)
Publications
Topics
Page Number
15-16
Legacy Keywords
lungs, stabbing, stabbed, shortness of breath, pneumothorax, lung sliding, tension pneumothorax, hypotensionlungs, stabbing, stabbed, shortness of breath, pneumothorax, lung sliding, tension pneumothorax, hypotension
Author and Disclosure Information

Phillips Perera, MD, RDMS, FACEP, Thomas Mailhot, MD, RDMS, and Diku Mandavia, MD, FACEP, FRCPC

Author and Disclosure Information

Phillips Perera, MD, RDMS, FACEP, Thomas Mailhot, MD, RDMS, and Diku Mandavia, MD, FACEP, FRCPC

Article PDF
Article PDF

Issue
Emergency Medicine - 41(6)
Issue
Emergency Medicine - 41(6)
Page Number
15-16
Page Number
15-16
Publications
Publications
Topics
Article Type
Display Headline
Shortness of Breath After Being Stabbed
Display Headline
Shortness of Breath After Being Stabbed
Legacy Keywords
lungs, stabbing, stabbed, shortness of breath, pneumothorax, lung sliding, tension pneumothorax, hypotensionlungs, stabbing, stabbed, shortness of breath, pneumothorax, lung sliding, tension pneumothorax, hypotension
Legacy Keywords
lungs, stabbing, stabbed, shortness of breath, pneumothorax, lung sliding, tension pneumothorax, hypotensionlungs, stabbing, stabbed, shortness of breath, pneumothorax, lung sliding, tension pneumothorax, hypotension
Article Source

PURLs Copyright

Inside the Article

Article PDF Media

Cross-Hip X-ray View for Proximal Femoral Osteotomies

Article Type
Changed
Tue, 02/14/2023 - 13:11
Display Headline
Cross-Hip X-ray View for Proximal Femoral Osteotomies

Article PDF
Author and Disclosure Information

Alexandre Arkader, MD, and Richard S. Davidson, MD

Dr. Arkader is the Director of the Orthopedic Oncology Program, Children's Orthopaedic Center, Children's Hospital Los Angeles, and Assistant Professor of Clinical Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California.

Dr. Davidson is Orthopaedic Surgeon, Division of Orthopaedics, The Children's Hospital of Philadelphia, and Associate Professor of Orthopaedic Surgery, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania.

Issue
The American Journal of Orthopedics - 38(6)
Publications
Topics
Page Number
306-307
Legacy Keywords
cross-hip, x-ray, proximal femoral, osteotomies, imaging, pediatric, ajo, american journal of orthopedics, arkader, davidson
Sections
Author and Disclosure Information

Alexandre Arkader, MD, and Richard S. Davidson, MD

Dr. Arkader is the Director of the Orthopedic Oncology Program, Children's Orthopaedic Center, Children's Hospital Los Angeles, and Assistant Professor of Clinical Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California.

Dr. Davidson is Orthopaedic Surgeon, Division of Orthopaedics, The Children's Hospital of Philadelphia, and Associate Professor of Orthopaedic Surgery, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania.

Author and Disclosure Information

Alexandre Arkader, MD, and Richard S. Davidson, MD

Dr. Arkader is the Director of the Orthopedic Oncology Program, Children's Orthopaedic Center, Children's Hospital Los Angeles, and Assistant Professor of Clinical Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California.

Dr. Davidson is Orthopaedic Surgeon, Division of Orthopaedics, The Children's Hospital of Philadelphia, and Associate Professor of Orthopaedic Surgery, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania.

Article PDF
Article PDF

Issue
The American Journal of Orthopedics - 38(6)
Issue
The American Journal of Orthopedics - 38(6)
Page Number
306-307
Page Number
306-307
Publications
Publications
Topics
Article Type
Display Headline
Cross-Hip X-ray View for Proximal Femoral Osteotomies
Display Headline
Cross-Hip X-ray View for Proximal Femoral Osteotomies
Legacy Keywords
cross-hip, x-ray, proximal femoral, osteotomies, imaging, pediatric, ajo, american journal of orthopedics, arkader, davidson
Legacy Keywords
cross-hip, x-ray, proximal femoral, osteotomies, imaging, pediatric, ajo, american journal of orthopedics, arkader, davidson
Sections
Article Source

PURLs Copyright

Inside the Article

Article PDF Media

When and how to image a suspected broken rib

Article Type
Changed
Thu, 03/01/2018 - 14:41
Display Headline
When and how to image a suspected broken rib

A 70-year-old man falls in his bathroom and subsequently presents to an urgent care clinic. Among his complaints is right-sided chest pain. On physical examination he has point tenderness over the lateral right thorax with some superficial swelling and bruising. The chest is normal on auscultation.

Should this patient undergo imaging to determine if he has a rib fracture? And which imaging study would be appropriate?

This article outlines the use of various imaging tests in the evaluation of suspected rib fractures and recommends an approach to management. This article does not address fractures in children.

MANY CAUSES OF RIB FRACTURES

Trauma, the most common cause of rib fractures, includes penetrating injuries and blunt injury to the chest wall. Between 10% and 66% of traumatic injuries result in rib fractures. 1 Traumatic injury can result from motor vehicle accidents, assault, sports, cardiopulmonary resuscitation, physical abuse (“nonaccidental” trauma), and, rarely, severe paroxysms of coughing.2

Cancer can cause pathologic fractures of the rib.

Stress fractures of the ribs are more likely to occur in high-level athletes whose activity involves repetitive musculoskeletal loading, although they can also occur in people with repetitive coughing paroxysms.3 Sports and activities that result in stress fractures include rowing, pitching or throwing, basketball, weight-lifting, ballet, golf, gymnastics, and swimming.4

WHICH RIB IS BROKEN?

The fourth through 10th ribs are the most often fractured. Fractures of the first through the third ribs can be associated with underlying nerve and vascular injuries, and fractures of the 10th through 12th ribs are associated with damage to abdominal organs,5 most commonly the liver, spleen, kidneys, and diaphragm.3

Fractures of the costal cartilage can occur by any of the mechanisms described above. The true incidence of costal cartilage fractures is not known because plain radiography, the traditional method of evaluation, does not reliably detect them.

WHY CONFIRM A RIB FRACTURE?

For many rib fractures without associated injury, a radiographic diagnosis has little impact on patient management, which consists mainly of pain control. But knowing whether a patient has a broken rib can often be important.

To detect associated injury. The rate of associated injury in patients with rib fractures is high.6 Potentially severe complications include:

  • Pneumothorax
  • Hemothorax
  • Pulmonary contusion
  • Flail chest
  • Pneumonia
  • Vascular and nerve damage (especially with trauma to the upper chest or the first through third ribs)
  • Abdominal organ injury (particularly with trauma to the lower thorax or lower ribs).

The absence of a rib fracture does not preclude these conditions, however.

To prevent complications. Even in the absence of associated injuries, radiographic confirmation of a rib fracture can help prevent complications such as atelectasis and is particularly important in patients with comorbidities such as chronic obstructive pulmonary disease, cardiac disease, hepatic disease, renal disease, dementia, and coagulopathy.1

To document the injury. Radiographic documentation of a rib fracture may be required for medical-legal issues in cases of assault, motor vehicle accident, occupational injury, and abuse.

To help manage pain. Confirmation of rib fracture can facilitate pain management, particularly in patients with undiagnosed fractures with long-standing refractory pain. For example, conservative pain control with nonsteroidal anti-inflammatory drugs may be sufficient for a soft-tissue injury but may not be enough for a rib fracture. Intravenous narcotics or nerve blocks might be preferable.3,7 Controlling pain helps limit the incidence of associated complications.

Figure 1. Oblique radiographic view shows an acute rib fracture in a patient with multiple myeloma.
To detect pathologic fractures. Radiographic diagnosis can provide important information in cases of suspected pathologic fracture, as in multiple myeloma (Figure 1) or other malignancies.

To count how many ribs are broken. The more ribs broken, the greater the likelihood of illness and death in certain populations, such as the elderly. One study8 found that patients over age 45 with more than four broken ribs are at a significantly higher risk of prolonged stay in the intensive care unit, prolonged ventilator support, and prolonged overall hospital stay.

Knowing the number of ribs fractured may also influence other treatment decisions, such as whether to transfer the patient to a trauma center: a study showed that the more ribs broken, the greater the death rate, and that more than three rib fractures may indicate the need to transfer to a trauma center.6

 

 

HOW TO DIAGNOSE A BROKEN RIB

Signs and symptoms are unreliable but important

Clinical symptoms do not reliably tell us if a rib is broken.9,10 Nevertheless, the history and physical examination can uncover possible complications or associated injuries,10,11 such as flail chest, pneumothorax, or vascular injury.

Classic clinical signs and symptoms of rib fracture include point tenderness, focally referred pain with general chest compression, splinting, bony crepitus, and ecchymosis.9 A history of a motor vehicle accident (especially on a motorcycle) or other injury due to rapid deceleration, a fall from higher than 20 feet, a gunshot wound, assault, or a crushing injury would indicate a greater risk of complications.

Signs of complications may include decreased oxygen saturation, decreased or absent breath sounds, dullness or hyperresonance to percussion, tracheal deviation, hypotension, arrythmia, subcutaneous emphysema, neck vein distension, neck hematoma, a focal neurologic deficit below the clavicles or in the upper extremities, and flail chest.11 Flail chest results from multiple fractures in the same rib, so that a segment of chest wall does not contribute to breathing.

Further research is needed into the correlation of clinical symptoms with rib fractures. Much of the evidence that clinical symptoms correlate poorly with fractures comes from studies that used plain radiography to detect the fractures. However, ultrasonography and computed tomography (CT) can detect fractures that plain radiography cannot, and studies using these newer imaging tests may reveal a better correlation between clinical symptoms and rib fracture than previously thought.6

Chest radiography may miss 50% of rib fractures, but is still useful

Plain radiography of the chest with or without oblique views and optimized by the technologist for bony detail (“bone technique”) has historically been the imaging test of choice. However, it may miss up to 50% of fractures.10 Furthermore, it is not sensitive for costal cartilage3 or stress fractures.

Despite these limitations, plain radiography is vitally important in diagnosing complications and associated injuries such as a pneumothorax, hemothorax, pulmonary contusion, pneumomediastinum, or pneumoperitoneum. Also, a widened mediastinum could indicate aortic injury.

Currently, a standard chest x-ray is often the initial study of choice in the evaluation of chest pain and in cases of minor blunt trauma. If rib fractures are suspected clinically, a rib series can be of benefit. A rib series consists of a marker placed over the region of interest, oblique views, and optimization of the radiograph by the technologist to highlight bony detail. The decision to image a rib fracture in the absence of other underlying abnormalities or associated injuries depends on the clinical scenario.

Computed tomography provides more detail

Figure 2. Computed tomographic scan (zoomed axial image) shows an acute rib fracture.
CT is the primary study to fully evaluate for trauma-associated injuries and to evaluate bony detail (Figure 2). Its diagnostic capability is unsurpassed in this setting.11,12,13 It is also useful for diagnosing costal cartilage injury, whereas radiography is not.14 It can provide more details and new information when plain radiography indicates bone pathology: eg, a widened mediastinum suggesting vascular injury; pneumomediastinum or pneumoperitoneum of uncertain cause; cases of questionable pneumothorax; and locating foreign bodies or bony fragments, particularly in relation to vital vascular or nerve structures.

Figure 3. An axial image from a computed tomographic scan of the chest in a trauma patient shows a displaced fracture in a posterolateral right rib (arrow). There is an underlying effusion, the density of which indicates hemothorax. There is also a pulmonary contusion.
Additionally, CT may help elucidate nonspecific findings such as lung opacification, which may represent hemothorax or pulmonary contusion or both (Figure 3). It can also better characterize pathologic fractures related to cancer. Specific bone reconstruction algorithms and three-dimensional reconstructions further improve CT’s ability to detect rib pathology.

While CT appears to be the best imaging test for evaluating for rib fractures and associated injuries, it is relatively costly, is time-consuming, is not always available, and exposes the patient to a significant amount of radiation.

Also, while CT plays a vital role in major and penetrating trauma of the chest or abdomen, its use in other situations is more limited. Again, the issue of clinical impact of a diagnosis of rib fracture comes into play, and in this setting CT competes with plain radiography and ultrasonography, which are less costly and involve less or no radiation exposure.

Ultrasonography has advantages but is not widely used

Ultrasonography can be used to look for broken ribs and costal cartilage fractures. Associated injuries such as pneumothorax, hemothorax, and abdominal organ injury can also be evaluated. Studies have found it to be much more sensitive than plain radiography in detecting rib fractures,3,15 whereas other studies have suggested it is only equally sensitive or slightly better.7 It also has the advantage of not using radiation.

Because of a number of disadvantages, ultrasonography is rarely used in the evaluation of rib fracture. It is time-consuming and more costly than plain radiography. It is often not readily available. It can be painful, making it impractical for trauma patients. Its results depend greatly on the skill of the technician, and it is unable to adequately assess certain portions of the thorax (eg, the first rib under the clavicle, and the upper ribs under the scapula).7,15 Although able to detect some associated injuries, ultrasonography is not as sensitive and comprehensive as plain radiography and CT. Its role is therefore limited to situations in which the diagnosis of a rib fracture alone, in an accessible rib, is important.

 

 

Bone scan: Sensitive but not specific

Technetium Tc 99m methylene diphosphonate bone scanning can be used to look for bone pathology, including rib fractures. Bone scans are sensitive but not specific, and abnormal uptake generates an extensive differential diagnosis.16 Single-photon emission CT, or SPECT, can help localize the abnormality. 4 Because a hot spot on a bone scan can represent a number of conditions besides rib fractures, including cancer, focal sclerosis, and focal osteosclerosis, bone scanning is not routinely used for evaluating rib fractures, although it is very sensitive for stress fractures.

Occasionally, in a patient undergoing a bone scan as part of a workup for cancer, a scan shows a lesion that might be a rib fracture. In this case, one should correlate the results with those of plain radiography or CT.16

Magnetic resonance imaging: no role yet in rib fracture evaluation

MRI is not considered appropriate for evaluating rib fractures. It may be useful if there is concern about soft-tissue or vascular abnormalities. Beyond this, further research is needed to elucidate its role in rib fracture.

THE CHOICE OF TEST DEPENDS ON THE SITUATION

Figure 4. Recommended clinical management of patients with a history of chest trauma. In an asymptomatic patient, the key question is whether confirming a rib fracture with radiographic imaging will alter clinical management. In a symptomatic patient with a normal chest x-ray, one may consider CT to detect underlying injury as well as rib fractures.
Although several imaging tests can tell us if a patient has a rib fracture, in most cases the diagnosis of a rib fracture alone has little clinical relevance. The accurate and timely assessment of associated injuries and complications is more clinically useful, and for this, plain radiography and CT provide the most useful information. The choice of which test to use in a patient with a suspected rib fracture depends on the clinical circumstances (Figure 4).

In patients with penetrating or major chest or abdominal trauma, CT is the study of choice. It provides the most information about associated injuries, and it accurately detects rib fractures. This helps target treatment of associated injuries, and helps identify patients at higher risk, such as those with significant vascular, pulmonary, or abdominal injuries and those with a greater number of fractures. An unstable, critically injured patient would not be a candidate for CT because of the risk of transport to the scanner; chest radiography would have to suffice in these cases.

In cases of minor blunt trauma when there is little suspicion of associated injuries or complications, plain radiography is likely sufficient. If there is suspicion of a rib fracture alone and confirmation is of clinical importance (eg, in the elderly or those with long-standing refractory pain, or when certain pain management treatments are being considered), then oblique radiographic views, bone technique, and marker placement over the concerning region are recommended. The role of ultrasonography in this setting is still up for debate.

In cases of suspected rib fracture with longstanding pain refractory to conservative pain management, plain radiography with oblique views, bone technique, and marker placement is useful. If the radiograph is negative or if there is a high suspicion of cartilage fracture, CT or ultrasonography may be of benefit only if the diagnosis will alter clinical management.

If stress fracture is suspected, a nuclear bone scan may be helpful to first detect an abnormality, and CT may then be used for correlation if needed.

CASE CONCLUDED: LIVING WITH UNCERTAINTY

As for the 70-year-old man presented at the beginning of this article, the first question is whether we suspect an associated injury on the basis of clinical features. If we had clinical findings suspicious for pneumothorax or hemothorax, plain radiography of the chest would be indicated. Since the patient was not involved in major trauma, a CT scan is not indicated as the first study.

Our patient has clinical findings suggesting a rib fracture without associated injury. In this setting, routine posteroanterior and lateral chest radiography would be useful to rule out major associated injuries and, perhaps, to find a rib fracture. If the chest film is normal and rib fracture is still suspected, we must decide whether the diagnosis would alter our clinical management. Our patient would likely be treated the same regardless of whether or not he has a fracture; therefore, we would prescribe pain management.

Chest radiography was performed to rule out associated injuries, especially since the patient was elderly, but the chest x-ray did not reveal anything. On follow-up approximately 1 month later, he appeared improved, with less pain and tenderness. This may be due to healing of a rib fracture or healing of his soft-tissue injury. We will never know whether he truly had a fracture, but it is irrelevant to his care.

References
  1. Bergeron E, Lavoie A, Clas D, et al. Elderly trauma patients with rib fractures are at greater risk of death and pneumonia. J Trauma 2003; 54:478485.
  2. Lederer W, Mair D, Rabl W, Baubin M. Frequency of rib and sternum fractures associated with out-of-hospital cardiopulmonary resuscitation is underestimated by conventional chest x-ray. Resuscitation 2004; 60:157162.
  3. Kara M, Dikmen E, Erdal HH, Simsir I, Kara SA. Disclosure of unnoticed rib fractures with the use of ultrasonography in minor blunt chest trauma. Eur J Cardiothorac Surg 2003; 24:608613.
  4. Connolly LP, Connolly SA. Rib stress fractures. Clin Nucl Med 2004; 29:614616.
  5. Bansidhar BJ, Lagares-Garcia JA, Miller SL. Clinical rib fractures: are follow-up chest x-rays a waste of resources? Am Surg 2002; 68:449453.
  6. Stawicki SP, Grossman MD, Hoey BA, Miller DL, Reed JF. Rib fractures in the elderly: a marker of injury severity. J Am Geriatr Soc 2004; 52:805808.
  7. Hurley ME, Keye GD, Hamilton S. Is ultrasound really helpful in the detection of rib fractures? Injury 2004; 35:562566.
  8. Holcomb JB, McMullin NR, Kozar RA, Lygas MH, Moore FA. Morbidity from rib fractures increases after age 45. J Am Coll Surg 2003; 196:549555.
  9. Deluca SA, Rhea JT, O’Malley TO. Radiographic evaluation of rib fractures. AJR Am J Roentgenol 1982; 138:9192.
  10. Dubinsky I, Low A. Non-life threatening blunt chest trauma: appropriate investigation and treatment. Am J Emerg Med 1997; 15:240243.
  11. Sears BW, Luchette FA, Esposito TJ, et al. Old fashion clinical judgment in the era of protocols: is mandatory chest x-ray necessary in injured patients? J Trauma 2005; 59:324332.
  12. Traub M, Stevenson M, McEvoy S, et al. The use of chest computed tomography versus chest x-ray in patients with major blunt trauma. Injury 2007; 38:4347.
  13. Trupka A, Waydhas C, Hallfeldt KK, Nast-Kolb D, Pfeifer KJ, Schweiberer L. Value of thoracic computed tomography in the first assessment of severely injured patients with blunt chest trauma: results of a prospective study. J Trauma 1997; 43:405412.
  14. Malghem J, Vande Berg B, Lecouvet F, Maldague B. Costal cartilage fractures as revealed on CT and sonography. AJR Am J Roentgenol 2001; 176:429432.
  15. Griffith JF, Rainer TH, Ching AS, Law KL, Cocks RA, Metreweli C. Sonography compared with radiography in revealing acute rib fracture. AJR Am J Roentgenol 1999; 173:16031609.
  16. Niitsu M, Takeda T. Solitary hot spots in the ribs on bone scan: value of thin-section reformatted computed tomography to exclude radiography negative fractures. J Comput Assist Tomogr 2003; 27:469474.
Article PDF
Author and Disclosure Information

Sharukh J. Bhavnagri, MD
Imaging Institute, Cleveland Clinic

Tan-Lucien H. Mohammed, MD
Department of Diagnostic Radiology, Imaging Institute, Cleveland Clinic

Address: Tan-Lucien H. Mohammed, MD, Department of Diagnostic Radiology, Hb6, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195; e-mail [email protected]

Issue
Cleveland Clinic Journal of Medicine - 76(5)
Publications
Topics
Page Number
309-314
Sections
Author and Disclosure Information

Sharukh J. Bhavnagri, MD
Imaging Institute, Cleveland Clinic

Tan-Lucien H. Mohammed, MD
Department of Diagnostic Radiology, Imaging Institute, Cleveland Clinic

Address: Tan-Lucien H. Mohammed, MD, Department of Diagnostic Radiology, Hb6, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195; e-mail [email protected]

Author and Disclosure Information

Sharukh J. Bhavnagri, MD
Imaging Institute, Cleveland Clinic

Tan-Lucien H. Mohammed, MD
Department of Diagnostic Radiology, Imaging Institute, Cleveland Clinic

Address: Tan-Lucien H. Mohammed, MD, Department of Diagnostic Radiology, Hb6, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195; e-mail [email protected]

Article PDF
Article PDF

A 70-year-old man falls in his bathroom and subsequently presents to an urgent care clinic. Among his complaints is right-sided chest pain. On physical examination he has point tenderness over the lateral right thorax with some superficial swelling and bruising. The chest is normal on auscultation.

Should this patient undergo imaging to determine if he has a rib fracture? And which imaging study would be appropriate?

This article outlines the use of various imaging tests in the evaluation of suspected rib fractures and recommends an approach to management. This article does not address fractures in children.

MANY CAUSES OF RIB FRACTURES

Trauma, the most common cause of rib fractures, includes penetrating injuries and blunt injury to the chest wall. Between 10% and 66% of traumatic injuries result in rib fractures. 1 Traumatic injury can result from motor vehicle accidents, assault, sports, cardiopulmonary resuscitation, physical abuse (“nonaccidental” trauma), and, rarely, severe paroxysms of coughing.2

Cancer can cause pathologic fractures of the rib.

Stress fractures of the ribs are more likely to occur in high-level athletes whose activity involves repetitive musculoskeletal loading, although they can also occur in people with repetitive coughing paroxysms.3 Sports and activities that result in stress fractures include rowing, pitching or throwing, basketball, weight-lifting, ballet, golf, gymnastics, and swimming.4

WHICH RIB IS BROKEN?

The fourth through 10th ribs are the most often fractured. Fractures of the first through the third ribs can be associated with underlying nerve and vascular injuries, and fractures of the 10th through 12th ribs are associated with damage to abdominal organs,5 most commonly the liver, spleen, kidneys, and diaphragm.3

Fractures of the costal cartilage can occur by any of the mechanisms described above. The true incidence of costal cartilage fractures is not known because plain radiography, the traditional method of evaluation, does not reliably detect them.

WHY CONFIRM A RIB FRACTURE?

For many rib fractures without associated injury, a radiographic diagnosis has little impact on patient management, which consists mainly of pain control. But knowing whether a patient has a broken rib can often be important.

To detect associated injury. The rate of associated injury in patients with rib fractures is high.6 Potentially severe complications include:

  • Pneumothorax
  • Hemothorax
  • Pulmonary contusion
  • Flail chest
  • Pneumonia
  • Vascular and nerve damage (especially with trauma to the upper chest or the first through third ribs)
  • Abdominal organ injury (particularly with trauma to the lower thorax or lower ribs).

The absence of a rib fracture does not preclude these conditions, however.

To prevent complications. Even in the absence of associated injuries, radiographic confirmation of a rib fracture can help prevent complications such as atelectasis and is particularly important in patients with comorbidities such as chronic obstructive pulmonary disease, cardiac disease, hepatic disease, renal disease, dementia, and coagulopathy.1

To document the injury. Radiographic documentation of a rib fracture may be required for medical-legal issues in cases of assault, motor vehicle accident, occupational injury, and abuse.

To help manage pain. Confirmation of rib fracture can facilitate pain management, particularly in patients with undiagnosed fractures with long-standing refractory pain. For example, conservative pain control with nonsteroidal anti-inflammatory drugs may be sufficient for a soft-tissue injury but may not be enough for a rib fracture. Intravenous narcotics or nerve blocks might be preferable.3,7 Controlling pain helps limit the incidence of associated complications.

Figure 1. Oblique radiographic view shows an acute rib fracture in a patient with multiple myeloma.
To detect pathologic fractures. Radiographic diagnosis can provide important information in cases of suspected pathologic fracture, as in multiple myeloma (Figure 1) or other malignancies.

To count how many ribs are broken. The more ribs broken, the greater the likelihood of illness and death in certain populations, such as the elderly. One study8 found that patients over age 45 with more than four broken ribs are at a significantly higher risk of prolonged stay in the intensive care unit, prolonged ventilator support, and prolonged overall hospital stay.

Knowing the number of ribs fractured may also influence other treatment decisions, such as whether to transfer the patient to a trauma center: a study showed that the more ribs broken, the greater the death rate, and that more than three rib fractures may indicate the need to transfer to a trauma center.6

 

 

HOW TO DIAGNOSE A BROKEN RIB

Signs and symptoms are unreliable but important

Clinical symptoms do not reliably tell us if a rib is broken.9,10 Nevertheless, the history and physical examination can uncover possible complications or associated injuries,10,11 such as flail chest, pneumothorax, or vascular injury.

Classic clinical signs and symptoms of rib fracture include point tenderness, focally referred pain with general chest compression, splinting, bony crepitus, and ecchymosis.9 A history of a motor vehicle accident (especially on a motorcycle) or other injury due to rapid deceleration, a fall from higher than 20 feet, a gunshot wound, assault, or a crushing injury would indicate a greater risk of complications.

Signs of complications may include decreased oxygen saturation, decreased or absent breath sounds, dullness or hyperresonance to percussion, tracheal deviation, hypotension, arrythmia, subcutaneous emphysema, neck vein distension, neck hematoma, a focal neurologic deficit below the clavicles or in the upper extremities, and flail chest.11 Flail chest results from multiple fractures in the same rib, so that a segment of chest wall does not contribute to breathing.

Further research is needed into the correlation of clinical symptoms with rib fractures. Much of the evidence that clinical symptoms correlate poorly with fractures comes from studies that used plain radiography to detect the fractures. However, ultrasonography and computed tomography (CT) can detect fractures that plain radiography cannot, and studies using these newer imaging tests may reveal a better correlation between clinical symptoms and rib fracture than previously thought.6

Chest radiography may miss 50% of rib fractures, but is still useful

Plain radiography of the chest with or without oblique views and optimized by the technologist for bony detail (“bone technique”) has historically been the imaging test of choice. However, it may miss up to 50% of fractures.10 Furthermore, it is not sensitive for costal cartilage3 or stress fractures.

Despite these limitations, plain radiography is vitally important in diagnosing complications and associated injuries such as a pneumothorax, hemothorax, pulmonary contusion, pneumomediastinum, or pneumoperitoneum. Also, a widened mediastinum could indicate aortic injury.

Currently, a standard chest x-ray is often the initial study of choice in the evaluation of chest pain and in cases of minor blunt trauma. If rib fractures are suspected clinically, a rib series can be of benefit. A rib series consists of a marker placed over the region of interest, oblique views, and optimization of the radiograph by the technologist to highlight bony detail. The decision to image a rib fracture in the absence of other underlying abnormalities or associated injuries depends on the clinical scenario.

Computed tomography provides more detail

Figure 2. Computed tomographic scan (zoomed axial image) shows an acute rib fracture.
CT is the primary study to fully evaluate for trauma-associated injuries and to evaluate bony detail (Figure 2). Its diagnostic capability is unsurpassed in this setting.11,12,13 It is also useful for diagnosing costal cartilage injury, whereas radiography is not.14 It can provide more details and new information when plain radiography indicates bone pathology: eg, a widened mediastinum suggesting vascular injury; pneumomediastinum or pneumoperitoneum of uncertain cause; cases of questionable pneumothorax; and locating foreign bodies or bony fragments, particularly in relation to vital vascular or nerve structures.

Figure 3. An axial image from a computed tomographic scan of the chest in a trauma patient shows a displaced fracture in a posterolateral right rib (arrow). There is an underlying effusion, the density of which indicates hemothorax. There is also a pulmonary contusion.
Additionally, CT may help elucidate nonspecific findings such as lung opacification, which may represent hemothorax or pulmonary contusion or both (Figure 3). It can also better characterize pathologic fractures related to cancer. Specific bone reconstruction algorithms and three-dimensional reconstructions further improve CT’s ability to detect rib pathology.

While CT appears to be the best imaging test for evaluating for rib fractures and associated injuries, it is relatively costly, is time-consuming, is not always available, and exposes the patient to a significant amount of radiation.

Also, while CT plays a vital role in major and penetrating trauma of the chest or abdomen, its use in other situations is more limited. Again, the issue of clinical impact of a diagnosis of rib fracture comes into play, and in this setting CT competes with plain radiography and ultrasonography, which are less costly and involve less or no radiation exposure.

Ultrasonography has advantages but is not widely used

Ultrasonography can be used to look for broken ribs and costal cartilage fractures. Associated injuries such as pneumothorax, hemothorax, and abdominal organ injury can also be evaluated. Studies have found it to be much more sensitive than plain radiography in detecting rib fractures,3,15 whereas other studies have suggested it is only equally sensitive or slightly better.7 It also has the advantage of not using radiation.

Because of a number of disadvantages, ultrasonography is rarely used in the evaluation of rib fracture. It is time-consuming and more costly than plain radiography. It is often not readily available. It can be painful, making it impractical for trauma patients. Its results depend greatly on the skill of the technician, and it is unable to adequately assess certain portions of the thorax (eg, the first rib under the clavicle, and the upper ribs under the scapula).7,15 Although able to detect some associated injuries, ultrasonography is not as sensitive and comprehensive as plain radiography and CT. Its role is therefore limited to situations in which the diagnosis of a rib fracture alone, in an accessible rib, is important.

 

 

Bone scan: Sensitive but not specific

Technetium Tc 99m methylene diphosphonate bone scanning can be used to look for bone pathology, including rib fractures. Bone scans are sensitive but not specific, and abnormal uptake generates an extensive differential diagnosis.16 Single-photon emission CT, or SPECT, can help localize the abnormality. 4 Because a hot spot on a bone scan can represent a number of conditions besides rib fractures, including cancer, focal sclerosis, and focal osteosclerosis, bone scanning is not routinely used for evaluating rib fractures, although it is very sensitive for stress fractures.

Occasionally, in a patient undergoing a bone scan as part of a workup for cancer, a scan shows a lesion that might be a rib fracture. In this case, one should correlate the results with those of plain radiography or CT.16

Magnetic resonance imaging: no role yet in rib fracture evaluation

MRI is not considered appropriate for evaluating rib fractures. It may be useful if there is concern about soft-tissue or vascular abnormalities. Beyond this, further research is needed to elucidate its role in rib fracture.

THE CHOICE OF TEST DEPENDS ON THE SITUATION

Figure 4. Recommended clinical management of patients with a history of chest trauma. In an asymptomatic patient, the key question is whether confirming a rib fracture with radiographic imaging will alter clinical management. In a symptomatic patient with a normal chest x-ray, one may consider CT to detect underlying injury as well as rib fractures.
Although several imaging tests can tell us if a patient has a rib fracture, in most cases the diagnosis of a rib fracture alone has little clinical relevance. The accurate and timely assessment of associated injuries and complications is more clinically useful, and for this, plain radiography and CT provide the most useful information. The choice of which test to use in a patient with a suspected rib fracture depends on the clinical circumstances (Figure 4).

In patients with penetrating or major chest or abdominal trauma, CT is the study of choice. It provides the most information about associated injuries, and it accurately detects rib fractures. This helps target treatment of associated injuries, and helps identify patients at higher risk, such as those with significant vascular, pulmonary, or abdominal injuries and those with a greater number of fractures. An unstable, critically injured patient would not be a candidate for CT because of the risk of transport to the scanner; chest radiography would have to suffice in these cases.

In cases of minor blunt trauma when there is little suspicion of associated injuries or complications, plain radiography is likely sufficient. If there is suspicion of a rib fracture alone and confirmation is of clinical importance (eg, in the elderly or those with long-standing refractory pain, or when certain pain management treatments are being considered), then oblique radiographic views, bone technique, and marker placement over the concerning region are recommended. The role of ultrasonography in this setting is still up for debate.

In cases of suspected rib fracture with longstanding pain refractory to conservative pain management, plain radiography with oblique views, bone technique, and marker placement is useful. If the radiograph is negative or if there is a high suspicion of cartilage fracture, CT or ultrasonography may be of benefit only if the diagnosis will alter clinical management.

If stress fracture is suspected, a nuclear bone scan may be helpful to first detect an abnormality, and CT may then be used for correlation if needed.

CASE CONCLUDED: LIVING WITH UNCERTAINTY

As for the 70-year-old man presented at the beginning of this article, the first question is whether we suspect an associated injury on the basis of clinical features. If we had clinical findings suspicious for pneumothorax or hemothorax, plain radiography of the chest would be indicated. Since the patient was not involved in major trauma, a CT scan is not indicated as the first study.

Our patient has clinical findings suggesting a rib fracture without associated injury. In this setting, routine posteroanterior and lateral chest radiography would be useful to rule out major associated injuries and, perhaps, to find a rib fracture. If the chest film is normal and rib fracture is still suspected, we must decide whether the diagnosis would alter our clinical management. Our patient would likely be treated the same regardless of whether or not he has a fracture; therefore, we would prescribe pain management.

Chest radiography was performed to rule out associated injuries, especially since the patient was elderly, but the chest x-ray did not reveal anything. On follow-up approximately 1 month later, he appeared improved, with less pain and tenderness. This may be due to healing of a rib fracture or healing of his soft-tissue injury. We will never know whether he truly had a fracture, but it is irrelevant to his care.

A 70-year-old man falls in his bathroom and subsequently presents to an urgent care clinic. Among his complaints is right-sided chest pain. On physical examination he has point tenderness over the lateral right thorax with some superficial swelling and bruising. The chest is normal on auscultation.

Should this patient undergo imaging to determine if he has a rib fracture? And which imaging study would be appropriate?

This article outlines the use of various imaging tests in the evaluation of suspected rib fractures and recommends an approach to management. This article does not address fractures in children.

MANY CAUSES OF RIB FRACTURES

Trauma, the most common cause of rib fractures, includes penetrating injuries and blunt injury to the chest wall. Between 10% and 66% of traumatic injuries result in rib fractures. 1 Traumatic injury can result from motor vehicle accidents, assault, sports, cardiopulmonary resuscitation, physical abuse (“nonaccidental” trauma), and, rarely, severe paroxysms of coughing.2

Cancer can cause pathologic fractures of the rib.

Stress fractures of the ribs are more likely to occur in high-level athletes whose activity involves repetitive musculoskeletal loading, although they can also occur in people with repetitive coughing paroxysms.3 Sports and activities that result in stress fractures include rowing, pitching or throwing, basketball, weight-lifting, ballet, golf, gymnastics, and swimming.4

WHICH RIB IS BROKEN?

The fourth through 10th ribs are the most often fractured. Fractures of the first through the third ribs can be associated with underlying nerve and vascular injuries, and fractures of the 10th through 12th ribs are associated with damage to abdominal organs,5 most commonly the liver, spleen, kidneys, and diaphragm.3

Fractures of the costal cartilage can occur by any of the mechanisms described above. The true incidence of costal cartilage fractures is not known because plain radiography, the traditional method of evaluation, does not reliably detect them.

WHY CONFIRM A RIB FRACTURE?

For many rib fractures without associated injury, a radiographic diagnosis has little impact on patient management, which consists mainly of pain control. But knowing whether a patient has a broken rib can often be important.

To detect associated injury. The rate of associated injury in patients with rib fractures is high.6 Potentially severe complications include:

  • Pneumothorax
  • Hemothorax
  • Pulmonary contusion
  • Flail chest
  • Pneumonia
  • Vascular and nerve damage (especially with trauma to the upper chest or the first through third ribs)
  • Abdominal organ injury (particularly with trauma to the lower thorax or lower ribs).

The absence of a rib fracture does not preclude these conditions, however.

To prevent complications. Even in the absence of associated injuries, radiographic confirmation of a rib fracture can help prevent complications such as atelectasis and is particularly important in patients with comorbidities such as chronic obstructive pulmonary disease, cardiac disease, hepatic disease, renal disease, dementia, and coagulopathy.1

To document the injury. Radiographic documentation of a rib fracture may be required for medical-legal issues in cases of assault, motor vehicle accident, occupational injury, and abuse.

To help manage pain. Confirmation of rib fracture can facilitate pain management, particularly in patients with undiagnosed fractures with long-standing refractory pain. For example, conservative pain control with nonsteroidal anti-inflammatory drugs may be sufficient for a soft-tissue injury but may not be enough for a rib fracture. Intravenous narcotics or nerve blocks might be preferable.3,7 Controlling pain helps limit the incidence of associated complications.

Figure 1. Oblique radiographic view shows an acute rib fracture in a patient with multiple myeloma.
To detect pathologic fractures. Radiographic diagnosis can provide important information in cases of suspected pathologic fracture, as in multiple myeloma (Figure 1) or other malignancies.

To count how many ribs are broken. The more ribs broken, the greater the likelihood of illness and death in certain populations, such as the elderly. One study8 found that patients over age 45 with more than four broken ribs are at a significantly higher risk of prolonged stay in the intensive care unit, prolonged ventilator support, and prolonged overall hospital stay.

Knowing the number of ribs fractured may also influence other treatment decisions, such as whether to transfer the patient to a trauma center: a study showed that the more ribs broken, the greater the death rate, and that more than three rib fractures may indicate the need to transfer to a trauma center.6

 

 

HOW TO DIAGNOSE A BROKEN RIB

Signs and symptoms are unreliable but important

Clinical symptoms do not reliably tell us if a rib is broken.9,10 Nevertheless, the history and physical examination can uncover possible complications or associated injuries,10,11 such as flail chest, pneumothorax, or vascular injury.

Classic clinical signs and symptoms of rib fracture include point tenderness, focally referred pain with general chest compression, splinting, bony crepitus, and ecchymosis.9 A history of a motor vehicle accident (especially on a motorcycle) or other injury due to rapid deceleration, a fall from higher than 20 feet, a gunshot wound, assault, or a crushing injury would indicate a greater risk of complications.

Signs of complications may include decreased oxygen saturation, decreased or absent breath sounds, dullness or hyperresonance to percussion, tracheal deviation, hypotension, arrythmia, subcutaneous emphysema, neck vein distension, neck hematoma, a focal neurologic deficit below the clavicles or in the upper extremities, and flail chest.11 Flail chest results from multiple fractures in the same rib, so that a segment of chest wall does not contribute to breathing.

Further research is needed into the correlation of clinical symptoms with rib fractures. Much of the evidence that clinical symptoms correlate poorly with fractures comes from studies that used plain radiography to detect the fractures. However, ultrasonography and computed tomography (CT) can detect fractures that plain radiography cannot, and studies using these newer imaging tests may reveal a better correlation between clinical symptoms and rib fracture than previously thought.6

Chest radiography may miss 50% of rib fractures, but is still useful

Plain radiography of the chest with or without oblique views and optimized by the technologist for bony detail (“bone technique”) has historically been the imaging test of choice. However, it may miss up to 50% of fractures.10 Furthermore, it is not sensitive for costal cartilage3 or stress fractures.

Despite these limitations, plain radiography is vitally important in diagnosing complications and associated injuries such as a pneumothorax, hemothorax, pulmonary contusion, pneumomediastinum, or pneumoperitoneum. Also, a widened mediastinum could indicate aortic injury.

Currently, a standard chest x-ray is often the initial study of choice in the evaluation of chest pain and in cases of minor blunt trauma. If rib fractures are suspected clinically, a rib series can be of benefit. A rib series consists of a marker placed over the region of interest, oblique views, and optimization of the radiograph by the technologist to highlight bony detail. The decision to image a rib fracture in the absence of other underlying abnormalities or associated injuries depends on the clinical scenario.

Computed tomography provides more detail

Figure 2. Computed tomographic scan (zoomed axial image) shows an acute rib fracture.
CT is the primary study to fully evaluate for trauma-associated injuries and to evaluate bony detail (Figure 2). Its diagnostic capability is unsurpassed in this setting.11,12,13 It is also useful for diagnosing costal cartilage injury, whereas radiography is not.14 It can provide more details and new information when plain radiography indicates bone pathology: eg, a widened mediastinum suggesting vascular injury; pneumomediastinum or pneumoperitoneum of uncertain cause; cases of questionable pneumothorax; and locating foreign bodies or bony fragments, particularly in relation to vital vascular or nerve structures.

Figure 3. An axial image from a computed tomographic scan of the chest in a trauma patient shows a displaced fracture in a posterolateral right rib (arrow). There is an underlying effusion, the density of which indicates hemothorax. There is also a pulmonary contusion.
Additionally, CT may help elucidate nonspecific findings such as lung opacification, which may represent hemothorax or pulmonary contusion or both (Figure 3). It can also better characterize pathologic fractures related to cancer. Specific bone reconstruction algorithms and three-dimensional reconstructions further improve CT’s ability to detect rib pathology.

While CT appears to be the best imaging test for evaluating for rib fractures and associated injuries, it is relatively costly, is time-consuming, is not always available, and exposes the patient to a significant amount of radiation.

Also, while CT plays a vital role in major and penetrating trauma of the chest or abdomen, its use in other situations is more limited. Again, the issue of clinical impact of a diagnosis of rib fracture comes into play, and in this setting CT competes with plain radiography and ultrasonography, which are less costly and involve less or no radiation exposure.

Ultrasonography has advantages but is not widely used

Ultrasonography can be used to look for broken ribs and costal cartilage fractures. Associated injuries such as pneumothorax, hemothorax, and abdominal organ injury can also be evaluated. Studies have found it to be much more sensitive than plain radiography in detecting rib fractures,3,15 whereas other studies have suggested it is only equally sensitive or slightly better.7 It also has the advantage of not using radiation.

Because of a number of disadvantages, ultrasonography is rarely used in the evaluation of rib fracture. It is time-consuming and more costly than plain radiography. It is often not readily available. It can be painful, making it impractical for trauma patients. Its results depend greatly on the skill of the technician, and it is unable to adequately assess certain portions of the thorax (eg, the first rib under the clavicle, and the upper ribs under the scapula).7,15 Although able to detect some associated injuries, ultrasonography is not as sensitive and comprehensive as plain radiography and CT. Its role is therefore limited to situations in which the diagnosis of a rib fracture alone, in an accessible rib, is important.

 

 

Bone scan: Sensitive but not specific

Technetium Tc 99m methylene diphosphonate bone scanning can be used to look for bone pathology, including rib fractures. Bone scans are sensitive but not specific, and abnormal uptake generates an extensive differential diagnosis.16 Single-photon emission CT, or SPECT, can help localize the abnormality. 4 Because a hot spot on a bone scan can represent a number of conditions besides rib fractures, including cancer, focal sclerosis, and focal osteosclerosis, bone scanning is not routinely used for evaluating rib fractures, although it is very sensitive for stress fractures.

Occasionally, in a patient undergoing a bone scan as part of a workup for cancer, a scan shows a lesion that might be a rib fracture. In this case, one should correlate the results with those of plain radiography or CT.16

Magnetic resonance imaging: no role yet in rib fracture evaluation

MRI is not considered appropriate for evaluating rib fractures. It may be useful if there is concern about soft-tissue or vascular abnormalities. Beyond this, further research is needed to elucidate its role in rib fracture.

THE CHOICE OF TEST DEPENDS ON THE SITUATION

Figure 4. Recommended clinical management of patients with a history of chest trauma. In an asymptomatic patient, the key question is whether confirming a rib fracture with radiographic imaging will alter clinical management. In a symptomatic patient with a normal chest x-ray, one may consider CT to detect underlying injury as well as rib fractures.
Although several imaging tests can tell us if a patient has a rib fracture, in most cases the diagnosis of a rib fracture alone has little clinical relevance. The accurate and timely assessment of associated injuries and complications is more clinically useful, and for this, plain radiography and CT provide the most useful information. The choice of which test to use in a patient with a suspected rib fracture depends on the clinical circumstances (Figure 4).

In patients with penetrating or major chest or abdominal trauma, CT is the study of choice. It provides the most information about associated injuries, and it accurately detects rib fractures. This helps target treatment of associated injuries, and helps identify patients at higher risk, such as those with significant vascular, pulmonary, or abdominal injuries and those with a greater number of fractures. An unstable, critically injured patient would not be a candidate for CT because of the risk of transport to the scanner; chest radiography would have to suffice in these cases.

In cases of minor blunt trauma when there is little suspicion of associated injuries or complications, plain radiography is likely sufficient. If there is suspicion of a rib fracture alone and confirmation is of clinical importance (eg, in the elderly or those with long-standing refractory pain, or when certain pain management treatments are being considered), then oblique radiographic views, bone technique, and marker placement over the concerning region are recommended. The role of ultrasonography in this setting is still up for debate.

In cases of suspected rib fracture with longstanding pain refractory to conservative pain management, plain radiography with oblique views, bone technique, and marker placement is useful. If the radiograph is negative or if there is a high suspicion of cartilage fracture, CT or ultrasonography may be of benefit only if the diagnosis will alter clinical management.

If stress fracture is suspected, a nuclear bone scan may be helpful to first detect an abnormality, and CT may then be used for correlation if needed.

CASE CONCLUDED: LIVING WITH UNCERTAINTY

As for the 70-year-old man presented at the beginning of this article, the first question is whether we suspect an associated injury on the basis of clinical features. If we had clinical findings suspicious for pneumothorax or hemothorax, plain radiography of the chest would be indicated. Since the patient was not involved in major trauma, a CT scan is not indicated as the first study.

Our patient has clinical findings suggesting a rib fracture without associated injury. In this setting, routine posteroanterior and lateral chest radiography would be useful to rule out major associated injuries and, perhaps, to find a rib fracture. If the chest film is normal and rib fracture is still suspected, we must decide whether the diagnosis would alter our clinical management. Our patient would likely be treated the same regardless of whether or not he has a fracture; therefore, we would prescribe pain management.

Chest radiography was performed to rule out associated injuries, especially since the patient was elderly, but the chest x-ray did not reveal anything. On follow-up approximately 1 month later, he appeared improved, with less pain and tenderness. This may be due to healing of a rib fracture or healing of his soft-tissue injury. We will never know whether he truly had a fracture, but it is irrelevant to his care.

References
  1. Bergeron E, Lavoie A, Clas D, et al. Elderly trauma patients with rib fractures are at greater risk of death and pneumonia. J Trauma 2003; 54:478485.
  2. Lederer W, Mair D, Rabl W, Baubin M. Frequency of rib and sternum fractures associated with out-of-hospital cardiopulmonary resuscitation is underestimated by conventional chest x-ray. Resuscitation 2004; 60:157162.
  3. Kara M, Dikmen E, Erdal HH, Simsir I, Kara SA. Disclosure of unnoticed rib fractures with the use of ultrasonography in minor blunt chest trauma. Eur J Cardiothorac Surg 2003; 24:608613.
  4. Connolly LP, Connolly SA. Rib stress fractures. Clin Nucl Med 2004; 29:614616.
  5. Bansidhar BJ, Lagares-Garcia JA, Miller SL. Clinical rib fractures: are follow-up chest x-rays a waste of resources? Am Surg 2002; 68:449453.
  6. Stawicki SP, Grossman MD, Hoey BA, Miller DL, Reed JF. Rib fractures in the elderly: a marker of injury severity. J Am Geriatr Soc 2004; 52:805808.
  7. Hurley ME, Keye GD, Hamilton S. Is ultrasound really helpful in the detection of rib fractures? Injury 2004; 35:562566.
  8. Holcomb JB, McMullin NR, Kozar RA, Lygas MH, Moore FA. Morbidity from rib fractures increases after age 45. J Am Coll Surg 2003; 196:549555.
  9. Deluca SA, Rhea JT, O’Malley TO. Radiographic evaluation of rib fractures. AJR Am J Roentgenol 1982; 138:9192.
  10. Dubinsky I, Low A. Non-life threatening blunt chest trauma: appropriate investigation and treatment. Am J Emerg Med 1997; 15:240243.
  11. Sears BW, Luchette FA, Esposito TJ, et al. Old fashion clinical judgment in the era of protocols: is mandatory chest x-ray necessary in injured patients? J Trauma 2005; 59:324332.
  12. Traub M, Stevenson M, McEvoy S, et al. The use of chest computed tomography versus chest x-ray in patients with major blunt trauma. Injury 2007; 38:4347.
  13. Trupka A, Waydhas C, Hallfeldt KK, Nast-Kolb D, Pfeifer KJ, Schweiberer L. Value of thoracic computed tomography in the first assessment of severely injured patients with blunt chest trauma: results of a prospective study. J Trauma 1997; 43:405412.
  14. Malghem J, Vande Berg B, Lecouvet F, Maldague B. Costal cartilage fractures as revealed on CT and sonography. AJR Am J Roentgenol 2001; 176:429432.
  15. Griffith JF, Rainer TH, Ching AS, Law KL, Cocks RA, Metreweli C. Sonography compared with radiography in revealing acute rib fracture. AJR Am J Roentgenol 1999; 173:16031609.
  16. Niitsu M, Takeda T. Solitary hot spots in the ribs on bone scan: value of thin-section reformatted computed tomography to exclude radiography negative fractures. J Comput Assist Tomogr 2003; 27:469474.
References
  1. Bergeron E, Lavoie A, Clas D, et al. Elderly trauma patients with rib fractures are at greater risk of death and pneumonia. J Trauma 2003; 54:478485.
  2. Lederer W, Mair D, Rabl W, Baubin M. Frequency of rib and sternum fractures associated with out-of-hospital cardiopulmonary resuscitation is underestimated by conventional chest x-ray. Resuscitation 2004; 60:157162.
  3. Kara M, Dikmen E, Erdal HH, Simsir I, Kara SA. Disclosure of unnoticed rib fractures with the use of ultrasonography in minor blunt chest trauma. Eur J Cardiothorac Surg 2003; 24:608613.
  4. Connolly LP, Connolly SA. Rib stress fractures. Clin Nucl Med 2004; 29:614616.
  5. Bansidhar BJ, Lagares-Garcia JA, Miller SL. Clinical rib fractures: are follow-up chest x-rays a waste of resources? Am Surg 2002; 68:449453.
  6. Stawicki SP, Grossman MD, Hoey BA, Miller DL, Reed JF. Rib fractures in the elderly: a marker of injury severity. J Am Geriatr Soc 2004; 52:805808.
  7. Hurley ME, Keye GD, Hamilton S. Is ultrasound really helpful in the detection of rib fractures? Injury 2004; 35:562566.
  8. Holcomb JB, McMullin NR, Kozar RA, Lygas MH, Moore FA. Morbidity from rib fractures increases after age 45. J Am Coll Surg 2003; 196:549555.
  9. Deluca SA, Rhea JT, O’Malley TO. Radiographic evaluation of rib fractures. AJR Am J Roentgenol 1982; 138:9192.
  10. Dubinsky I, Low A. Non-life threatening blunt chest trauma: appropriate investigation and treatment. Am J Emerg Med 1997; 15:240243.
  11. Sears BW, Luchette FA, Esposito TJ, et al. Old fashion clinical judgment in the era of protocols: is mandatory chest x-ray necessary in injured patients? J Trauma 2005; 59:324332.
  12. Traub M, Stevenson M, McEvoy S, et al. The use of chest computed tomography versus chest x-ray in patients with major blunt trauma. Injury 2007; 38:4347.
  13. Trupka A, Waydhas C, Hallfeldt KK, Nast-Kolb D, Pfeifer KJ, Schweiberer L. Value of thoracic computed tomography in the first assessment of severely injured patients with blunt chest trauma: results of a prospective study. J Trauma 1997; 43:405412.
  14. Malghem J, Vande Berg B, Lecouvet F, Maldague B. Costal cartilage fractures as revealed on CT and sonography. AJR Am J Roentgenol 2001; 176:429432.
  15. Griffith JF, Rainer TH, Ching AS, Law KL, Cocks RA, Metreweli C. Sonography compared with radiography in revealing acute rib fracture. AJR Am J Roentgenol 1999; 173:16031609.
  16. Niitsu M, Takeda T. Solitary hot spots in the ribs on bone scan: value of thin-section reformatted computed tomography to exclude radiography negative fractures. J Comput Assist Tomogr 2003; 27:469474.
Issue
Cleveland Clinic Journal of Medicine - 76(5)
Issue
Cleveland Clinic Journal of Medicine - 76(5)
Page Number
309-314
Page Number
309-314
Publications
Publications
Topics
Article Type
Display Headline
When and how to image a suspected broken rib
Display Headline
When and how to image a suspected broken rib
Sections
Inside the Article

KEY POINTS

  • Knowing the number of ribs fractured may influence treatment decisions, such as whether to transfer a patient to a trauma center.
  • Classic clinical signs and symptoms of rib fracture include point tenderness, focally referred pain with general chest compression, splinting, bony crepitus, and ecchymosis.
  • In a patient with minor blunt trauma, when there is little suspicion of associated injury or complication, plain radiography is likely sufficient.
  • Computed tomography is the imaging study of choice in patients with penetrating or major chest or abdominal trauma.
Disallow All Ads
Alternative CME
Article PDF Media

Painful "Pop" in Right Shoulder

Article Type
Changed
Wed, 12/12/2018 - 19:55
Display Headline
Painful "Pop" in Right Shoulder

Article PDF
Author and Disclosure Information

J. Michael Ray, MD, Ivette Guttman, MD, and Brian L. Patterson, MD

Issue
Emergency Medicine - 41(5)
Publications
Topics
Page Number
33-34
Legacy Keywords
shoulder, falls, fractures, clavicle, figure-of-eight bandages, open reduction and internal fixationshoulder, falls, fractures, clavicle, figure-of-eight bandages, open reduction and internal fixation
Author and Disclosure Information

J. Michael Ray, MD, Ivette Guttman, MD, and Brian L. Patterson, MD

Author and Disclosure Information

J. Michael Ray, MD, Ivette Guttman, MD, and Brian L. Patterson, MD

Article PDF
Article PDF

Issue
Emergency Medicine - 41(5)
Issue
Emergency Medicine - 41(5)
Page Number
33-34
Page Number
33-34
Publications
Publications
Topics
Article Type
Display Headline
Painful "Pop" in Right Shoulder
Display Headline
Painful "Pop" in Right Shoulder
Legacy Keywords
shoulder, falls, fractures, clavicle, figure-of-eight bandages, open reduction and internal fixationshoulder, falls, fractures, clavicle, figure-of-eight bandages, open reduction and internal fixation
Legacy Keywords
shoulder, falls, fractures, clavicle, figure-of-eight bandages, open reduction and internal fixationshoulder, falls, fractures, clavicle, figure-of-eight bandages, open reduction and internal fixation
Article Source

PURLs Copyright

Inside the Article

Article PDF Media

Painful, Swollen Area on Right Arm

Article Type
Changed
Wed, 12/12/2018 - 19:55
Display Headline
Painful, Swollen Area on Right Arm

Article PDF
Author and Disclosure Information

Phillips Perera, MD, RDMS, FACEP, and Diku Mandavia, MD, FACEP, FRCPC

Issue
Emergency Medicine - 41(5)
Publications
Topics
Page Number
31-32
Legacy Keywords
arms, swelling, intravenous drug use, heroin, abscesses, basilic veins, brachial veins, drainage, drained, antibioticsarms, swelling, intravenous drug use, heroin, abscesses, basilic veins, brachial veins, drainage, drained, antibiotics
Sections
Author and Disclosure Information

Phillips Perera, MD, RDMS, FACEP, and Diku Mandavia, MD, FACEP, FRCPC

Author and Disclosure Information

Phillips Perera, MD, RDMS, FACEP, and Diku Mandavia, MD, FACEP, FRCPC

Article PDF
Article PDF

Issue
Emergency Medicine - 41(5)
Issue
Emergency Medicine - 41(5)
Page Number
31-32
Page Number
31-32
Publications
Publications
Topics
Article Type
Display Headline
Painful, Swollen Area on Right Arm
Display Headline
Painful, Swollen Area on Right Arm
Legacy Keywords
arms, swelling, intravenous drug use, heroin, abscesses, basilic veins, brachial veins, drainage, drained, antibioticsarms, swelling, intravenous drug use, heroin, abscesses, basilic veins, brachial veins, drainage, drained, antibiotics
Legacy Keywords
arms, swelling, intravenous drug use, heroin, abscesses, basilic veins, brachial veins, drainage, drained, antibioticsarms, swelling, intravenous drug use, heroin, abscesses, basilic veins, brachial veins, drainage, drained, antibiotics
Sections
Article Source

PURLs Copyright

Inside the Article

Article PDF Media

Right Lower Quadrant Pain

Article Type
Changed
Wed, 12/12/2018 - 19:55
Display Headline
Right Lower Quadrant Pain

Article PDF
Author and Disclosure Information

Keith D. Hentel, MD

Issue
Emergency Medicine - 41(5)
Publications
Topics
Page Number
11-12
Legacy Keywords
abdominal pain, leukocytosis, appendagitis, epiploic appendagitis, omental, anti-inflammatoryabdominal pain, leukocytosis, appendagitis, epiploic appendagitis, omental, anti-inflammatory
Author and Disclosure Information

Keith D. Hentel, MD

Author and Disclosure Information

Keith D. Hentel, MD

Article PDF
Article PDF

Issue
Emergency Medicine - 41(5)
Issue
Emergency Medicine - 41(5)
Page Number
11-12
Page Number
11-12
Publications
Publications
Topics
Article Type
Display Headline
Right Lower Quadrant Pain
Display Headline
Right Lower Quadrant Pain
Legacy Keywords
abdominal pain, leukocytosis, appendagitis, epiploic appendagitis, omental, anti-inflammatoryabdominal pain, leukocytosis, appendagitis, epiploic appendagitis, omental, anti-inflammatory
Legacy Keywords
abdominal pain, leukocytosis, appendagitis, epiploic appendagitis, omental, anti-inflammatoryabdominal pain, leukocytosis, appendagitis, epiploic appendagitis, omental, anti-inflammatory
Article Source

PURLs Copyright

Inside the Article

Article PDF Media

Posterior Angle Impingement: Os Trigonum Syndrome

Article Type
Changed
Thu, 09/19/2019 - 14:06
Display Headline
Posterior Angle Impingement: Os Trigonum Syndrome

Article PDF
Author and Disclosure Information

Sharik Rathur, MD, Paul D. Clifford, MD, and Cary B. Chapman, MD

Dr. Rathur is Musculoskeletal Imaging Fellow, Dr. Clifford is Clinical Assistant Professor of Radiology, Chief of Musculoskeletal Section, and Director of MSK and MRI Fellowships, and Dr. Chapman is Chief of Foot and Ankle Surgery, Department of Orthopaedics, Miller School of Medicine, University of Miami, Miami, Florida.

Issue
The American Journal of Orthopedics - 38(5)
Publications
Topics
Page Number
252-253
Legacy Keywords
posterior, ankle, impingement, os trigonum, posterior impingement syndrome, talus, imaging, magnetic resonance, mri, ajo, american journal of orthopedics, rathur, clifford, chapman
Sections
Author and Disclosure Information

Sharik Rathur, MD, Paul D. Clifford, MD, and Cary B. Chapman, MD

Dr. Rathur is Musculoskeletal Imaging Fellow, Dr. Clifford is Clinical Assistant Professor of Radiology, Chief of Musculoskeletal Section, and Director of MSK and MRI Fellowships, and Dr. Chapman is Chief of Foot and Ankle Surgery, Department of Orthopaedics, Miller School of Medicine, University of Miami, Miami, Florida.

Author and Disclosure Information

Sharik Rathur, MD, Paul D. Clifford, MD, and Cary B. Chapman, MD

Dr. Rathur is Musculoskeletal Imaging Fellow, Dr. Clifford is Clinical Assistant Professor of Radiology, Chief of Musculoskeletal Section, and Director of MSK and MRI Fellowships, and Dr. Chapman is Chief of Foot and Ankle Surgery, Department of Orthopaedics, Miller School of Medicine, University of Miami, Miami, Florida.

Article PDF
Article PDF

Issue
The American Journal of Orthopedics - 38(5)
Issue
The American Journal of Orthopedics - 38(5)
Page Number
252-253
Page Number
252-253
Publications
Publications
Topics
Article Type
Display Headline
Posterior Angle Impingement: Os Trigonum Syndrome
Display Headline
Posterior Angle Impingement: Os Trigonum Syndrome
Legacy Keywords
posterior, ankle, impingement, os trigonum, posterior impingement syndrome, talus, imaging, magnetic resonance, mri, ajo, american journal of orthopedics, rathur, clifford, chapman
Legacy Keywords
posterior, ankle, impingement, os trigonum, posterior impingement syndrome, talus, imaging, magnetic resonance, mri, ajo, american journal of orthopedics, rathur, clifford, chapman
Sections
Article Source

PURLs Copyright

Inside the Article

Article PDF Media