User login
Bringing you the latest news, research and reviews, exclusive interviews, podcasts, quizzes, and more.
div[contains(@class, 'header__large-screen')]
div[contains(@class, 'read-next-article')]
div[contains(@class, 'nav-primary')]
nav[contains(@class, 'nav-primary')]
section[contains(@class, 'footer-nav-section-wrapper')]
footer[@id='footer']
div[contains(@class, 'main-prefix')]
section[contains(@class, 'nav-hidden')]
div[contains(@class, 'ce-card-content')]
nav[contains(@class, 'nav-ce-stack')]
Long COVID symptoms linked to effects on vagus nerve
Several long COVID symptoms could be linked to the effects of the coronavirus on a vital central nerve, according to new research being released in the spring.
The vagus nerve, which runs from the brain into the body, connects to the heart, lungs, intestines, and several muscles involved with swallowing. It plays a role in several body functions that control heart rate, speech, the gag reflex, sweating, and digestion.
Those with long COVID and vagus nerve problems could face long-term issues with their voice, a hard time swallowing, dizziness, a high heart rate, low blood pressure, and diarrhea, the study authors found.
Their findings will be presented at the 2022 European Congress of Clinical Microbiology and Infectious Diseases in late April.
“Most long COVID subjects with vagus nerve dysfunction symptoms had a range of significant, clinically relevant, structural and/or functional alterations in their vagus nerve, including nerve thickening, trouble swallowing, and symptoms of impaired breathing,” the study authors wrote. “Our findings so far thus point at vagus nerve dysfunction as a central pathophysiological feature of long COVID.”
Researchers from the University Hospital Germans Trias i Pujol in Barcelona performed a study to look at vagus nerve functioning in long COVID patients. Among 348 patients, about 66% had at least one symptom that suggested vagus nerve dysfunction. The researchers did a broad evaluation with imaging and functional tests for 22 patients in the university’s Long COVID Clinic from March to June 2021.
Of the 22 patients, 20 were women, and the median age was 44. The most frequent symptoms related to vagus nerve dysfunction were diarrhea (73%), high heart rates (59%), dizziness (45%), swallowing problems (45%), voice problems (45%), and low blood pressure (14%).
Almost all (19 of 22 patients) had three or more symptoms related to vagus nerve dysfunction. The average length of symptoms was 14 months.
Of 22 patients, 6 had a change in the vagus nerve in the neck, which the researchers observed by ultrasound. They had a thickening of the vagus nerve and increased “echogenicity,” which suggests inflammation.
What’s more, 10 of 22 patients had flattened “diaphragmatic curves” during a thoracic ultrasound, which means the diaphragm doesn’t move as well as it should during breathing, and abnormal breathing. In another assessment, 10 of 16 patients had lower maximum inspiration pressures, suggesting a weakness in breathing muscles.
Eating and digestion were also impaired in some patients, with 13 reporting trouble with swallowing. During a gastric and bowel function assessment, eight patients couldn’t move food from the esophagus to the stomach as well as they should, while nine patients had acid reflux. Three patients had a hiatal hernia, which happens when the upper part of the stomach bulges through the diaphragm into the chest cavity.
The voices of some patients changed as well. Eight patients had an abnormal voice handicap index 30 test, which is a standard way to measure voice function. Among those, seven patients had dysphonia, or persistent voice problems.
The study is ongoing, and the research team is continuing to recruit patients to study the links between long COVID and the vagus nerve. The full paper isn’t yet available, and the research hasn’t yet been peer reviewed.
“The study appears to add to a growing collection of data suggesting at least some of the symptoms of long COVID is mediated through a direct impact on the nervous system,” David Strain, MD, a clinical senior lecturer at the University of Exeter (England), told the Science Media Centre.
“Establishing vagal nerve damage is useful information, as there are recognized, albeit not perfect, treatments for other causes of vagal nerve dysfunction that may be extrapolated to be beneficial for people with this type of long COVID,” he said.
A version of this article first appeared on WebMD.com.
Several long COVID symptoms could be linked to the effects of the coronavirus on a vital central nerve, according to new research being released in the spring.
The vagus nerve, which runs from the brain into the body, connects to the heart, lungs, intestines, and several muscles involved with swallowing. It plays a role in several body functions that control heart rate, speech, the gag reflex, sweating, and digestion.
Those with long COVID and vagus nerve problems could face long-term issues with their voice, a hard time swallowing, dizziness, a high heart rate, low blood pressure, and diarrhea, the study authors found.
Their findings will be presented at the 2022 European Congress of Clinical Microbiology and Infectious Diseases in late April.
“Most long COVID subjects with vagus nerve dysfunction symptoms had a range of significant, clinically relevant, structural and/or functional alterations in their vagus nerve, including nerve thickening, trouble swallowing, and symptoms of impaired breathing,” the study authors wrote. “Our findings so far thus point at vagus nerve dysfunction as a central pathophysiological feature of long COVID.”
Researchers from the University Hospital Germans Trias i Pujol in Barcelona performed a study to look at vagus nerve functioning in long COVID patients. Among 348 patients, about 66% had at least one symptom that suggested vagus nerve dysfunction. The researchers did a broad evaluation with imaging and functional tests for 22 patients in the university’s Long COVID Clinic from March to June 2021.
Of the 22 patients, 20 were women, and the median age was 44. The most frequent symptoms related to vagus nerve dysfunction were diarrhea (73%), high heart rates (59%), dizziness (45%), swallowing problems (45%), voice problems (45%), and low blood pressure (14%).
Almost all (19 of 22 patients) had three or more symptoms related to vagus nerve dysfunction. The average length of symptoms was 14 months.
Of 22 patients, 6 had a change in the vagus nerve in the neck, which the researchers observed by ultrasound. They had a thickening of the vagus nerve and increased “echogenicity,” which suggests inflammation.
What’s more, 10 of 22 patients had flattened “diaphragmatic curves” during a thoracic ultrasound, which means the diaphragm doesn’t move as well as it should during breathing, and abnormal breathing. In another assessment, 10 of 16 patients had lower maximum inspiration pressures, suggesting a weakness in breathing muscles.
Eating and digestion were also impaired in some patients, with 13 reporting trouble with swallowing. During a gastric and bowel function assessment, eight patients couldn’t move food from the esophagus to the stomach as well as they should, while nine patients had acid reflux. Three patients had a hiatal hernia, which happens when the upper part of the stomach bulges through the diaphragm into the chest cavity.
The voices of some patients changed as well. Eight patients had an abnormal voice handicap index 30 test, which is a standard way to measure voice function. Among those, seven patients had dysphonia, or persistent voice problems.
The study is ongoing, and the research team is continuing to recruit patients to study the links between long COVID and the vagus nerve. The full paper isn’t yet available, and the research hasn’t yet been peer reviewed.
“The study appears to add to a growing collection of data suggesting at least some of the symptoms of long COVID is mediated through a direct impact on the nervous system,” David Strain, MD, a clinical senior lecturer at the University of Exeter (England), told the Science Media Centre.
“Establishing vagal nerve damage is useful information, as there are recognized, albeit not perfect, treatments for other causes of vagal nerve dysfunction that may be extrapolated to be beneficial for people with this type of long COVID,” he said.
A version of this article first appeared on WebMD.com.
Several long COVID symptoms could be linked to the effects of the coronavirus on a vital central nerve, according to new research being released in the spring.
The vagus nerve, which runs from the brain into the body, connects to the heart, lungs, intestines, and several muscles involved with swallowing. It plays a role in several body functions that control heart rate, speech, the gag reflex, sweating, and digestion.
Those with long COVID and vagus nerve problems could face long-term issues with their voice, a hard time swallowing, dizziness, a high heart rate, low blood pressure, and diarrhea, the study authors found.
Their findings will be presented at the 2022 European Congress of Clinical Microbiology and Infectious Diseases in late April.
“Most long COVID subjects with vagus nerve dysfunction symptoms had a range of significant, clinically relevant, structural and/or functional alterations in their vagus nerve, including nerve thickening, trouble swallowing, and symptoms of impaired breathing,” the study authors wrote. “Our findings so far thus point at vagus nerve dysfunction as a central pathophysiological feature of long COVID.”
Researchers from the University Hospital Germans Trias i Pujol in Barcelona performed a study to look at vagus nerve functioning in long COVID patients. Among 348 patients, about 66% had at least one symptom that suggested vagus nerve dysfunction. The researchers did a broad evaluation with imaging and functional tests for 22 patients in the university’s Long COVID Clinic from March to June 2021.
Of the 22 patients, 20 were women, and the median age was 44. The most frequent symptoms related to vagus nerve dysfunction were diarrhea (73%), high heart rates (59%), dizziness (45%), swallowing problems (45%), voice problems (45%), and low blood pressure (14%).
Almost all (19 of 22 patients) had three or more symptoms related to vagus nerve dysfunction. The average length of symptoms was 14 months.
Of 22 patients, 6 had a change in the vagus nerve in the neck, which the researchers observed by ultrasound. They had a thickening of the vagus nerve and increased “echogenicity,” which suggests inflammation.
What’s more, 10 of 22 patients had flattened “diaphragmatic curves” during a thoracic ultrasound, which means the diaphragm doesn’t move as well as it should during breathing, and abnormal breathing. In another assessment, 10 of 16 patients had lower maximum inspiration pressures, suggesting a weakness in breathing muscles.
Eating and digestion were also impaired in some patients, with 13 reporting trouble with swallowing. During a gastric and bowel function assessment, eight patients couldn’t move food from the esophagus to the stomach as well as they should, while nine patients had acid reflux. Three patients had a hiatal hernia, which happens when the upper part of the stomach bulges through the diaphragm into the chest cavity.
The voices of some patients changed as well. Eight patients had an abnormal voice handicap index 30 test, which is a standard way to measure voice function. Among those, seven patients had dysphonia, or persistent voice problems.
The study is ongoing, and the research team is continuing to recruit patients to study the links between long COVID and the vagus nerve. The full paper isn’t yet available, and the research hasn’t yet been peer reviewed.
“The study appears to add to a growing collection of data suggesting at least some of the symptoms of long COVID is mediated through a direct impact on the nervous system,” David Strain, MD, a clinical senior lecturer at the University of Exeter (England), told the Science Media Centre.
“Establishing vagal nerve damage is useful information, as there are recognized, albeit not perfect, treatments for other causes of vagal nerve dysfunction that may be extrapolated to be beneficial for people with this type of long COVID,” he said.
A version of this article first appeared on WebMD.com.
Estrogen supplementation may reduce COVID-19 death risk
Estrogen supplementation is associated with a reduced risk of death from COVID-19 among postmenopausal women, new research suggests.
The findings, from a nationwide study using data from Sweden, were published online Feb. 14 in BMJ Open by Malin Sund, MD, PhD, of Umeå (Sweden) University Faculty of Medicine and colleagues.
Among postmenopausal women aged 50-80 years with verified COVID-19, those receiving estrogen as part of hormone replacement therapy for menopausal symptoms were less than half as likely to die from it as those not receiving estrogen, even after adjustment for confounders.
“This study shows an association between estrogen levels and COVID-19 death. Consequently, drugs increasing estrogen levels may have a role in therapeutic efforts to alleviate COVID-19 severity in postmenopausal women and could be studied in randomized control trials,” the investigators write.
However, coauthor Anne-Marie Fors Connolly, MD, PhD, a resident in clinical microbiology at Umeå University, cautioned: “This is an observational study. Further clinical studies are needed to verify these results before recommending clinicians to consider estrogen supplementation.”
Stephen Evans, professor of pharmacoepidemiology, London School of Hygiene & Tropical Medicine, agrees.
He told the U.K. Science and Media Centre: “This is an observational study comparing three groups of women based on whether they used hormonal therapy to boost estrogen levels or who had, as a result of treatment for breast cancer ... reduced estrogen levels or neither. The findings are apparently dramatic.”
“At the very least, great caution should be exercised in thinking that menopausal hormone therapy will have substantial, or even any, benefits in dealing with COVID-19,” he warned.
Do women die less frequently from COVID-19 than men?
Studies conducted early in the pandemic suggest women may be protected from poor outcomes of SARS-CoV-2 infection, compared with men, even after adjustment for confounders.
According to more recent data from the Swedish Public Health Agency, of the 16,501 people who have died from COVID-19 since the start of the pandemic, about 45% are women and 55% are men. About 70% who have received intensive care because of COVID-19 are men, although cumulative data suggest that women are nearly as likely to die from COVID-19 as men, Dr. Connolly told this news organization.
For the current study, a total of 14,685 women aged 50-80 years were included, of whom 17.3% (2,535) had received estrogen supplementation, 81.2% (11,923) had native estrogen levels with no breast cancer or estrogen supplementation (controls), and 1.5% (227) had decreased estrogen levels because of breast cancer and antiestrogen treatment.
The group with decreased estrogen levels had a more than twofold risk of dying from COVID-19 compared with controls (odds ratio, 2.35), but this difference was no longer significant after adjustments for potential confounders including age, income, and educational level, and weighted Charlson Comorbidity Index (wCCI).
However, the group with augmented estrogen levels had a decreased risk of dying from COVID-19 before (odds ratio, 0.45) and after (OR, 0.47) adjustment.
The percentages of patients who died of COVID-19 were 4.6% of controls, 10.1% of those with decreased estrogen, and 2.1% with increased estrogen.
Not surprisingly, the risk of dying from COVID-19 also increased with age (OR of 1.15 for every year increase in age) and comorbidities (OR, 1.13 per increase in wCCI). Low income and having only a primary level education also increased the odds of dying from COVID-19.
Data on obesity, a known risk factor for COVID-19 death, weren’t reported.
“Obesity would have been a very relevant variable to include. Unfortunately, this information is not present in the nationwide registry data that we used for our study,” Dr. Connolly told this news organization.
While the data are observational and can’t be used to inform treatment, Dr. Connolly pointed to a U.S. randomized clinical trial currently recruiting patients that will investigate the effect of estradiol and progesterone therapy in 120 adults hospitalized with COVID-19.
In the meantime, she warned doctors and patients: “Please do not consider ending antiestrogen treatment following breast cancer – this is a necessary treatment for the cancer.”
Dr. Evans noted, “There are short-term benefits of menopausal hormone therapy but women should not, based on this or other observational studies, be advised to take HRT [hormone replacement therapy] for a supposed benefit on death from COVID-19.”
The study had several nonpharmaceutical industry funders, including Umeå University and the Knut and Alice Wallenberg Foundation. The authors and Dr. Evans have reported no relevant financial relationships.
A version of this article first appeared on Medscape.com.
Estrogen supplementation is associated with a reduced risk of death from COVID-19 among postmenopausal women, new research suggests.
The findings, from a nationwide study using data from Sweden, were published online Feb. 14 in BMJ Open by Malin Sund, MD, PhD, of Umeå (Sweden) University Faculty of Medicine and colleagues.
Among postmenopausal women aged 50-80 years with verified COVID-19, those receiving estrogen as part of hormone replacement therapy for menopausal symptoms were less than half as likely to die from it as those not receiving estrogen, even after adjustment for confounders.
“This study shows an association between estrogen levels and COVID-19 death. Consequently, drugs increasing estrogen levels may have a role in therapeutic efforts to alleviate COVID-19 severity in postmenopausal women and could be studied in randomized control trials,” the investigators write.
However, coauthor Anne-Marie Fors Connolly, MD, PhD, a resident in clinical microbiology at Umeå University, cautioned: “This is an observational study. Further clinical studies are needed to verify these results before recommending clinicians to consider estrogen supplementation.”
Stephen Evans, professor of pharmacoepidemiology, London School of Hygiene & Tropical Medicine, agrees.
He told the U.K. Science and Media Centre: “This is an observational study comparing three groups of women based on whether they used hormonal therapy to boost estrogen levels or who had, as a result of treatment for breast cancer ... reduced estrogen levels or neither. The findings are apparently dramatic.”
“At the very least, great caution should be exercised in thinking that menopausal hormone therapy will have substantial, or even any, benefits in dealing with COVID-19,” he warned.
Do women die less frequently from COVID-19 than men?
Studies conducted early in the pandemic suggest women may be protected from poor outcomes of SARS-CoV-2 infection, compared with men, even after adjustment for confounders.
According to more recent data from the Swedish Public Health Agency, of the 16,501 people who have died from COVID-19 since the start of the pandemic, about 45% are women and 55% are men. About 70% who have received intensive care because of COVID-19 are men, although cumulative data suggest that women are nearly as likely to die from COVID-19 as men, Dr. Connolly told this news organization.
For the current study, a total of 14,685 women aged 50-80 years were included, of whom 17.3% (2,535) had received estrogen supplementation, 81.2% (11,923) had native estrogen levels with no breast cancer or estrogen supplementation (controls), and 1.5% (227) had decreased estrogen levels because of breast cancer and antiestrogen treatment.
The group with decreased estrogen levels had a more than twofold risk of dying from COVID-19 compared with controls (odds ratio, 2.35), but this difference was no longer significant after adjustments for potential confounders including age, income, and educational level, and weighted Charlson Comorbidity Index (wCCI).
However, the group with augmented estrogen levels had a decreased risk of dying from COVID-19 before (odds ratio, 0.45) and after (OR, 0.47) adjustment.
The percentages of patients who died of COVID-19 were 4.6% of controls, 10.1% of those with decreased estrogen, and 2.1% with increased estrogen.
Not surprisingly, the risk of dying from COVID-19 also increased with age (OR of 1.15 for every year increase in age) and comorbidities (OR, 1.13 per increase in wCCI). Low income and having only a primary level education also increased the odds of dying from COVID-19.
Data on obesity, a known risk factor for COVID-19 death, weren’t reported.
“Obesity would have been a very relevant variable to include. Unfortunately, this information is not present in the nationwide registry data that we used for our study,” Dr. Connolly told this news organization.
While the data are observational and can’t be used to inform treatment, Dr. Connolly pointed to a U.S. randomized clinical trial currently recruiting patients that will investigate the effect of estradiol and progesterone therapy in 120 adults hospitalized with COVID-19.
In the meantime, she warned doctors and patients: “Please do not consider ending antiestrogen treatment following breast cancer – this is a necessary treatment for the cancer.”
Dr. Evans noted, “There are short-term benefits of menopausal hormone therapy but women should not, based on this or other observational studies, be advised to take HRT [hormone replacement therapy] for a supposed benefit on death from COVID-19.”
The study had several nonpharmaceutical industry funders, including Umeå University and the Knut and Alice Wallenberg Foundation. The authors and Dr. Evans have reported no relevant financial relationships.
A version of this article first appeared on Medscape.com.
Estrogen supplementation is associated with a reduced risk of death from COVID-19 among postmenopausal women, new research suggests.
The findings, from a nationwide study using data from Sweden, were published online Feb. 14 in BMJ Open by Malin Sund, MD, PhD, of Umeå (Sweden) University Faculty of Medicine and colleagues.
Among postmenopausal women aged 50-80 years with verified COVID-19, those receiving estrogen as part of hormone replacement therapy for menopausal symptoms were less than half as likely to die from it as those not receiving estrogen, even after adjustment for confounders.
“This study shows an association between estrogen levels and COVID-19 death. Consequently, drugs increasing estrogen levels may have a role in therapeutic efforts to alleviate COVID-19 severity in postmenopausal women and could be studied in randomized control trials,” the investigators write.
However, coauthor Anne-Marie Fors Connolly, MD, PhD, a resident in clinical microbiology at Umeå University, cautioned: “This is an observational study. Further clinical studies are needed to verify these results before recommending clinicians to consider estrogen supplementation.”
Stephen Evans, professor of pharmacoepidemiology, London School of Hygiene & Tropical Medicine, agrees.
He told the U.K. Science and Media Centre: “This is an observational study comparing three groups of women based on whether they used hormonal therapy to boost estrogen levels or who had, as a result of treatment for breast cancer ... reduced estrogen levels or neither. The findings are apparently dramatic.”
“At the very least, great caution should be exercised in thinking that menopausal hormone therapy will have substantial, or even any, benefits in dealing with COVID-19,” he warned.
Do women die less frequently from COVID-19 than men?
Studies conducted early in the pandemic suggest women may be protected from poor outcomes of SARS-CoV-2 infection, compared with men, even after adjustment for confounders.
According to more recent data from the Swedish Public Health Agency, of the 16,501 people who have died from COVID-19 since the start of the pandemic, about 45% are women and 55% are men. About 70% who have received intensive care because of COVID-19 are men, although cumulative data suggest that women are nearly as likely to die from COVID-19 as men, Dr. Connolly told this news organization.
For the current study, a total of 14,685 women aged 50-80 years were included, of whom 17.3% (2,535) had received estrogen supplementation, 81.2% (11,923) had native estrogen levels with no breast cancer or estrogen supplementation (controls), and 1.5% (227) had decreased estrogen levels because of breast cancer and antiestrogen treatment.
The group with decreased estrogen levels had a more than twofold risk of dying from COVID-19 compared with controls (odds ratio, 2.35), but this difference was no longer significant after adjustments for potential confounders including age, income, and educational level, and weighted Charlson Comorbidity Index (wCCI).
However, the group with augmented estrogen levels had a decreased risk of dying from COVID-19 before (odds ratio, 0.45) and after (OR, 0.47) adjustment.
The percentages of patients who died of COVID-19 were 4.6% of controls, 10.1% of those with decreased estrogen, and 2.1% with increased estrogen.
Not surprisingly, the risk of dying from COVID-19 also increased with age (OR of 1.15 for every year increase in age) and comorbidities (OR, 1.13 per increase in wCCI). Low income and having only a primary level education also increased the odds of dying from COVID-19.
Data on obesity, a known risk factor for COVID-19 death, weren’t reported.
“Obesity would have been a very relevant variable to include. Unfortunately, this information is not present in the nationwide registry data that we used for our study,” Dr. Connolly told this news organization.
While the data are observational and can’t be used to inform treatment, Dr. Connolly pointed to a U.S. randomized clinical trial currently recruiting patients that will investigate the effect of estradiol and progesterone therapy in 120 adults hospitalized with COVID-19.
In the meantime, she warned doctors and patients: “Please do not consider ending antiestrogen treatment following breast cancer – this is a necessary treatment for the cancer.”
Dr. Evans noted, “There are short-term benefits of menopausal hormone therapy but women should not, based on this or other observational studies, be advised to take HRT [hormone replacement therapy] for a supposed benefit on death from COVID-19.”
The study had several nonpharmaceutical industry funders, including Umeå University and the Knut and Alice Wallenberg Foundation. The authors and Dr. Evans have reported no relevant financial relationships.
A version of this article first appeared on Medscape.com.
FROM BMJ OPEN
PCOS common in adolescent girls with type 2 diabetes
Polycystic ovary syndrome is common in girls with type 2 diabetes, findings of a new study suggest, and authors say screening for PCOS is critical in this group.
In a systematic review and meta-analysis involving 470 girls (average age 12.9-16.1 years) with type 2 diabetes in six studies, the prevalence of PCOS was nearly 1 in 5 (19.58%; 95% confidence interval, 12.02%-27.14%; P = .002), substantially higher than that of PCOS in the general adolescent population.
PCOS, a complex endocrine disorder, occurs in 1.14%-11.04% of adolescent girls globally, according to the paper published online in JAMA Network Open.
The secondary outcome studied links to prevalence of PCOS with race and obesity.
Insulin resistance and compensatory hyperinsulinemia are present in 44%-70% of women with PCOS, suggesting that they are more likely to develop type 2 diabetes, according to the researchers led by Milena Cioana, BHSc, with the department of pediatrics, McMaster University, Hamilton, Ont.
Kelly A. Curran, MD, an assistant professor of pediatrics at the University of Oklahoma Health Sciences Center in Oklahoma City, where she practices adolescent medicine, said in an interview that it has been known that women with PCOS have higher rates of diabetes and many in the field have suspected the relationship is bidirectional.
“In my clinical practice, I’ve seen a high percentage of women with type 2 diabetes present with irregular menses, some of whom have gone on to be diagnosed with PCOS,” said Dr. Curran, who was not involved with the study.
However, she said, she was surprised the prevalence of PCOS reported in this paper – nearly one in five – was so high. Early diagnosis is important for PCOS to prevent complications such as hypertension, hyperglycemia, and dyslipidemia.
Psychiatric conditions are also prevalent in patients with PCOS, including anxiety (18%), depression (16%), and ADHD (9%).
Dr. Curran agreed there is a need to screen for PCOS and to evaluate for other causes of irregular periods in patients with type 2 diabetes.
“Menstrual irregularities are often overlooked in young women without further work-up, especially in patients who have chronic illnesses,” she noted.
Results come with a caveat
However, the authors said, results should be viewed with caution because “studies including the larger numbers of girls did not report the criteria used to diagnose PCOS, which is a challenge during adolescence.”
Diagnostic criteria for PCOS during adolescence include the combination of menstrual irregularities according to time since their first period and clinical or biochemical hyperandrogenism after excluding other potential causes.
Dr. Curran explained that PCOS symptoms include irregular periods and acne which can overlap with normal changes in puberty. In her experience, PCOS is often diagnosed without patients meeting full criteria. She agreed further research with standardized criteria is urgently needed.
The European Society of Human Reproduction and Embryology/American Society of Reproductive Medicine, the Pediatric Endocrine Society, and the International Consortium of Paediatric Endocrinology guidelines suggest that using ultrasound to check the size of ovaries could help diagnose PCOS, but other guidelines are more conservative, the authors noted.
They added that “there is a need for a consensus to establish the pediatric criteria for diagnosing PCOS in adolescents to ensure accurate diagnosis and lower the misclassification rates.”
Assessing links to obesity and race
Still unclear, the authors wrote, is whether and how obesity and race affect prevalence of PCOS among girls with type 2 diabetes.
The authors wrote: “Although earlier studies suggested that obesity-related insulin resistance and hyperinsulinemia can contribute to PCOS pathogenesis, insulin resistance in patients with PCOS may be present independently of [body mass index]. Obesity seems to increase the risk of PCOS only slightly and might represent a referral bias for PCOS.”
Few studies included in the meta-analysis had race-specific data, so the authors were limited in assessing associations between race and PCOS prevalence.
“However,” they wrote, “our data demonstrate that Indian girls had the highest prevalence, followed by White girls, and then Indigenous girls in Canada.”
Further studies are needed to help define at-risk subgroups and evaluate treatment strategies, the authors noted.
They reported having no relevant financial relationships. Dr. Curran had no conflicts of interest.
Polycystic ovary syndrome is common in girls with type 2 diabetes, findings of a new study suggest, and authors say screening for PCOS is critical in this group.
In a systematic review and meta-analysis involving 470 girls (average age 12.9-16.1 years) with type 2 diabetes in six studies, the prevalence of PCOS was nearly 1 in 5 (19.58%; 95% confidence interval, 12.02%-27.14%; P = .002), substantially higher than that of PCOS in the general adolescent population.
PCOS, a complex endocrine disorder, occurs in 1.14%-11.04% of adolescent girls globally, according to the paper published online in JAMA Network Open.
The secondary outcome studied links to prevalence of PCOS with race and obesity.
Insulin resistance and compensatory hyperinsulinemia are present in 44%-70% of women with PCOS, suggesting that they are more likely to develop type 2 diabetes, according to the researchers led by Milena Cioana, BHSc, with the department of pediatrics, McMaster University, Hamilton, Ont.
Kelly A. Curran, MD, an assistant professor of pediatrics at the University of Oklahoma Health Sciences Center in Oklahoma City, where she practices adolescent medicine, said in an interview that it has been known that women with PCOS have higher rates of diabetes and many in the field have suspected the relationship is bidirectional.
“In my clinical practice, I’ve seen a high percentage of women with type 2 diabetes present with irregular menses, some of whom have gone on to be diagnosed with PCOS,” said Dr. Curran, who was not involved with the study.
However, she said, she was surprised the prevalence of PCOS reported in this paper – nearly one in five – was so high. Early diagnosis is important for PCOS to prevent complications such as hypertension, hyperglycemia, and dyslipidemia.
Psychiatric conditions are also prevalent in patients with PCOS, including anxiety (18%), depression (16%), and ADHD (9%).
Dr. Curran agreed there is a need to screen for PCOS and to evaluate for other causes of irregular periods in patients with type 2 diabetes.
“Menstrual irregularities are often overlooked in young women without further work-up, especially in patients who have chronic illnesses,” she noted.
Results come with a caveat
However, the authors said, results should be viewed with caution because “studies including the larger numbers of girls did not report the criteria used to diagnose PCOS, which is a challenge during adolescence.”
Diagnostic criteria for PCOS during adolescence include the combination of menstrual irregularities according to time since their first period and clinical or biochemical hyperandrogenism after excluding other potential causes.
Dr. Curran explained that PCOS symptoms include irregular periods and acne which can overlap with normal changes in puberty. In her experience, PCOS is often diagnosed without patients meeting full criteria. She agreed further research with standardized criteria is urgently needed.
The European Society of Human Reproduction and Embryology/American Society of Reproductive Medicine, the Pediatric Endocrine Society, and the International Consortium of Paediatric Endocrinology guidelines suggest that using ultrasound to check the size of ovaries could help diagnose PCOS, but other guidelines are more conservative, the authors noted.
They added that “there is a need for a consensus to establish the pediatric criteria for diagnosing PCOS in adolescents to ensure accurate diagnosis and lower the misclassification rates.”
Assessing links to obesity and race
Still unclear, the authors wrote, is whether and how obesity and race affect prevalence of PCOS among girls with type 2 diabetes.
The authors wrote: “Although earlier studies suggested that obesity-related insulin resistance and hyperinsulinemia can contribute to PCOS pathogenesis, insulin resistance in patients with PCOS may be present independently of [body mass index]. Obesity seems to increase the risk of PCOS only slightly and might represent a referral bias for PCOS.”
Few studies included in the meta-analysis had race-specific data, so the authors were limited in assessing associations between race and PCOS prevalence.
“However,” they wrote, “our data demonstrate that Indian girls had the highest prevalence, followed by White girls, and then Indigenous girls in Canada.”
Further studies are needed to help define at-risk subgroups and evaluate treatment strategies, the authors noted.
They reported having no relevant financial relationships. Dr. Curran had no conflicts of interest.
Polycystic ovary syndrome is common in girls with type 2 diabetes, findings of a new study suggest, and authors say screening for PCOS is critical in this group.
In a systematic review and meta-analysis involving 470 girls (average age 12.9-16.1 years) with type 2 diabetes in six studies, the prevalence of PCOS was nearly 1 in 5 (19.58%; 95% confidence interval, 12.02%-27.14%; P = .002), substantially higher than that of PCOS in the general adolescent population.
PCOS, a complex endocrine disorder, occurs in 1.14%-11.04% of adolescent girls globally, according to the paper published online in JAMA Network Open.
The secondary outcome studied links to prevalence of PCOS with race and obesity.
Insulin resistance and compensatory hyperinsulinemia are present in 44%-70% of women with PCOS, suggesting that they are more likely to develop type 2 diabetes, according to the researchers led by Milena Cioana, BHSc, with the department of pediatrics, McMaster University, Hamilton, Ont.
Kelly A. Curran, MD, an assistant professor of pediatrics at the University of Oklahoma Health Sciences Center in Oklahoma City, where she practices adolescent medicine, said in an interview that it has been known that women with PCOS have higher rates of diabetes and many in the field have suspected the relationship is bidirectional.
“In my clinical practice, I’ve seen a high percentage of women with type 2 diabetes present with irregular menses, some of whom have gone on to be diagnosed with PCOS,” said Dr. Curran, who was not involved with the study.
However, she said, she was surprised the prevalence of PCOS reported in this paper – nearly one in five – was so high. Early diagnosis is important for PCOS to prevent complications such as hypertension, hyperglycemia, and dyslipidemia.
Psychiatric conditions are also prevalent in patients with PCOS, including anxiety (18%), depression (16%), and ADHD (9%).
Dr. Curran agreed there is a need to screen for PCOS and to evaluate for other causes of irregular periods in patients with type 2 diabetes.
“Menstrual irregularities are often overlooked in young women without further work-up, especially in patients who have chronic illnesses,” she noted.
Results come with a caveat
However, the authors said, results should be viewed with caution because “studies including the larger numbers of girls did not report the criteria used to diagnose PCOS, which is a challenge during adolescence.”
Diagnostic criteria for PCOS during adolescence include the combination of menstrual irregularities according to time since their first period and clinical or biochemical hyperandrogenism after excluding other potential causes.
Dr. Curran explained that PCOS symptoms include irregular periods and acne which can overlap with normal changes in puberty. In her experience, PCOS is often diagnosed without patients meeting full criteria. She agreed further research with standardized criteria is urgently needed.
The European Society of Human Reproduction and Embryology/American Society of Reproductive Medicine, the Pediatric Endocrine Society, and the International Consortium of Paediatric Endocrinology guidelines suggest that using ultrasound to check the size of ovaries could help diagnose PCOS, but other guidelines are more conservative, the authors noted.
They added that “there is a need for a consensus to establish the pediatric criteria for diagnosing PCOS in adolescents to ensure accurate diagnosis and lower the misclassification rates.”
Assessing links to obesity and race
Still unclear, the authors wrote, is whether and how obesity and race affect prevalence of PCOS among girls with type 2 diabetes.
The authors wrote: “Although earlier studies suggested that obesity-related insulin resistance and hyperinsulinemia can contribute to PCOS pathogenesis, insulin resistance in patients with PCOS may be present independently of [body mass index]. Obesity seems to increase the risk of PCOS only slightly and might represent a referral bias for PCOS.”
Few studies included in the meta-analysis had race-specific data, so the authors were limited in assessing associations between race and PCOS prevalence.
“However,” they wrote, “our data demonstrate that Indian girls had the highest prevalence, followed by White girls, and then Indigenous girls in Canada.”
Further studies are needed to help define at-risk subgroups and evaluate treatment strategies, the authors noted.
They reported having no relevant financial relationships. Dr. Curran had no conflicts of interest.
FROM JAMA NETWORK OPEN
Fewer diabetes complications with NOACs in patients with AFib
The new research, which was published in Annals of Internal Medicine, found that taking non–vitamin K oral anticoagulants was associated with reduced diabetes complications and lower mortality vs. taking warfarin in the group examined.
In their paper, the researchers present the outcomes of a retrospective cohort study involving 30,209 patients with atrial fibrillation and diabetes. Of these, 19,909 were treated with non–vitamin K oral anticoagulants (NOACs) – dabigatran, rivaroxaban, apixaban, or edoxaban – and 10,300 were treated with warfarin.
Dr. Huei-Kai Huang from the Hualien (Taiwan) Tzu Chi Hospital and coauthors wrote that, while diabetes mellitus is an important risk factor for stroke, there’s not yet a good understanding of the effect of different oral anticoagulants on the risk for diabetes-related complications in patients with atrial fibrillation and diabetes.
“Recent evidence has suggested that NOAC and warfarin may have different effects on glycemic control through the vitamin K–related mechanisms,” coauthor Yu-Kang Tu, PhD, from the College of Public Health at the National Taiwan University in Taipei said in an interview. “It was therefore natural to further evaluate whether NOAC could help decrease various diabetes-related complications, compared with warfarin.”
Hazards with NOACS vs. warfarin
The researchers found that patients treated with NOACs had a 16% lower hazard of macrovascular complications – a composite of coronary artery disease, stroke, and peripheral vascular disease (95% confidence interval, 0.78-0.91; P < .001) – and a 21% lower hazard of microvascular complications including dialysis and lower-extremity amputations (95% CI, 0.73-0.85; P < .001).
NOAC therapy was also associated a 22% lower hazard of death (95% CI, 0.75-0.82; P < .001) and a 9% lower hazard for glycemic emergency (95% CI, 0.83-0.99; P = .043), which the authors defined as a composite of diabetic ketoacidosis, hyperosmolar hyperglycemic state, and hypoglycemia.
In particular, patients treated with NOACs showed significantly lower hazards for coronary artery disease, stroke, dialysis, amputation of lower extremities, and death from cardiovascular and noncardiovascular causes, compared with warfarin users.
The study also found that patients on higher volumes of NOAC medication had greater reductions in mortality and diabetes complications.
“Although our main findings can be explained by the potential differences in underlying mechanisms of action between NOAC and warfarin, we were still surprised with the significantly lower risks of retinopathy, neuropathy, and hypoglycemia in patients taking NOAC with high medication possession ratio,” Dr. Tu said.
Study provides more diabetes-specific outcomes data
Commenting on the findings, Dr. Peter Rossing, head of complications research at the Steno Diabetes Center in Copenhagen said there has long been discussion about whether the newer and more expensive NOACs offer greater benefits to patient with diabetes – beyond stroke prevention – compared with the older and cheaper warfarin. As such, this study was important in providing more diabetes-specific outcomes data and in a large population.
“The effect size they find is certainly meaningful and relevant and should support decision-making,” Dr. Rossing noted in an interview. The finding of reduced risk of amputation and mortality “fits in line with theory that maybe if you block vitamin K, you get calcification, you get vascular damage that leads to failure of the kidney and leads to limb amputations, and that is potentially prevented or not developed when you give the NOACs.”
Dr. John Camm, professor of clinical cardiology at St George’s University of London, said the findings of the benefits of NOACs in this patient group ,were confirmation of earlier, smaller studies, and were important not just for patients with atrial fibrillation and diabetes, but also those prone to diabetes.
“We know from previous studies from the same database, and also from Korea, [for example], that patients who are treated with NOACs as opposed to warfarin develop less diabetes,” he explained.
Dr. Camm said many guidelines around the world now suggest NOACs, and, in some cases, even advise against using vitamin K antagonists as a first option, except in certain situations, such as when patients have rheumatic heart disease, mild to moderate mitral stenosis in rheumatic disease, or prosthetic heart valves.
The researchers applied two methods to account for covariates that may have influenced whether patients received one class of treatment or the other. These achieved ‘appropriate balance’ of baseline characteristics such as comorbidities and baseline medication use for diabetes and other conditions, Dr. Tu and colleagues wrote.
The benefits of NOACs were less evident in younger patients, and the reductions in mortality and diabetes complications associated with NOACs did not reach statistical significance in those aged under 65 years. Regarding this, Dr. Camm noted that there was a debate as to whether patients under 65 years with atrial fibrillation and diabetes should be put on an anticoagulant.
The study was funded by Hualien Tzu Chi Hospital. No conflicts of interest were declared.
The new research, which was published in Annals of Internal Medicine, found that taking non–vitamin K oral anticoagulants was associated with reduced diabetes complications and lower mortality vs. taking warfarin in the group examined.
In their paper, the researchers present the outcomes of a retrospective cohort study involving 30,209 patients with atrial fibrillation and diabetes. Of these, 19,909 were treated with non–vitamin K oral anticoagulants (NOACs) – dabigatran, rivaroxaban, apixaban, or edoxaban – and 10,300 were treated with warfarin.
Dr. Huei-Kai Huang from the Hualien (Taiwan) Tzu Chi Hospital and coauthors wrote that, while diabetes mellitus is an important risk factor for stroke, there’s not yet a good understanding of the effect of different oral anticoagulants on the risk for diabetes-related complications in patients with atrial fibrillation and diabetes.
“Recent evidence has suggested that NOAC and warfarin may have different effects on glycemic control through the vitamin K–related mechanisms,” coauthor Yu-Kang Tu, PhD, from the College of Public Health at the National Taiwan University in Taipei said in an interview. “It was therefore natural to further evaluate whether NOAC could help decrease various diabetes-related complications, compared with warfarin.”
Hazards with NOACS vs. warfarin
The researchers found that patients treated with NOACs had a 16% lower hazard of macrovascular complications – a composite of coronary artery disease, stroke, and peripheral vascular disease (95% confidence interval, 0.78-0.91; P < .001) – and a 21% lower hazard of microvascular complications including dialysis and lower-extremity amputations (95% CI, 0.73-0.85; P < .001).
NOAC therapy was also associated a 22% lower hazard of death (95% CI, 0.75-0.82; P < .001) and a 9% lower hazard for glycemic emergency (95% CI, 0.83-0.99; P = .043), which the authors defined as a composite of diabetic ketoacidosis, hyperosmolar hyperglycemic state, and hypoglycemia.
In particular, patients treated with NOACs showed significantly lower hazards for coronary artery disease, stroke, dialysis, amputation of lower extremities, and death from cardiovascular and noncardiovascular causes, compared with warfarin users.
The study also found that patients on higher volumes of NOAC medication had greater reductions in mortality and diabetes complications.
“Although our main findings can be explained by the potential differences in underlying mechanisms of action between NOAC and warfarin, we were still surprised with the significantly lower risks of retinopathy, neuropathy, and hypoglycemia in patients taking NOAC with high medication possession ratio,” Dr. Tu said.
Study provides more diabetes-specific outcomes data
Commenting on the findings, Dr. Peter Rossing, head of complications research at the Steno Diabetes Center in Copenhagen said there has long been discussion about whether the newer and more expensive NOACs offer greater benefits to patient with diabetes – beyond stroke prevention – compared with the older and cheaper warfarin. As such, this study was important in providing more diabetes-specific outcomes data and in a large population.
“The effect size they find is certainly meaningful and relevant and should support decision-making,” Dr. Rossing noted in an interview. The finding of reduced risk of amputation and mortality “fits in line with theory that maybe if you block vitamin K, you get calcification, you get vascular damage that leads to failure of the kidney and leads to limb amputations, and that is potentially prevented or not developed when you give the NOACs.”
Dr. John Camm, professor of clinical cardiology at St George’s University of London, said the findings of the benefits of NOACs in this patient group ,were confirmation of earlier, smaller studies, and were important not just for patients with atrial fibrillation and diabetes, but also those prone to diabetes.
“We know from previous studies from the same database, and also from Korea, [for example], that patients who are treated with NOACs as opposed to warfarin develop less diabetes,” he explained.
Dr. Camm said many guidelines around the world now suggest NOACs, and, in some cases, even advise against using vitamin K antagonists as a first option, except in certain situations, such as when patients have rheumatic heart disease, mild to moderate mitral stenosis in rheumatic disease, or prosthetic heart valves.
The researchers applied two methods to account for covariates that may have influenced whether patients received one class of treatment or the other. These achieved ‘appropriate balance’ of baseline characteristics such as comorbidities and baseline medication use for diabetes and other conditions, Dr. Tu and colleagues wrote.
The benefits of NOACs were less evident in younger patients, and the reductions in mortality and diabetes complications associated with NOACs did not reach statistical significance in those aged under 65 years. Regarding this, Dr. Camm noted that there was a debate as to whether patients under 65 years with atrial fibrillation and diabetes should be put on an anticoagulant.
The study was funded by Hualien Tzu Chi Hospital. No conflicts of interest were declared.
The new research, which was published in Annals of Internal Medicine, found that taking non–vitamin K oral anticoagulants was associated with reduced diabetes complications and lower mortality vs. taking warfarin in the group examined.
In their paper, the researchers present the outcomes of a retrospective cohort study involving 30,209 patients with atrial fibrillation and diabetes. Of these, 19,909 were treated with non–vitamin K oral anticoagulants (NOACs) – dabigatran, rivaroxaban, apixaban, or edoxaban – and 10,300 were treated with warfarin.
Dr. Huei-Kai Huang from the Hualien (Taiwan) Tzu Chi Hospital and coauthors wrote that, while diabetes mellitus is an important risk factor for stroke, there’s not yet a good understanding of the effect of different oral anticoagulants on the risk for diabetes-related complications in patients with atrial fibrillation and diabetes.
“Recent evidence has suggested that NOAC and warfarin may have different effects on glycemic control through the vitamin K–related mechanisms,” coauthor Yu-Kang Tu, PhD, from the College of Public Health at the National Taiwan University in Taipei said in an interview. “It was therefore natural to further evaluate whether NOAC could help decrease various diabetes-related complications, compared with warfarin.”
Hazards with NOACS vs. warfarin
The researchers found that patients treated with NOACs had a 16% lower hazard of macrovascular complications – a composite of coronary artery disease, stroke, and peripheral vascular disease (95% confidence interval, 0.78-0.91; P < .001) – and a 21% lower hazard of microvascular complications including dialysis and lower-extremity amputations (95% CI, 0.73-0.85; P < .001).
NOAC therapy was also associated a 22% lower hazard of death (95% CI, 0.75-0.82; P < .001) and a 9% lower hazard for glycemic emergency (95% CI, 0.83-0.99; P = .043), which the authors defined as a composite of diabetic ketoacidosis, hyperosmolar hyperglycemic state, and hypoglycemia.
In particular, patients treated with NOACs showed significantly lower hazards for coronary artery disease, stroke, dialysis, amputation of lower extremities, and death from cardiovascular and noncardiovascular causes, compared with warfarin users.
The study also found that patients on higher volumes of NOAC medication had greater reductions in mortality and diabetes complications.
“Although our main findings can be explained by the potential differences in underlying mechanisms of action between NOAC and warfarin, we were still surprised with the significantly lower risks of retinopathy, neuropathy, and hypoglycemia in patients taking NOAC with high medication possession ratio,” Dr. Tu said.
Study provides more diabetes-specific outcomes data
Commenting on the findings, Dr. Peter Rossing, head of complications research at the Steno Diabetes Center in Copenhagen said there has long been discussion about whether the newer and more expensive NOACs offer greater benefits to patient with diabetes – beyond stroke prevention – compared with the older and cheaper warfarin. As such, this study was important in providing more diabetes-specific outcomes data and in a large population.
“The effect size they find is certainly meaningful and relevant and should support decision-making,” Dr. Rossing noted in an interview. The finding of reduced risk of amputation and mortality “fits in line with theory that maybe if you block vitamin K, you get calcification, you get vascular damage that leads to failure of the kidney and leads to limb amputations, and that is potentially prevented or not developed when you give the NOACs.”
Dr. John Camm, professor of clinical cardiology at St George’s University of London, said the findings of the benefits of NOACs in this patient group ,were confirmation of earlier, smaller studies, and were important not just for patients with atrial fibrillation and diabetes, but also those prone to diabetes.
“We know from previous studies from the same database, and also from Korea, [for example], that patients who are treated with NOACs as opposed to warfarin develop less diabetes,” he explained.
Dr. Camm said many guidelines around the world now suggest NOACs, and, in some cases, even advise against using vitamin K antagonists as a first option, except in certain situations, such as when patients have rheumatic heart disease, mild to moderate mitral stenosis in rheumatic disease, or prosthetic heart valves.
The researchers applied two methods to account for covariates that may have influenced whether patients received one class of treatment or the other. These achieved ‘appropriate balance’ of baseline characteristics such as comorbidities and baseline medication use for diabetes and other conditions, Dr. Tu and colleagues wrote.
The benefits of NOACs were less evident in younger patients, and the reductions in mortality and diabetes complications associated with NOACs did not reach statistical significance in those aged under 65 years. Regarding this, Dr. Camm noted that there was a debate as to whether patients under 65 years with atrial fibrillation and diabetes should be put on an anticoagulant.
The study was funded by Hualien Tzu Chi Hospital. No conflicts of interest were declared.
FROM ANNALS OF INTERNAL MEDICINE
Sports experts on T2D: Boost activity, cut sedentary time
The American College of Sports Medicine (ACSM) has issued new recommendations for exercise/physical activity in people with type 2 diabetes, which update a 2010 joint ACSM/American Diabetes Association position statement.
The guidance has been published in the February issue of Medicine & Science in Sports & Exercise.
“This consensus statement provides a brief summary of the current evidence and extends and updates the prior recommendations,” the authors explain.
In the past decade, there has been a “considerable amount” of research about exercise in people with type 2 diabetes, they add, while the prevalence of diabetes has steadily increased.
The updated recommendations have been “expanded to include physical activity – a broader, more comprehensive definition of human movement than planned exercise – and reducing sedentary time,” the authors note.
“The latest guidelines are applicable to most individuals with diabetes, including youth, with a few exceptions and modifications,” lead author Jill A. Kanaley, PhD, said in a press release from the ACSM.
The key takeaway is that “all individuals [with type 2 diabetes] should engage in regular physical activity, reduce sedentary time, and break up sitting time with frequent activity breaks,” said Dr. Kanaley, a professor in the department of nutrition and exercise physiology, University of Missouri, Columbia.
“Exercise can play an important role in managing type 2 diabetes, and workouts can be modified to fit the abilities of most people,” she stressed.
And those with type 2 diabetes who want to lose weight “should consider workouts of moderately high volume for 4 to 5 days per week,” she added.
Six key tips for physical activity in adults with type 2 diabetes
The consensus statement gives six key tips for physical activity in adults with type 2 diabetes, as follows.
- Regular aerobic exercise improves glycemic management; meta-analyses have reported fewer daily hyperglycemic episodes and reductions in A1c of 0.5%-0.7%.
- High-intensity resistance exercise, when performed safely, is better than low-to-moderate intensity resistance exercise for glucose management and attenuation of insulin levels. Resistance exercise typically results in improvements of 10% to 15% in strength, bone mineral density, blood pressure, lipid profile, skeletal muscle mass, and insulin sensitivity.
- Exercise after meals, such as taking a walk after dinner at one’s own pace, takes advantage of the blood glucose-stabilizing effects of exercise.
- Reduce sedentary time by taking regular breaks for small “doses” of physical activity, which can modestly attenuate postprandial glucose and insulin levels, particularly in individuals with insulin resistance and a higher body mass index.
- To prevent hypoglycemia during or after exercise, people taking insulin or insulin secretagogues should increase carbohydrate intake, or if possible, reduce insulin.
- People who are taking beta blockers should not rely on a heart monitor to measure workout intensity. They could ask a certified exercise professional about using ratings of perceived exertion to track how a workout feels.
Other recommendations
The consensus statement also summarizes precautions that people with complications of type 2 diabetes (such as neuropathy, retinopathy, kidney disease, and hypertension) should take.
Low impact exercises for flexibility can help introduce sedentary people to physical activity, the consensus group writes. Balance exercises can be helpful for older adults.
Weight loss greater than 5% can benefit A1c, blood lipid, and blood pressure levels. Moderate exercise 4 to 5 days a week can reduce visceral fat.
In studies of youth with type 2 diabetes, intensive lifestyle interventions plus metformin were not superior to metformin alone for managing glycemia. Physical activity goals are the same for youth with or without diabetes.
Pregnant women with diabetes should participate in at least 20 to 30 minutes of moderate-intensity exercise most days of the week.
Participating in an exercise program before and after bariatric surgery may enhance surgical outcomes.
Dr. Kanaley has reported receiving a grant from the National Institutes of Health. Disclosures for the other authors are listed in the article.
A version of this article first appeared on Medscape.com.
The American College of Sports Medicine (ACSM) has issued new recommendations for exercise/physical activity in people with type 2 diabetes, which update a 2010 joint ACSM/American Diabetes Association position statement.
The guidance has been published in the February issue of Medicine & Science in Sports & Exercise.
“This consensus statement provides a brief summary of the current evidence and extends and updates the prior recommendations,” the authors explain.
In the past decade, there has been a “considerable amount” of research about exercise in people with type 2 diabetes, they add, while the prevalence of diabetes has steadily increased.
The updated recommendations have been “expanded to include physical activity – a broader, more comprehensive definition of human movement than planned exercise – and reducing sedentary time,” the authors note.
“The latest guidelines are applicable to most individuals with diabetes, including youth, with a few exceptions and modifications,” lead author Jill A. Kanaley, PhD, said in a press release from the ACSM.
The key takeaway is that “all individuals [with type 2 diabetes] should engage in regular physical activity, reduce sedentary time, and break up sitting time with frequent activity breaks,” said Dr. Kanaley, a professor in the department of nutrition and exercise physiology, University of Missouri, Columbia.
“Exercise can play an important role in managing type 2 diabetes, and workouts can be modified to fit the abilities of most people,” she stressed.
And those with type 2 diabetes who want to lose weight “should consider workouts of moderately high volume for 4 to 5 days per week,” she added.
Six key tips for physical activity in adults with type 2 diabetes
The consensus statement gives six key tips for physical activity in adults with type 2 diabetes, as follows.
- Regular aerobic exercise improves glycemic management; meta-analyses have reported fewer daily hyperglycemic episodes and reductions in A1c of 0.5%-0.7%.
- High-intensity resistance exercise, when performed safely, is better than low-to-moderate intensity resistance exercise for glucose management and attenuation of insulin levels. Resistance exercise typically results in improvements of 10% to 15% in strength, bone mineral density, blood pressure, lipid profile, skeletal muscle mass, and insulin sensitivity.
- Exercise after meals, such as taking a walk after dinner at one’s own pace, takes advantage of the blood glucose-stabilizing effects of exercise.
- Reduce sedentary time by taking regular breaks for small “doses” of physical activity, which can modestly attenuate postprandial glucose and insulin levels, particularly in individuals with insulin resistance and a higher body mass index.
- To prevent hypoglycemia during or after exercise, people taking insulin or insulin secretagogues should increase carbohydrate intake, or if possible, reduce insulin.
- People who are taking beta blockers should not rely on a heart monitor to measure workout intensity. They could ask a certified exercise professional about using ratings of perceived exertion to track how a workout feels.
Other recommendations
The consensus statement also summarizes precautions that people with complications of type 2 diabetes (such as neuropathy, retinopathy, kidney disease, and hypertension) should take.
Low impact exercises for flexibility can help introduce sedentary people to physical activity, the consensus group writes. Balance exercises can be helpful for older adults.
Weight loss greater than 5% can benefit A1c, blood lipid, and blood pressure levels. Moderate exercise 4 to 5 days a week can reduce visceral fat.
In studies of youth with type 2 diabetes, intensive lifestyle interventions plus metformin were not superior to metformin alone for managing glycemia. Physical activity goals are the same for youth with or without diabetes.
Pregnant women with diabetes should participate in at least 20 to 30 minutes of moderate-intensity exercise most days of the week.
Participating in an exercise program before and after bariatric surgery may enhance surgical outcomes.
Dr. Kanaley has reported receiving a grant from the National Institutes of Health. Disclosures for the other authors are listed in the article.
A version of this article first appeared on Medscape.com.
The American College of Sports Medicine (ACSM) has issued new recommendations for exercise/physical activity in people with type 2 diabetes, which update a 2010 joint ACSM/American Diabetes Association position statement.
The guidance has been published in the February issue of Medicine & Science in Sports & Exercise.
“This consensus statement provides a brief summary of the current evidence and extends and updates the prior recommendations,” the authors explain.
In the past decade, there has been a “considerable amount” of research about exercise in people with type 2 diabetes, they add, while the prevalence of diabetes has steadily increased.
The updated recommendations have been “expanded to include physical activity – a broader, more comprehensive definition of human movement than planned exercise – and reducing sedentary time,” the authors note.
“The latest guidelines are applicable to most individuals with diabetes, including youth, with a few exceptions and modifications,” lead author Jill A. Kanaley, PhD, said in a press release from the ACSM.
The key takeaway is that “all individuals [with type 2 diabetes] should engage in regular physical activity, reduce sedentary time, and break up sitting time with frequent activity breaks,” said Dr. Kanaley, a professor in the department of nutrition and exercise physiology, University of Missouri, Columbia.
“Exercise can play an important role in managing type 2 diabetes, and workouts can be modified to fit the abilities of most people,” she stressed.
And those with type 2 diabetes who want to lose weight “should consider workouts of moderately high volume for 4 to 5 days per week,” she added.
Six key tips for physical activity in adults with type 2 diabetes
The consensus statement gives six key tips for physical activity in adults with type 2 diabetes, as follows.
- Regular aerobic exercise improves glycemic management; meta-analyses have reported fewer daily hyperglycemic episodes and reductions in A1c of 0.5%-0.7%.
- High-intensity resistance exercise, when performed safely, is better than low-to-moderate intensity resistance exercise for glucose management and attenuation of insulin levels. Resistance exercise typically results in improvements of 10% to 15% in strength, bone mineral density, blood pressure, lipid profile, skeletal muscle mass, and insulin sensitivity.
- Exercise after meals, such as taking a walk after dinner at one’s own pace, takes advantage of the blood glucose-stabilizing effects of exercise.
- Reduce sedentary time by taking regular breaks for small “doses” of physical activity, which can modestly attenuate postprandial glucose and insulin levels, particularly in individuals with insulin resistance and a higher body mass index.
- To prevent hypoglycemia during or after exercise, people taking insulin or insulin secretagogues should increase carbohydrate intake, or if possible, reduce insulin.
- People who are taking beta blockers should not rely on a heart monitor to measure workout intensity. They could ask a certified exercise professional about using ratings of perceived exertion to track how a workout feels.
Other recommendations
The consensus statement also summarizes precautions that people with complications of type 2 diabetes (such as neuropathy, retinopathy, kidney disease, and hypertension) should take.
Low impact exercises for flexibility can help introduce sedentary people to physical activity, the consensus group writes. Balance exercises can be helpful for older adults.
Weight loss greater than 5% can benefit A1c, blood lipid, and blood pressure levels. Moderate exercise 4 to 5 days a week can reduce visceral fat.
In studies of youth with type 2 diabetes, intensive lifestyle interventions plus metformin were not superior to metformin alone for managing glycemia. Physical activity goals are the same for youth with or without diabetes.
Pregnant women with diabetes should participate in at least 20 to 30 minutes of moderate-intensity exercise most days of the week.
Participating in an exercise program before and after bariatric surgery may enhance surgical outcomes.
Dr. Kanaley has reported receiving a grant from the National Institutes of Health. Disclosures for the other authors are listed in the article.
A version of this article first appeared on Medscape.com.
FDA okays 6-month implanted Eversense CGM for diabetes
The U.S. Food and Drug Administration has approved a new second-generation version of the implanted continuous glucose monitoring (CGM) system Eversense (Senseonics) that lasts for 6 months.
The Eversense E3 CGM system doubles the wear time from 3 months with the previous Eversense device approved in the United States in 2018. As before, the new system is approved for adults with diabetes aged 18 years and older.
This means that it will be the longest lasting CGM system available in the United States, with essentially two sensor insertion and removal procedures per year, the company said.
Data from the pivotal PROMISE trial of the 6-month version were presented at the American Diabetes Association Scientific Sessions in 2021, as reported by this news organization.
An older 6-month wear time version (Eversense XL) has been available in Europe since 2017. The new second-generation 6-month system is currently under regulatory review there.
The PROMISE trial included 181 participants with diabetes, about two-thirds with type 1 and one-third with type 2 diabetes, at eight clinical research sites.
“We repeatedly hear from our patients with diabetes that what they desire is a long-lasting sensor that is also highly accurate ... The next generation Eversense E3 System delivers on both,” said PROMISE study principal investigator Satish Garg, MD, professor of medicine and director of the adult diabetes program at the Barbara Davis Center, University of Colorado, Aurora, in a company press release.
The Eversense E3 consists of a fluorescence-based sensor, a transmitter, and a smartphone app that displays glucose values, trends, and alerts. The sensor is inserted subcutaneously into the upper arm by a certified health care professional in a brief office procedure. The transmitter is placed on the skin on top of the sensor. Glucose data are sent to the app automatically every 5 minutes.
The system includes an on-body vibratory alert as well as alerts on the app for high and low blood glucose values. Eversense readings may be used for treatment decisions, but users still must perform fingerstick glucose checks for calibration.
The regulatory review for the Eversense E3 was delayed for a year due to the COVID-19 pandemic. It will be distributed in the United States through a partnership with Ascensia Diabetes Care beginning in the second quarter of 2022, according to a Senseonics statement.
In addition, “the company expects the majority of its expenses for 2022 to be for research and development for ongoing feasibility and pivotal clinical trials for additional products in its product pipeline, including the start of its 365-day pivotal trial.”
Health care providers who want to offer the Eversense CGM System to their patients can sign up here or call 844-SENSE4U (844-736-7348).
Patients interested in getting started on Eversense can sign up here and will be among the first to know when Eversense E3 is commercially available.
A version of this article first appeared on Medscape.com.
The U.S. Food and Drug Administration has approved a new second-generation version of the implanted continuous glucose monitoring (CGM) system Eversense (Senseonics) that lasts for 6 months.
The Eversense E3 CGM system doubles the wear time from 3 months with the previous Eversense device approved in the United States in 2018. As before, the new system is approved for adults with diabetes aged 18 years and older.
This means that it will be the longest lasting CGM system available in the United States, with essentially two sensor insertion and removal procedures per year, the company said.
Data from the pivotal PROMISE trial of the 6-month version were presented at the American Diabetes Association Scientific Sessions in 2021, as reported by this news organization.
An older 6-month wear time version (Eversense XL) has been available in Europe since 2017. The new second-generation 6-month system is currently under regulatory review there.
The PROMISE trial included 181 participants with diabetes, about two-thirds with type 1 and one-third with type 2 diabetes, at eight clinical research sites.
“We repeatedly hear from our patients with diabetes that what they desire is a long-lasting sensor that is also highly accurate ... The next generation Eversense E3 System delivers on both,” said PROMISE study principal investigator Satish Garg, MD, professor of medicine and director of the adult diabetes program at the Barbara Davis Center, University of Colorado, Aurora, in a company press release.
The Eversense E3 consists of a fluorescence-based sensor, a transmitter, and a smartphone app that displays glucose values, trends, and alerts. The sensor is inserted subcutaneously into the upper arm by a certified health care professional in a brief office procedure. The transmitter is placed on the skin on top of the sensor. Glucose data are sent to the app automatically every 5 minutes.
The system includes an on-body vibratory alert as well as alerts on the app for high and low blood glucose values. Eversense readings may be used for treatment decisions, but users still must perform fingerstick glucose checks for calibration.
The regulatory review for the Eversense E3 was delayed for a year due to the COVID-19 pandemic. It will be distributed in the United States through a partnership with Ascensia Diabetes Care beginning in the second quarter of 2022, according to a Senseonics statement.
In addition, “the company expects the majority of its expenses for 2022 to be for research and development for ongoing feasibility and pivotal clinical trials for additional products in its product pipeline, including the start of its 365-day pivotal trial.”
Health care providers who want to offer the Eversense CGM System to their patients can sign up here or call 844-SENSE4U (844-736-7348).
Patients interested in getting started on Eversense can sign up here and will be among the first to know when Eversense E3 is commercially available.
A version of this article first appeared on Medscape.com.
The U.S. Food and Drug Administration has approved a new second-generation version of the implanted continuous glucose monitoring (CGM) system Eversense (Senseonics) that lasts for 6 months.
The Eversense E3 CGM system doubles the wear time from 3 months with the previous Eversense device approved in the United States in 2018. As before, the new system is approved for adults with diabetes aged 18 years and older.
This means that it will be the longest lasting CGM system available in the United States, with essentially two sensor insertion and removal procedures per year, the company said.
Data from the pivotal PROMISE trial of the 6-month version were presented at the American Diabetes Association Scientific Sessions in 2021, as reported by this news organization.
An older 6-month wear time version (Eversense XL) has been available in Europe since 2017. The new second-generation 6-month system is currently under regulatory review there.
The PROMISE trial included 181 participants with diabetes, about two-thirds with type 1 and one-third with type 2 diabetes, at eight clinical research sites.
“We repeatedly hear from our patients with diabetes that what they desire is a long-lasting sensor that is also highly accurate ... The next generation Eversense E3 System delivers on both,” said PROMISE study principal investigator Satish Garg, MD, professor of medicine and director of the adult diabetes program at the Barbara Davis Center, University of Colorado, Aurora, in a company press release.
The Eversense E3 consists of a fluorescence-based sensor, a transmitter, and a smartphone app that displays glucose values, trends, and alerts. The sensor is inserted subcutaneously into the upper arm by a certified health care professional in a brief office procedure. The transmitter is placed on the skin on top of the sensor. Glucose data are sent to the app automatically every 5 minutes.
The system includes an on-body vibratory alert as well as alerts on the app for high and low blood glucose values. Eversense readings may be used for treatment decisions, but users still must perform fingerstick glucose checks for calibration.
The regulatory review for the Eversense E3 was delayed for a year due to the COVID-19 pandemic. It will be distributed in the United States through a partnership with Ascensia Diabetes Care beginning in the second quarter of 2022, according to a Senseonics statement.
In addition, “the company expects the majority of its expenses for 2022 to be for research and development for ongoing feasibility and pivotal clinical trials for additional products in its product pipeline, including the start of its 365-day pivotal trial.”
Health care providers who want to offer the Eversense CGM System to their patients can sign up here or call 844-SENSE4U (844-736-7348).
Patients interested in getting started on Eversense can sign up here and will be among the first to know when Eversense E3 is commercially available.
A version of this article first appeared on Medscape.com.
Study questions need for repeat Lp(a) testing
Repeat testing of lipoprotein(a) to assess a patient’s cardiovascular risk doesn’t seem to yield any additional helpful information, and a one-time baseline measure of Lp(a) molar concentration could be sufficient to help define lifetime risk, suggests a large analysis of a national database in the United Kingdom.
The study examined the correlation between baseline and first follow-up measures of Lp(a) molar concentration and incident coronary artery disease among 16,017 individuals in a cohort of the UK Biobank, a prospective observational study of about 500,000 middle-aged people recruited between 2006 and 2010 with ongoing follow-up.
Results showed found little change in Lp(a) molar concentration measures from baseline to an average of 4.4 years afterward, but did find an association between statin usage and significant increases in Lp(a) in people with high baseline levels. The study was published online on Feb. 14 in the Journal of the American College of Cardiology.
The baseline and follow-up Lp(a) molar concentration measures “are highly correlated with 85% of the repeat values being within 25 nmol/L of each other,” senior author Pradeep Natarajan, MD, MMSc, of Massachusetts General Hospital, Boston, said in an interview. “When predicting events, the follow-up Lp(a) concentration did not yield additional information beyond the baseline Lp(a).”
Additionally, the study found that statin therapy didn’t lead to meaningful changes in Lp(a) molar concentration levels. Patients on statins who had baseline Lp(a) above 70 nmol/L “had modest follow-up concentrations, but this did not appreciably change atherosclerotic cardiovascular disease risks,” Dr. Natarajan said. “For patients without clinical cardiovascular disease who are not on medicines that markedly change Lp(a), additional Lp(a) assessments are unlikely to provide additional prognostic information beyond the baseline Lp(a) measurement.”
Added lead author Mark Trinder, MSc: “These findings suggest that, in the absence of therapies substantially altering Lp(a), a single accurate measurement of Lp(a) molar concentration is an efficient method to inform atherosclerotic cardiovascular disease risk.” Mr. Trinder is an MD/PhD candidate at the Centre for Heart Lung Innovation at the University of British Columbia, Vancouver, and a visiting scholar in medical and population genetics and the Cardiovascular Disease Initiative at the Broad Institute of MIT and Harvard in Cambridge, Mass.
This study claims to be unique for two reasons: It reported on repeat Lp(a) measurements among the general population rather than a clinical trial, and it assessed the influence of statins on Lp(a) molar concentration rather than Lp(a) mass.
“Lp(a) molar concentration aims to mitigate challenges with mass assays, which are influenced by assay size,” Dr. Natarajan said. However, he noted that major clinical trials of investigative drugs for lowering Lp(a), specifically the ongoing HORIZON trial (NCT04023552), are using Lp(a) mass rather than molar concentration.
“There is an imperfect correlation between the two,” Dr. Natarajan said. “Depending on the results of this trial and others, and evaluation of both mass and molar concentration assays, we will then be able to better understand the path forward. These issues and the multiple assays have been challenging for both the clinical and scientific community.”
Santica Marcovina, ScD, PhD, coauthor of the invited commentary (J Am Coll Cardiol. 2022 Feb 14. doi: 10.1016/j.jacc.2021.11.053), said in an interview that the study’s major contribution to the literature is the finding that the molar concentration of Lp(a) appears to be stable regardless of statin use. “This important finding provides evidence that no longitudinal measurements of Lp(a) are needed in the primary prevention of atherosclerotic CVD and that once-in-a-lifetime measurement may reliably allow clinicians to assess whether or not Lp(a)-related risk is present in their patients,” she said. Dr. Marcovina is senior director of clinical laboratory sciences at Medpace Reference Laboratories, Cincinnati.
She noted that this study provides an actionable strategy for cardiologists. “Considering the clinical benefits, the relative low cost for measuring Lp(a), the fact that measurements need to be performed only once in the vast majority of individuals, all point to the implementation of Lp(a) general screening as soon as possible.”
Dr. Natarajan has financial relationships with Amgen, Apple, AstraZeneca, Boston Scientific, Blackstone Life Sciences, Genentech and Novartis. Dr. Marcovina has provided consulting for Roche, Denka, and Novartis, and has received research support from Amgen through Medpace.
Repeat testing of lipoprotein(a) to assess a patient’s cardiovascular risk doesn’t seem to yield any additional helpful information, and a one-time baseline measure of Lp(a) molar concentration could be sufficient to help define lifetime risk, suggests a large analysis of a national database in the United Kingdom.
The study examined the correlation between baseline and first follow-up measures of Lp(a) molar concentration and incident coronary artery disease among 16,017 individuals in a cohort of the UK Biobank, a prospective observational study of about 500,000 middle-aged people recruited between 2006 and 2010 with ongoing follow-up.
Results showed found little change in Lp(a) molar concentration measures from baseline to an average of 4.4 years afterward, but did find an association between statin usage and significant increases in Lp(a) in people with high baseline levels. The study was published online on Feb. 14 in the Journal of the American College of Cardiology.
The baseline and follow-up Lp(a) molar concentration measures “are highly correlated with 85% of the repeat values being within 25 nmol/L of each other,” senior author Pradeep Natarajan, MD, MMSc, of Massachusetts General Hospital, Boston, said in an interview. “When predicting events, the follow-up Lp(a) concentration did not yield additional information beyond the baseline Lp(a).”
Additionally, the study found that statin therapy didn’t lead to meaningful changes in Lp(a) molar concentration levels. Patients on statins who had baseline Lp(a) above 70 nmol/L “had modest follow-up concentrations, but this did not appreciably change atherosclerotic cardiovascular disease risks,” Dr. Natarajan said. “For patients without clinical cardiovascular disease who are not on medicines that markedly change Lp(a), additional Lp(a) assessments are unlikely to provide additional prognostic information beyond the baseline Lp(a) measurement.”
Added lead author Mark Trinder, MSc: “These findings suggest that, in the absence of therapies substantially altering Lp(a), a single accurate measurement of Lp(a) molar concentration is an efficient method to inform atherosclerotic cardiovascular disease risk.” Mr. Trinder is an MD/PhD candidate at the Centre for Heart Lung Innovation at the University of British Columbia, Vancouver, and a visiting scholar in medical and population genetics and the Cardiovascular Disease Initiative at the Broad Institute of MIT and Harvard in Cambridge, Mass.
This study claims to be unique for two reasons: It reported on repeat Lp(a) measurements among the general population rather than a clinical trial, and it assessed the influence of statins on Lp(a) molar concentration rather than Lp(a) mass.
“Lp(a) molar concentration aims to mitigate challenges with mass assays, which are influenced by assay size,” Dr. Natarajan said. However, he noted that major clinical trials of investigative drugs for lowering Lp(a), specifically the ongoing HORIZON trial (NCT04023552), are using Lp(a) mass rather than molar concentration.
“There is an imperfect correlation between the two,” Dr. Natarajan said. “Depending on the results of this trial and others, and evaluation of both mass and molar concentration assays, we will then be able to better understand the path forward. These issues and the multiple assays have been challenging for both the clinical and scientific community.”
Santica Marcovina, ScD, PhD, coauthor of the invited commentary (J Am Coll Cardiol. 2022 Feb 14. doi: 10.1016/j.jacc.2021.11.053), said in an interview that the study’s major contribution to the literature is the finding that the molar concentration of Lp(a) appears to be stable regardless of statin use. “This important finding provides evidence that no longitudinal measurements of Lp(a) are needed in the primary prevention of atherosclerotic CVD and that once-in-a-lifetime measurement may reliably allow clinicians to assess whether or not Lp(a)-related risk is present in their patients,” she said. Dr. Marcovina is senior director of clinical laboratory sciences at Medpace Reference Laboratories, Cincinnati.
She noted that this study provides an actionable strategy for cardiologists. “Considering the clinical benefits, the relative low cost for measuring Lp(a), the fact that measurements need to be performed only once in the vast majority of individuals, all point to the implementation of Lp(a) general screening as soon as possible.”
Dr. Natarajan has financial relationships with Amgen, Apple, AstraZeneca, Boston Scientific, Blackstone Life Sciences, Genentech and Novartis. Dr. Marcovina has provided consulting for Roche, Denka, and Novartis, and has received research support from Amgen through Medpace.
Repeat testing of lipoprotein(a) to assess a patient’s cardiovascular risk doesn’t seem to yield any additional helpful information, and a one-time baseline measure of Lp(a) molar concentration could be sufficient to help define lifetime risk, suggests a large analysis of a national database in the United Kingdom.
The study examined the correlation between baseline and first follow-up measures of Lp(a) molar concentration and incident coronary artery disease among 16,017 individuals in a cohort of the UK Biobank, a prospective observational study of about 500,000 middle-aged people recruited between 2006 and 2010 with ongoing follow-up.
Results showed found little change in Lp(a) molar concentration measures from baseline to an average of 4.4 years afterward, but did find an association between statin usage and significant increases in Lp(a) in people with high baseline levels. The study was published online on Feb. 14 in the Journal of the American College of Cardiology.
The baseline and follow-up Lp(a) molar concentration measures “are highly correlated with 85% of the repeat values being within 25 nmol/L of each other,” senior author Pradeep Natarajan, MD, MMSc, of Massachusetts General Hospital, Boston, said in an interview. “When predicting events, the follow-up Lp(a) concentration did not yield additional information beyond the baseline Lp(a).”
Additionally, the study found that statin therapy didn’t lead to meaningful changes in Lp(a) molar concentration levels. Patients on statins who had baseline Lp(a) above 70 nmol/L “had modest follow-up concentrations, but this did not appreciably change atherosclerotic cardiovascular disease risks,” Dr. Natarajan said. “For patients without clinical cardiovascular disease who are not on medicines that markedly change Lp(a), additional Lp(a) assessments are unlikely to provide additional prognostic information beyond the baseline Lp(a) measurement.”
Added lead author Mark Trinder, MSc: “These findings suggest that, in the absence of therapies substantially altering Lp(a), a single accurate measurement of Lp(a) molar concentration is an efficient method to inform atherosclerotic cardiovascular disease risk.” Mr. Trinder is an MD/PhD candidate at the Centre for Heart Lung Innovation at the University of British Columbia, Vancouver, and a visiting scholar in medical and population genetics and the Cardiovascular Disease Initiative at the Broad Institute of MIT and Harvard in Cambridge, Mass.
This study claims to be unique for two reasons: It reported on repeat Lp(a) measurements among the general population rather than a clinical trial, and it assessed the influence of statins on Lp(a) molar concentration rather than Lp(a) mass.
“Lp(a) molar concentration aims to mitigate challenges with mass assays, which are influenced by assay size,” Dr. Natarajan said. However, he noted that major clinical trials of investigative drugs for lowering Lp(a), specifically the ongoing HORIZON trial (NCT04023552), are using Lp(a) mass rather than molar concentration.
“There is an imperfect correlation between the two,” Dr. Natarajan said. “Depending on the results of this trial and others, and evaluation of both mass and molar concentration assays, we will then be able to better understand the path forward. These issues and the multiple assays have been challenging for both the clinical and scientific community.”
Santica Marcovina, ScD, PhD, coauthor of the invited commentary (J Am Coll Cardiol. 2022 Feb 14. doi: 10.1016/j.jacc.2021.11.053), said in an interview that the study’s major contribution to the literature is the finding that the molar concentration of Lp(a) appears to be stable regardless of statin use. “This important finding provides evidence that no longitudinal measurements of Lp(a) are needed in the primary prevention of atherosclerotic CVD and that once-in-a-lifetime measurement may reliably allow clinicians to assess whether or not Lp(a)-related risk is present in their patients,” she said. Dr. Marcovina is senior director of clinical laboratory sciences at Medpace Reference Laboratories, Cincinnati.
She noted that this study provides an actionable strategy for cardiologists. “Considering the clinical benefits, the relative low cost for measuring Lp(a), the fact that measurements need to be performed only once in the vast majority of individuals, all point to the implementation of Lp(a) general screening as soon as possible.”
Dr. Natarajan has financial relationships with Amgen, Apple, AstraZeneca, Boston Scientific, Blackstone Life Sciences, Genentech and Novartis. Dr. Marcovina has provided consulting for Roche, Denka, and Novartis, and has received research support from Amgen through Medpace.
FROM THE JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY
Body fat linked to lower bone density, particularly in men
an analysis of data from a large, nationally representative sample has found.
Much previous research has suggested that obesity protects against fractures and loss of BMD for a variety of reasons, including the beneficial effects of weight-bearing on the skeleton and hormonal factors linked to body fat. But the new findings should prompt a reconsideration of the relationship between obesity and fracture risk, according to the investigators, whose study appears in the Journal of Clinical Endocrinology & Metabolism.
“While higher BMI [body mass index] is generally associated with higher bone density, our study demonstrates that lean and fat mass affect bone density differently and that obesity is not a guarantee against osteoporosis,” Rajesh K. Jain, MD, of the University of Chicago said in an interview.
Dr. Jain and a colleague, Tamara Vokes, MD, used multivariant modeling to examine the relationship between BMD and body composition of 10,814 men and women aged 20-59 years from the National Health and Nutrition Examination Survey (NHANES) 2011-2018. All underwent total body dual-energy x-ray absorptiometry scans.
Participants were stratified into sex-specific quartiles based on lean mass index (LMI; lean mass divided by height squared) and fat mass index (FMI; fat mass divided by height squared). Lean mass had a strong positive association with bone density, whereas fat mass had a moderate negative effect, the researchers found.
An additional kg/m2 of FMI was associated with a 0.10 lower T score, the number of standard deviations from the expected bone density of a young adult (P < .001). The negative effect was greater in men, who had a 0.13 lower T score per additional 1 kg/m2 of FMI, compared with 0.08 lower in women (P < .001). The effect was most pronounced in people in the highest FMI quartile.
Body composition is not a routine clinical measurement, Dr. Jain and Dr. Vokes noted. Prior studies of the effect of body composition on bone density have been limited by small patient numbers, referral bias, lack of racial or ethnic diversity, and the use of estimates rather than true measures of fat and lean tissue. NHANES is designed to mirror the U.S. population.
The researchers say when it comes to patients with obesity, the findings “should not dissuade clinicians from assessing bone density, particularly if other risk factors are present.”
Useful clinical proxies for body composition
Clinicians have no routine way to measure body composition in an office setting. As a result, Dr. Jain advised clinicians to look at factors that correlate with high body fat, such as the presence of diabetes, or with low lean mass, such as poor performance on physical activity measures like grip strength, when deciding whether to consider osteoporosis screening. Patients with obesity should undergo recommended bone density screening, especially if they have other risk factors such as older age, previous fracture, steroid use, or a family history of fracture.
Although some extra weight may have a beneficial loading effect, too much extra weight can lead to metabolic problems and restrict movement, according to Rodrigo J. Valderrábano, MD, medical director of clinical research for the Research Program in Men’s Health: Aging and Metabolism, Brigham and Women’s Hospital in Boston. “There’s a general sense that the extra weight is only good for your bones if you can carry it around,” said Dr. Valderrábano, who was not involved in the study.
More research is needed to understand why fat affects men and women differently, Dr. Jain noted. The researchers found that testosterone and estradiol values did not fully explain the variation.
Adipokines released by fat cells may be important in driving bone loss but were not measured in the study, Peter R. Ebeling, MD, president of the American Society of Bone and Mineral Research, said in an interview. Distribution of fractures in obesity suggests that a high FMI may preferentially affect cortical bone instead of trabecular bone, but further studies using high-resolution peripheral quantitative CT are required to confirm the difference.
Dr. Ebeling, who was not involved in the new study, agreed that the positive relationship between BMI and BMD has led to false reassurance that people with obesity may be protected from fragility fractures. “The take-home message for clinicians is that we should not neglect bone health in our patients with obesity, both male and female.”
Dr. Jain has reported receiving grant support from the Amgen Foundation and being a consultant for Radius Health. Dr. Vokes has reported being an investigator, consultant, and speaker for Radius Health, investigator and consultant for Takeda Pharmaceutical, and investigator for Ascendis Pharma. Dr. Valderrábano and Dr. Ebeling reported no relevant financial relationships.
A version of this article first appeared on Medscape.com.
an analysis of data from a large, nationally representative sample has found.
Much previous research has suggested that obesity protects against fractures and loss of BMD for a variety of reasons, including the beneficial effects of weight-bearing on the skeleton and hormonal factors linked to body fat. But the new findings should prompt a reconsideration of the relationship between obesity and fracture risk, according to the investigators, whose study appears in the Journal of Clinical Endocrinology & Metabolism.
“While higher BMI [body mass index] is generally associated with higher bone density, our study demonstrates that lean and fat mass affect bone density differently and that obesity is not a guarantee against osteoporosis,” Rajesh K. Jain, MD, of the University of Chicago said in an interview.
Dr. Jain and a colleague, Tamara Vokes, MD, used multivariant modeling to examine the relationship between BMD and body composition of 10,814 men and women aged 20-59 years from the National Health and Nutrition Examination Survey (NHANES) 2011-2018. All underwent total body dual-energy x-ray absorptiometry scans.
Participants were stratified into sex-specific quartiles based on lean mass index (LMI; lean mass divided by height squared) and fat mass index (FMI; fat mass divided by height squared). Lean mass had a strong positive association with bone density, whereas fat mass had a moderate negative effect, the researchers found.
An additional kg/m2 of FMI was associated with a 0.10 lower T score, the number of standard deviations from the expected bone density of a young adult (P < .001). The negative effect was greater in men, who had a 0.13 lower T score per additional 1 kg/m2 of FMI, compared with 0.08 lower in women (P < .001). The effect was most pronounced in people in the highest FMI quartile.
Body composition is not a routine clinical measurement, Dr. Jain and Dr. Vokes noted. Prior studies of the effect of body composition on bone density have been limited by small patient numbers, referral bias, lack of racial or ethnic diversity, and the use of estimates rather than true measures of fat and lean tissue. NHANES is designed to mirror the U.S. population.
The researchers say when it comes to patients with obesity, the findings “should not dissuade clinicians from assessing bone density, particularly if other risk factors are present.”
Useful clinical proxies for body composition
Clinicians have no routine way to measure body composition in an office setting. As a result, Dr. Jain advised clinicians to look at factors that correlate with high body fat, such as the presence of diabetes, or with low lean mass, such as poor performance on physical activity measures like grip strength, when deciding whether to consider osteoporosis screening. Patients with obesity should undergo recommended bone density screening, especially if they have other risk factors such as older age, previous fracture, steroid use, or a family history of fracture.
Although some extra weight may have a beneficial loading effect, too much extra weight can lead to metabolic problems and restrict movement, according to Rodrigo J. Valderrábano, MD, medical director of clinical research for the Research Program in Men’s Health: Aging and Metabolism, Brigham and Women’s Hospital in Boston. “There’s a general sense that the extra weight is only good for your bones if you can carry it around,” said Dr. Valderrábano, who was not involved in the study.
More research is needed to understand why fat affects men and women differently, Dr. Jain noted. The researchers found that testosterone and estradiol values did not fully explain the variation.
Adipokines released by fat cells may be important in driving bone loss but were not measured in the study, Peter R. Ebeling, MD, president of the American Society of Bone and Mineral Research, said in an interview. Distribution of fractures in obesity suggests that a high FMI may preferentially affect cortical bone instead of trabecular bone, but further studies using high-resolution peripheral quantitative CT are required to confirm the difference.
Dr. Ebeling, who was not involved in the new study, agreed that the positive relationship between BMI and BMD has led to false reassurance that people with obesity may be protected from fragility fractures. “The take-home message for clinicians is that we should not neglect bone health in our patients with obesity, both male and female.”
Dr. Jain has reported receiving grant support from the Amgen Foundation and being a consultant for Radius Health. Dr. Vokes has reported being an investigator, consultant, and speaker for Radius Health, investigator and consultant for Takeda Pharmaceutical, and investigator for Ascendis Pharma. Dr. Valderrábano and Dr. Ebeling reported no relevant financial relationships.
A version of this article first appeared on Medscape.com.
an analysis of data from a large, nationally representative sample has found.
Much previous research has suggested that obesity protects against fractures and loss of BMD for a variety of reasons, including the beneficial effects of weight-bearing on the skeleton and hormonal factors linked to body fat. But the new findings should prompt a reconsideration of the relationship between obesity and fracture risk, according to the investigators, whose study appears in the Journal of Clinical Endocrinology & Metabolism.
“While higher BMI [body mass index] is generally associated with higher bone density, our study demonstrates that lean and fat mass affect bone density differently and that obesity is not a guarantee against osteoporosis,” Rajesh K. Jain, MD, of the University of Chicago said in an interview.
Dr. Jain and a colleague, Tamara Vokes, MD, used multivariant modeling to examine the relationship between BMD and body composition of 10,814 men and women aged 20-59 years from the National Health and Nutrition Examination Survey (NHANES) 2011-2018. All underwent total body dual-energy x-ray absorptiometry scans.
Participants were stratified into sex-specific quartiles based on lean mass index (LMI; lean mass divided by height squared) and fat mass index (FMI; fat mass divided by height squared). Lean mass had a strong positive association with bone density, whereas fat mass had a moderate negative effect, the researchers found.
An additional kg/m2 of FMI was associated with a 0.10 lower T score, the number of standard deviations from the expected bone density of a young adult (P < .001). The negative effect was greater in men, who had a 0.13 lower T score per additional 1 kg/m2 of FMI, compared with 0.08 lower in women (P < .001). The effect was most pronounced in people in the highest FMI quartile.
Body composition is not a routine clinical measurement, Dr. Jain and Dr. Vokes noted. Prior studies of the effect of body composition on bone density have been limited by small patient numbers, referral bias, lack of racial or ethnic diversity, and the use of estimates rather than true measures of fat and lean tissue. NHANES is designed to mirror the U.S. population.
The researchers say when it comes to patients with obesity, the findings “should not dissuade clinicians from assessing bone density, particularly if other risk factors are present.”
Useful clinical proxies for body composition
Clinicians have no routine way to measure body composition in an office setting. As a result, Dr. Jain advised clinicians to look at factors that correlate with high body fat, such as the presence of diabetes, or with low lean mass, such as poor performance on physical activity measures like grip strength, when deciding whether to consider osteoporosis screening. Patients with obesity should undergo recommended bone density screening, especially if they have other risk factors such as older age, previous fracture, steroid use, or a family history of fracture.
Although some extra weight may have a beneficial loading effect, too much extra weight can lead to metabolic problems and restrict movement, according to Rodrigo J. Valderrábano, MD, medical director of clinical research for the Research Program in Men’s Health: Aging and Metabolism, Brigham and Women’s Hospital in Boston. “There’s a general sense that the extra weight is only good for your bones if you can carry it around,” said Dr. Valderrábano, who was not involved in the study.
More research is needed to understand why fat affects men and women differently, Dr. Jain noted. The researchers found that testosterone and estradiol values did not fully explain the variation.
Adipokines released by fat cells may be important in driving bone loss but were not measured in the study, Peter R. Ebeling, MD, president of the American Society of Bone and Mineral Research, said in an interview. Distribution of fractures in obesity suggests that a high FMI may preferentially affect cortical bone instead of trabecular bone, but further studies using high-resolution peripheral quantitative CT are required to confirm the difference.
Dr. Ebeling, who was not involved in the new study, agreed that the positive relationship between BMI and BMD has led to false reassurance that people with obesity may be protected from fragility fractures. “The take-home message for clinicians is that we should not neglect bone health in our patients with obesity, both male and female.”
Dr. Jain has reported receiving grant support from the Amgen Foundation and being a consultant for Radius Health. Dr. Vokes has reported being an investigator, consultant, and speaker for Radius Health, investigator and consultant for Takeda Pharmaceutical, and investigator for Ascendis Pharma. Dr. Valderrábano and Dr. Ebeling reported no relevant financial relationships.
A version of this article first appeared on Medscape.com.
FROM THE JOURNAL OF CLINICAL ENDOCRINOLOGY & METABOLISM
New stroke risk score developed for COVID patients
Researchers have developed a quick and easy scoring system to predict which hospitalized COVID-19 patients are more at risk for stroke.
“The system is simple. You can calculate the points in 5 seconds and then predict the chances the patient will have a stroke,” Alexander E. Merkler, MD, assistant professor of neurology at Weill Cornell Medical College/NewYork-Presbyterian Hospital, and lead author of a study of the system, told this news organization.
The new system will allow clinicians to stratify patients and lead to closer monitoring of those at highest risk for stroke, said Dr. Merkler.
The study was presented during the International Stroke Conference, presented by the American Stroke Association, a division of the American Heart Association.
Some, but not all, studies suggest COVID-19 increases the risk of stroke and worsens stroke outcomes, and the association isn’t clear, investigators note.
Researchers used the American Heart Association Get With the Guidelines COVID-19 cardiovascular disease registry for this analysis. They evaluated 21,420 adult patients (mean age 61 years, 54% men), who were hospitalized with COVID-19 at 122 centers from March 2020 to March 2021.
Investigators tapped into the vast amounts of data in this registry on different variables, including demographics, comorbidities, and lab values.
The outcome was a cerebrovascular event, defined as any ischemic or hemorrhagic stroke, transient ischemic attack (TIA), or cerebral vein thrombosis. Of the total hospitalized COVID-19 population, 312 (1.5%) had a cerebrovascular event.
Researchers first used standard statistical models to determine which risk factors are most associated with the development of stroke. They identified six such factors:
- history of stroke
- no fever at the time of hospital admission
- no history of pulmonary disease
- high white blood cell count
- history of hypertension
- high systolic blood pressure at the time of hospital admission
That the list of risk factors included absence of fever and no history of pulmonary disease was somewhat surprising, said Dr. Merkler, but there may be possible explanations, he added.
A high fever is an inflammatory response, and perhaps patients who aren’t responding appropriately “could be sicker in general and have a poor immune system, and thereby be at increased risk for stroke,” said Dr. Merkler.
In the case of pulmonary disease, patients without a history who are admitted for COVID “may have an extremely high burden of COVID, or are extremely sick, and that’s why they’re at higher risk for stroke.”
The scoring system assigns points for each variable, with more points conferring a higher risk of stroke. For example, someone who has 0-1 points has 0.2% risk of having a stroke, and someone with 4-6 points has 2% to 3% risk, said Dr. Merkler.
“So, we’re talking about a 10- to 15-fold increased risk of having a stroke with 4 to 6 versus 0 to 1 variables.”
The accuracy of the risk stratification score (C-statistic of 0.66; 95% confidence interval, 0.60-0.72) is “fairly good or modestly good,” said Dr. Merkler.
A patient with a score of 5 or 6 may need more vigilant monitoring to make sure symptoms are caught early and therapies such as thrombolytics and thrombectomy are readily available, he added.
Researchers also used a sophisticated machine-learning approach where a computer takes all the variables and identifies the best algorithm to predict stroke.
“The machine-learning algorithm was basically just as good as our standard model; it was almost identical,” said Dr. Merkler.
Outside of COVID, other scoring systems are used to predict stroke. For example, the ABCD2 score uses various factors to predict risk of recurrent stroke.
Philip B. Gorelick, MD, adjunct professor, Northwestern University Feinberg School of Medicine, Chicago, said the results are promising, as they may lead to identifying modifiable factors to prevent stroke.
Dr. Gorelick noted that the authors identified risk factors to predict risk of stroke “after an extensive analysis of baseline factors that included an internal validation process.”
The finding that no fever and no history of pulmonary disease were included in those risk factors was “unexpected,” said Dr. Gorelick, who is also medical director of the Hauenstein Neuroscience Center in Grand Rapids, Michigan. “This may reflect the baseline timing of data collection.”
He added further validation of the results in other data sets “will be useful to determine the consistency of the predictive model and its potential value in general practice.”
Louise D. McCullough, MD, PhD, professor and chair of neurology, McGovern Medical School, The University of Texas Health Science Center, Houston, said the association between stroke risk and COVID exposure “has been very unclear.”
“Some people find a very strong association between stroke and COVID, some do not,” said Dr. McCullough, who served as the chair of the ISC 2022 meeting.
This new study looking at a risk stratification model for COVID patients was “very nicely done,” she added.
“They used the American Heart Association Get With The Guidelines COVID registry, which was an amazing feat that was done very quickly by the AHA to establish COVID reporting in the Get With The Guidelines data, allowing us to really look at other factors related to stroke that are in this unique database.”
The study received funding support from the American Stroke Association. Dr. Merkler has received funding from the American Heart Association and the Leon Levy Foundation. Dr. Gorelick was not involved in the study and has disclosed no relevant financial relationships.
A version of this article first appeared on Medscape.com.
Researchers have developed a quick and easy scoring system to predict which hospitalized COVID-19 patients are more at risk for stroke.
“The system is simple. You can calculate the points in 5 seconds and then predict the chances the patient will have a stroke,” Alexander E. Merkler, MD, assistant professor of neurology at Weill Cornell Medical College/NewYork-Presbyterian Hospital, and lead author of a study of the system, told this news organization.
The new system will allow clinicians to stratify patients and lead to closer monitoring of those at highest risk for stroke, said Dr. Merkler.
The study was presented during the International Stroke Conference, presented by the American Stroke Association, a division of the American Heart Association.
Some, but not all, studies suggest COVID-19 increases the risk of stroke and worsens stroke outcomes, and the association isn’t clear, investigators note.
Researchers used the American Heart Association Get With the Guidelines COVID-19 cardiovascular disease registry for this analysis. They evaluated 21,420 adult patients (mean age 61 years, 54% men), who were hospitalized with COVID-19 at 122 centers from March 2020 to March 2021.
Investigators tapped into the vast amounts of data in this registry on different variables, including demographics, comorbidities, and lab values.
The outcome was a cerebrovascular event, defined as any ischemic or hemorrhagic stroke, transient ischemic attack (TIA), or cerebral vein thrombosis. Of the total hospitalized COVID-19 population, 312 (1.5%) had a cerebrovascular event.
Researchers first used standard statistical models to determine which risk factors are most associated with the development of stroke. They identified six such factors:
- history of stroke
- no fever at the time of hospital admission
- no history of pulmonary disease
- high white blood cell count
- history of hypertension
- high systolic blood pressure at the time of hospital admission
That the list of risk factors included absence of fever and no history of pulmonary disease was somewhat surprising, said Dr. Merkler, but there may be possible explanations, he added.
A high fever is an inflammatory response, and perhaps patients who aren’t responding appropriately “could be sicker in general and have a poor immune system, and thereby be at increased risk for stroke,” said Dr. Merkler.
In the case of pulmonary disease, patients without a history who are admitted for COVID “may have an extremely high burden of COVID, or are extremely sick, and that’s why they’re at higher risk for stroke.”
The scoring system assigns points for each variable, with more points conferring a higher risk of stroke. For example, someone who has 0-1 points has 0.2% risk of having a stroke, and someone with 4-6 points has 2% to 3% risk, said Dr. Merkler.
“So, we’re talking about a 10- to 15-fold increased risk of having a stroke with 4 to 6 versus 0 to 1 variables.”
The accuracy of the risk stratification score (C-statistic of 0.66; 95% confidence interval, 0.60-0.72) is “fairly good or modestly good,” said Dr. Merkler.
A patient with a score of 5 or 6 may need more vigilant monitoring to make sure symptoms are caught early and therapies such as thrombolytics and thrombectomy are readily available, he added.
Researchers also used a sophisticated machine-learning approach where a computer takes all the variables and identifies the best algorithm to predict stroke.
“The machine-learning algorithm was basically just as good as our standard model; it was almost identical,” said Dr. Merkler.
Outside of COVID, other scoring systems are used to predict stroke. For example, the ABCD2 score uses various factors to predict risk of recurrent stroke.
Philip B. Gorelick, MD, adjunct professor, Northwestern University Feinberg School of Medicine, Chicago, said the results are promising, as they may lead to identifying modifiable factors to prevent stroke.
Dr. Gorelick noted that the authors identified risk factors to predict risk of stroke “after an extensive analysis of baseline factors that included an internal validation process.”
The finding that no fever and no history of pulmonary disease were included in those risk factors was “unexpected,” said Dr. Gorelick, who is also medical director of the Hauenstein Neuroscience Center in Grand Rapids, Michigan. “This may reflect the baseline timing of data collection.”
He added further validation of the results in other data sets “will be useful to determine the consistency of the predictive model and its potential value in general practice.”
Louise D. McCullough, MD, PhD, professor and chair of neurology, McGovern Medical School, The University of Texas Health Science Center, Houston, said the association between stroke risk and COVID exposure “has been very unclear.”
“Some people find a very strong association between stroke and COVID, some do not,” said Dr. McCullough, who served as the chair of the ISC 2022 meeting.
This new study looking at a risk stratification model for COVID patients was “very nicely done,” she added.
“They used the American Heart Association Get With The Guidelines COVID registry, which was an amazing feat that was done very quickly by the AHA to establish COVID reporting in the Get With The Guidelines data, allowing us to really look at other factors related to stroke that are in this unique database.”
The study received funding support from the American Stroke Association. Dr. Merkler has received funding from the American Heart Association and the Leon Levy Foundation. Dr. Gorelick was not involved in the study and has disclosed no relevant financial relationships.
A version of this article first appeared on Medscape.com.
Researchers have developed a quick and easy scoring system to predict which hospitalized COVID-19 patients are more at risk for stroke.
“The system is simple. You can calculate the points in 5 seconds and then predict the chances the patient will have a stroke,” Alexander E. Merkler, MD, assistant professor of neurology at Weill Cornell Medical College/NewYork-Presbyterian Hospital, and lead author of a study of the system, told this news organization.
The new system will allow clinicians to stratify patients and lead to closer monitoring of those at highest risk for stroke, said Dr. Merkler.
The study was presented during the International Stroke Conference, presented by the American Stroke Association, a division of the American Heart Association.
Some, but not all, studies suggest COVID-19 increases the risk of stroke and worsens stroke outcomes, and the association isn’t clear, investigators note.
Researchers used the American Heart Association Get With the Guidelines COVID-19 cardiovascular disease registry for this analysis. They evaluated 21,420 adult patients (mean age 61 years, 54% men), who were hospitalized with COVID-19 at 122 centers from March 2020 to March 2021.
Investigators tapped into the vast amounts of data in this registry on different variables, including demographics, comorbidities, and lab values.
The outcome was a cerebrovascular event, defined as any ischemic or hemorrhagic stroke, transient ischemic attack (TIA), or cerebral vein thrombosis. Of the total hospitalized COVID-19 population, 312 (1.5%) had a cerebrovascular event.
Researchers first used standard statistical models to determine which risk factors are most associated with the development of stroke. They identified six such factors:
- history of stroke
- no fever at the time of hospital admission
- no history of pulmonary disease
- high white blood cell count
- history of hypertension
- high systolic blood pressure at the time of hospital admission
That the list of risk factors included absence of fever and no history of pulmonary disease was somewhat surprising, said Dr. Merkler, but there may be possible explanations, he added.
A high fever is an inflammatory response, and perhaps patients who aren’t responding appropriately “could be sicker in general and have a poor immune system, and thereby be at increased risk for stroke,” said Dr. Merkler.
In the case of pulmonary disease, patients without a history who are admitted for COVID “may have an extremely high burden of COVID, or are extremely sick, and that’s why they’re at higher risk for stroke.”
The scoring system assigns points for each variable, with more points conferring a higher risk of stroke. For example, someone who has 0-1 points has 0.2% risk of having a stroke, and someone with 4-6 points has 2% to 3% risk, said Dr. Merkler.
“So, we’re talking about a 10- to 15-fold increased risk of having a stroke with 4 to 6 versus 0 to 1 variables.”
The accuracy of the risk stratification score (C-statistic of 0.66; 95% confidence interval, 0.60-0.72) is “fairly good or modestly good,” said Dr. Merkler.
A patient with a score of 5 or 6 may need more vigilant monitoring to make sure symptoms are caught early and therapies such as thrombolytics and thrombectomy are readily available, he added.
Researchers also used a sophisticated machine-learning approach where a computer takes all the variables and identifies the best algorithm to predict stroke.
“The machine-learning algorithm was basically just as good as our standard model; it was almost identical,” said Dr. Merkler.
Outside of COVID, other scoring systems are used to predict stroke. For example, the ABCD2 score uses various factors to predict risk of recurrent stroke.
Philip B. Gorelick, MD, adjunct professor, Northwestern University Feinberg School of Medicine, Chicago, said the results are promising, as they may lead to identifying modifiable factors to prevent stroke.
Dr. Gorelick noted that the authors identified risk factors to predict risk of stroke “after an extensive analysis of baseline factors that included an internal validation process.”
The finding that no fever and no history of pulmonary disease were included in those risk factors was “unexpected,” said Dr. Gorelick, who is also medical director of the Hauenstein Neuroscience Center in Grand Rapids, Michigan. “This may reflect the baseline timing of data collection.”
He added further validation of the results in other data sets “will be useful to determine the consistency of the predictive model and its potential value in general practice.”
Louise D. McCullough, MD, PhD, professor and chair of neurology, McGovern Medical School, The University of Texas Health Science Center, Houston, said the association between stroke risk and COVID exposure “has been very unclear.”
“Some people find a very strong association between stroke and COVID, some do not,” said Dr. McCullough, who served as the chair of the ISC 2022 meeting.
This new study looking at a risk stratification model for COVID patients was “very nicely done,” she added.
“They used the American Heart Association Get With The Guidelines COVID registry, which was an amazing feat that was done very quickly by the AHA to establish COVID reporting in the Get With The Guidelines data, allowing us to really look at other factors related to stroke that are in this unique database.”
The study received funding support from the American Stroke Association. Dr. Merkler has received funding from the American Heart Association and the Leon Levy Foundation. Dr. Gorelick was not involved in the study and has disclosed no relevant financial relationships.
A version of this article first appeared on Medscape.com.
FROM ISC 2022
Do latest SURPASS findings with twincretin in diabetes impress?
, new research shows.
The novel once-weekly injectable agent is nicknamed a twincretin because it combines two different gut-hormone activities. It works both as a glucagonlike peptide-1 (GLP-1) receptor agonist and as an agent that mimics the glucose-dependent insulinotropic polypeptide (GIP).
Findings from the randomized phase 3 SURPASS-5 clinical trial were published online Feb. 8 in JAMA.
This is the latest in a series of SURPASS trials of tirzepatide in individuals with type 2 diabetes for which results have been presented at various conferences, announced by the company, and/or published since late 2020.
SURPASS-5 specifically investigated the effect on glycemic control of adding three different doses of once-weekly subcutaneous tirzepatide compared with placebo in 475 adults who hadn’t achieved target A1c levels using insulin glargine with or without metformin. Statistically significant reductions in A1c were found at 40 weeks for all three doses.
Moreover, authors Dominik Dahl, MD, group practice for internal medicine and diabetology, Hamburg, Germany, and colleagues note that the improvements in the tirzepatide groups “were associated with significantly lower insulin glargine use and significant bodyweight reduction compared with placebo.”
“Despite the differences in glycemic control between the tirzepatide and placebo groups, the rate of clinically significant or severe hypoglycemia was below one event per patient-year in all treatment groups,” they add.
However, concerns about the study protocol and generalizability were raised in an accompanying editorial by Stuart R. Chipkin, MD, of the School of Public Health & Health Sciences, University of Massachusetts Amherst.
“Importantly, the study did not compare tirzepatide with other treatments that could have been used to target the postprandial glycemic pattern of the study population,” he writes.
And ultimately, he says: “Even though the results of this investigation are important for demonstrating the potential clinical benefit of [tirzepatide], and may help to advance the goal of achieving U.S. Food and Drug Administration approval, the study may leave clinicians uncertain about when and how to best use tirzepatide to improve clinical outcomes for patients with type 2 diabetes.”
Significant A1c, weight reductions when added to insulin glargine
The randomized, phase 3 SURPASS-5 trial was conducted at 45 centers in eight countries between August 2019 and January 2021. The 475 adult participants had type 2 diabetes inadequately controlled (baseline A1c, 7.0%-10.5%) with once-daily insulin glargine, with or without metformin. They were randomized to receive once-weekly subcutaneous injections of tirzepatide in doses of 5 mg, 10 mg, or 15 mg, or volume-matched placebo injections over 40 weeks.
The mean changes from baseline in A1c at week 40, the primary study endpoint, were –2.11, –2.40, and –2.34 percentage points for the 5 mg, 10 mg, and 15 mg doses of tirzepatide, respectively (P < .001), versus a nonsignificant change of –0.86 percentage points with placebo. The differences from placebo at week 40 were also significant for the 10-mg and 15-mg doses (both P < .001).
Significantly higher proportions of patients receiving 5 mg, 10 mg, and 15 mg tirzepatide met the A1c target of less than 7% at week 40, compared with placebo (85%-90% vs. 34%; P < .001). Significantly higher proportions of patients in the 10-mg and 15-mg dose groups also achieved A1c less than 5.7% (42% and 50%, respectively, vs. 3%).
Mean fasting glucose was also reduced significantly with all doses of tirzepatide by 58.2 mg/dL, 64.0 mg/dL, and 62.6 mg/dL, respectively, versus 39.2 mg/dL with placebo (all P <0.001 vs. placebo).
At week 40, mean body weight reductions from baseline were 5.4 kg (11.9 lbs), 7.5 kg, and 8.8 kg versus just 1.6 kg with placebo (all P <0.001 vs. placebo).
All three tirzepatide doses were also associated with significant improvements from baseline in total cholesterol, low-density lipoprotein cholesterol, very low-density lipoprotein cholesterol, and triglycerides.
Gastrointestinal adverse events, hypoglycemia seen in minority
The most common treatment-emergent adverse events in the tirzepatide groups versus placebo were gastrointestinal, including diarrhea (12%-21% vs. 10%), nausea (13%-18% vs. 2.5%), vomiting (7%-13% vs. 2.5%), and decreased appetite (7%-14% vs. 1.7%). Most of these adverse events were mild to moderate in intensity and decreased over time in the tirzepatide groups.
There were no deaths in the study. Serious adverse events were reported by 8%-11% in the tirzepatide groups, compared with 8% in the placebo group. Drug discontinuation due to adverse events occurred in 6.0%, 8.4%, and 10.8% of the 5-mg, 10-mg, and 15-mg dose groups, respectively, versus 2.5% in the placebo group.
Rates of hypoglycemia (less than or equal to 70 mg/dL) ranged from 14.2% to 19.3% with tirzepatide versus 12.5% with placebo. There were three episodes of severe hypoglycemia (less than 54 mg/dL), two with 10 mg tirzepatide and one with 15 mg tirzepatide.
Editorial raises questions
In his editorial, Dr. Chipkin writes that the study “demonstrated that use of tirzepatide was associated with significant reductions in A1c and weight in a fairly homogeneous cohort of patients with type 2 diabetes who were receiving insulin glargine with or without metformin.”
“The protocol answered questions about efficacy but left open questions about generalizability and effectiveness in different populations, especially patients with certain complications or comorbid chronic diseases.” He also notes that younger adults and Black patients were not well-represented.
And the study didn’t allow for dividing up the glargine dose or for adding short-acting insulin before meals or any other pre-meal medications and “thus may represent a departure from usual care” in the setting of rising glucose levels.
The authors themselves acknowledge that “the postprandial glucose excursions observed in the placebo group suggest an additional prandial intervention was likely needed in some patients, despite the strict inclusion criteria and the treat-to-target-approach used in the study.”
Dr. Chipkin concludes that “although patients are likely to embrace a medication with weight loss outcomes, the protocol also leaves unanswered questions about reducing insulin and evaluating the comparative risk of adverse effects.”
The study was sponsored by Eli Lilly. Dr. Dahl has reported receiving personal fees from Eli Lilly during the conduct of the study and personal fees from Afimmune, Novo Nordisk, and Novartis outside the submitted work. Dr. Chipkin has reported no relevant financial relationships.
A version of this article first appeared on Medscape.com.
, new research shows.
The novel once-weekly injectable agent is nicknamed a twincretin because it combines two different gut-hormone activities. It works both as a glucagonlike peptide-1 (GLP-1) receptor agonist and as an agent that mimics the glucose-dependent insulinotropic polypeptide (GIP).
Findings from the randomized phase 3 SURPASS-5 clinical trial were published online Feb. 8 in JAMA.
This is the latest in a series of SURPASS trials of tirzepatide in individuals with type 2 diabetes for which results have been presented at various conferences, announced by the company, and/or published since late 2020.
SURPASS-5 specifically investigated the effect on glycemic control of adding three different doses of once-weekly subcutaneous tirzepatide compared with placebo in 475 adults who hadn’t achieved target A1c levels using insulin glargine with or without metformin. Statistically significant reductions in A1c were found at 40 weeks for all three doses.
Moreover, authors Dominik Dahl, MD, group practice for internal medicine and diabetology, Hamburg, Germany, and colleagues note that the improvements in the tirzepatide groups “were associated with significantly lower insulin glargine use and significant bodyweight reduction compared with placebo.”
“Despite the differences in glycemic control between the tirzepatide and placebo groups, the rate of clinically significant or severe hypoglycemia was below one event per patient-year in all treatment groups,” they add.
However, concerns about the study protocol and generalizability were raised in an accompanying editorial by Stuart R. Chipkin, MD, of the School of Public Health & Health Sciences, University of Massachusetts Amherst.
“Importantly, the study did not compare tirzepatide with other treatments that could have been used to target the postprandial glycemic pattern of the study population,” he writes.
And ultimately, he says: “Even though the results of this investigation are important for demonstrating the potential clinical benefit of [tirzepatide], and may help to advance the goal of achieving U.S. Food and Drug Administration approval, the study may leave clinicians uncertain about when and how to best use tirzepatide to improve clinical outcomes for patients with type 2 diabetes.”
Significant A1c, weight reductions when added to insulin glargine
The randomized, phase 3 SURPASS-5 trial was conducted at 45 centers in eight countries between August 2019 and January 2021. The 475 adult participants had type 2 diabetes inadequately controlled (baseline A1c, 7.0%-10.5%) with once-daily insulin glargine, with or without metformin. They were randomized to receive once-weekly subcutaneous injections of tirzepatide in doses of 5 mg, 10 mg, or 15 mg, or volume-matched placebo injections over 40 weeks.
The mean changes from baseline in A1c at week 40, the primary study endpoint, were –2.11, –2.40, and –2.34 percentage points for the 5 mg, 10 mg, and 15 mg doses of tirzepatide, respectively (P < .001), versus a nonsignificant change of –0.86 percentage points with placebo. The differences from placebo at week 40 were also significant for the 10-mg and 15-mg doses (both P < .001).
Significantly higher proportions of patients receiving 5 mg, 10 mg, and 15 mg tirzepatide met the A1c target of less than 7% at week 40, compared with placebo (85%-90% vs. 34%; P < .001). Significantly higher proportions of patients in the 10-mg and 15-mg dose groups also achieved A1c less than 5.7% (42% and 50%, respectively, vs. 3%).
Mean fasting glucose was also reduced significantly with all doses of tirzepatide by 58.2 mg/dL, 64.0 mg/dL, and 62.6 mg/dL, respectively, versus 39.2 mg/dL with placebo (all P <0.001 vs. placebo).
At week 40, mean body weight reductions from baseline were 5.4 kg (11.9 lbs), 7.5 kg, and 8.8 kg versus just 1.6 kg with placebo (all P <0.001 vs. placebo).
All three tirzepatide doses were also associated with significant improvements from baseline in total cholesterol, low-density lipoprotein cholesterol, very low-density lipoprotein cholesterol, and triglycerides.
Gastrointestinal adverse events, hypoglycemia seen in minority
The most common treatment-emergent adverse events in the tirzepatide groups versus placebo were gastrointestinal, including diarrhea (12%-21% vs. 10%), nausea (13%-18% vs. 2.5%), vomiting (7%-13% vs. 2.5%), and decreased appetite (7%-14% vs. 1.7%). Most of these adverse events were mild to moderate in intensity and decreased over time in the tirzepatide groups.
There were no deaths in the study. Serious adverse events were reported by 8%-11% in the tirzepatide groups, compared with 8% in the placebo group. Drug discontinuation due to adverse events occurred in 6.0%, 8.4%, and 10.8% of the 5-mg, 10-mg, and 15-mg dose groups, respectively, versus 2.5% in the placebo group.
Rates of hypoglycemia (less than or equal to 70 mg/dL) ranged from 14.2% to 19.3% with tirzepatide versus 12.5% with placebo. There were three episodes of severe hypoglycemia (less than 54 mg/dL), two with 10 mg tirzepatide and one with 15 mg tirzepatide.
Editorial raises questions
In his editorial, Dr. Chipkin writes that the study “demonstrated that use of tirzepatide was associated with significant reductions in A1c and weight in a fairly homogeneous cohort of patients with type 2 diabetes who were receiving insulin glargine with or without metformin.”
“The protocol answered questions about efficacy but left open questions about generalizability and effectiveness in different populations, especially patients with certain complications or comorbid chronic diseases.” He also notes that younger adults and Black patients were not well-represented.
And the study didn’t allow for dividing up the glargine dose or for adding short-acting insulin before meals or any other pre-meal medications and “thus may represent a departure from usual care” in the setting of rising glucose levels.
The authors themselves acknowledge that “the postprandial glucose excursions observed in the placebo group suggest an additional prandial intervention was likely needed in some patients, despite the strict inclusion criteria and the treat-to-target-approach used in the study.”
Dr. Chipkin concludes that “although patients are likely to embrace a medication with weight loss outcomes, the protocol also leaves unanswered questions about reducing insulin and evaluating the comparative risk of adverse effects.”
The study was sponsored by Eli Lilly. Dr. Dahl has reported receiving personal fees from Eli Lilly during the conduct of the study and personal fees from Afimmune, Novo Nordisk, and Novartis outside the submitted work. Dr. Chipkin has reported no relevant financial relationships.
A version of this article first appeared on Medscape.com.
, new research shows.
The novel once-weekly injectable agent is nicknamed a twincretin because it combines two different gut-hormone activities. It works both as a glucagonlike peptide-1 (GLP-1) receptor agonist and as an agent that mimics the glucose-dependent insulinotropic polypeptide (GIP).
Findings from the randomized phase 3 SURPASS-5 clinical trial were published online Feb. 8 in JAMA.
This is the latest in a series of SURPASS trials of tirzepatide in individuals with type 2 diabetes for which results have been presented at various conferences, announced by the company, and/or published since late 2020.
SURPASS-5 specifically investigated the effect on glycemic control of adding three different doses of once-weekly subcutaneous tirzepatide compared with placebo in 475 adults who hadn’t achieved target A1c levels using insulin glargine with or without metformin. Statistically significant reductions in A1c were found at 40 weeks for all three doses.
Moreover, authors Dominik Dahl, MD, group practice for internal medicine and diabetology, Hamburg, Germany, and colleagues note that the improvements in the tirzepatide groups “were associated with significantly lower insulin glargine use and significant bodyweight reduction compared with placebo.”
“Despite the differences in glycemic control between the tirzepatide and placebo groups, the rate of clinically significant or severe hypoglycemia was below one event per patient-year in all treatment groups,” they add.
However, concerns about the study protocol and generalizability were raised in an accompanying editorial by Stuart R. Chipkin, MD, of the School of Public Health & Health Sciences, University of Massachusetts Amherst.
“Importantly, the study did not compare tirzepatide with other treatments that could have been used to target the postprandial glycemic pattern of the study population,” he writes.
And ultimately, he says: “Even though the results of this investigation are important for demonstrating the potential clinical benefit of [tirzepatide], and may help to advance the goal of achieving U.S. Food and Drug Administration approval, the study may leave clinicians uncertain about when and how to best use tirzepatide to improve clinical outcomes for patients with type 2 diabetes.”
Significant A1c, weight reductions when added to insulin glargine
The randomized, phase 3 SURPASS-5 trial was conducted at 45 centers in eight countries between August 2019 and January 2021. The 475 adult participants had type 2 diabetes inadequately controlled (baseline A1c, 7.0%-10.5%) with once-daily insulin glargine, with or without metformin. They were randomized to receive once-weekly subcutaneous injections of tirzepatide in doses of 5 mg, 10 mg, or 15 mg, or volume-matched placebo injections over 40 weeks.
The mean changes from baseline in A1c at week 40, the primary study endpoint, were –2.11, –2.40, and –2.34 percentage points for the 5 mg, 10 mg, and 15 mg doses of tirzepatide, respectively (P < .001), versus a nonsignificant change of –0.86 percentage points with placebo. The differences from placebo at week 40 were also significant for the 10-mg and 15-mg doses (both P < .001).
Significantly higher proportions of patients receiving 5 mg, 10 mg, and 15 mg tirzepatide met the A1c target of less than 7% at week 40, compared with placebo (85%-90% vs. 34%; P < .001). Significantly higher proportions of patients in the 10-mg and 15-mg dose groups also achieved A1c less than 5.7% (42% and 50%, respectively, vs. 3%).
Mean fasting glucose was also reduced significantly with all doses of tirzepatide by 58.2 mg/dL, 64.0 mg/dL, and 62.6 mg/dL, respectively, versus 39.2 mg/dL with placebo (all P <0.001 vs. placebo).
At week 40, mean body weight reductions from baseline were 5.4 kg (11.9 lbs), 7.5 kg, and 8.8 kg versus just 1.6 kg with placebo (all P <0.001 vs. placebo).
All three tirzepatide doses were also associated with significant improvements from baseline in total cholesterol, low-density lipoprotein cholesterol, very low-density lipoprotein cholesterol, and triglycerides.
Gastrointestinal adverse events, hypoglycemia seen in minority
The most common treatment-emergent adverse events in the tirzepatide groups versus placebo were gastrointestinal, including diarrhea (12%-21% vs. 10%), nausea (13%-18% vs. 2.5%), vomiting (7%-13% vs. 2.5%), and decreased appetite (7%-14% vs. 1.7%). Most of these adverse events were mild to moderate in intensity and decreased over time in the tirzepatide groups.
There were no deaths in the study. Serious adverse events were reported by 8%-11% in the tirzepatide groups, compared with 8% in the placebo group. Drug discontinuation due to adverse events occurred in 6.0%, 8.4%, and 10.8% of the 5-mg, 10-mg, and 15-mg dose groups, respectively, versus 2.5% in the placebo group.
Rates of hypoglycemia (less than or equal to 70 mg/dL) ranged from 14.2% to 19.3% with tirzepatide versus 12.5% with placebo. There were three episodes of severe hypoglycemia (less than 54 mg/dL), two with 10 mg tirzepatide and one with 15 mg tirzepatide.
Editorial raises questions
In his editorial, Dr. Chipkin writes that the study “demonstrated that use of tirzepatide was associated with significant reductions in A1c and weight in a fairly homogeneous cohort of patients with type 2 diabetes who were receiving insulin glargine with or without metformin.”
“The protocol answered questions about efficacy but left open questions about generalizability and effectiveness in different populations, especially patients with certain complications or comorbid chronic diseases.” He also notes that younger adults and Black patients were not well-represented.
And the study didn’t allow for dividing up the glargine dose or for adding short-acting insulin before meals or any other pre-meal medications and “thus may represent a departure from usual care” in the setting of rising glucose levels.
The authors themselves acknowledge that “the postprandial glucose excursions observed in the placebo group suggest an additional prandial intervention was likely needed in some patients, despite the strict inclusion criteria and the treat-to-target-approach used in the study.”
Dr. Chipkin concludes that “although patients are likely to embrace a medication with weight loss outcomes, the protocol also leaves unanswered questions about reducing insulin and evaluating the comparative risk of adverse effects.”
The study was sponsored by Eli Lilly. Dr. Dahl has reported receiving personal fees from Eli Lilly during the conduct of the study and personal fees from Afimmune, Novo Nordisk, and Novartis outside the submitted work. Dr. Chipkin has reported no relevant financial relationships.
A version of this article first appeared on Medscape.com.