Brain Cancer: Epidemiology, TBI, and New Treatments

Article Type
Changed
Display Headline

Brain Cancer: Epidemiology, TBI, and New Treatments

Click to view more from Cancer Data Trends 2025. 

References
  1. Bihn JR, Cioffi G, Waite KA, et al. Brain tumors in United States military veterans.
    Neuro Oncol. 2024;26(2):387-396. doi:10.1093/neuonc/noad182
  2. Stewart IJ, Howard JT, Poltavsky E, et al. Traumatic Brain Injury and Subsequent
    Risk of Brain Cancer in US Veterans of the Iraq and Afghanistan Wars. JAMA Netw
    Open. 2024;7(2):e2354588. doi:10.1001/jamanetworkopen.2023.54588
  3. DoD/USU Brain Tissue Repository. December 15, 2023. Accessed December 11,
    2024. https://researchbraininjury.org/
  4. Munch TN, Gørtz S, Wohlfahrt J, Melbye M. The long-term risk of malignant
    astrocytic tumors after structural brain injury--a nationwide cohort study. Neuro
    Oncol. 2015;17(5):718-724. doi:10.1093/neuonc/nou312
  5. Strowd RE, Dunbar EM, Gan HK, et al. Practical guidance for telemedicine use in
    neuro-oncology. Neurooncol Pract. 2022;9(2):91-104. doi:10.1093/nop/npac002
  6. Parikh DA, Rodgers TD, Passero VA, et al. Teleoncology in the Veterans Health
    Administration: Models of Care and the Veteran Experience. Am Soc Clin Oncol Educ
    Book. 2024;44(e100042. doi:10.1200/EDBK_100042
  7. Batool SM, Escobedo AK, Hsia T, et al. Clinical utility of a blood based assay for
    the detection of IDH1.R132H-mutant gliomas. Nat Commun. 2024;15(1):7074.
    doi:10.1038/s41467-024-51332-7
  8. Mellinghoff IK, van den Bent MJ, Blumenthal DT, et al; INDIGO Trial Investigators.
    Vorasidenib in IDH1- or IDH2-Mutant Low-Grade Glioma. N Engl J Med.
    2023;389(7):589-601. doi:10.1056/NEJMoa2304194
  9. FDA. US Food and Drug Administration. FDA approves vorasidenib for Grade 2
    astrocytoma or oligodendroglioma with a susceptible IDH1 or IDH2 mutation.
    Accessed December 11, 2024. https://www.fda.gov/drugs/resourcesinformation-
    approved-drugs/fda-approves-vorasidenib-grade-2-astrocytoma-oroligodendroglioma-
    susceptible-idh1-or-idh2-mutation
  10. NIH. National Cancer Institute. Tovorafenib Approved for Some Children with Low-
    Grade Glioma. Accessed December 11, 2024. https://www.cancer.gov/news-events/
    cancer-currents-blog/2024/pediatric-low-grade-glioma-tovorafenib-braf
  11. The Veteran Population. Accessed December 11, 2024. https://www.va.gov/vetdata/
    docs/surveysandstudies/vetpop.pdf
  12. Miller AM, Szalontay L, Bouvier N, et al. Next-generation sequencing of
    cerebrospinal fluid for clinical molecular diagnostics in pediatric, adolescent
    and young adult brain tumor patients. Neuro Oncol. 2022;24(10):1763-1772.
    doi:10.1093/neuonc/noac035
Author and Disclosure Information

Margaret O. Johnson, MD, MPH
Assistant Professor,
Department of Neurosurgery
Duke University School of Medicine;
Staff Physician
Department of Veterans Affairs
National Tele-Oncology Program
Durham, North Carolina


Dr. Johnson has no relevant financial relationships to disclose. 

Publications
Topics
Author and Disclosure Information

Margaret O. Johnson, MD, MPH
Assistant Professor,
Department of Neurosurgery
Duke University School of Medicine;
Staff Physician
Department of Veterans Affairs
National Tele-Oncology Program
Durham, North Carolina


Dr. Johnson has no relevant financial relationships to disclose. 

Author and Disclosure Information

Margaret O. Johnson, MD, MPH
Assistant Professor,
Department of Neurosurgery
Duke University School of Medicine;
Staff Physician
Department of Veterans Affairs
National Tele-Oncology Program
Durham, North Carolina


Dr. Johnson has no relevant financial relationships to disclose. 

Click to view more from Cancer Data Trends 2025. 

Click to view more from Cancer Data Trends 2025. 

References
  1. Bihn JR, Cioffi G, Waite KA, et al. Brain tumors in United States military veterans.
    Neuro Oncol. 2024;26(2):387-396. doi:10.1093/neuonc/noad182
  2. Stewart IJ, Howard JT, Poltavsky E, et al. Traumatic Brain Injury and Subsequent
    Risk of Brain Cancer in US Veterans of the Iraq and Afghanistan Wars. JAMA Netw
    Open. 2024;7(2):e2354588. doi:10.1001/jamanetworkopen.2023.54588
  3. DoD/USU Brain Tissue Repository. December 15, 2023. Accessed December 11,
    2024. https://researchbraininjury.org/
  4. Munch TN, Gørtz S, Wohlfahrt J, Melbye M. The long-term risk of malignant
    astrocytic tumors after structural brain injury--a nationwide cohort study. Neuro
    Oncol. 2015;17(5):718-724. doi:10.1093/neuonc/nou312
  5. Strowd RE, Dunbar EM, Gan HK, et al. Practical guidance for telemedicine use in
    neuro-oncology. Neurooncol Pract. 2022;9(2):91-104. doi:10.1093/nop/npac002
  6. Parikh DA, Rodgers TD, Passero VA, et al. Teleoncology in the Veterans Health
    Administration: Models of Care and the Veteran Experience. Am Soc Clin Oncol Educ
    Book. 2024;44(e100042. doi:10.1200/EDBK_100042
  7. Batool SM, Escobedo AK, Hsia T, et al. Clinical utility of a blood based assay for
    the detection of IDH1.R132H-mutant gliomas. Nat Commun. 2024;15(1):7074.
    doi:10.1038/s41467-024-51332-7
  8. Mellinghoff IK, van den Bent MJ, Blumenthal DT, et al; INDIGO Trial Investigators.
    Vorasidenib in IDH1- or IDH2-Mutant Low-Grade Glioma. N Engl J Med.
    2023;389(7):589-601. doi:10.1056/NEJMoa2304194
  9. FDA. US Food and Drug Administration. FDA approves vorasidenib for Grade 2
    astrocytoma or oligodendroglioma with a susceptible IDH1 or IDH2 mutation.
    Accessed December 11, 2024. https://www.fda.gov/drugs/resourcesinformation-
    approved-drugs/fda-approves-vorasidenib-grade-2-astrocytoma-oroligodendroglioma-
    susceptible-idh1-or-idh2-mutation
  10. NIH. National Cancer Institute. Tovorafenib Approved for Some Children with Low-
    Grade Glioma. Accessed December 11, 2024. https://www.cancer.gov/news-events/
    cancer-currents-blog/2024/pediatric-low-grade-glioma-tovorafenib-braf
  11. The Veteran Population. Accessed December 11, 2024. https://www.va.gov/vetdata/
    docs/surveysandstudies/vetpop.pdf
  12. Miller AM, Szalontay L, Bouvier N, et al. Next-generation sequencing of
    cerebrospinal fluid for clinical molecular diagnostics in pediatric, adolescent
    and young adult brain tumor patients. Neuro Oncol. 2022;24(10):1763-1772.
    doi:10.1093/neuonc/noac035
References
  1. Bihn JR, Cioffi G, Waite KA, et al. Brain tumors in United States military veterans.
    Neuro Oncol. 2024;26(2):387-396. doi:10.1093/neuonc/noad182
  2. Stewart IJ, Howard JT, Poltavsky E, et al. Traumatic Brain Injury and Subsequent
    Risk of Brain Cancer in US Veterans of the Iraq and Afghanistan Wars. JAMA Netw
    Open. 2024;7(2):e2354588. doi:10.1001/jamanetworkopen.2023.54588
  3. DoD/USU Brain Tissue Repository. December 15, 2023. Accessed December 11,
    2024. https://researchbraininjury.org/
  4. Munch TN, Gørtz S, Wohlfahrt J, Melbye M. The long-term risk of malignant
    astrocytic tumors after structural brain injury--a nationwide cohort study. Neuro
    Oncol. 2015;17(5):718-724. doi:10.1093/neuonc/nou312
  5. Strowd RE, Dunbar EM, Gan HK, et al. Practical guidance for telemedicine use in
    neuro-oncology. Neurooncol Pract. 2022;9(2):91-104. doi:10.1093/nop/npac002
  6. Parikh DA, Rodgers TD, Passero VA, et al. Teleoncology in the Veterans Health
    Administration: Models of Care and the Veteran Experience. Am Soc Clin Oncol Educ
    Book. 2024;44(e100042. doi:10.1200/EDBK_100042
  7. Batool SM, Escobedo AK, Hsia T, et al. Clinical utility of a blood based assay for
    the detection of IDH1.R132H-mutant gliomas. Nat Commun. 2024;15(1):7074.
    doi:10.1038/s41467-024-51332-7
  8. Mellinghoff IK, van den Bent MJ, Blumenthal DT, et al; INDIGO Trial Investigators.
    Vorasidenib in IDH1- or IDH2-Mutant Low-Grade Glioma. N Engl J Med.
    2023;389(7):589-601. doi:10.1056/NEJMoa2304194
  9. FDA. US Food and Drug Administration. FDA approves vorasidenib for Grade 2
    astrocytoma or oligodendroglioma with a susceptible IDH1 or IDH2 mutation.
    Accessed December 11, 2024. https://www.fda.gov/drugs/resourcesinformation-
    approved-drugs/fda-approves-vorasidenib-grade-2-astrocytoma-oroligodendroglioma-
    susceptible-idh1-or-idh2-mutation
  10. NIH. National Cancer Institute. Tovorafenib Approved for Some Children with Low-
    Grade Glioma. Accessed December 11, 2024. https://www.cancer.gov/news-events/
    cancer-currents-blog/2024/pediatric-low-grade-glioma-tovorafenib-braf
  11. The Veteran Population. Accessed December 11, 2024. https://www.va.gov/vetdata/
    docs/surveysandstudies/vetpop.pdf
  12. Miller AM, Szalontay L, Bouvier N, et al. Next-generation sequencing of
    cerebrospinal fluid for clinical molecular diagnostics in pediatric, adolescent
    and young adult brain tumor patients. Neuro Oncol. 2022;24(10):1763-1772.
    doi:10.1093/neuonc/noac035
Publications
Publications
Topics
Article Type
Display Headline

Brain Cancer: Epidemiology, TBI, and New Treatments

Display Headline

Brain Cancer: Epidemiology, TBI, and New Treatments

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Eyebrow Default
SLIDESHOW
Gate On Date
Un-Gate On Date
Use ProPublica
CFC Schedule Remove Status
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Article Slideshow Optional Introduction

Brain cancer represents a notable health challenge for veterans. The first large-scale study on brain tumors in US veterans showed that the most frequently diagnosed tumors were nonmalignant pituitary tumors, nonmalignant meningiomas, and glioblastomas.1 Exposure to combat-related traumatic brain injuries (TBIs) may contribute to the risk for brain tumors, and further research is ongoing.2,3 A 2024 study demonstrated that veterans with moderate/severe and penetrating TBIs had an increased risk of brain cancer, but previous research in civilians has not echoed these findings.2,4 

As our understanding of the connection between TBI and brain cancer evolves, health care initiatives and new research are aiming to serve the veteran population most at risk. Telehealth is being used throughout the VA to help veterans, especially those in rural locations, receive neuro-oncology care.5,6 In terms of research, the DoD and Uniformed Services University have established a Brain Tissue Repository. This program may be better able to explore the TBI/brain cancer connection through veteran brain tissue donation.3

New assays are also being developed to help identify brain cancer faster. Liquid biopsy techniques focused on IDH1 have shown promise.7 In terms of treatment, the IDH1/IDH2 inhibitor vorasidenib prolonged progression free survival in grade 2 IDH-mutant gliomas in clinical trials and was approved by the FDA in 2024.8,9 Although not pertaining directly to the veteran population, a new treatment for pediatric brain tumors also was approved by the FDA in 2024.10 These milestones reflect an encouraging trend in precision medicine, opening doors for more targeted brain tumor therapies and tools across various patient groups.

Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article
survey writer start date
Slide Media

AI-Based Risk Stratification for Oropharyngeal Carcinomas: AIROC

Article Type
Changed
Display Headline

AI-Based Risk Stratification for Oropharyngeal Carcinomas: AIROC

Click here to view more from Cancer Data Trends 2025.

References

1.       Zevallos JP, Kramer JR, Sandulache VC, et al. National trends in oropharyngeal cancer incidence and survival within the Veterans Affairs Health Care System. Head Neck. 2021;43(1):108-115. doi:10.1002/hed.26465

2.       Fakhry C, Blackford AL, Neuner G, et al. Association of oral human papillomavirus DNA persistence with cancer progression after primary treatment for oral cavity and oropharyngeal squamous cell carcinoma. JAMA Oncol. 2019;5(7):985-992. doi:10.1001/jamaoncol.2019.0439

3.       Fakhry C, Zhang Q, Gillison ML, et al. Validation of NRG oncology/RTOG-0129 risk groups for HPV-positive and HPV-negative oropharyngeal squamous cell cancer: implications for risk-based therapeutic intensity trials. Cancer. 2019;125(12):2027-2038. doi:10.1002/cncr.32025

4.       O'Sullivan B, Huang SH, Su J, et al. Development and validation of a staging system for HPV-related oropharyngeal cancer by the International Collaboration on Oropharyngeal cancer Network for Staging (ICON-S): a multicentre cohort study. Lancet Oncol. 2016;17(4):440-451. doi:10.1016/S1470-2045(15)00560-4

5.       Koyuncu CF, Lu C, Bera K, et al. Computerized tumor multinucleation index (MuNI) is prognostic in p16+ oropharyngeal carcinoma. J Clin Invest. 2021;131(8):e145488. doi:10.1172/JCI145488

6.       Lu C, Lewis JS Jr, Dupont WD, Plummer WD Jr, Janowczyk A, Madabhushi A. An oral cavity squamous cell carcinoma quantitative histomorphometric-based image classifier of nuclear morphology can risk stratify patients for disease-specific survival. Mod Pathol. 2017;30(12):1655-1665. doi:10.1038/modpathol.2017.98

7.       Corredor G, Toro P, Koyuncu C, et al. An imaging biomarker of tumor-infiltrating lymphocytes to risk-stratify patients with HPV-associated oropharyngeal cancer. J Natl Cancer Inst. 2022;114(4):609-617. doi:10.1093/jnci/djab215

8.       Cancer stat facts: oral cavity and pharynx cancer. National Cancer Institute, SEER Program. Accessed November 5, 2024. https://seer.cancer.gov/statfacts/html/oralcav.html

9.       Cancers associated with human papillomavirus. Centers for Disease Control and Prevention. September 18, 2024. Accessed November 5, 2024. https://www.cdc.gov/united-states-cancer-statistics/publications/hpv-associated-cancers.html

10.      Chidambaram S, Chang SH, Sandulache VC, Mazul AL, Zevallos JP. Human papillomavirus vaccination prevalence and disproportionate cancer burden among US veterans. JAMA Oncol. 2023;9(5):712-714. doi:10.1001/jamaoncol.2022.7944

11.      Corredor G, Wang X, Zhou Y, et al. Spatial architecture and arrangement of tumor-infiltrating lymphocytes for predicting likelihood of recurrence in early-stage non-small cell lung cancer. Clin Cancer Res. 2019;25(5):1526-1534. doi:10.1158/1078-0432.CCR-18-2013

12.      Alilou M, Orooji M, Beig N, et al. Quantitative vessel tortuosity: a potential CT imaging biomarker for distinguishing lung granulomas from adenocarcinomas. Sci Rep. 2018;8(1):15290. doi:10.1038/s41598-018-33473-0

13.      Amin MB, Greene FL, Edge SB, Compton CC, Gershenwald JE, Brookland RK, Meyer L, Gress DM, Byrd DR, Winchester DP. The Eighth Edition AJCC Cancer Staging Manual: Continuing to build a bridge from a population-based to a more "personalized" approach to cancer staging. CA Cancer J Clin. 2017;67(2):93-99. doi:10.3322/caac.21388

Author and Disclosure Information

Vlad C. Sandulache, MD, PhD
Associate Professor;
Department of Otolaryngology,
Head and Neck Surgery
Baylor College of Medicine;
Staff Physician
Michael E. DeBakey VA Medical Center
Houston, Texas
 

Disclosures: Serve(d) as a director, officer, partner, employee, advisor, consultant, or trustee for: FemtoVox Inc (Consultant; Equity holder); PDS Biotech (consultant).
Received income in an amount equal to or greater than $250 from: FemtoVox Inc; PDS Biotech.

Publications
Topics
Author and Disclosure Information

Vlad C. Sandulache, MD, PhD
Associate Professor;
Department of Otolaryngology,
Head and Neck Surgery
Baylor College of Medicine;
Staff Physician
Michael E. DeBakey VA Medical Center
Houston, Texas
 

Disclosures: Serve(d) as a director, officer, partner, employee, advisor, consultant, or trustee for: FemtoVox Inc (Consultant; Equity holder); PDS Biotech (consultant).
Received income in an amount equal to or greater than $250 from: FemtoVox Inc; PDS Biotech.

Author and Disclosure Information

Vlad C. Sandulache, MD, PhD
Associate Professor;
Department of Otolaryngology,
Head and Neck Surgery
Baylor College of Medicine;
Staff Physician
Michael E. DeBakey VA Medical Center
Houston, Texas
 

Disclosures: Serve(d) as a director, officer, partner, employee, advisor, consultant, or trustee for: FemtoVox Inc (Consultant; Equity holder); PDS Biotech (consultant).
Received income in an amount equal to or greater than $250 from: FemtoVox Inc; PDS Biotech.

Click here to view more from Cancer Data Trends 2025.

Click here to view more from Cancer Data Trends 2025.

References

1.       Zevallos JP, Kramer JR, Sandulache VC, et al. National trends in oropharyngeal cancer incidence and survival within the Veterans Affairs Health Care System. Head Neck. 2021;43(1):108-115. doi:10.1002/hed.26465

2.       Fakhry C, Blackford AL, Neuner G, et al. Association of oral human papillomavirus DNA persistence with cancer progression after primary treatment for oral cavity and oropharyngeal squamous cell carcinoma. JAMA Oncol. 2019;5(7):985-992. doi:10.1001/jamaoncol.2019.0439

3.       Fakhry C, Zhang Q, Gillison ML, et al. Validation of NRG oncology/RTOG-0129 risk groups for HPV-positive and HPV-negative oropharyngeal squamous cell cancer: implications for risk-based therapeutic intensity trials. Cancer. 2019;125(12):2027-2038. doi:10.1002/cncr.32025

4.       O'Sullivan B, Huang SH, Su J, et al. Development and validation of a staging system for HPV-related oropharyngeal cancer by the International Collaboration on Oropharyngeal cancer Network for Staging (ICON-S): a multicentre cohort study. Lancet Oncol. 2016;17(4):440-451. doi:10.1016/S1470-2045(15)00560-4

5.       Koyuncu CF, Lu C, Bera K, et al. Computerized tumor multinucleation index (MuNI) is prognostic in p16+ oropharyngeal carcinoma. J Clin Invest. 2021;131(8):e145488. doi:10.1172/JCI145488

6.       Lu C, Lewis JS Jr, Dupont WD, Plummer WD Jr, Janowczyk A, Madabhushi A. An oral cavity squamous cell carcinoma quantitative histomorphometric-based image classifier of nuclear morphology can risk stratify patients for disease-specific survival. Mod Pathol. 2017;30(12):1655-1665. doi:10.1038/modpathol.2017.98

7.       Corredor G, Toro P, Koyuncu C, et al. An imaging biomarker of tumor-infiltrating lymphocytes to risk-stratify patients with HPV-associated oropharyngeal cancer. J Natl Cancer Inst. 2022;114(4):609-617. doi:10.1093/jnci/djab215

8.       Cancer stat facts: oral cavity and pharynx cancer. National Cancer Institute, SEER Program. Accessed November 5, 2024. https://seer.cancer.gov/statfacts/html/oralcav.html

9.       Cancers associated with human papillomavirus. Centers for Disease Control and Prevention. September 18, 2024. Accessed November 5, 2024. https://www.cdc.gov/united-states-cancer-statistics/publications/hpv-associated-cancers.html

10.      Chidambaram S, Chang SH, Sandulache VC, Mazul AL, Zevallos JP. Human papillomavirus vaccination prevalence and disproportionate cancer burden among US veterans. JAMA Oncol. 2023;9(5):712-714. doi:10.1001/jamaoncol.2022.7944

11.      Corredor G, Wang X, Zhou Y, et al. Spatial architecture and arrangement of tumor-infiltrating lymphocytes for predicting likelihood of recurrence in early-stage non-small cell lung cancer. Clin Cancer Res. 2019;25(5):1526-1534. doi:10.1158/1078-0432.CCR-18-2013

12.      Alilou M, Orooji M, Beig N, et al. Quantitative vessel tortuosity: a potential CT imaging biomarker for distinguishing lung granulomas from adenocarcinomas. Sci Rep. 2018;8(1):15290. doi:10.1038/s41598-018-33473-0

13.      Amin MB, Greene FL, Edge SB, Compton CC, Gershenwald JE, Brookland RK, Meyer L, Gress DM, Byrd DR, Winchester DP. The Eighth Edition AJCC Cancer Staging Manual: Continuing to build a bridge from a population-based to a more "personalized" approach to cancer staging. CA Cancer J Clin. 2017;67(2):93-99. doi:10.3322/caac.21388

References

1.       Zevallos JP, Kramer JR, Sandulache VC, et al. National trends in oropharyngeal cancer incidence and survival within the Veterans Affairs Health Care System. Head Neck. 2021;43(1):108-115. doi:10.1002/hed.26465

2.       Fakhry C, Blackford AL, Neuner G, et al. Association of oral human papillomavirus DNA persistence with cancer progression after primary treatment for oral cavity and oropharyngeal squamous cell carcinoma. JAMA Oncol. 2019;5(7):985-992. doi:10.1001/jamaoncol.2019.0439

3.       Fakhry C, Zhang Q, Gillison ML, et al. Validation of NRG oncology/RTOG-0129 risk groups for HPV-positive and HPV-negative oropharyngeal squamous cell cancer: implications for risk-based therapeutic intensity trials. Cancer. 2019;125(12):2027-2038. doi:10.1002/cncr.32025

4.       O'Sullivan B, Huang SH, Su J, et al. Development and validation of a staging system for HPV-related oropharyngeal cancer by the International Collaboration on Oropharyngeal cancer Network for Staging (ICON-S): a multicentre cohort study. Lancet Oncol. 2016;17(4):440-451. doi:10.1016/S1470-2045(15)00560-4

5.       Koyuncu CF, Lu C, Bera K, et al. Computerized tumor multinucleation index (MuNI) is prognostic in p16+ oropharyngeal carcinoma. J Clin Invest. 2021;131(8):e145488. doi:10.1172/JCI145488

6.       Lu C, Lewis JS Jr, Dupont WD, Plummer WD Jr, Janowczyk A, Madabhushi A. An oral cavity squamous cell carcinoma quantitative histomorphometric-based image classifier of nuclear morphology can risk stratify patients for disease-specific survival. Mod Pathol. 2017;30(12):1655-1665. doi:10.1038/modpathol.2017.98

7.       Corredor G, Toro P, Koyuncu C, et al. An imaging biomarker of tumor-infiltrating lymphocytes to risk-stratify patients with HPV-associated oropharyngeal cancer. J Natl Cancer Inst. 2022;114(4):609-617. doi:10.1093/jnci/djab215

8.       Cancer stat facts: oral cavity and pharynx cancer. National Cancer Institute, SEER Program. Accessed November 5, 2024. https://seer.cancer.gov/statfacts/html/oralcav.html

9.       Cancers associated with human papillomavirus. Centers for Disease Control and Prevention. September 18, 2024. Accessed November 5, 2024. https://www.cdc.gov/united-states-cancer-statistics/publications/hpv-associated-cancers.html

10.      Chidambaram S, Chang SH, Sandulache VC, Mazul AL, Zevallos JP. Human papillomavirus vaccination prevalence and disproportionate cancer burden among US veterans. JAMA Oncol. 2023;9(5):712-714. doi:10.1001/jamaoncol.2022.7944

11.      Corredor G, Wang X, Zhou Y, et al. Spatial architecture and arrangement of tumor-infiltrating lymphocytes for predicting likelihood of recurrence in early-stage non-small cell lung cancer. Clin Cancer Res. 2019;25(5):1526-1534. doi:10.1158/1078-0432.CCR-18-2013

12.      Alilou M, Orooji M, Beig N, et al. Quantitative vessel tortuosity: a potential CT imaging biomarker for distinguishing lung granulomas from adenocarcinomas. Sci Rep. 2018;8(1):15290. doi:10.1038/s41598-018-33473-0

13.      Amin MB, Greene FL, Edge SB, Compton CC, Gershenwald JE, Brookland RK, Meyer L, Gress DM, Byrd DR, Winchester DP. The Eighth Edition AJCC Cancer Staging Manual: Continuing to build a bridge from a population-based to a more "personalized" approach to cancer staging. CA Cancer J Clin. 2017;67(2):93-99. doi:10.3322/caac.21388

Publications
Publications
Topics
Article Type
Display Headline

AI-Based Risk Stratification for Oropharyngeal Carcinomas: AIROC

Display Headline

AI-Based Risk Stratification for Oropharyngeal Carcinomas: AIROC

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Eyebrow Default
SLIDESHOW
Gate On Date
Un-Gate On Date
Use ProPublica
CFC Schedule Remove Status
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Article Slideshow Optional Introduction

In recent years, human papillomavirus (HPV)-associated oropharyngeal squamous cell carcinoma (OPSCC) has been on the rise in the veteran population, where smoking rates (a contributor to OPSCC development) have historically been higher than in the general population.1 Variable treatment response rates and survival in patients with OPSCC indicate that whereas some patients may benefit from treatment de-escalation and a concomitant reduction in treatment-related adverse effects, aggressive disease in a subset of patients mandates the use of rigorous chemoradiation treatments.2,3 At present, effective stratification systems identifying these patient subsets are lacking.4

To address this clinical gap, a team of VA clinicians and researchers is developing AIROC (an artificial intelligence [AI]-based risk stratification algorithm for oropharyngeal carcinomas).a AIROC is an AI and machine learning (ML)-based algorithm that may successfully stratify veterans with HPV-associated OPSCC into risk categories that can enable safer de-escalation or escalation of cancer treatments.5-7 By integrating AIROC into clinical practice, the VHA aims to personalize cancer treatment, improve patient outcomes, and establish a new standard of care for veterans with this deadly disease.
 

aThis work is funded by the Veterans Affairs Clinical Science Research and Development (CSRD) Service (grant I01BX006380).

Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article
survey writer start date
Slide Media

Rising Kidney Cancer Cases and Emerging Treatments for Veterans

Article Type
Changed
Display Headline

Rising Kidney Cancer Cases and Emerging Treatments for Veterans

Click here to view more from Cancer Data Trends 2025.

References

1. American Cancer Society website. Key Statistics About Kidney Cancer. Revised May 2024. Accessed December 18, 2024. https://www.cancer.org/cancer/types/kidney-cancer/about/key-statistics.html

2. American Cancer Society website. Cancer Facts & Figures 2024. 2024—First Year the US Expects More than 2M New Cases of Cancer. Published January 17, 2024. Accessed December 18, 2024.  https://www.cancer.org/research/acs-research-news/facts-and-figures-2024.html 

3.United States Department of Veterans Affairs factsheet. Pact Act & Gulf War, Post-911 Era Veterans. Published July 2023. Accessed December 18, 2024. chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.va.gov/files/2023-08/PACT%20Act%20and%20Gulf%20War%2C%20Post-911%20Veterans%20NEW%20July%202023.pdf 

4. Li M, Li L, Zheng J, Li Z, Li S, Wang K, Chen X. Liquid biopsy at the frontier in renal cell carcinoma: recent analysis of techniques and clinical application. Mol Cancer. 2023 Feb 21;22(1):37. doi:10.1186/s12943-023-01745-7

5. Bellman NL. Incidental Finding of Renal Cell Carcinoma: Detected by a Thrombus in the Inferior Vena Cava. Journal of Diagnostic Medical Sonography. 2015;31(2):118-121. doi:10.1177/8756479314546691

6. Brown JT. Adjuvant Therapy for Non-Clear Cell Renal Cell Carcinoma—The Ascent Continues. JAMA Network Open. 2024 Aug 1;7(8):e2425251. doi:10.1001/jamanetworkopen.2024.25251

7. Siva S, Louie AV, Kotecha R, et al. Stereotactic body radiotherapy for primary renal cell carcinoma: a systematic review and practice guideline from the International Society of Stereotactic Radiosurgery (ISRS). Lancet Oncol. 2024 Jan;25(1):e18-e28. doi: 10.1016/S1470-2045(23)00513-2.

8. Choueiri TK, Tomczak P, Park SH, et al; for the KEYNOTE-564 Investigators. Overall Survival with Adjuvant Pembrolizumab in Renal-Cell Carcinoma. N Engl J Med. 2024 Apr 18;390(15):1359-1371. doi:10.1056/NEJMoa2312695

9. Bytnar JA, McGlynn KA, Kern SQ, Shriver CD, Zhu K. Incidence rates of bladder and kidney cancers among US military servicemen: comparison with the rates in the general US population. Eur J Cancer Prev. 2024 Nov 1;33(6):505-511. doi:10.1097/CEJ.0000000000000886

Author and Disclosure Information

Matthew J. Boyer, MD
Medical Instructor, Department of Radiation Oncology
Duke University School of Medicine;
Physician, Department of Radiation Oncology
Durham VA Medical Center
Durham, North Carolina
Dr. Boyer has disclosed no relevant financial relationships.

Publications
Topics
Author and Disclosure Information

Matthew J. Boyer, MD
Medical Instructor, Department of Radiation Oncology
Duke University School of Medicine;
Physician, Department of Radiation Oncology
Durham VA Medical Center
Durham, North Carolina
Dr. Boyer has disclosed no relevant financial relationships.

Author and Disclosure Information

Matthew J. Boyer, MD
Medical Instructor, Department of Radiation Oncology
Duke University School of Medicine;
Physician, Department of Radiation Oncology
Durham VA Medical Center
Durham, North Carolina
Dr. Boyer has disclosed no relevant financial relationships.

Click here to view more from Cancer Data Trends 2025.

Click here to view more from Cancer Data Trends 2025.

References

1. American Cancer Society website. Key Statistics About Kidney Cancer. Revised May 2024. Accessed December 18, 2024. https://www.cancer.org/cancer/types/kidney-cancer/about/key-statistics.html

2. American Cancer Society website. Cancer Facts & Figures 2024. 2024—First Year the US Expects More than 2M New Cases of Cancer. Published January 17, 2024. Accessed December 18, 2024.  https://www.cancer.org/research/acs-research-news/facts-and-figures-2024.html 

3.United States Department of Veterans Affairs factsheet. Pact Act & Gulf War, Post-911 Era Veterans. Published July 2023. Accessed December 18, 2024. chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.va.gov/files/2023-08/PACT%20Act%20and%20Gulf%20War%2C%20Post-911%20Veterans%20NEW%20July%202023.pdf 

4. Li M, Li L, Zheng J, Li Z, Li S, Wang K, Chen X. Liquid biopsy at the frontier in renal cell carcinoma: recent analysis of techniques and clinical application. Mol Cancer. 2023 Feb 21;22(1):37. doi:10.1186/s12943-023-01745-7

5. Bellman NL. Incidental Finding of Renal Cell Carcinoma: Detected by a Thrombus in the Inferior Vena Cava. Journal of Diagnostic Medical Sonography. 2015;31(2):118-121. doi:10.1177/8756479314546691

6. Brown JT. Adjuvant Therapy for Non-Clear Cell Renal Cell Carcinoma—The Ascent Continues. JAMA Network Open. 2024 Aug 1;7(8):e2425251. doi:10.1001/jamanetworkopen.2024.25251

7. Siva S, Louie AV, Kotecha R, et al. Stereotactic body radiotherapy for primary renal cell carcinoma: a systematic review and practice guideline from the International Society of Stereotactic Radiosurgery (ISRS). Lancet Oncol. 2024 Jan;25(1):e18-e28. doi: 10.1016/S1470-2045(23)00513-2.

8. Choueiri TK, Tomczak P, Park SH, et al; for the KEYNOTE-564 Investigators. Overall Survival with Adjuvant Pembrolizumab in Renal-Cell Carcinoma. N Engl J Med. 2024 Apr 18;390(15):1359-1371. doi:10.1056/NEJMoa2312695

9. Bytnar JA, McGlynn KA, Kern SQ, Shriver CD, Zhu K. Incidence rates of bladder and kidney cancers among US military servicemen: comparison with the rates in the general US population. Eur J Cancer Prev. 2024 Nov 1;33(6):505-511. doi:10.1097/CEJ.0000000000000886

References

1. American Cancer Society website. Key Statistics About Kidney Cancer. Revised May 2024. Accessed December 18, 2024. https://www.cancer.org/cancer/types/kidney-cancer/about/key-statistics.html

2. American Cancer Society website. Cancer Facts & Figures 2024. 2024—First Year the US Expects More than 2M New Cases of Cancer. Published January 17, 2024. Accessed December 18, 2024.  https://www.cancer.org/research/acs-research-news/facts-and-figures-2024.html 

3.United States Department of Veterans Affairs factsheet. Pact Act & Gulf War, Post-911 Era Veterans. Published July 2023. Accessed December 18, 2024. chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.va.gov/files/2023-08/PACT%20Act%20and%20Gulf%20War%2C%20Post-911%20Veterans%20NEW%20July%202023.pdf 

4. Li M, Li L, Zheng J, Li Z, Li S, Wang K, Chen X. Liquid biopsy at the frontier in renal cell carcinoma: recent analysis of techniques and clinical application. Mol Cancer. 2023 Feb 21;22(1):37. doi:10.1186/s12943-023-01745-7

5. Bellman NL. Incidental Finding of Renal Cell Carcinoma: Detected by a Thrombus in the Inferior Vena Cava. Journal of Diagnostic Medical Sonography. 2015;31(2):118-121. doi:10.1177/8756479314546691

6. Brown JT. Adjuvant Therapy for Non-Clear Cell Renal Cell Carcinoma—The Ascent Continues. JAMA Network Open. 2024 Aug 1;7(8):e2425251. doi:10.1001/jamanetworkopen.2024.25251

7. Siva S, Louie AV, Kotecha R, et al. Stereotactic body radiotherapy for primary renal cell carcinoma: a systematic review and practice guideline from the International Society of Stereotactic Radiosurgery (ISRS). Lancet Oncol. 2024 Jan;25(1):e18-e28. doi: 10.1016/S1470-2045(23)00513-2.

8. Choueiri TK, Tomczak P, Park SH, et al; for the KEYNOTE-564 Investigators. Overall Survival with Adjuvant Pembrolizumab in Renal-Cell Carcinoma. N Engl J Med. 2024 Apr 18;390(15):1359-1371. doi:10.1056/NEJMoa2312695

9. Bytnar JA, McGlynn KA, Kern SQ, Shriver CD, Zhu K. Incidence rates of bladder and kidney cancers among US military servicemen: comparison with the rates in the general US population. Eur J Cancer Prev. 2024 Nov 1;33(6):505-511. doi:10.1097/CEJ.0000000000000886

Publications
Publications
Topics
Article Type
Display Headline

Rising Kidney Cancer Cases and Emerging Treatments for Veterans

Display Headline

Rising Kidney Cancer Cases and Emerging Treatments for Veterans

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Eyebrow Default
SLIDESHOW
Gate On Date
Un-Gate On Date
Use ProPublica
CFC Schedule Remove Status
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Article Slideshow Optional Introduction

Cases of kidney cancer, also known as renal cell carcinoma (RCC), are increasing, with more than 81,600 expected diagnoses in 2024, largely due to improved imaging and rising rates of risk factors, including obesity, hypertension, and diabetes.1,2 Veterans, particularly those exposed to chemicals and perfluoroalkyl and polyfluoroalkyl substances (PFAS), face a higher risk for RCC. Under the PACT Act, RCC may be recognized as service-related for Gulf War and post-9/11 veterans.3,4

RCC accounts for more than 90% of kidney cancers and is often asymptomatic, making early detection reliant on an incidental finding on imaging.4,5 Treatment for localized RCC typically involves surgery, with adjuvant immunotherapy for high-risk cases, though up to 50% of patients may still experience recurrence.6 Emerging treatments like stereotactic body radiotherapy (SBRT) are gaining attention for managing inoperable or high-risk RCC as it has demonstrated high rates of effectiveness, local control, and strong survival outcomes; however, further comparison with surgical options is needed.7 Advances in adjuvant therapies for kidney cancer emphasize the potential to extend survival for high-risk patients post-surgery, but balancing the benefits with risks of this treatment remains crucial.8

Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article
survey writer start date
Slide Media

Advances in Blood Cancer Care for Veterans

Article Type
Changed
Display Headline

Advances in Blood Cancer Care for Veterans

Click to view more from Cancer Data Trends 2025.

References
  1. Li W, ed. The 5th Edition of the World Health Organization Classification of
    Hematolymphoid Tumors. In: Leukemia [Internet]. Brisbane (AU): Exon Publications;
    October 16, 2022. https://www.ncbi.nlm.nih.gov/books/NBK586208/
  2. Graf SA, Samples LS, Keating TM, Garcia JM. Clinical research in older adults with
    hematologic malignancies: Opportunities for alignment in the Veterans Affairs. Semin
    Oncol. 2020;47(1):94-101. doi:10.1053/j.seminoncol.2020.02.010.
  3. Tiu A, McKinnell Z, Liu S, et al. Risk of myeloproliferative neoplasms among
    U.S. Veterans from Korean, Vietnam, and Persian Gulf War eras. Am J Hematol.
    2024;99(10):1969-1978. doi:10.1002/ajh.27438
  4. Ma H, Wan JY, Cortessis VK, Gupta P, Cozen W. Survival in Agent Orange
    exposed and unexposed Vietnam-era veterans who were diagnosed with
    lymphoid malignancies. Blood Adv. 2024;8(4):1037-1041. doi:10.1182/
    bloodadvances.2023011999
  5. Friedman DR, Rodgers TD, Kovalick C, Yellapragada S, Szumita L, Weiss ES. Veterans
    with blood cancers: Clinical trial navigation and the challenge of rurality. J Rural
    Health. 2024;40(1):114-120. doi:10.1111/jrh.12773
  6. Parikh DA, Rodgers TD, Passero VA, et al. Teleoncology in the Veterans Health
    Administration: Models of Care and the Veteran Experience. Am Soc Clin Oncol Educ
    Book. 2024;44(3):e100042. doi:10.1200/EDBK_100042
  7. Pulumati A, Pulumati A, Dwarakanath BS, Verma A, Papineni RVL. Technological
    advancements in cancer diagnostics: Improvements and limitations. Cancer Rep
    (Hoboken). 2023;6(2):e1764. doi:10.1002/cnr2.1764
Author and Disclosure Information

Thomas Rodgers, MD

Durham VA Medical Center
Durham, North Carolina


Dr. Rodgers has no relevant financial relationships to disclose.

Publications
Topics
Author and Disclosure Information

Thomas Rodgers, MD

Durham VA Medical Center
Durham, North Carolina


Dr. Rodgers has no relevant financial relationships to disclose.

Author and Disclosure Information

Thomas Rodgers, MD

Durham VA Medical Center
Durham, North Carolina


Dr. Rodgers has no relevant financial relationships to disclose.

Click to view more from Cancer Data Trends 2025.

Click to view more from Cancer Data Trends 2025.

References
  1. Li W, ed. The 5th Edition of the World Health Organization Classification of
    Hematolymphoid Tumors. In: Leukemia [Internet]. Brisbane (AU): Exon Publications;
    October 16, 2022. https://www.ncbi.nlm.nih.gov/books/NBK586208/
  2. Graf SA, Samples LS, Keating TM, Garcia JM. Clinical research in older adults with
    hematologic malignancies: Opportunities for alignment in the Veterans Affairs. Semin
    Oncol. 2020;47(1):94-101. doi:10.1053/j.seminoncol.2020.02.010.
  3. Tiu A, McKinnell Z, Liu S, et al. Risk of myeloproliferative neoplasms among
    U.S. Veterans from Korean, Vietnam, and Persian Gulf War eras. Am J Hematol.
    2024;99(10):1969-1978. doi:10.1002/ajh.27438
  4. Ma H, Wan JY, Cortessis VK, Gupta P, Cozen W. Survival in Agent Orange
    exposed and unexposed Vietnam-era veterans who were diagnosed with
    lymphoid malignancies. Blood Adv. 2024;8(4):1037-1041. doi:10.1182/
    bloodadvances.2023011999
  5. Friedman DR, Rodgers TD, Kovalick C, Yellapragada S, Szumita L, Weiss ES. Veterans
    with blood cancers: Clinical trial navigation and the challenge of rurality. J Rural
    Health. 2024;40(1):114-120. doi:10.1111/jrh.12773
  6. Parikh DA, Rodgers TD, Passero VA, et al. Teleoncology in the Veterans Health
    Administration: Models of Care and the Veteran Experience. Am Soc Clin Oncol Educ
    Book. 2024;44(3):e100042. doi:10.1200/EDBK_100042
  7. Pulumati A, Pulumati A, Dwarakanath BS, Verma A, Papineni RVL. Technological
    advancements in cancer diagnostics: Improvements and limitations. Cancer Rep
    (Hoboken). 2023;6(2):e1764. doi:10.1002/cnr2.1764
References
  1. Li W, ed. The 5th Edition of the World Health Organization Classification of
    Hematolymphoid Tumors. In: Leukemia [Internet]. Brisbane (AU): Exon Publications;
    October 16, 2022. https://www.ncbi.nlm.nih.gov/books/NBK586208/
  2. Graf SA, Samples LS, Keating TM, Garcia JM. Clinical research in older adults with
    hematologic malignancies: Opportunities for alignment in the Veterans Affairs. Semin
    Oncol. 2020;47(1):94-101. doi:10.1053/j.seminoncol.2020.02.010.
  3. Tiu A, McKinnell Z, Liu S, et al. Risk of myeloproliferative neoplasms among
    U.S. Veterans from Korean, Vietnam, and Persian Gulf War eras. Am J Hematol.
    2024;99(10):1969-1978. doi:10.1002/ajh.27438
  4. Ma H, Wan JY, Cortessis VK, Gupta P, Cozen W. Survival in Agent Orange
    exposed and unexposed Vietnam-era veterans who were diagnosed with
    lymphoid malignancies. Blood Adv. 2024;8(4):1037-1041. doi:10.1182/
    bloodadvances.2023011999
  5. Friedman DR, Rodgers TD, Kovalick C, Yellapragada S, Szumita L, Weiss ES. Veterans
    with blood cancers: Clinical trial navigation and the challenge of rurality. J Rural
    Health. 2024;40(1):114-120. doi:10.1111/jrh.12773
  6. Parikh DA, Rodgers TD, Passero VA, et al. Teleoncology in the Veterans Health
    Administration: Models of Care and the Veteran Experience. Am Soc Clin Oncol Educ
    Book. 2024;44(3):e100042. doi:10.1200/EDBK_100042
  7. Pulumati A, Pulumati A, Dwarakanath BS, Verma A, Papineni RVL. Technological
    advancements in cancer diagnostics: Improvements and limitations. Cancer Rep
    (Hoboken). 2023;6(2):e1764. doi:10.1002/cnr2.1764
Publications
Publications
Topics
Article Type
Display Headline

Advances in Blood Cancer Care for Veterans

Display Headline

Advances in Blood Cancer Care for Veterans

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Eyebrow Default
SLIDESHOW
Gate On Date
Un-Gate On Date
Use ProPublica
CFC Schedule Remove Status
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Article Slideshow Optional Introduction

Hematologic malignancies encompass a broad range of distinct cancers, generally categorized as lymphoid (eg, lymphoma), myeloid (eg, leukemia, myelodysplastic syndromes, myeloproliferative neoplasms [MPNs]), and plasma cell neoplasms (eg, multiple myeloma).1 The veteran population is aging; this, in combination with other potential veteran-specific risk factors, is leading to an increased risk of hematologic malignancies.2 Of note, the risk for MPN diagnosis has recently been studied in veterans who served during the Korean, Vietnam, and Persian Gulf War eras.3 In addition, survival trends for different blood cancers, such as lymphoid malignancies, vary among veterans exposed to Agent Orange.4 Conflicting results have been found that point to the importance of future research.

Veterans in rural areas face barriers to treatment and clinical trial enrollment due to long travel distances and lack of trial availability, creating what are termed “clinical trial deserts.”5 Teleoncology has become crucial in bridging this gap by improving access to blood cancer treatments and clinical trials.5,6 Novel decentralized trial designs involving telehealth can further expand participation in remote areas.5 

Over the past year, there have been advances in the treatment of blood cancers as well as the use of large data sets to better understand cancers trends and new technologies to reduce disparities in access to care.6,7 The availability of greater therapeutic options, new care modalities, and improved risk assessments herald an exciting time in the care of patients with hematologic malignancies, with the expectation that this care will continue to advance through 2025.

Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article
survey writer start date
Slide Media

Access, Race, and "Colon Age": Improving CRC Screening

Article Type
Changed
References

1. Siegel RL, Giaquinto AN, Jemal A. Cancer statistics, 2024. CA Cancer J Clin. 2024;74:12-49. doi: 10.3322/caac.21820. 

2. Riviere P, Morgan KM, Deshler LN, et al. Racial disparities in colorectal cancer outcomes and access to care: a multi-cohort analysis. Front Public Health. 2024;12:1414361. doi:10.3389/fpubh.2024.1414361

3. Imperiale TF, Myers LJ, Barker BC, Stump TE, Daggy JK. Colon Age: A metric for whether and how to screen male veterans for early-onset colorectal cancer. Cancer Prev Res. 2024:17:377-384.  doi:10.1158/1940-6207.CAPR-23-0544

Publications
Topics
References

1. Siegel RL, Giaquinto AN, Jemal A. Cancer statistics, 2024. CA Cancer J Clin. 2024;74:12-49. doi: 10.3322/caac.21820. 

2. Riviere P, Morgan KM, Deshler LN, et al. Racial disparities in colorectal cancer outcomes and access to care: a multi-cohort analysis. Front Public Health. 2024;12:1414361. doi:10.3389/fpubh.2024.1414361

3. Imperiale TF, Myers LJ, Barker BC, Stump TE, Daggy JK. Colon Age: A metric for whether and how to screen male veterans for early-onset colorectal cancer. Cancer Prev Res. 2024:17:377-384.  doi:10.1158/1940-6207.CAPR-23-0544

References

1. Siegel RL, Giaquinto AN, Jemal A. Cancer statistics, 2024. CA Cancer J Clin. 2024;74:12-49. doi: 10.3322/caac.21820. 

2. Riviere P, Morgan KM, Deshler LN, et al. Racial disparities in colorectal cancer outcomes and access to care: a multi-cohort analysis. Front Public Health. 2024;12:1414361. doi:10.3389/fpubh.2024.1414361

3. Imperiale TF, Myers LJ, Barker BC, Stump TE, Daggy JK. Colon Age: A metric for whether and how to screen male veterans for early-onset colorectal cancer. Cancer Prev Res. 2024:17:377-384.  doi:10.1158/1940-6207.CAPR-23-0544

Publications
Publications
Topics
Article Type
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Eyebrow Default
SLIDESHOW
Gate On Date
Un-Gate On Date
Use ProPublica
CFC Schedule Remove Status
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Article Slideshow Optional Introduction

Colorectal cancer (CRC) is the second leading cause of cancer-related deaths in the United States, with an estimated 53,010 deaths and 152,810 new diagnoses in 2024.

Incidence of CRC is higher in Black patients than in White patients, and racial disparities in survival persist in the general population1 until individuals reach Medicare eligibility.2 Interestingly, data published in 2024 have shown that this trend does not appear in the VHA system, indicating that access to care may play a more crucial role than racial contributions in influencing outcomes among non-Hispanic Black and White individuals.2

CRC rates and deaths are steadily decreasing among those aged 50 years or older but are rising in individuals under age 50. Early-onset colorectal cancer (EOCRC)—cases diagnosed before age 50—now represent 10% to 11% of all CRC. Of these cases, 75% occur in people aged 40 to 49, whereas about 50% affect individuals younger than 45. A novel measure, “colon age,” quantifies EOCRC risk by taking biological factors into account. This metric can help VHA providers clarify CRC risk and help patients better grasp their screening options before age 45 or 50.3
 

Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article
survey writer start date
Slide Media

HCC Updates: Quality Care Framework and Risk Stratification Data

Article Type
Changed
Display Headline

HCC Updates: Quality Care Framework and Risk Stratification Data

Click here to view more from Cancer Data Trends 2025.

References

1Rogal SS, Taddei TH, Monto A, et al. Hepatocellular Carcinoma Diagnosis and Management in 2021: A National Veterans Affairs Quality Improvement Project. Clin Gastroenterol Hepatol. 2024 Feb;22(2):324-338. doi:10.1016/j.cgh.2023.07.002 

2. John BV, Dang Y, Kaplan DE, et al. Liver Stiffness Measurement and Risk Prediction of Hepatocellular Carcinoma After HCV Eradication in Veterans With Cirrhosis. Clin Gastroenterol Hepatol. 2024 Apr;22(4):778-788.e7. doi:10.1016/j.cgh.2023.11.020

Author and Disclosure Information

Janice H. Jou, MD, MHS
Section Chief, Division of Gastroenterology
VA Portland Healthcare System
Portland, Oregon
Disclosures: Received research grant from: Gilead

Cynthia A. Moylan, MD, MHS
Associate Professor of Medicine
Director of Hepatology
Durham VA Medical Center;
Co-Director of GI-HEP Clinical Research Unit, Division of Gastroenterology
Duke University Medical Center
Durham, North Carolina
Disclosures: Received research grant from: GSK; Madrigal; Exact Sciences. 
Received income in an amount equal to or greater than $250 from: Novo Nordisk; Sirtex; Boehringer Ingelheim.

Publications
Topics
Author and Disclosure Information

Janice H. Jou, MD, MHS
Section Chief, Division of Gastroenterology
VA Portland Healthcare System
Portland, Oregon
Disclosures: Received research grant from: Gilead

Cynthia A. Moylan, MD, MHS
Associate Professor of Medicine
Director of Hepatology
Durham VA Medical Center;
Co-Director of GI-HEP Clinical Research Unit, Division of Gastroenterology
Duke University Medical Center
Durham, North Carolina
Disclosures: Received research grant from: GSK; Madrigal; Exact Sciences. 
Received income in an amount equal to or greater than $250 from: Novo Nordisk; Sirtex; Boehringer Ingelheim.

Author and Disclosure Information

Janice H. Jou, MD, MHS
Section Chief, Division of Gastroenterology
VA Portland Healthcare System
Portland, Oregon
Disclosures: Received research grant from: Gilead

Cynthia A. Moylan, MD, MHS
Associate Professor of Medicine
Director of Hepatology
Durham VA Medical Center;
Co-Director of GI-HEP Clinical Research Unit, Division of Gastroenterology
Duke University Medical Center
Durham, North Carolina
Disclosures: Received research grant from: GSK; Madrigal; Exact Sciences. 
Received income in an amount equal to or greater than $250 from: Novo Nordisk; Sirtex; Boehringer Ingelheim.

Click here to view more from Cancer Data Trends 2025.

Click here to view more from Cancer Data Trends 2025.

References

1Rogal SS, Taddei TH, Monto A, et al. Hepatocellular Carcinoma Diagnosis and Management in 2021: A National Veterans Affairs Quality Improvement Project. Clin Gastroenterol Hepatol. 2024 Feb;22(2):324-338. doi:10.1016/j.cgh.2023.07.002 

2. John BV, Dang Y, Kaplan DE, et al. Liver Stiffness Measurement and Risk Prediction of Hepatocellular Carcinoma After HCV Eradication in Veterans With Cirrhosis. Clin Gastroenterol Hepatol. 2024 Apr;22(4):778-788.e7. doi:10.1016/j.cgh.2023.11.020

References

1Rogal SS, Taddei TH, Monto A, et al. Hepatocellular Carcinoma Diagnosis and Management in 2021: A National Veterans Affairs Quality Improvement Project. Clin Gastroenterol Hepatol. 2024 Feb;22(2):324-338. doi:10.1016/j.cgh.2023.07.002 

2. John BV, Dang Y, Kaplan DE, et al. Liver Stiffness Measurement and Risk Prediction of Hepatocellular Carcinoma After HCV Eradication in Veterans With Cirrhosis. Clin Gastroenterol Hepatol. 2024 Apr;22(4):778-788.e7. doi:10.1016/j.cgh.2023.11.020

Publications
Publications
Topics
Article Type
Display Headline

HCC Updates: Quality Care Framework and Risk Stratification Data

Display Headline

HCC Updates: Quality Care Framework and Risk Stratification Data

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Eyebrow Default
SLIDESHOW
Gate On Date
Un-Gate On Date
Use ProPublica
CFC Schedule Remove Status
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Article Slideshow Optional Introduction

The VA National Gastroenterology and Hepatology Program, the largest provider of cirrhosis care in the United States, recently examined factors related to hepatocellular carcinoma (HCC) diagnosis stage, treatment options, and patient survival in veterans in a retrospective study.1 The results emphasize the value of HCC screening and continuous patient engagement for improving diagnosis, treatment, and survival outcomes for veterans. They also demonstrate the practicality of creating a national quality improvement framework for HCC screening, diagnosis, and care.1

Veterans with cirrhosis due to chronic hepatitis C virus (HCV) remain at risk for HCC, even after achieving a sustained virological response (SVR). A 2024 retrospective cohort study of veterans with HCV-related cirrhosis concluded that liver stiffness measurement post-SVR could help stratify HCC risk.2 These data highlight the importance of ongoing HCC screening and active patient engagement to improve survival and, ultimately, quality of life for veterans living with this condition.

Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article
survey writer start date
Slide Media

Racial Disparities, Germline Testing, and Improved Overall Survival in Prostate Cancer

Article Type
Changed
Display Headline

Racial Disparities, Germline Testing, and Improved Overall Survival in Prostate Cancer

Click here to view more from Cancer Data Trends 2025.

References

References

  1. Lillard JW Jr, Moses KA, Mahal BA, George DJ. Racial disparities in Black men with prostate cancer: A literature review. Cancer. 2022 Nov 1;128(21):3787-3795. doi:10.1002/cncr.34433

  2. Wang BR, Chen Y-A, Kao W-H, Lai C-H, Lin H, Hsieh J-T. Developing New Treatment Options for Castration-Resistant Prostate Cancer and Recurrent Disease. Biomedicines. 2022 Aug 3;10(8):1872. doi:10.3390/biomedicines10081872

  3. Valle LF, Li J, Desai H, Hausler R, et al. Oncogenic Alterations, Race, and Survival in US Veterans with Metastatic Prostate Cancer Undergoing Somatic Tumor Next Generation Sequencing. bioRxiv [Preprint]. 2024 Oct 25:2024.10.24.620071. doi:10.1101/2024.10.24.620071

  4. Kwon DH, Scheuner MT, McPhaul M, et al. Germline testing for veterans with advanced prostate cancer: concerns about service-connected benefits. JNCI Cancer Spectr. 2024 Sep 2;8(5):pkae079. doi:10.1093/jncics/pkae079

  5. Kwon DH, McPhaul M, Sumra S, et al. Informed decision-making about germline testing among Veterans with advanced prostate cancer (APC): A mixed-methods study. J Clin Oncol. 2024;42(16_suppl):5105. doi:10.1200/JCO.2024.42.16_suppl.5105

  6. Schoen MW, Montgomery RB, Owens L, Khan S, Sanfilippo KM, Etzioni RB. Survival in Patients With De Novo Metastatic Prostate Cancer. JAMA Netw Open. 2024 Mar 4;7(3):e241970. doi: 10.1001/jamanetworkopen.2024.1970

  7. Schafer EJ, Jemal A, Wiese D, et al. Disparities and Trends in Genitourinary Cancer Incidence and Mortality in the USA. Eur Urol. 2023 Jul;84(1):117-126. doi:10.1016/j.eururo.2022.11.023                    

  8. U.S. Department of Veterans Affairs. Hines VA Hospital & Loyola University Chicago Physician Awarded $8.6M VA Research Grant. November 8, 2021. https://www.va.gov/hines-health-care/news-releases/hines-va-hospital-loyola-university-chicago-physician-awarded-86m-va-research-grant/ Accessed December 31, 2024.                                                                                                            

  9. U.S. Department of Veterans Affairs. National Oncology Program. How VA is Advancing Prostate Cancer Care. https://www.cancer.va.gov/prostate.html Accessed December 31, 2024.

 

 

 

 

 

Author and Disclosure Information

Michael M. Goodman, MD
Associate Professor, Department of Hematology and Oncology
Atrium Health Wake Forest Baptist
Winston-Salem, North Carolina;
VA Hematology/Oncology Physician and Program Manager
Director, Salisbury VA Infusion Center
Salisbury, North Carolina

Dr. Goodman has disclosed no relevant financial relationships.

Publications
Topics
Author and Disclosure Information

Michael M. Goodman, MD
Associate Professor, Department of Hematology and Oncology
Atrium Health Wake Forest Baptist
Winston-Salem, North Carolina;
VA Hematology/Oncology Physician and Program Manager
Director, Salisbury VA Infusion Center
Salisbury, North Carolina

Dr. Goodman has disclosed no relevant financial relationships.

Author and Disclosure Information

Michael M. Goodman, MD
Associate Professor, Department of Hematology and Oncology
Atrium Health Wake Forest Baptist
Winston-Salem, North Carolina;
VA Hematology/Oncology Physician and Program Manager
Director, Salisbury VA Infusion Center
Salisbury, North Carolina

Dr. Goodman has disclosed no relevant financial relationships.

Click here to view more from Cancer Data Trends 2025.

Click here to view more from Cancer Data Trends 2025.

References

References

  1. Lillard JW Jr, Moses KA, Mahal BA, George DJ. Racial disparities in Black men with prostate cancer: A literature review. Cancer. 2022 Nov 1;128(21):3787-3795. doi:10.1002/cncr.34433

  2. Wang BR, Chen Y-A, Kao W-H, Lai C-H, Lin H, Hsieh J-T. Developing New Treatment Options for Castration-Resistant Prostate Cancer and Recurrent Disease. Biomedicines. 2022 Aug 3;10(8):1872. doi:10.3390/biomedicines10081872

  3. Valle LF, Li J, Desai H, Hausler R, et al. Oncogenic Alterations, Race, and Survival in US Veterans with Metastatic Prostate Cancer Undergoing Somatic Tumor Next Generation Sequencing. bioRxiv [Preprint]. 2024 Oct 25:2024.10.24.620071. doi:10.1101/2024.10.24.620071

  4. Kwon DH, Scheuner MT, McPhaul M, et al. Germline testing for veterans with advanced prostate cancer: concerns about service-connected benefits. JNCI Cancer Spectr. 2024 Sep 2;8(5):pkae079. doi:10.1093/jncics/pkae079

  5. Kwon DH, McPhaul M, Sumra S, et al. Informed decision-making about germline testing among Veterans with advanced prostate cancer (APC): A mixed-methods study. J Clin Oncol. 2024;42(16_suppl):5105. doi:10.1200/JCO.2024.42.16_suppl.5105

  6. Schoen MW, Montgomery RB, Owens L, Khan S, Sanfilippo KM, Etzioni RB. Survival in Patients With De Novo Metastatic Prostate Cancer. JAMA Netw Open. 2024 Mar 4;7(3):e241970. doi: 10.1001/jamanetworkopen.2024.1970

  7. Schafer EJ, Jemal A, Wiese D, et al. Disparities and Trends in Genitourinary Cancer Incidence and Mortality in the USA. Eur Urol. 2023 Jul;84(1):117-126. doi:10.1016/j.eururo.2022.11.023                    

  8. U.S. Department of Veterans Affairs. Hines VA Hospital & Loyola University Chicago Physician Awarded $8.6M VA Research Grant. November 8, 2021. https://www.va.gov/hines-health-care/news-releases/hines-va-hospital-loyola-university-chicago-physician-awarded-86m-va-research-grant/ Accessed December 31, 2024.                                                                                                            

  9. U.S. Department of Veterans Affairs. National Oncology Program. How VA is Advancing Prostate Cancer Care. https://www.cancer.va.gov/prostate.html Accessed December 31, 2024.

 

 

 

 

 

References

References

  1. Lillard JW Jr, Moses KA, Mahal BA, George DJ. Racial disparities in Black men with prostate cancer: A literature review. Cancer. 2022 Nov 1;128(21):3787-3795. doi:10.1002/cncr.34433

  2. Wang BR, Chen Y-A, Kao W-H, Lai C-H, Lin H, Hsieh J-T. Developing New Treatment Options for Castration-Resistant Prostate Cancer and Recurrent Disease. Biomedicines. 2022 Aug 3;10(8):1872. doi:10.3390/biomedicines10081872

  3. Valle LF, Li J, Desai H, Hausler R, et al. Oncogenic Alterations, Race, and Survival in US Veterans with Metastatic Prostate Cancer Undergoing Somatic Tumor Next Generation Sequencing. bioRxiv [Preprint]. 2024 Oct 25:2024.10.24.620071. doi:10.1101/2024.10.24.620071

  4. Kwon DH, Scheuner MT, McPhaul M, et al. Germline testing for veterans with advanced prostate cancer: concerns about service-connected benefits. JNCI Cancer Spectr. 2024 Sep 2;8(5):pkae079. doi:10.1093/jncics/pkae079

  5. Kwon DH, McPhaul M, Sumra S, et al. Informed decision-making about germline testing among Veterans with advanced prostate cancer (APC): A mixed-methods study. J Clin Oncol. 2024;42(16_suppl):5105. doi:10.1200/JCO.2024.42.16_suppl.5105

  6. Schoen MW, Montgomery RB, Owens L, Khan S, Sanfilippo KM, Etzioni RB. Survival in Patients With De Novo Metastatic Prostate Cancer. JAMA Netw Open. 2024 Mar 4;7(3):e241970. doi: 10.1001/jamanetworkopen.2024.1970

  7. Schafer EJ, Jemal A, Wiese D, et al. Disparities and Trends in Genitourinary Cancer Incidence and Mortality in the USA. Eur Urol. 2023 Jul;84(1):117-126. doi:10.1016/j.eururo.2022.11.023                    

  8. U.S. Department of Veterans Affairs. Hines VA Hospital & Loyola University Chicago Physician Awarded $8.6M VA Research Grant. November 8, 2021. https://www.va.gov/hines-health-care/news-releases/hines-va-hospital-loyola-university-chicago-physician-awarded-86m-va-research-grant/ Accessed December 31, 2024.                                                                                                            

  9. U.S. Department of Veterans Affairs. National Oncology Program. How VA is Advancing Prostate Cancer Care. https://www.cancer.va.gov/prostate.html Accessed December 31, 2024.

 

 

 

 

 

Publications
Publications
Topics
Article Type
Display Headline

Racial Disparities, Germline Testing, and Improved Overall Survival in Prostate Cancer

Display Headline

Racial Disparities, Germline Testing, and Improved Overall Survival in Prostate Cancer

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Eyebrow Default
SLIDESHOW
Gate On Date
Un-Gate On Date
Use ProPublica
CFC Schedule Remove Status
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Article Slideshow Optional Introduction

The incidence of prostate cancer (PCa) has been rising1; this increase is particularly evident in more aggressive, advanced stages of PCa. Metastatic castration-resistant PCa has a median overall survival (OS) of up to about 2 years and is the second leading cause of cancer-related deaths among men in the United States.2

Black men face a significantly higher risk for PCa compared with White men.1 Researchers have identified variations in the genomic profiles of metastatic PCa cells among US veterans that are potentially linked to race and ethnicity. Study findings represent a significant advancement in understanding genomic alterations in metastatic prostate cancer.1 This is especially noteworthy for Black men, who have been historically underrepresented in precision oncology research.3

A qualitative study of veterans with advanced PCa explored decision-making regarding germline testing. Several veterans with service-connected disability benefits declined testing, fearing it might jeopardize their benefits.4,5 Consequently, language in the veterans benefits manual was updated, clarifying that genetic results cannot disqualify service-connected benefits and emphasizing the importance of clear communication during counseling.4

Significant improvements in median OS for de novo metastatic hormone sensitive PCa were observed in patients diagnosed between 2000 and 2019 in SEER and VHA databases. The gains were notable in patients younger than 70 years, likely driven by the increased adoption of combination therapies.6

Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article
survey writer start date
Slide Media

Lung Cancer: Mortality Trends in Veterans and New Treatments

Article Type
Changed
Display Headline

Lung Cancer: Mortality Trends in Veterans and New Treatments

Click to view more from Cancer Data Trends 2025.

References
  1. Tehzeeb J, Mahmood F, Gemoets D, Azem A, Mehdi SA. Epidemiology and survival
    trends of lung carcinoids in the veteran population. J Clin Oncol. 2023;41:e21049.
    doi:10.1200/JCO.2023.41.16_suppl.e21049
  2. Moghanaki D, Taylor J, Bryant AK, et al. Lung Cancer Survival Trends in the Veterans
    Health Administration. Clin Lung Cancer. 2024;25(3):225-232. doi:10.1016/j.
    cllc.2024.02.009
  3. Jalal SI, Guo A, Ahmed S, Kelley MJ. Analysis of actionable genetic alterations in
    lung carcinoma from the VA National Precision Oncology Program. Semin Oncol.
    2022;49(3-4):265-274. doi:10.1053/j.seminoncol.2022.06.014
  4. Cascone T, Awad MM, Spicer JD, et al; for the CheckMate 77T Investigators.
    Perioperative Nivolumab in Resectable Lung Cancer. N Engl J Med.
    2024;390(19):1756-1769. doi:10.1056/NEJMoa2311926
  5. Wakelee H, Liberman M, Kato T, et al; for the KEYNOTE-671 Investigators.
    Perioperative Pembrolizumab for Early-Stage Non-Small-Cell Lung Cancer. N Engl J
    Med. 2023;389(6):491-503. doi:10.1056/NEJMoa2302983
  6. Heymach JV, Harpole D, Mitsudomi T, et al; for the AEGEAN Investigators.
    Perioperative Durvalumab for Resectable Non-Small-Cell Lung Cancer. N Engl J
    Med. 2023;389(18):1672-1684. doi:10.1056/NEJMoa2304875
  7. Duncan FC, Al Nasrallah N, Nephew L, et al. Racial disparities in staging, treatment,
    and mortality in non-small cell lung cancer. Transl Lung Cancer Res. 2024;13(1):76-
    94. doi:10.21037/tlcr-23-407
Author and Disclosure Information

Mille Das, MD
Clinical Professor
Department of Medicine/Oncology 
Stanford University 
Stanford, California;
Chief, Oncology 
Department of Medicine 
VA Palo Alto Health Care System
Palo Alto, California 

 

Disclosures: Serve(d) as a director, officer, partner, employee, advisor, consultant, or trustee for: Sanofi/ Genzyme; Regeneron; Janssen; Astra Zeneca; Gilead; Bristol Myer Squibb; Catalyst Pharmaceuticals; Guardant; Novocure; AbbVie; Daiichi Sankyo. 
Received research grant from: Merck; Genentech; CellSight; Novartis; Varian. 
Received income in an amount equal to or greater than $250 from: Plexus; IDEO; Springer; Medical Educator Consortium; Dedham Group; DAVA Oncology; MJH Healthcare Holdings; Targeted Oncology; OncLive; ANCO; Aptitude Health; MashUp Media; Med Learning Group; Curio; Triptych Health; American Cancer Society.

Publications
Topics
Author and Disclosure Information

Mille Das, MD
Clinical Professor
Department of Medicine/Oncology 
Stanford University 
Stanford, California;
Chief, Oncology 
Department of Medicine 
VA Palo Alto Health Care System
Palo Alto, California 

 

Disclosures: Serve(d) as a director, officer, partner, employee, advisor, consultant, or trustee for: Sanofi/ Genzyme; Regeneron; Janssen; Astra Zeneca; Gilead; Bristol Myer Squibb; Catalyst Pharmaceuticals; Guardant; Novocure; AbbVie; Daiichi Sankyo. 
Received research grant from: Merck; Genentech; CellSight; Novartis; Varian. 
Received income in an amount equal to or greater than $250 from: Plexus; IDEO; Springer; Medical Educator Consortium; Dedham Group; DAVA Oncology; MJH Healthcare Holdings; Targeted Oncology; OncLive; ANCO; Aptitude Health; MashUp Media; Med Learning Group; Curio; Triptych Health; American Cancer Society.

Author and Disclosure Information

Mille Das, MD
Clinical Professor
Department of Medicine/Oncology 
Stanford University 
Stanford, California;
Chief, Oncology 
Department of Medicine 
VA Palo Alto Health Care System
Palo Alto, California 

 

Disclosures: Serve(d) as a director, officer, partner, employee, advisor, consultant, or trustee for: Sanofi/ Genzyme; Regeneron; Janssen; Astra Zeneca; Gilead; Bristol Myer Squibb; Catalyst Pharmaceuticals; Guardant; Novocure; AbbVie; Daiichi Sankyo. 
Received research grant from: Merck; Genentech; CellSight; Novartis; Varian. 
Received income in an amount equal to or greater than $250 from: Plexus; IDEO; Springer; Medical Educator Consortium; Dedham Group; DAVA Oncology; MJH Healthcare Holdings; Targeted Oncology; OncLive; ANCO; Aptitude Health; MashUp Media; Med Learning Group; Curio; Triptych Health; American Cancer Society.

Click to view more from Cancer Data Trends 2025.

Click to view more from Cancer Data Trends 2025.

References
  1. Tehzeeb J, Mahmood F, Gemoets D, Azem A, Mehdi SA. Epidemiology and survival
    trends of lung carcinoids in the veteran population. J Clin Oncol. 2023;41:e21049.
    doi:10.1200/JCO.2023.41.16_suppl.e21049
  2. Moghanaki D, Taylor J, Bryant AK, et al. Lung Cancer Survival Trends in the Veterans
    Health Administration. Clin Lung Cancer. 2024;25(3):225-232. doi:10.1016/j.
    cllc.2024.02.009
  3. Jalal SI, Guo A, Ahmed S, Kelley MJ. Analysis of actionable genetic alterations in
    lung carcinoma from the VA National Precision Oncology Program. Semin Oncol.
    2022;49(3-4):265-274. doi:10.1053/j.seminoncol.2022.06.014
  4. Cascone T, Awad MM, Spicer JD, et al; for the CheckMate 77T Investigators.
    Perioperative Nivolumab in Resectable Lung Cancer. N Engl J Med.
    2024;390(19):1756-1769. doi:10.1056/NEJMoa2311926
  5. Wakelee H, Liberman M, Kato T, et al; for the KEYNOTE-671 Investigators.
    Perioperative Pembrolizumab for Early-Stage Non-Small-Cell Lung Cancer. N Engl J
    Med. 2023;389(6):491-503. doi:10.1056/NEJMoa2302983
  6. Heymach JV, Harpole D, Mitsudomi T, et al; for the AEGEAN Investigators.
    Perioperative Durvalumab for Resectable Non-Small-Cell Lung Cancer. N Engl J
    Med. 2023;389(18):1672-1684. doi:10.1056/NEJMoa2304875
  7. Duncan FC, Al Nasrallah N, Nephew L, et al. Racial disparities in staging, treatment,
    and mortality in non-small cell lung cancer. Transl Lung Cancer Res. 2024;13(1):76-
    94. doi:10.21037/tlcr-23-407
References
  1. Tehzeeb J, Mahmood F, Gemoets D, Azem A, Mehdi SA. Epidemiology and survival
    trends of lung carcinoids in the veteran population. J Clin Oncol. 2023;41:e21049.
    doi:10.1200/JCO.2023.41.16_suppl.e21049
  2. Moghanaki D, Taylor J, Bryant AK, et al. Lung Cancer Survival Trends in the Veterans
    Health Administration. Clin Lung Cancer. 2024;25(3):225-232. doi:10.1016/j.
    cllc.2024.02.009
  3. Jalal SI, Guo A, Ahmed S, Kelley MJ. Analysis of actionable genetic alterations in
    lung carcinoma from the VA National Precision Oncology Program. Semin Oncol.
    2022;49(3-4):265-274. doi:10.1053/j.seminoncol.2022.06.014
  4. Cascone T, Awad MM, Spicer JD, et al; for the CheckMate 77T Investigators.
    Perioperative Nivolumab in Resectable Lung Cancer. N Engl J Med.
    2024;390(19):1756-1769. doi:10.1056/NEJMoa2311926
  5. Wakelee H, Liberman M, Kato T, et al; for the KEYNOTE-671 Investigators.
    Perioperative Pembrolizumab for Early-Stage Non-Small-Cell Lung Cancer. N Engl J
    Med. 2023;389(6):491-503. doi:10.1056/NEJMoa2302983
  6. Heymach JV, Harpole D, Mitsudomi T, et al; for the AEGEAN Investigators.
    Perioperative Durvalumab for Resectable Non-Small-Cell Lung Cancer. N Engl J
    Med. 2023;389(18):1672-1684. doi:10.1056/NEJMoa2304875
  7. Duncan FC, Al Nasrallah N, Nephew L, et al. Racial disparities in staging, treatment,
    and mortality in non-small cell lung cancer. Transl Lung Cancer Res. 2024;13(1):76-
    94. doi:10.21037/tlcr-23-407
Publications
Publications
Topics
Article Type
Display Headline

Lung Cancer: Mortality Trends in Veterans and New Treatments

Display Headline

Lung Cancer: Mortality Trends in Veterans and New Treatments

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Eyebrow Default
SLIDESHOW
Gate On Date
Un-Gate On Date
Use ProPublica
CFC Schedule Remove Status
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Article Slideshow Optional Introduction

The annual incidence rate of lung cancer among veterans is substantial and increasing, tripling from 2000 to 2017; historically, it was largely due to higher rates of smoking.1 In recent years, the VHA has aimed to improve survival rates of patients with lung cancer across all disease stages and racial/ethnic groups.2  These efforts include providing increased screening, molecular testing, and access to targeted therapies; adopting advanced surgical and biopsy techniques; and implementing nurse navigators to guide care.2

Veterans often have lung cancers that are strongly associated with smoking, which are less likely to harbor specific driver mutations such as EGFR or ALK alterations. This can limit the use of targeted therapies specifically designed for these mutations.1,3 However, newly developed immunotherapy agents, which do not rely on the presence of driver mutations, have shown significant efficacy in patients with non-small cell lung cancer (NSCLC), particularly in cases with high PD-L1 expression.4-6

Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article
survey writer start date
Slide Media

Beyond the Razor: Managing Pseudofolliculitis Barbae in Skin of Color

Article Type
Changed
Display Headline

Beyond the Razor: Managing Pseudofolliculitis Barbae in Skin of Color

THE COMPARISON

  • A. Pustules, erythematous to violaceous nodules, and hyperpigmented patches on the lower cheek and chin.
  • B. Brown papules, pink keloidal papules and nodules, pustules, and hyperpigmented papules on the mandibular area and neck.
  • C. Coarse hairs, pustules, and pink papules on the mandibular area and neck.
CT115004135-Fig_ABC
Photographs courtesy of Richard P. Usatine, MD.

Pseudofolliculitis barbae (PFB), also known as razor bumps, is a common inflammatory condition characterized by papules and pustules that typically appear in the beard and cheek regions. It occurs when shaved hair regrows and penetrates the skin, leading to irritation and inflammation. While anyone who shaves can develop PFB, it is more prevalent and severe in individuals with naturally tightly coiled, coarse-textured hair.1,2 Pseudofolliculitis barbae is common in individuals who shave frequently due to personal choice or profession, such as members of the US military3,4 and firefighters, who are required to remain clean shaven for safety (eg, ensuring proper fit of a respirator mask).5 Early diagnosis and treatment of PFB are essential to prevent long-term complications such as scarring or hyperpigmentation, which may be more severe in those with darker skin tones.

Epidemiology

Pseudofolliculitis barbae is most common in Black men, affecting 45% to 83% of men of African ancestry.1,2 This condition also can affect individuals of various ethnicities with coarse or curly hair. The spiral shape of the hair increases the likelihood that it will regrow into the skin after shaving.6 Women with hirsutism who shave also can develop PFB.

Key Clinical Features

The papules and pustules seen in PFB may be flesh colored, erythematous, hyperpigmented, brown, or violaceous. Erythema may be less pronounced in darker vs lighter skin tones. Persistent and severe postinflammatory hyperpigmentation may occur, and hypertrophic or keloidal scars may develop in affected areas. Dermoscopy may reveal extrafollicular hair penetration as well as follicular or perifollicular pustules accompanied by hyperkeratosis.

Worth Noting

The most effective management for PFB is to discontinue shaving.1 If shaving is desired or necessary, it is recommended that patients apply lukewarm water to the affected area followed by a generous amount of shaving foam or gel to create a protective antifriction layer that allows the razor to glide more smoothly over the skin and reduces subsequent irritation.2 Using the right razor technology also may help alleviate symptoms. Research has shown that multiblade razors used in conjunction with preshave hair hydration and postshave moisturization do not worsen PFB.2 A recent study found that multiblade razor technology paired with use of a shave foam or gel actually improved skin appearance in patients with PFB.7

It is important to direct patients to shave in the direction of hair growth; however, this may not be possible for individuals with curly or coarse hair, as the hair may grow in many directions.8,9 Patients also should avoid pulling the skin taut while shaving, as doing so allows the hair to be clipped below the surface, where it can repenetrate the skin and cause further irritation. As an alternative to shaving with a razor, patients can use hair clippers to trim beard hair, which leaves behind stubble and interrupts the cycle of retracted hairs under the skin. Nd:YAG laser therapy has demonstrated efficacy in reduction of PFB papules and pustules.9-12 Greater mean improvement in inflammatory papules and reduction in hair density was noted in participants who received Nd:YAG laser plus eflornithine compared with those who received the laser or eflornithine alone.11 Patients should not pluck or dig into the skin to remove any ingrown hairs. If a tweezer is used, the patient should gently lift the tip of the ingrown hair with the tweezer to dislodge it from the skin and prevent plucking out the hair completely.

To help manage inflammation after shaving, topical treatments such as benzoyl peroxide 5%/clindamycin 1% gel can be used.3,13 A low-potency steroid such as topical hydrocortisone 2.5% applied once or twice daily for up to 2 to 3 days may be helpful.1,14 Adjunctive treatments including keratolytics (eg, topical retinoids, hydroxy acids) reduce perifollicular hyperkeratosis.14,15 Agents containing alpha hydroxy acids (eg, glycolic acid) also can decrease the curvature of the hair itself by reducing the sulfhydryl bonds.6 If secondary bacterial infections occur, oral antibiotics (eg, doxycycline) may be necessary.

Health Disparity Highlight

Individuals with darker skin tones are at higher risk for PFB and associated complications. Limited access to dermatology services may further exacerbate these challenges. Individuals with PFB may not seek medical treatment until the condition becomes severe. Clinicians also may underestimate the severity of PFB—particularly in those with darker skin tones—based on erythema alone because it may be less pronounced in darker vs lighter skin tones.16

While permanent hair reduction with laser therapy is a treatment option for PFB, it may be inaccessible to some patients because it can be expensive and is coded as a cosmetic procedure. Additionally, patients may not have access to specialists who are experienced in performing the procedure in those with darker skin tones.9 Some patients also may not want to permanently reduce the amount of hair that grows in the beard area for personal or religious reasons.17

Pseudofolliculitis barbae also has been linked to professional disparities. One study found that members of the US Air Force who had medical shaving waivers experienced longer times to promotion than those with no waiver.18 Delays in promotion may be linked to perceptions of unprofessionalism, exclusion from high-profile duties, and concerns about career progression. While this delay was similar for individuals of all races, the majority of those in the waiver group were Black/African American. In 2021, 4 Black firefighters with PFB were unsuccessful in their bid to get a medical accommodation regarding a New York City Fire Department policy requiring them to be clean shaven where the oxygen mask seals against the skin.5 More research is needed on mask safety and efficiency relative to the length of facial hair. Accommodations or tailored masks for facial hair conditions also are necessary so individuals with PFB can meet job requirements while managing their condition.

References
  1. Alexis A, Heath CR, Halder RM. Folliculitis keloidalis nuchae and pseudofolliculitis barbae: are prevention and effective treatment within reach? em>Dermatol Clin. 2014;32:183-191.
  2. Gray J, McMichael AJ. Pseudofolliculitis barbae: understanding the condition and the role of facial grooming. Int J Cosmet Sci. 2016;38 (suppl 1):24-27.
  3. Tshudy MT, Cho S. Pseudofolliculitis barbae in the U.S. military, a review. Mil Med. 2021;186:E52-E57.
  4. Jung I, Lannan FM, Weiss A, et al. Treatment and current policies on pseudofolliculitis barbae in the US military. Cutis. 2023;112:299-302.
  5. Jiang YR. Reasonable accommodation and disparate impact: clean shave policy discrimination in today’s workplace. J Law Med Ethics. 2023;51:185-195.
  6. Taylor SC, Barbosa V, Burgess C, et al. Hair and scalp disorders in adult and pediatric patients with skin of color. Cutis. 2017;100:31-35.
  7. Moran E, McMichael A, De Souza B, et al. New razor technology improves appearance and quality of life in men with pseudofolliculitis barbae. Cutis. 2022;110:329-334.
  8. Maurer M, Rietzler M, Burghardt R, et al. The male beard hair and facial skin—challenges for shaving. Int J Cosmet Sci. 2016;38 (suppl 1):3-9.
  9. Ross EV. How would you treat this patient with lasers & EBDs? casebased panel. Presented at: Skin of Color Update; September 13, 2024; New York, NY.
  10. Ross EV, Cooke LM, Timko AL, et al. Treatment of pseudofolliculitis barbae in skin types IV, V, and VI with a long-pulsed neodymium:yttrium aluminum garnet laser. J Am Acad Dermatol. 2002;47:263-270.
  11. Shokeir H, Samy N, Taymour M. Pseudofolliculitis barbae treatment: efficacy of topical eflornithine, long-pulsed Nd-YAG laser versus their combination. J Cosmet Dermatol. 2021;20:3517-3525.
  12. Amer A, Elsayed A, Gharib K. Evaluation of efficacy and safety of chemical peeling and long-pulse Nd:YAG laser in treatment of pseudofolliculitis barbae. Dermatol Ther. 2021;34:E14859.
  13. Cook-Bolden FE, Barba A, Halder R, et al. Twice-daily applications of benzoyl peroxide 5%/clindamycin 1% gel versus vehicle in the treatment of pseudofolliculitis barbae. Cutis. 2004;73(6 suppl):18-24.
  14. Nussbaum D, Friedman A. Pseudofolliculitis barbae: a review of current treatment options. J Drugs Dermatol. 2019;18:246-250.
  15. Quarles FN, Brody H, Johnson BA, et al. Pseudofolliculitis barbae. Dermatol Ther. 2007;20:133-136.
  16. McMichael AJ, Frey C. Challenging the tools used to measure cutaneous lupus severity in patients of all skin types. JAMA Dermatol. 2025;161:9-10.
  17. Okonkwo E, Neal B, Harper HL. Pseudofolliculitis barbae in the military and the need for social awareness. Mil Med. 2021;186:143-144.
  18. Ritchie S, Park J, Banta J, et al. Shaving waivers in the United States Air Force and their impact on promotions of Black/African-American members. Mil Med. 2023;188:E242-E247.
Article PDF
Author and Disclosure Information

DanTasia Welch, MS
Research Fellow, Department of Dermatology, Howard University, Washington, DC
Medical Student, Florida State University College of Medicine Tallahassee

Richard P. Usatine, MD
Professor, Family and Community Medicine
Professor, Dermatology and Cutaneous Surgery, University of Texas Health San Antonio

Candrice R. Heath, MD
Associate Professor, Department of Dermatology, Howard University, Washington, DC

Dr. Usatine has no relevant financial disclosures to report. DanTasia Welch is the recipient of the 2024-2025 Howard University Department of Dermatology Research Fellowship, supported by AbbVie. Dr. Heath has received fees from Apogee, Arcutis, Dermavant, Eli Lilly and Company, Johnson and Johnson, Kenvue, L’Oreal, Nutrafol, Pfizer, Regeneron, Sanofi, Tower 28, Unilever, and WebMD. Her current and/or former institutions have received research-related funding from CorEvitas, Eli Lilly and Company, Janssen, Robert A. Winn Diversity in Clinical Trials Award Program established by the Bristol Meyers Squibb Foundation, and the Skin of Color Society Foundation.

Cutis. 2025 April;115(4):135-136. doi:10.12788/cutis.1194

Issue
Cutis - 115(4)
Publications
Topics
Page Number
135-136
Sections
Author and Disclosure Information

DanTasia Welch, MS
Research Fellow, Department of Dermatology, Howard University, Washington, DC
Medical Student, Florida State University College of Medicine Tallahassee

Richard P. Usatine, MD
Professor, Family and Community Medicine
Professor, Dermatology and Cutaneous Surgery, University of Texas Health San Antonio

Candrice R. Heath, MD
Associate Professor, Department of Dermatology, Howard University, Washington, DC

Dr. Usatine has no relevant financial disclosures to report. DanTasia Welch is the recipient of the 2024-2025 Howard University Department of Dermatology Research Fellowship, supported by AbbVie. Dr. Heath has received fees from Apogee, Arcutis, Dermavant, Eli Lilly and Company, Johnson and Johnson, Kenvue, L’Oreal, Nutrafol, Pfizer, Regeneron, Sanofi, Tower 28, Unilever, and WebMD. Her current and/or former institutions have received research-related funding from CorEvitas, Eli Lilly and Company, Janssen, Robert A. Winn Diversity in Clinical Trials Award Program established by the Bristol Meyers Squibb Foundation, and the Skin of Color Society Foundation.

Cutis. 2025 April;115(4):135-136. doi:10.12788/cutis.1194

Author and Disclosure Information

DanTasia Welch, MS
Research Fellow, Department of Dermatology, Howard University, Washington, DC
Medical Student, Florida State University College of Medicine Tallahassee

Richard P. Usatine, MD
Professor, Family and Community Medicine
Professor, Dermatology and Cutaneous Surgery, University of Texas Health San Antonio

Candrice R. Heath, MD
Associate Professor, Department of Dermatology, Howard University, Washington, DC

Dr. Usatine has no relevant financial disclosures to report. DanTasia Welch is the recipient of the 2024-2025 Howard University Department of Dermatology Research Fellowship, supported by AbbVie. Dr. Heath has received fees from Apogee, Arcutis, Dermavant, Eli Lilly and Company, Johnson and Johnson, Kenvue, L’Oreal, Nutrafol, Pfizer, Regeneron, Sanofi, Tower 28, Unilever, and WebMD. Her current and/or former institutions have received research-related funding from CorEvitas, Eli Lilly and Company, Janssen, Robert A. Winn Diversity in Clinical Trials Award Program established by the Bristol Meyers Squibb Foundation, and the Skin of Color Society Foundation.

Cutis. 2025 April;115(4):135-136. doi:10.12788/cutis.1194

Article PDF
Article PDF

THE COMPARISON

  • A. Pustules, erythematous to violaceous nodules, and hyperpigmented patches on the lower cheek and chin.
  • B. Brown papules, pink keloidal papules and nodules, pustules, and hyperpigmented papules on the mandibular area and neck.
  • C. Coarse hairs, pustules, and pink papules on the mandibular area and neck.
CT115004135-Fig_ABC
Photographs courtesy of Richard P. Usatine, MD.

Pseudofolliculitis barbae (PFB), also known as razor bumps, is a common inflammatory condition characterized by papules and pustules that typically appear in the beard and cheek regions. It occurs when shaved hair regrows and penetrates the skin, leading to irritation and inflammation. While anyone who shaves can develop PFB, it is more prevalent and severe in individuals with naturally tightly coiled, coarse-textured hair.1,2 Pseudofolliculitis barbae is common in individuals who shave frequently due to personal choice or profession, such as members of the US military3,4 and firefighters, who are required to remain clean shaven for safety (eg, ensuring proper fit of a respirator mask).5 Early diagnosis and treatment of PFB are essential to prevent long-term complications such as scarring or hyperpigmentation, which may be more severe in those with darker skin tones.

Epidemiology

Pseudofolliculitis barbae is most common in Black men, affecting 45% to 83% of men of African ancestry.1,2 This condition also can affect individuals of various ethnicities with coarse or curly hair. The spiral shape of the hair increases the likelihood that it will regrow into the skin after shaving.6 Women with hirsutism who shave also can develop PFB.

Key Clinical Features

The papules and pustules seen in PFB may be flesh colored, erythematous, hyperpigmented, brown, or violaceous. Erythema may be less pronounced in darker vs lighter skin tones. Persistent and severe postinflammatory hyperpigmentation may occur, and hypertrophic or keloidal scars may develop in affected areas. Dermoscopy may reveal extrafollicular hair penetration as well as follicular or perifollicular pustules accompanied by hyperkeratosis.

Worth Noting

The most effective management for PFB is to discontinue shaving.1 If shaving is desired or necessary, it is recommended that patients apply lukewarm water to the affected area followed by a generous amount of shaving foam or gel to create a protective antifriction layer that allows the razor to glide more smoothly over the skin and reduces subsequent irritation.2 Using the right razor technology also may help alleviate symptoms. Research has shown that multiblade razors used in conjunction with preshave hair hydration and postshave moisturization do not worsen PFB.2 A recent study found that multiblade razor technology paired with use of a shave foam or gel actually improved skin appearance in patients with PFB.7

It is important to direct patients to shave in the direction of hair growth; however, this may not be possible for individuals with curly or coarse hair, as the hair may grow in many directions.8,9 Patients also should avoid pulling the skin taut while shaving, as doing so allows the hair to be clipped below the surface, where it can repenetrate the skin and cause further irritation. As an alternative to shaving with a razor, patients can use hair clippers to trim beard hair, which leaves behind stubble and interrupts the cycle of retracted hairs under the skin. Nd:YAG laser therapy has demonstrated efficacy in reduction of PFB papules and pustules.9-12 Greater mean improvement in inflammatory papules and reduction in hair density was noted in participants who received Nd:YAG laser plus eflornithine compared with those who received the laser or eflornithine alone.11 Patients should not pluck or dig into the skin to remove any ingrown hairs. If a tweezer is used, the patient should gently lift the tip of the ingrown hair with the tweezer to dislodge it from the skin and prevent plucking out the hair completely.

To help manage inflammation after shaving, topical treatments such as benzoyl peroxide 5%/clindamycin 1% gel can be used.3,13 A low-potency steroid such as topical hydrocortisone 2.5% applied once or twice daily for up to 2 to 3 days may be helpful.1,14 Adjunctive treatments including keratolytics (eg, topical retinoids, hydroxy acids) reduce perifollicular hyperkeratosis.14,15 Agents containing alpha hydroxy acids (eg, glycolic acid) also can decrease the curvature of the hair itself by reducing the sulfhydryl bonds.6 If secondary bacterial infections occur, oral antibiotics (eg, doxycycline) may be necessary.

Health Disparity Highlight

Individuals with darker skin tones are at higher risk for PFB and associated complications. Limited access to dermatology services may further exacerbate these challenges. Individuals with PFB may not seek medical treatment until the condition becomes severe. Clinicians also may underestimate the severity of PFB—particularly in those with darker skin tones—based on erythema alone because it may be less pronounced in darker vs lighter skin tones.16

While permanent hair reduction with laser therapy is a treatment option for PFB, it may be inaccessible to some patients because it can be expensive and is coded as a cosmetic procedure. Additionally, patients may not have access to specialists who are experienced in performing the procedure in those with darker skin tones.9 Some patients also may not want to permanently reduce the amount of hair that grows in the beard area for personal or religious reasons.17

Pseudofolliculitis barbae also has been linked to professional disparities. One study found that members of the US Air Force who had medical shaving waivers experienced longer times to promotion than those with no waiver.18 Delays in promotion may be linked to perceptions of unprofessionalism, exclusion from high-profile duties, and concerns about career progression. While this delay was similar for individuals of all races, the majority of those in the waiver group were Black/African American. In 2021, 4 Black firefighters with PFB were unsuccessful in their bid to get a medical accommodation regarding a New York City Fire Department policy requiring them to be clean shaven where the oxygen mask seals against the skin.5 More research is needed on mask safety and efficiency relative to the length of facial hair. Accommodations or tailored masks for facial hair conditions also are necessary so individuals with PFB can meet job requirements while managing their condition.

THE COMPARISON

  • A. Pustules, erythematous to violaceous nodules, and hyperpigmented patches on the lower cheek and chin.
  • B. Brown papules, pink keloidal papules and nodules, pustules, and hyperpigmented papules on the mandibular area and neck.
  • C. Coarse hairs, pustules, and pink papules on the mandibular area and neck.
CT115004135-Fig_ABC
Photographs courtesy of Richard P. Usatine, MD.

Pseudofolliculitis barbae (PFB), also known as razor bumps, is a common inflammatory condition characterized by papules and pustules that typically appear in the beard and cheek regions. It occurs when shaved hair regrows and penetrates the skin, leading to irritation and inflammation. While anyone who shaves can develop PFB, it is more prevalent and severe in individuals with naturally tightly coiled, coarse-textured hair.1,2 Pseudofolliculitis barbae is common in individuals who shave frequently due to personal choice or profession, such as members of the US military3,4 and firefighters, who are required to remain clean shaven for safety (eg, ensuring proper fit of a respirator mask).5 Early diagnosis and treatment of PFB are essential to prevent long-term complications such as scarring or hyperpigmentation, which may be more severe in those with darker skin tones.

Epidemiology

Pseudofolliculitis barbae is most common in Black men, affecting 45% to 83% of men of African ancestry.1,2 This condition also can affect individuals of various ethnicities with coarse or curly hair. The spiral shape of the hair increases the likelihood that it will regrow into the skin after shaving.6 Women with hirsutism who shave also can develop PFB.

Key Clinical Features

The papules and pustules seen in PFB may be flesh colored, erythematous, hyperpigmented, brown, or violaceous. Erythema may be less pronounced in darker vs lighter skin tones. Persistent and severe postinflammatory hyperpigmentation may occur, and hypertrophic or keloidal scars may develop in affected areas. Dermoscopy may reveal extrafollicular hair penetration as well as follicular or perifollicular pustules accompanied by hyperkeratosis.

Worth Noting

The most effective management for PFB is to discontinue shaving.1 If shaving is desired or necessary, it is recommended that patients apply lukewarm water to the affected area followed by a generous amount of shaving foam or gel to create a protective antifriction layer that allows the razor to glide more smoothly over the skin and reduces subsequent irritation.2 Using the right razor technology also may help alleviate symptoms. Research has shown that multiblade razors used in conjunction with preshave hair hydration and postshave moisturization do not worsen PFB.2 A recent study found that multiblade razor technology paired with use of a shave foam or gel actually improved skin appearance in patients with PFB.7

It is important to direct patients to shave in the direction of hair growth; however, this may not be possible for individuals with curly or coarse hair, as the hair may grow in many directions.8,9 Patients also should avoid pulling the skin taut while shaving, as doing so allows the hair to be clipped below the surface, where it can repenetrate the skin and cause further irritation. As an alternative to shaving with a razor, patients can use hair clippers to trim beard hair, which leaves behind stubble and interrupts the cycle of retracted hairs under the skin. Nd:YAG laser therapy has demonstrated efficacy in reduction of PFB papules and pustules.9-12 Greater mean improvement in inflammatory papules and reduction in hair density was noted in participants who received Nd:YAG laser plus eflornithine compared with those who received the laser or eflornithine alone.11 Patients should not pluck or dig into the skin to remove any ingrown hairs. If a tweezer is used, the patient should gently lift the tip of the ingrown hair with the tweezer to dislodge it from the skin and prevent plucking out the hair completely.

To help manage inflammation after shaving, topical treatments such as benzoyl peroxide 5%/clindamycin 1% gel can be used.3,13 A low-potency steroid such as topical hydrocortisone 2.5% applied once or twice daily for up to 2 to 3 days may be helpful.1,14 Adjunctive treatments including keratolytics (eg, topical retinoids, hydroxy acids) reduce perifollicular hyperkeratosis.14,15 Agents containing alpha hydroxy acids (eg, glycolic acid) also can decrease the curvature of the hair itself by reducing the sulfhydryl bonds.6 If secondary bacterial infections occur, oral antibiotics (eg, doxycycline) may be necessary.

Health Disparity Highlight

Individuals with darker skin tones are at higher risk for PFB and associated complications. Limited access to dermatology services may further exacerbate these challenges. Individuals with PFB may not seek medical treatment until the condition becomes severe. Clinicians also may underestimate the severity of PFB—particularly in those with darker skin tones—based on erythema alone because it may be less pronounced in darker vs lighter skin tones.16

While permanent hair reduction with laser therapy is a treatment option for PFB, it may be inaccessible to some patients because it can be expensive and is coded as a cosmetic procedure. Additionally, patients may not have access to specialists who are experienced in performing the procedure in those with darker skin tones.9 Some patients also may not want to permanently reduce the amount of hair that grows in the beard area for personal or religious reasons.17

Pseudofolliculitis barbae also has been linked to professional disparities. One study found that members of the US Air Force who had medical shaving waivers experienced longer times to promotion than those with no waiver.18 Delays in promotion may be linked to perceptions of unprofessionalism, exclusion from high-profile duties, and concerns about career progression. While this delay was similar for individuals of all races, the majority of those in the waiver group were Black/African American. In 2021, 4 Black firefighters with PFB were unsuccessful in their bid to get a medical accommodation regarding a New York City Fire Department policy requiring them to be clean shaven where the oxygen mask seals against the skin.5 More research is needed on mask safety and efficiency relative to the length of facial hair. Accommodations or tailored masks for facial hair conditions also are necessary so individuals with PFB can meet job requirements while managing their condition.

References
  1. Alexis A, Heath CR, Halder RM. Folliculitis keloidalis nuchae and pseudofolliculitis barbae: are prevention and effective treatment within reach? em>Dermatol Clin. 2014;32:183-191.
  2. Gray J, McMichael AJ. Pseudofolliculitis barbae: understanding the condition and the role of facial grooming. Int J Cosmet Sci. 2016;38 (suppl 1):24-27.
  3. Tshudy MT, Cho S. Pseudofolliculitis barbae in the U.S. military, a review. Mil Med. 2021;186:E52-E57.
  4. Jung I, Lannan FM, Weiss A, et al. Treatment and current policies on pseudofolliculitis barbae in the US military. Cutis. 2023;112:299-302.
  5. Jiang YR. Reasonable accommodation and disparate impact: clean shave policy discrimination in today’s workplace. J Law Med Ethics. 2023;51:185-195.
  6. Taylor SC, Barbosa V, Burgess C, et al. Hair and scalp disorders in adult and pediatric patients with skin of color. Cutis. 2017;100:31-35.
  7. Moran E, McMichael A, De Souza B, et al. New razor technology improves appearance and quality of life in men with pseudofolliculitis barbae. Cutis. 2022;110:329-334.
  8. Maurer M, Rietzler M, Burghardt R, et al. The male beard hair and facial skin—challenges for shaving. Int J Cosmet Sci. 2016;38 (suppl 1):3-9.
  9. Ross EV. How would you treat this patient with lasers & EBDs? casebased panel. Presented at: Skin of Color Update; September 13, 2024; New York, NY.
  10. Ross EV, Cooke LM, Timko AL, et al. Treatment of pseudofolliculitis barbae in skin types IV, V, and VI with a long-pulsed neodymium:yttrium aluminum garnet laser. J Am Acad Dermatol. 2002;47:263-270.
  11. Shokeir H, Samy N, Taymour M. Pseudofolliculitis barbae treatment: efficacy of topical eflornithine, long-pulsed Nd-YAG laser versus their combination. J Cosmet Dermatol. 2021;20:3517-3525.
  12. Amer A, Elsayed A, Gharib K. Evaluation of efficacy and safety of chemical peeling and long-pulse Nd:YAG laser in treatment of pseudofolliculitis barbae. Dermatol Ther. 2021;34:E14859.
  13. Cook-Bolden FE, Barba A, Halder R, et al. Twice-daily applications of benzoyl peroxide 5%/clindamycin 1% gel versus vehicle in the treatment of pseudofolliculitis barbae. Cutis. 2004;73(6 suppl):18-24.
  14. Nussbaum D, Friedman A. Pseudofolliculitis barbae: a review of current treatment options. J Drugs Dermatol. 2019;18:246-250.
  15. Quarles FN, Brody H, Johnson BA, et al. Pseudofolliculitis barbae. Dermatol Ther. 2007;20:133-136.
  16. McMichael AJ, Frey C. Challenging the tools used to measure cutaneous lupus severity in patients of all skin types. JAMA Dermatol. 2025;161:9-10.
  17. Okonkwo E, Neal B, Harper HL. Pseudofolliculitis barbae in the military and the need for social awareness. Mil Med. 2021;186:143-144.
  18. Ritchie S, Park J, Banta J, et al. Shaving waivers in the United States Air Force and their impact on promotions of Black/African-American members. Mil Med. 2023;188:E242-E247.
References
  1. Alexis A, Heath CR, Halder RM. Folliculitis keloidalis nuchae and pseudofolliculitis barbae: are prevention and effective treatment within reach? em>Dermatol Clin. 2014;32:183-191.
  2. Gray J, McMichael AJ. Pseudofolliculitis barbae: understanding the condition and the role of facial grooming. Int J Cosmet Sci. 2016;38 (suppl 1):24-27.
  3. Tshudy MT, Cho S. Pseudofolliculitis barbae in the U.S. military, a review. Mil Med. 2021;186:E52-E57.
  4. Jung I, Lannan FM, Weiss A, et al. Treatment and current policies on pseudofolliculitis barbae in the US military. Cutis. 2023;112:299-302.
  5. Jiang YR. Reasonable accommodation and disparate impact: clean shave policy discrimination in today’s workplace. J Law Med Ethics. 2023;51:185-195.
  6. Taylor SC, Barbosa V, Burgess C, et al. Hair and scalp disorders in adult and pediatric patients with skin of color. Cutis. 2017;100:31-35.
  7. Moran E, McMichael A, De Souza B, et al. New razor technology improves appearance and quality of life in men with pseudofolliculitis barbae. Cutis. 2022;110:329-334.
  8. Maurer M, Rietzler M, Burghardt R, et al. The male beard hair and facial skin—challenges for shaving. Int J Cosmet Sci. 2016;38 (suppl 1):3-9.
  9. Ross EV. How would you treat this patient with lasers & EBDs? casebased panel. Presented at: Skin of Color Update; September 13, 2024; New York, NY.
  10. Ross EV, Cooke LM, Timko AL, et al. Treatment of pseudofolliculitis barbae in skin types IV, V, and VI with a long-pulsed neodymium:yttrium aluminum garnet laser. J Am Acad Dermatol. 2002;47:263-270.
  11. Shokeir H, Samy N, Taymour M. Pseudofolliculitis barbae treatment: efficacy of topical eflornithine, long-pulsed Nd-YAG laser versus their combination. J Cosmet Dermatol. 2021;20:3517-3525.
  12. Amer A, Elsayed A, Gharib K. Evaluation of efficacy and safety of chemical peeling and long-pulse Nd:YAG laser in treatment of pseudofolliculitis barbae. Dermatol Ther. 2021;34:E14859.
  13. Cook-Bolden FE, Barba A, Halder R, et al. Twice-daily applications of benzoyl peroxide 5%/clindamycin 1% gel versus vehicle in the treatment of pseudofolliculitis barbae. Cutis. 2004;73(6 suppl):18-24.
  14. Nussbaum D, Friedman A. Pseudofolliculitis barbae: a review of current treatment options. J Drugs Dermatol. 2019;18:246-250.
  15. Quarles FN, Brody H, Johnson BA, et al. Pseudofolliculitis barbae. Dermatol Ther. 2007;20:133-136.
  16. McMichael AJ, Frey C. Challenging the tools used to measure cutaneous lupus severity in patients of all skin types. JAMA Dermatol. 2025;161:9-10.
  17. Okonkwo E, Neal B, Harper HL. Pseudofolliculitis barbae in the military and the need for social awareness. Mil Med. 2021;186:143-144.
  18. Ritchie S, Park J, Banta J, et al. Shaving waivers in the United States Air Force and their impact on promotions of Black/African-American members. Mil Med. 2023;188:E242-E247.
Issue
Cutis - 115(4)
Issue
Cutis - 115(4)
Page Number
135-136
Page Number
135-136
Publications
Publications
Topics
Article Type
Display Headline

Beyond the Razor: Managing Pseudofolliculitis Barbae in Skin of Color

Display Headline

Beyond the Razor: Managing Pseudofolliculitis Barbae in Skin of Color

Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Gate On Date
Un-Gate On Date
Use ProPublica
CFC Schedule Remove Status
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article
survey writer start date

Baricitinib-Induced Trichilemmal Cyst Reactivation in a Woman With Alopecia Areata

Article Type
Changed
Display Headline

Baricitinib-Induced Trichilemmal Cyst Reactivation in a Woman With Alopecia Areata

To the Editor:

Alopecia areata (AA), an autoimmune disease characterized by inflammatory and nonscarring hair loss, can have a considerable impact on quality of life.1 Baricitinib is a Janus kinase inhibitor that recently was approved by the US Food and Drug Administration for treatment of severe AA in adult patients, becoming the only on-label treatment available.2 So far, the most common adverse effects reported in phase 3 trials have been acne, upper respiratory tract infections, headaches, urinary tract infections, and elevated creatine kinase levels.3

At our trichology unit in the dermatology department of a Spanish tertiary-care hospital in Seville, we have successfully used baricitinib to treat 18 patients with severe, therapy-resistant AA. Herein, we present a case of trichilemmal cyst reactivation in one of our patients following successful treatment with baricitinib.

A 53-year-old woman with a history of trichilemmal cysts presented to the dermatology department with total body hair loss of 5 years' duration that was diagnosed as AA universalis (Figure, A). The patient reported that the trichilemmal cysts had shrunk drastically 1 month after complete loss of body hair (Severity of Alopecia Tool [SALT] score, 100)(Figure, B). The largest cyst was surgically removed, and the diagnosis was histologically confirmed by a pathologist. Her mother and sister also had a history of multiple trichilemmal cysts.

CT115004131-Fig_AB
FIGURE. A, A 53-year-old woman with alopecia areata prior to treatment with oral baricitinib. B, By week 8 of treatment, total hair regrowth was achieved with reactivation of a trichilemmal cyst on the frontal scalp.

The patient previously had failed treatment with oral prednisone 50 mg/d, oral cyclosporine 4 mg/kg/d, oral dexamethasone 4 mg twice weekly, and oral azathioprine 300 mg/wk. Due to the new indication of baricitinib for AA, we opted to start the patient on oral baricitinib 4 mg/d. By week 8 of treatment, she had achieved total hair regrowth (SALT score, 0). This rapid response might indicate a quick-responder phenotype, referring to a subset of patients who exhibit a fast and robust response to treatment (SALT90), generally before week 16, although more evidence is needed.

Notably, we observed the reactivation of 4 trichilemmal cysts on the scalp 6 weeks after starting baricitinib. To our knowledge, this side effect has not previously been reported. We hypothesize that reactivation of the cysts may have been due to the inhibition of the Janus kinase/signal transducer and activator of transcription pathway, which reduces the effects of cytokines and leads to reactivation of hair follicles that were inactive because of inflammation.4 As a result, the outer root sheath of the hair follicle can once again be filled with keratin, thereby reactivating the trichilemmal cysts. Based on our experience with this case, it may be relevant to consider personal and family history of trichilemmal cysts before starting treatment with baricitinib for AA and advise the patient about the possibility of this adverse effect.

References
  1. Freitas E, Guttman-Yassky E, Torres T. Baricitinib for the treatment of alopecia areata. Drugs. 2023;83:761-770. doi:10.1007 /s40265-023-01873-w
  2. US Food and Drug Administration. FDA approves first systemic treatment for alopecia areata [news release]. July 13, 2022. Accessed March 17, 2025. https://www.prnewswire.com/news-releases/fda-approves-first-systemic-treatment-for-alopecia-areata-301566884.html
  3. King B, Ohyama M, Kwon O, et al. Two phase 3 trials of baricitinib for alopecia areata. N Engl J Med. 2022;386:1687-1699. doi:10.1056 /NEJMoa2110343
  4. Lensing M, Jabbari A. An overview of JAK/STAT pathways and JAK inhibition in alopecia areata. Front Immunol. 2022;13:955035. doi:10.3389/fimmu.2022.955035
Article PDF
Author and Disclosure Information

From the Dermatology Department, Virgen del Rocío University Hospital, Seville, Spain.

The authors have no relevant financial disclosures to report.

Correspondence: Juan Manuel Liñán Barroso, MD, Dermatology Department, Virgen del Rocío University Hospital, Manuel Siurot Ave s/n, Seville, Spain 41013 ([email protected]).

Cutis. 2025 April;115(4):131-132. doi:10.12788/cutis.1191

Issue
Cutis - 115(4)
Publications
Topics
Page Number
131-132
Sections
Author and Disclosure Information

From the Dermatology Department, Virgen del Rocío University Hospital, Seville, Spain.

The authors have no relevant financial disclosures to report.

Correspondence: Juan Manuel Liñán Barroso, MD, Dermatology Department, Virgen del Rocío University Hospital, Manuel Siurot Ave s/n, Seville, Spain 41013 ([email protected]).

Cutis. 2025 April;115(4):131-132. doi:10.12788/cutis.1191

Author and Disclosure Information

From the Dermatology Department, Virgen del Rocío University Hospital, Seville, Spain.

The authors have no relevant financial disclosures to report.

Correspondence: Juan Manuel Liñán Barroso, MD, Dermatology Department, Virgen del Rocío University Hospital, Manuel Siurot Ave s/n, Seville, Spain 41013 ([email protected]).

Cutis. 2025 April;115(4):131-132. doi:10.12788/cutis.1191

Article PDF
Article PDF

To the Editor:

Alopecia areata (AA), an autoimmune disease characterized by inflammatory and nonscarring hair loss, can have a considerable impact on quality of life.1 Baricitinib is a Janus kinase inhibitor that recently was approved by the US Food and Drug Administration for treatment of severe AA in adult patients, becoming the only on-label treatment available.2 So far, the most common adverse effects reported in phase 3 trials have been acne, upper respiratory tract infections, headaches, urinary tract infections, and elevated creatine kinase levels.3

At our trichology unit in the dermatology department of a Spanish tertiary-care hospital in Seville, we have successfully used baricitinib to treat 18 patients with severe, therapy-resistant AA. Herein, we present a case of trichilemmal cyst reactivation in one of our patients following successful treatment with baricitinib.

A 53-year-old woman with a history of trichilemmal cysts presented to the dermatology department with total body hair loss of 5 years' duration that was diagnosed as AA universalis (Figure, A). The patient reported that the trichilemmal cysts had shrunk drastically 1 month after complete loss of body hair (Severity of Alopecia Tool [SALT] score, 100)(Figure, B). The largest cyst was surgically removed, and the diagnosis was histologically confirmed by a pathologist. Her mother and sister also had a history of multiple trichilemmal cysts.

CT115004131-Fig_AB
FIGURE. A, A 53-year-old woman with alopecia areata prior to treatment with oral baricitinib. B, By week 8 of treatment, total hair regrowth was achieved with reactivation of a trichilemmal cyst on the frontal scalp.

The patient previously had failed treatment with oral prednisone 50 mg/d, oral cyclosporine 4 mg/kg/d, oral dexamethasone 4 mg twice weekly, and oral azathioprine 300 mg/wk. Due to the new indication of baricitinib for AA, we opted to start the patient on oral baricitinib 4 mg/d. By week 8 of treatment, she had achieved total hair regrowth (SALT score, 0). This rapid response might indicate a quick-responder phenotype, referring to a subset of patients who exhibit a fast and robust response to treatment (SALT90), generally before week 16, although more evidence is needed.

Notably, we observed the reactivation of 4 trichilemmal cysts on the scalp 6 weeks after starting baricitinib. To our knowledge, this side effect has not previously been reported. We hypothesize that reactivation of the cysts may have been due to the inhibition of the Janus kinase/signal transducer and activator of transcription pathway, which reduces the effects of cytokines and leads to reactivation of hair follicles that were inactive because of inflammation.4 As a result, the outer root sheath of the hair follicle can once again be filled with keratin, thereby reactivating the trichilemmal cysts. Based on our experience with this case, it may be relevant to consider personal and family history of trichilemmal cysts before starting treatment with baricitinib for AA and advise the patient about the possibility of this adverse effect.

To the Editor:

Alopecia areata (AA), an autoimmune disease characterized by inflammatory and nonscarring hair loss, can have a considerable impact on quality of life.1 Baricitinib is a Janus kinase inhibitor that recently was approved by the US Food and Drug Administration for treatment of severe AA in adult patients, becoming the only on-label treatment available.2 So far, the most common adverse effects reported in phase 3 trials have been acne, upper respiratory tract infections, headaches, urinary tract infections, and elevated creatine kinase levels.3

At our trichology unit in the dermatology department of a Spanish tertiary-care hospital in Seville, we have successfully used baricitinib to treat 18 patients with severe, therapy-resistant AA. Herein, we present a case of trichilemmal cyst reactivation in one of our patients following successful treatment with baricitinib.

A 53-year-old woman with a history of trichilemmal cysts presented to the dermatology department with total body hair loss of 5 years' duration that was diagnosed as AA universalis (Figure, A). The patient reported that the trichilemmal cysts had shrunk drastically 1 month after complete loss of body hair (Severity of Alopecia Tool [SALT] score, 100)(Figure, B). The largest cyst was surgically removed, and the diagnosis was histologically confirmed by a pathologist. Her mother and sister also had a history of multiple trichilemmal cysts.

CT115004131-Fig_AB
FIGURE. A, A 53-year-old woman with alopecia areata prior to treatment with oral baricitinib. B, By week 8 of treatment, total hair regrowth was achieved with reactivation of a trichilemmal cyst on the frontal scalp.

The patient previously had failed treatment with oral prednisone 50 mg/d, oral cyclosporine 4 mg/kg/d, oral dexamethasone 4 mg twice weekly, and oral azathioprine 300 mg/wk. Due to the new indication of baricitinib for AA, we opted to start the patient on oral baricitinib 4 mg/d. By week 8 of treatment, she had achieved total hair regrowth (SALT score, 0). This rapid response might indicate a quick-responder phenotype, referring to a subset of patients who exhibit a fast and robust response to treatment (SALT90), generally before week 16, although more evidence is needed.

Notably, we observed the reactivation of 4 trichilemmal cysts on the scalp 6 weeks after starting baricitinib. To our knowledge, this side effect has not previously been reported. We hypothesize that reactivation of the cysts may have been due to the inhibition of the Janus kinase/signal transducer and activator of transcription pathway, which reduces the effects of cytokines and leads to reactivation of hair follicles that were inactive because of inflammation.4 As a result, the outer root sheath of the hair follicle can once again be filled with keratin, thereby reactivating the trichilemmal cysts. Based on our experience with this case, it may be relevant to consider personal and family history of trichilemmal cysts before starting treatment with baricitinib for AA and advise the patient about the possibility of this adverse effect.

References
  1. Freitas E, Guttman-Yassky E, Torres T. Baricitinib for the treatment of alopecia areata. Drugs. 2023;83:761-770. doi:10.1007 /s40265-023-01873-w
  2. US Food and Drug Administration. FDA approves first systemic treatment for alopecia areata [news release]. July 13, 2022. Accessed March 17, 2025. https://www.prnewswire.com/news-releases/fda-approves-first-systemic-treatment-for-alopecia-areata-301566884.html
  3. King B, Ohyama M, Kwon O, et al. Two phase 3 trials of baricitinib for alopecia areata. N Engl J Med. 2022;386:1687-1699. doi:10.1056 /NEJMoa2110343
  4. Lensing M, Jabbari A. An overview of JAK/STAT pathways and JAK inhibition in alopecia areata. Front Immunol. 2022;13:955035. doi:10.3389/fimmu.2022.955035
References
  1. Freitas E, Guttman-Yassky E, Torres T. Baricitinib for the treatment of alopecia areata. Drugs. 2023;83:761-770. doi:10.1007 /s40265-023-01873-w
  2. US Food and Drug Administration. FDA approves first systemic treatment for alopecia areata [news release]. July 13, 2022. Accessed March 17, 2025. https://www.prnewswire.com/news-releases/fda-approves-first-systemic-treatment-for-alopecia-areata-301566884.html
  3. King B, Ohyama M, Kwon O, et al. Two phase 3 trials of baricitinib for alopecia areata. N Engl J Med. 2022;386:1687-1699. doi:10.1056 /NEJMoa2110343
  4. Lensing M, Jabbari A. An overview of JAK/STAT pathways and JAK inhibition in alopecia areata. Front Immunol. 2022;13:955035. doi:10.3389/fimmu.2022.955035
Issue
Cutis - 115(4)
Issue
Cutis - 115(4)
Page Number
131-132
Page Number
131-132
Publications
Publications
Topics
Article Type
Display Headline

Baricitinib-Induced Trichilemmal Cyst Reactivation in a Woman With Alopecia Areata

Display Headline

Baricitinib-Induced Trichilemmal Cyst Reactivation in a Woman With Alopecia Areata

Sections
Inside the Article

PRACTICE POINTS

  • The rapid growth of trichilemmal cysts may serve as an indicator of a quick-responder phenotype to baricitinib in cases of alopecia areata (AA), although more evidence is needed.
  • It is imperative to consider personal and family history of trichilemmal cysts prior to initiating baricitinib treatment for AA.
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Gate On Date
Un-Gate On Date
Use ProPublica
CFC Schedule Remove Status
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article
survey writer start date