User login
How Are Patients Managing Intermediate-Risk Prostate Cancer?
TOPLINE:
METHODOLOGY:
- Current guidelines support active surveillance or watchful waiting for select patients with intermediate-risk prostate cancer. These observation strategies may help reduce the adverse effects associated with immediate radical treatment.
- To understand the trends over time in the use of active surveillance and watchful waiting, researchers looked at data of 147,205 individuals with intermediate-risk prostate cancer from the Surveillance, Epidemiology, and End Results prostate cancer database between 2010 and 2020 in the United States.
- Criteria for intermediate-risk included Gleason grade group 2 or 3, prostate-specific antigen (PSA) levels of 10-20 ng/mL, or stage cT2b of the disease. Researchers also included trends for patients with Gleason grade group 1, as a reference group.
- Researchers assessed the temporal trends and factors associated with the selection of active surveillance and watchful waiting in this population.
TAKEAWAY:
- Overall, the rate of active surveillance and watchful waiting more than doubled among intermediate-risk patients from 5% to 12.3% between 2010 and 2020.
- Between 2010 and 2020, the use of active surveillance and watchful waiting increased significantly among patients in Gleason grade group 1 (13.2% to 53.8%) and Gleason grade group 2 (4.0% to 11.6%) but remained stable for those in Gleason grade group 3 (2.5% to 2.8%; P = .85). For those with PSA levels < 10 ng/mL, adoption increased from 3.4% in 2010 to 9.2% in 2020 and more than doubled (9.3% to 20.7%) for those with PSA levels of 10-20 ng/mL.
- Higher Gleason grade groups had a significantly lower likelihood of adopting active surveillance or watchful waiting (Gleason grade group 2 vs 1: odds ratio [OR], 0.83; Gleason grade group 3 vs 1: OR, 0.79).
- Hispanic or Latino individuals (OR, 0.98) and non-Hispanic Black individuals (OR, 0.99) were slightly less likely to adopt these strategies than non-Hispanic White individuals.
IN PRACTICE:
“This study found a significant increase in initial active surveillance and watchful waiting for intermediate-risk prostate cancer between 2010 and 2020,” the authors wrote. “Research priorities should include reducing upfront overdiagnosis and better defining criteria for starting and stopping active surveillance and watchful waiting beyond conventional clinical measures such as GGs [Gleason grade groups] or PSA levels alone.”
SOURCE:
This study, led by Ismail Ajjawi, Yale School of Medicine, New Haven, Connecticut, was published online in JAMA.
LIMITATIONS:
This study relied on observational data and therefore could not capture various factors influencing clinical decision-making processes. Additionally, the absence of information on patient outcomes restricted the ability to assess the long-term implications of different management strategies.
DISCLOSURES:
This study received financial support from the Urological Research Foundation. Several authors reported having various ties with various sources.
This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.
TOPLINE:
METHODOLOGY:
- Current guidelines support active surveillance or watchful waiting for select patients with intermediate-risk prostate cancer. These observation strategies may help reduce the adverse effects associated with immediate radical treatment.
- To understand the trends over time in the use of active surveillance and watchful waiting, researchers looked at data of 147,205 individuals with intermediate-risk prostate cancer from the Surveillance, Epidemiology, and End Results prostate cancer database between 2010 and 2020 in the United States.
- Criteria for intermediate-risk included Gleason grade group 2 or 3, prostate-specific antigen (PSA) levels of 10-20 ng/mL, or stage cT2b of the disease. Researchers also included trends for patients with Gleason grade group 1, as a reference group.
- Researchers assessed the temporal trends and factors associated with the selection of active surveillance and watchful waiting in this population.
TAKEAWAY:
- Overall, the rate of active surveillance and watchful waiting more than doubled among intermediate-risk patients from 5% to 12.3% between 2010 and 2020.
- Between 2010 and 2020, the use of active surveillance and watchful waiting increased significantly among patients in Gleason grade group 1 (13.2% to 53.8%) and Gleason grade group 2 (4.0% to 11.6%) but remained stable for those in Gleason grade group 3 (2.5% to 2.8%; P = .85). For those with PSA levels < 10 ng/mL, adoption increased from 3.4% in 2010 to 9.2% in 2020 and more than doubled (9.3% to 20.7%) for those with PSA levels of 10-20 ng/mL.
- Higher Gleason grade groups had a significantly lower likelihood of adopting active surveillance or watchful waiting (Gleason grade group 2 vs 1: odds ratio [OR], 0.83; Gleason grade group 3 vs 1: OR, 0.79).
- Hispanic or Latino individuals (OR, 0.98) and non-Hispanic Black individuals (OR, 0.99) were slightly less likely to adopt these strategies than non-Hispanic White individuals.
IN PRACTICE:
“This study found a significant increase in initial active surveillance and watchful waiting for intermediate-risk prostate cancer between 2010 and 2020,” the authors wrote. “Research priorities should include reducing upfront overdiagnosis and better defining criteria for starting and stopping active surveillance and watchful waiting beyond conventional clinical measures such as GGs [Gleason grade groups] or PSA levels alone.”
SOURCE:
This study, led by Ismail Ajjawi, Yale School of Medicine, New Haven, Connecticut, was published online in JAMA.
LIMITATIONS:
This study relied on observational data and therefore could not capture various factors influencing clinical decision-making processes. Additionally, the absence of information on patient outcomes restricted the ability to assess the long-term implications of different management strategies.
DISCLOSURES:
This study received financial support from the Urological Research Foundation. Several authors reported having various ties with various sources.
This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.
TOPLINE:
METHODOLOGY:
- Current guidelines support active surveillance or watchful waiting for select patients with intermediate-risk prostate cancer. These observation strategies may help reduce the adverse effects associated with immediate radical treatment.
- To understand the trends over time in the use of active surveillance and watchful waiting, researchers looked at data of 147,205 individuals with intermediate-risk prostate cancer from the Surveillance, Epidemiology, and End Results prostate cancer database between 2010 and 2020 in the United States.
- Criteria for intermediate-risk included Gleason grade group 2 or 3, prostate-specific antigen (PSA) levels of 10-20 ng/mL, or stage cT2b of the disease. Researchers also included trends for patients with Gleason grade group 1, as a reference group.
- Researchers assessed the temporal trends and factors associated with the selection of active surveillance and watchful waiting in this population.
TAKEAWAY:
- Overall, the rate of active surveillance and watchful waiting more than doubled among intermediate-risk patients from 5% to 12.3% between 2010 and 2020.
- Between 2010 and 2020, the use of active surveillance and watchful waiting increased significantly among patients in Gleason grade group 1 (13.2% to 53.8%) and Gleason grade group 2 (4.0% to 11.6%) but remained stable for those in Gleason grade group 3 (2.5% to 2.8%; P = .85). For those with PSA levels < 10 ng/mL, adoption increased from 3.4% in 2010 to 9.2% in 2020 and more than doubled (9.3% to 20.7%) for those with PSA levels of 10-20 ng/mL.
- Higher Gleason grade groups had a significantly lower likelihood of adopting active surveillance or watchful waiting (Gleason grade group 2 vs 1: odds ratio [OR], 0.83; Gleason grade group 3 vs 1: OR, 0.79).
- Hispanic or Latino individuals (OR, 0.98) and non-Hispanic Black individuals (OR, 0.99) were slightly less likely to adopt these strategies than non-Hispanic White individuals.
IN PRACTICE:
“This study found a significant increase in initial active surveillance and watchful waiting for intermediate-risk prostate cancer between 2010 and 2020,” the authors wrote. “Research priorities should include reducing upfront overdiagnosis and better defining criteria for starting and stopping active surveillance and watchful waiting beyond conventional clinical measures such as GGs [Gleason grade groups] or PSA levels alone.”
SOURCE:
This study, led by Ismail Ajjawi, Yale School of Medicine, New Haven, Connecticut, was published online in JAMA.
LIMITATIONS:
This study relied on observational data and therefore could not capture various factors influencing clinical decision-making processes. Additionally, the absence of information on patient outcomes restricted the ability to assess the long-term implications of different management strategies.
DISCLOSURES:
This study received financial support from the Urological Research Foundation. Several authors reported having various ties with various sources.
This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.
Australia Registry Study: Melanoma-Related Deaths Increase at 0.8-mm Breslow Thickness
TOPLINE:
in an Australian study that used registry data.
METHODOLOGY:
- The study analyzed 144,447 individuals (median age, 56 years, 54% men) diagnosed with thin (T1) primary invasive melanomas (Breslow thickness, ≤ 1.0 mm) between 1982 and 2014 from all eight Australian state and territory population-based cancer registries.
- The researchers evaluated the associations between Breslow thickness (< 0.8 mm vs 0.8-1.0 mm) and incidences of melanoma-related and nonmelanoma-related deaths.
- The primary endpoint was time to death attributable to a melanoma-related cause, with death by a nonmelanoma-related cause as a competing event.
TAKEAWAY:
- The 20-year cumulative incidence of melanoma-related deaths was 6.3% for the whole cohort. The incidence was higher for tumors with a thickness of 0.8-1.0 mm (11%) than for those with a thickness < 0.8 mm (5.6%).
- The overall 20-year melanoma-specific survival rate was 95.9%, with rates of 94.2% for tumors < 0.8 mm and 87.8% for tumors measuring 0.8-1.0 mm in thickness. Each 0.1-mm increase in Breslow thickness was associated with worse prognosis.
- A multivariable analysis revealed that a tumor thickness of 0.8-1.0 mm was associated with both a greater absolute risk for melanoma-related deaths (subdistribution hazard ratio, 2.92) and a higher rate of melanoma-related deaths (hazard ratio, 2.98) than a tumor thickness < 0.8 mm.
- The 20-year incidence of death from nonmelanoma-related causes was 23.4%, but the risk for death from these causes showed no significant association with Breslow thickness categories.
IN PRACTICE:
“The findings of this large-scale population–based analysis suggest the separation of risk for patients with melanomas with a Breslow thickness above and below 0.8 mm,” the authors wrote, adding: “These results suggest that a change of the T1 threshold from 1.0 mm to 0.8 mm should be considered when the AJCC [American Joint Committee on Cancer] staging system is next reviewed.”
SOURCE:
The study was led by Serigne N. Lo, PhD, Melanoma Institute Australia, the University of Sydney. It was published online on December 11, 2024, in JAMA Dermatology.
LIMITATIONS:
The study was registry-based and did not capture details such as tumor characteristics and treatment modalities. Inaccuracies in reporting the cause of death may have led to an underestimation of melanoma-specific mortality risks across all thickness groups and an overestimation of nonmelanoma mortality risks.
DISCLOSURES:
The study received funding support from Melanoma Institute Australia and two grants from the Australian National Health and Medical Research Council (NHMRC). Several authors reported receiving grants or personal fees from or having ties with various sources, including NHMRC.
This article was created using several editorial tools, including artificial intelligence, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.
TOPLINE:
in an Australian study that used registry data.
METHODOLOGY:
- The study analyzed 144,447 individuals (median age, 56 years, 54% men) diagnosed with thin (T1) primary invasive melanomas (Breslow thickness, ≤ 1.0 mm) between 1982 and 2014 from all eight Australian state and territory population-based cancer registries.
- The researchers evaluated the associations between Breslow thickness (< 0.8 mm vs 0.8-1.0 mm) and incidences of melanoma-related and nonmelanoma-related deaths.
- The primary endpoint was time to death attributable to a melanoma-related cause, with death by a nonmelanoma-related cause as a competing event.
TAKEAWAY:
- The 20-year cumulative incidence of melanoma-related deaths was 6.3% for the whole cohort. The incidence was higher for tumors with a thickness of 0.8-1.0 mm (11%) than for those with a thickness < 0.8 mm (5.6%).
- The overall 20-year melanoma-specific survival rate was 95.9%, with rates of 94.2% for tumors < 0.8 mm and 87.8% for tumors measuring 0.8-1.0 mm in thickness. Each 0.1-mm increase in Breslow thickness was associated with worse prognosis.
- A multivariable analysis revealed that a tumor thickness of 0.8-1.0 mm was associated with both a greater absolute risk for melanoma-related deaths (subdistribution hazard ratio, 2.92) and a higher rate of melanoma-related deaths (hazard ratio, 2.98) than a tumor thickness < 0.8 mm.
- The 20-year incidence of death from nonmelanoma-related causes was 23.4%, but the risk for death from these causes showed no significant association with Breslow thickness categories.
IN PRACTICE:
“The findings of this large-scale population–based analysis suggest the separation of risk for patients with melanomas with a Breslow thickness above and below 0.8 mm,” the authors wrote, adding: “These results suggest that a change of the T1 threshold from 1.0 mm to 0.8 mm should be considered when the AJCC [American Joint Committee on Cancer] staging system is next reviewed.”
SOURCE:
The study was led by Serigne N. Lo, PhD, Melanoma Institute Australia, the University of Sydney. It was published online on December 11, 2024, in JAMA Dermatology.
LIMITATIONS:
The study was registry-based and did not capture details such as tumor characteristics and treatment modalities. Inaccuracies in reporting the cause of death may have led to an underestimation of melanoma-specific mortality risks across all thickness groups and an overestimation of nonmelanoma mortality risks.
DISCLOSURES:
The study received funding support from Melanoma Institute Australia and two grants from the Australian National Health and Medical Research Council (NHMRC). Several authors reported receiving grants or personal fees from or having ties with various sources, including NHMRC.
This article was created using several editorial tools, including artificial intelligence, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.
TOPLINE:
in an Australian study that used registry data.
METHODOLOGY:
- The study analyzed 144,447 individuals (median age, 56 years, 54% men) diagnosed with thin (T1) primary invasive melanomas (Breslow thickness, ≤ 1.0 mm) between 1982 and 2014 from all eight Australian state and territory population-based cancer registries.
- The researchers evaluated the associations between Breslow thickness (< 0.8 mm vs 0.8-1.0 mm) and incidences of melanoma-related and nonmelanoma-related deaths.
- The primary endpoint was time to death attributable to a melanoma-related cause, with death by a nonmelanoma-related cause as a competing event.
TAKEAWAY:
- The 20-year cumulative incidence of melanoma-related deaths was 6.3% for the whole cohort. The incidence was higher for tumors with a thickness of 0.8-1.0 mm (11%) than for those with a thickness < 0.8 mm (5.6%).
- The overall 20-year melanoma-specific survival rate was 95.9%, with rates of 94.2% for tumors < 0.8 mm and 87.8% for tumors measuring 0.8-1.0 mm in thickness. Each 0.1-mm increase in Breslow thickness was associated with worse prognosis.
- A multivariable analysis revealed that a tumor thickness of 0.8-1.0 mm was associated with both a greater absolute risk for melanoma-related deaths (subdistribution hazard ratio, 2.92) and a higher rate of melanoma-related deaths (hazard ratio, 2.98) than a tumor thickness < 0.8 mm.
- The 20-year incidence of death from nonmelanoma-related causes was 23.4%, but the risk for death from these causes showed no significant association with Breslow thickness categories.
IN PRACTICE:
“The findings of this large-scale population–based analysis suggest the separation of risk for patients with melanomas with a Breslow thickness above and below 0.8 mm,” the authors wrote, adding: “These results suggest that a change of the T1 threshold from 1.0 mm to 0.8 mm should be considered when the AJCC [American Joint Committee on Cancer] staging system is next reviewed.”
SOURCE:
The study was led by Serigne N. Lo, PhD, Melanoma Institute Australia, the University of Sydney. It was published online on December 11, 2024, in JAMA Dermatology.
LIMITATIONS:
The study was registry-based and did not capture details such as tumor characteristics and treatment modalities. Inaccuracies in reporting the cause of death may have led to an underestimation of melanoma-specific mortality risks across all thickness groups and an overestimation of nonmelanoma mortality risks.
DISCLOSURES:
The study received funding support from Melanoma Institute Australia and two grants from the Australian National Health and Medical Research Council (NHMRC). Several authors reported receiving grants or personal fees from or having ties with various sources, including NHMRC.
This article was created using several editorial tools, including artificial intelligence, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.
USPSTF Updates Recommendations on Cervical Cancer Screening
The US Preventive Services Task Force (USPSTF) has posted a draft updated statement on cervical cancer screening. The statement is open for public comment until January 13, 2025, on the task force’s website.
Nearly all cases of cervical cancer are caused by human papilloma virus (HPV) and most occur in women who have not been regularly screened or appropriately treated, the task force stressed.
New Screening Option
In 2024, there will be an estimated 13,820 new cases of cervical cancer and 4360 deaths.
“Evidence shows that screening saves lives, and all women aged 21-65 need to be screened,” task force member Esa Davis, MD, MPH, FAAFP, a professor of family and community medicine and associate vice president for community health at the University of Maryland, Baltimore, said in an interview. A new feature in the 2024 draft statement endorsing self-collection of cervical samples for HPV testing may facilitate broader screening.
“We hope the new effective option of self-collecting will expand screening and allow even more women to get screened regularly,” Davis said. “Some may feel more comfortable collecting samples themselves, and the collection can be office-based or home-based, but it’s very important that it be done under the direction of a clinician.”
In agreement is Diego Aviles, MD, an assistant professor and a gynecologic oncologist with UTHealth Houston. “Self-collection will absolutely expand screening. I think it’s an incredible advancement in medicine that patients are able to collect in the comfort of their own homes with no need to come into the office for an uncomfortable pelvic exam,” he said in an interview. “This empowers the patient and gives her a choice.”
As to concern about potential error, he added that while this is a concern on paper, “a lot of studies have shown that self-collection is just as effective doctor collection.”
Largely consistent with the task force’s 2018 screening recommendations, the updated suggestions also align with those of other organizations such as the American College of Obstetricians and Gynecologists (ACOG), Davis said.
Christopher M. Zahn, MD, ACOG’s chief of clinical practice and health equity and quality, stressed the importance of cervical cancer screening and said his organization will be reviewing the USPSTF recommendations. He urges ACOG members to consider them and offer their comments on the public-input platform.
Drawing on the latest evidence, the task force is also highlighting for the first time that stand-alone HPV screening gives women aged 30-65 years the best balance of benefits and harms when it comes to finding and preventing cervical cancer, while continuing to reinforce that Pap testing and co-testing are also effective screening options for these women.
The current draft statement applies to cisgender women and those assigned female sex at birth, including transgender men and nonbinary individuals. The recommendations do not apply to women at increased risk of cervical cancer such as those with HIV infection, a compromised immune system, or a history of treatment for precancerous lesions or cervical cancer.
Based on a review of evidence on the benefits and harms of screening, the USPSTF’s independent panel of national experts proposed the following:
Recommendations for Screening (Based on Grade A Evidence):
- Ages 21-65 years: All women should get screened regularly for this preventable disease.
- Ages 21-29 years: All women in this age group should undergo a Pap test every 3 years but do not need HPV testing. “In this age group most HPV infections will go away on their own because young women have strong immune systems. Older women are likely to have HPV that lasts longer and so they need testing for the virus,” Davis said.
- Ages 30-65 years: As noted, HPV screening gives women in this age category the best balance of benefits and harms in terms of preventing and finding cervical cancer. Pap testing or co-testing (Pap tests and HPV tests) are also effective screening options for this population. Ideally, these women should have an HPV test every 5 years or, alternatively, a Pap test every 3 years, or a combined HPV and Pap test every 5 years (co-testing).
Recommendations Against Screening (No Benefit or Benefit Outweighed by Harms — Grade D evidence):
- Women aged less than 21 years: Screening is not necessary.
- Other women not needing screening: Nor is screening necessary for those of any age who have had a total hysterectomy with removal of the cervix and those aged > 65 years who have had regular screenings with normal results. That means normal results from their last three Pap tests or their last two HPV tests, completed in the past 10 years, with at least one of the tests done in the past 5 years.
- Women aged 65 or more: These women should continue screening only if they have not been screened regularly or have had abnormal results in the past decade such as a high-grade precancerous lesion (cervical intraepithelial neoplasia grade 2 or 3) or cervical cancer.
Davis noted that none of the current recommendations are likely to be controversial or to spark pushback. “But,” said Aviles, “any time I see recent change in medicine, there’s always a little bit of pushback and it may take some time for everyone to be comfortable with the self-collection option. The recommendations still give doctors the grace to use the screening test they feel comfortable with, but I think eventually everyone will get on board with self-collection.”
As for the future, he added, “Over the next few years we’ll have to look at women who are on immune-weakening medications like Skyrizi [risankizumab] for skin conditions like psoriasis. These are commonly used in young people and can increase the risk of cervical cancer. I haven’t seen a lot of conversation about this, but patients should be aware of this risk and recommendations for this group should be different than for the general population.”
The USPSTF also noted a need to assess the magnitude of the incremental benefit and harms of screening and the interval of multiple rounds of HPV-primary screening in HPV-vaccinated cohorts in US populations.
Davis, Aviles, and Zahn and had no relevant competing interests to disclose.
A version of this article first appeared on Medscape.com.
The US Preventive Services Task Force (USPSTF) has posted a draft updated statement on cervical cancer screening. The statement is open for public comment until January 13, 2025, on the task force’s website.
Nearly all cases of cervical cancer are caused by human papilloma virus (HPV) and most occur in women who have not been regularly screened or appropriately treated, the task force stressed.
New Screening Option
In 2024, there will be an estimated 13,820 new cases of cervical cancer and 4360 deaths.
“Evidence shows that screening saves lives, and all women aged 21-65 need to be screened,” task force member Esa Davis, MD, MPH, FAAFP, a professor of family and community medicine and associate vice president for community health at the University of Maryland, Baltimore, said in an interview. A new feature in the 2024 draft statement endorsing self-collection of cervical samples for HPV testing may facilitate broader screening.
“We hope the new effective option of self-collecting will expand screening and allow even more women to get screened regularly,” Davis said. “Some may feel more comfortable collecting samples themselves, and the collection can be office-based or home-based, but it’s very important that it be done under the direction of a clinician.”
In agreement is Diego Aviles, MD, an assistant professor and a gynecologic oncologist with UTHealth Houston. “Self-collection will absolutely expand screening. I think it’s an incredible advancement in medicine that patients are able to collect in the comfort of their own homes with no need to come into the office for an uncomfortable pelvic exam,” he said in an interview. “This empowers the patient and gives her a choice.”
As to concern about potential error, he added that while this is a concern on paper, “a lot of studies have shown that self-collection is just as effective doctor collection.”
Largely consistent with the task force’s 2018 screening recommendations, the updated suggestions also align with those of other organizations such as the American College of Obstetricians and Gynecologists (ACOG), Davis said.
Christopher M. Zahn, MD, ACOG’s chief of clinical practice and health equity and quality, stressed the importance of cervical cancer screening and said his organization will be reviewing the USPSTF recommendations. He urges ACOG members to consider them and offer their comments on the public-input platform.
Drawing on the latest evidence, the task force is also highlighting for the first time that stand-alone HPV screening gives women aged 30-65 years the best balance of benefits and harms when it comes to finding and preventing cervical cancer, while continuing to reinforce that Pap testing and co-testing are also effective screening options for these women.
The current draft statement applies to cisgender women and those assigned female sex at birth, including transgender men and nonbinary individuals. The recommendations do not apply to women at increased risk of cervical cancer such as those with HIV infection, a compromised immune system, or a history of treatment for precancerous lesions or cervical cancer.
Based on a review of evidence on the benefits and harms of screening, the USPSTF’s independent panel of national experts proposed the following:
Recommendations for Screening (Based on Grade A Evidence):
- Ages 21-65 years: All women should get screened regularly for this preventable disease.
- Ages 21-29 years: All women in this age group should undergo a Pap test every 3 years but do not need HPV testing. “In this age group most HPV infections will go away on their own because young women have strong immune systems. Older women are likely to have HPV that lasts longer and so they need testing for the virus,” Davis said.
- Ages 30-65 years: As noted, HPV screening gives women in this age category the best balance of benefits and harms in terms of preventing and finding cervical cancer. Pap testing or co-testing (Pap tests and HPV tests) are also effective screening options for this population. Ideally, these women should have an HPV test every 5 years or, alternatively, a Pap test every 3 years, or a combined HPV and Pap test every 5 years (co-testing).
Recommendations Against Screening (No Benefit or Benefit Outweighed by Harms — Grade D evidence):
- Women aged less than 21 years: Screening is not necessary.
- Other women not needing screening: Nor is screening necessary for those of any age who have had a total hysterectomy with removal of the cervix and those aged > 65 years who have had regular screenings with normal results. That means normal results from their last three Pap tests or their last two HPV tests, completed in the past 10 years, with at least one of the tests done in the past 5 years.
- Women aged 65 or more: These women should continue screening only if they have not been screened regularly or have had abnormal results in the past decade such as a high-grade precancerous lesion (cervical intraepithelial neoplasia grade 2 or 3) or cervical cancer.
Davis noted that none of the current recommendations are likely to be controversial or to spark pushback. “But,” said Aviles, “any time I see recent change in medicine, there’s always a little bit of pushback and it may take some time for everyone to be comfortable with the self-collection option. The recommendations still give doctors the grace to use the screening test they feel comfortable with, but I think eventually everyone will get on board with self-collection.”
As for the future, he added, “Over the next few years we’ll have to look at women who are on immune-weakening medications like Skyrizi [risankizumab] for skin conditions like psoriasis. These are commonly used in young people and can increase the risk of cervical cancer. I haven’t seen a lot of conversation about this, but patients should be aware of this risk and recommendations for this group should be different than for the general population.”
The USPSTF also noted a need to assess the magnitude of the incremental benefit and harms of screening and the interval of multiple rounds of HPV-primary screening in HPV-vaccinated cohorts in US populations.
Davis, Aviles, and Zahn and had no relevant competing interests to disclose.
A version of this article first appeared on Medscape.com.
The US Preventive Services Task Force (USPSTF) has posted a draft updated statement on cervical cancer screening. The statement is open for public comment until January 13, 2025, on the task force’s website.
Nearly all cases of cervical cancer are caused by human papilloma virus (HPV) and most occur in women who have not been regularly screened or appropriately treated, the task force stressed.
New Screening Option
In 2024, there will be an estimated 13,820 new cases of cervical cancer and 4360 deaths.
“Evidence shows that screening saves lives, and all women aged 21-65 need to be screened,” task force member Esa Davis, MD, MPH, FAAFP, a professor of family and community medicine and associate vice president for community health at the University of Maryland, Baltimore, said in an interview. A new feature in the 2024 draft statement endorsing self-collection of cervical samples for HPV testing may facilitate broader screening.
“We hope the new effective option of self-collecting will expand screening and allow even more women to get screened regularly,” Davis said. “Some may feel more comfortable collecting samples themselves, and the collection can be office-based or home-based, but it’s very important that it be done under the direction of a clinician.”
In agreement is Diego Aviles, MD, an assistant professor and a gynecologic oncologist with UTHealth Houston. “Self-collection will absolutely expand screening. I think it’s an incredible advancement in medicine that patients are able to collect in the comfort of their own homes with no need to come into the office for an uncomfortable pelvic exam,” he said in an interview. “This empowers the patient and gives her a choice.”
As to concern about potential error, he added that while this is a concern on paper, “a lot of studies have shown that self-collection is just as effective doctor collection.”
Largely consistent with the task force’s 2018 screening recommendations, the updated suggestions also align with those of other organizations such as the American College of Obstetricians and Gynecologists (ACOG), Davis said.
Christopher M. Zahn, MD, ACOG’s chief of clinical practice and health equity and quality, stressed the importance of cervical cancer screening and said his organization will be reviewing the USPSTF recommendations. He urges ACOG members to consider them and offer their comments on the public-input platform.
Drawing on the latest evidence, the task force is also highlighting for the first time that stand-alone HPV screening gives women aged 30-65 years the best balance of benefits and harms when it comes to finding and preventing cervical cancer, while continuing to reinforce that Pap testing and co-testing are also effective screening options for these women.
The current draft statement applies to cisgender women and those assigned female sex at birth, including transgender men and nonbinary individuals. The recommendations do not apply to women at increased risk of cervical cancer such as those with HIV infection, a compromised immune system, or a history of treatment for precancerous lesions or cervical cancer.
Based on a review of evidence on the benefits and harms of screening, the USPSTF’s independent panel of national experts proposed the following:
Recommendations for Screening (Based on Grade A Evidence):
- Ages 21-65 years: All women should get screened regularly for this preventable disease.
- Ages 21-29 years: All women in this age group should undergo a Pap test every 3 years but do not need HPV testing. “In this age group most HPV infections will go away on their own because young women have strong immune systems. Older women are likely to have HPV that lasts longer and so they need testing for the virus,” Davis said.
- Ages 30-65 years: As noted, HPV screening gives women in this age category the best balance of benefits and harms in terms of preventing and finding cervical cancer. Pap testing or co-testing (Pap tests and HPV tests) are also effective screening options for this population. Ideally, these women should have an HPV test every 5 years or, alternatively, a Pap test every 3 years, or a combined HPV and Pap test every 5 years (co-testing).
Recommendations Against Screening (No Benefit or Benefit Outweighed by Harms — Grade D evidence):
- Women aged less than 21 years: Screening is not necessary.
- Other women not needing screening: Nor is screening necessary for those of any age who have had a total hysterectomy with removal of the cervix and those aged > 65 years who have had regular screenings with normal results. That means normal results from their last three Pap tests or their last two HPV tests, completed in the past 10 years, with at least one of the tests done in the past 5 years.
- Women aged 65 or more: These women should continue screening only if they have not been screened regularly or have had abnormal results in the past decade such as a high-grade precancerous lesion (cervical intraepithelial neoplasia grade 2 or 3) or cervical cancer.
Davis noted that none of the current recommendations are likely to be controversial or to spark pushback. “But,” said Aviles, “any time I see recent change in medicine, there’s always a little bit of pushback and it may take some time for everyone to be comfortable with the self-collection option. The recommendations still give doctors the grace to use the screening test they feel comfortable with, but I think eventually everyone will get on board with self-collection.”
As for the future, he added, “Over the next few years we’ll have to look at women who are on immune-weakening medications like Skyrizi [risankizumab] for skin conditions like psoriasis. These are commonly used in young people and can increase the risk of cervical cancer. I haven’t seen a lot of conversation about this, but patients should be aware of this risk and recommendations for this group should be different than for the general population.”
The USPSTF also noted a need to assess the magnitude of the incremental benefit and harms of screening and the interval of multiple rounds of HPV-primary screening in HPV-vaccinated cohorts in US populations.
Davis, Aviles, and Zahn and had no relevant competing interests to disclose.
A version of this article first appeared on Medscape.com.
Could Diet and Gut Bacteria Be Fueling Early CRC?
This transcript has been edited for clarity.
I’d like to reflect a little on the ever-rising incidence of early-onset colorectal cancer. I saw two patients in the clinic on Friday, both in their early thirties, presenting with stage IV disease. Both had young families — a disaster.
This is an issue that we must address, I think, epidemiologically. We know that and currently, around 200,000 such cases are diagnosed every year, but it is said to increase unquestionably.
The epidemiologists, I think, correctly have identified that this sharp, rapid increase does imply that there is a new environmental change that is underpinning or underscoring this rise in early-onset disease.
There’s a fantastic team that has been put together by Paul Brennan, Mike Stratton, and colleagues, a collaborative group of epidemiologists, geneticists, and bioinformaticians, who are looking at a global study to try to understand the basis of early-onset colorectal cancer. Their approach is to combine conventional epidemiology, genomics, and fantastic computational support to try to unpick the mutational signatures involved.
The dominant hypothesis is that, over the past 20-25 years or so, there has been a change in diet that has allowed an alteration in the gut microbiome such that we now harbor, in some cases, more bacteria capable of manufacturing, synthesizing, and releasing mutagenic chemicals. There’s a subtype of Escherichia coli which manufactures one such mutagen called colibactin.
Again, through some of the painstaking, extraordinary work that Mike Stratton and colleagues have done at the Sanger Institute, they have managed to, using a variety of different techniques — in vitro, observational, and so on — relate exposure to the mutagen colibactin to a particular mutational signature.
They plan to do a large global study — one of the strengths — involving many different countries around the globe, collect material from older colorectal cancer patients and early-onset colorectal cancer patients, and undertake a staggeringly large mutational study to see if the mutational signature associated with colibactin is more highly represented in these early-onset cases. The hypothesis is that, if you’re exposed to this mutagen in childhood, then it increases the tumor mutational burden and therefore the likelihood of developing cancer at an earlier age.
All of us believe that converting a normal cell into a tumor cell usually requires five or six or seven separate mutational events occurring at random. The earlier these occur, the greater the tumor, the greater the normal single-cellular mutational burden, and the more likely it is to develop cancer sooner rather than later.
This is a fantastically interesting study, and it’s the way ahead with modern genetic epidemiology, one would say. We wish them well. This will be a 3- to 5-year truly international effort, bringing together a genuinely internationally outstanding research team. We hope that they are able to shed more light on the epidemiology of this early-onset disease, because only by understanding can we deflect and deal with it.
Knowledge is power, as I’ve said many times before. If we understand the underlying epidemiology, that will allow us to intervene, one would hope, and avoid the chaotic disaster of my clinic on Friday, with these two young patients with an extremely limited lifespan and large families who will be left bereft in having lost a parent.
More power to the team. We wish them well with the study, but again, this is a pointer to the future, one would hope, of modern genetic computational epidemiology.
I’d be really interested in any ideas or comments that you might have. Are you in the field? Are you seeing more young patients? Do you have any ideas or hypotheses of your own around the microbiome and what bugs might be involved and so on?
Dr. Kerr, Professor, Nuffield Department of Clinical Laboratory Science, University of Oxford, England; Professor of Cancer Medicine, Oxford Cancer Centre, Oxford, United Kingdom, has disclosed relevant financial relationships with Celleron Therapeutics, Oxford Cancer Biomarkers, Afrox, GlaxoSmithKline, Bayer, Genomic Health, Merck Serono, and Roche.
A version of this article appeared on Medscape.com.
This transcript has been edited for clarity.
I’d like to reflect a little on the ever-rising incidence of early-onset colorectal cancer. I saw two patients in the clinic on Friday, both in their early thirties, presenting with stage IV disease. Both had young families — a disaster.
This is an issue that we must address, I think, epidemiologically. We know that and currently, around 200,000 such cases are diagnosed every year, but it is said to increase unquestionably.
The epidemiologists, I think, correctly have identified that this sharp, rapid increase does imply that there is a new environmental change that is underpinning or underscoring this rise in early-onset disease.
There’s a fantastic team that has been put together by Paul Brennan, Mike Stratton, and colleagues, a collaborative group of epidemiologists, geneticists, and bioinformaticians, who are looking at a global study to try to understand the basis of early-onset colorectal cancer. Their approach is to combine conventional epidemiology, genomics, and fantastic computational support to try to unpick the mutational signatures involved.
The dominant hypothesis is that, over the past 20-25 years or so, there has been a change in diet that has allowed an alteration in the gut microbiome such that we now harbor, in some cases, more bacteria capable of manufacturing, synthesizing, and releasing mutagenic chemicals. There’s a subtype of Escherichia coli which manufactures one such mutagen called colibactin.
Again, through some of the painstaking, extraordinary work that Mike Stratton and colleagues have done at the Sanger Institute, they have managed to, using a variety of different techniques — in vitro, observational, and so on — relate exposure to the mutagen colibactin to a particular mutational signature.
They plan to do a large global study — one of the strengths — involving many different countries around the globe, collect material from older colorectal cancer patients and early-onset colorectal cancer patients, and undertake a staggeringly large mutational study to see if the mutational signature associated with colibactin is more highly represented in these early-onset cases. The hypothesis is that, if you’re exposed to this mutagen in childhood, then it increases the tumor mutational burden and therefore the likelihood of developing cancer at an earlier age.
All of us believe that converting a normal cell into a tumor cell usually requires five or six or seven separate mutational events occurring at random. The earlier these occur, the greater the tumor, the greater the normal single-cellular mutational burden, and the more likely it is to develop cancer sooner rather than later.
This is a fantastically interesting study, and it’s the way ahead with modern genetic epidemiology, one would say. We wish them well. This will be a 3- to 5-year truly international effort, bringing together a genuinely internationally outstanding research team. We hope that they are able to shed more light on the epidemiology of this early-onset disease, because only by understanding can we deflect and deal with it.
Knowledge is power, as I’ve said many times before. If we understand the underlying epidemiology, that will allow us to intervene, one would hope, and avoid the chaotic disaster of my clinic on Friday, with these two young patients with an extremely limited lifespan and large families who will be left bereft in having lost a parent.
More power to the team. We wish them well with the study, but again, this is a pointer to the future, one would hope, of modern genetic computational epidemiology.
I’d be really interested in any ideas or comments that you might have. Are you in the field? Are you seeing more young patients? Do you have any ideas or hypotheses of your own around the microbiome and what bugs might be involved and so on?
Dr. Kerr, Professor, Nuffield Department of Clinical Laboratory Science, University of Oxford, England; Professor of Cancer Medicine, Oxford Cancer Centre, Oxford, United Kingdom, has disclosed relevant financial relationships with Celleron Therapeutics, Oxford Cancer Biomarkers, Afrox, GlaxoSmithKline, Bayer, Genomic Health, Merck Serono, and Roche.
A version of this article appeared on Medscape.com.
This transcript has been edited for clarity.
I’d like to reflect a little on the ever-rising incidence of early-onset colorectal cancer. I saw two patients in the clinic on Friday, both in their early thirties, presenting with stage IV disease. Both had young families — a disaster.
This is an issue that we must address, I think, epidemiologically. We know that and currently, around 200,000 such cases are diagnosed every year, but it is said to increase unquestionably.
The epidemiologists, I think, correctly have identified that this sharp, rapid increase does imply that there is a new environmental change that is underpinning or underscoring this rise in early-onset disease.
There’s a fantastic team that has been put together by Paul Brennan, Mike Stratton, and colleagues, a collaborative group of epidemiologists, geneticists, and bioinformaticians, who are looking at a global study to try to understand the basis of early-onset colorectal cancer. Their approach is to combine conventional epidemiology, genomics, and fantastic computational support to try to unpick the mutational signatures involved.
The dominant hypothesis is that, over the past 20-25 years or so, there has been a change in diet that has allowed an alteration in the gut microbiome such that we now harbor, in some cases, more bacteria capable of manufacturing, synthesizing, and releasing mutagenic chemicals. There’s a subtype of Escherichia coli which manufactures one such mutagen called colibactin.
Again, through some of the painstaking, extraordinary work that Mike Stratton and colleagues have done at the Sanger Institute, they have managed to, using a variety of different techniques — in vitro, observational, and so on — relate exposure to the mutagen colibactin to a particular mutational signature.
They plan to do a large global study — one of the strengths — involving many different countries around the globe, collect material from older colorectal cancer patients and early-onset colorectal cancer patients, and undertake a staggeringly large mutational study to see if the mutational signature associated with colibactin is more highly represented in these early-onset cases. The hypothesis is that, if you’re exposed to this mutagen in childhood, then it increases the tumor mutational burden and therefore the likelihood of developing cancer at an earlier age.
All of us believe that converting a normal cell into a tumor cell usually requires five or six or seven separate mutational events occurring at random. The earlier these occur, the greater the tumor, the greater the normal single-cellular mutational burden, and the more likely it is to develop cancer sooner rather than later.
This is a fantastically interesting study, and it’s the way ahead with modern genetic epidemiology, one would say. We wish them well. This will be a 3- to 5-year truly international effort, bringing together a genuinely internationally outstanding research team. We hope that they are able to shed more light on the epidemiology of this early-onset disease, because only by understanding can we deflect and deal with it.
Knowledge is power, as I’ve said many times before. If we understand the underlying epidemiology, that will allow us to intervene, one would hope, and avoid the chaotic disaster of my clinic on Friday, with these two young patients with an extremely limited lifespan and large families who will be left bereft in having lost a parent.
More power to the team. We wish them well with the study, but again, this is a pointer to the future, one would hope, of modern genetic computational epidemiology.
I’d be really interested in any ideas or comments that you might have. Are you in the field? Are you seeing more young patients? Do you have any ideas or hypotheses of your own around the microbiome and what bugs might be involved and so on?
Dr. Kerr, Professor, Nuffield Department of Clinical Laboratory Science, University of Oxford, England; Professor of Cancer Medicine, Oxford Cancer Centre, Oxford, United Kingdom, has disclosed relevant financial relationships with Celleron Therapeutics, Oxford Cancer Biomarkers, Afrox, GlaxoSmithKline, Bayer, Genomic Health, Merck Serono, and Roche.
A version of this article appeared on Medscape.com.
Nonmelanoma Skin Cancer Risk May Be Reduced in Patients on PCSK9 Inhibitors
TOPLINE:
Proprotein convertase subtilisin/kexin type 9 ( those older than 65 years, and those with immunosuppression.
METHODOLOGY:
- To evaluate the risk for NMSC — basal cell carcinoma (BCC) and squamous cell carcinoma (SCC) — in patients with ASCVD on PCSK9 inhibitors, researchers analyzed data from the US Collaborative Network in the TriNetX database of adults aged ≥ 40 years with ASCVD who received statin therapy between 2016 and 2022.
- A total of 73,636 patients were included, divided equally between those receiving a PCSK9 inhibitor (evolocumab, alirocumab, or inclisiran) plus statin therapy and the control group (those on statin therapy only).
- The analysis used propensity score matching for head-to-head comparisons, with hazard ratios (HRs) estimated using Cox proportional hazard models.
- Stratified analyses examined outcomes by age, sex, Fitzpatrick skin type, and immune status. (Immunosuppressed patients were those treated with immunosuppressants for more than 90 days in the year before the index date — the date when exposed patients were first prescribed a PCSK9 inhibitor, which was also index date for matched patients in the statin-only group.)
TAKEAWAY:
- Patients with ASCVD in the PCSK9 group showed significantly lower risks for NMSC (HR, 0.78; 95% CI, 0.71-0.87), BCC (HR, 0.78; 95% CI, 0.69-0.89), and SCC (HR, 0.79; 95% CI, 0.67-0.93) than control individuals on a statin only (P < .001 for all three).
- Both evolocumab and alirocumab demonstrated similar protective effects against the development of NMSC.
- The reduced risk for NMSC was particularly notable among patients aged 65-79 years (HR, 0.75; 95% CI, 0.66-0.86) and those aged ≥ 80 years (HR, 0.74; 95% CI, 0.60-0.91).
- Men showed a more pronounced reduction in the risk for NMSC (HR, 0.73; 95% CI, 0.64-0.83) than women (HR, 0.93; 95% CI, 0.78-1.11). The effect on lowering NMSC risk was also evident among immunosuppressed patients in the PCSK9 group (HR, 0.68; 95% CI, 0.60-0.75).
IN PRACTICE:
“The findings suggest the promising pleiotropic effect of PCSK9 inhibitors on the chemoprevention of NMSC,” the study authors wrote. Referring to previous studies that “provided mechanistic clues to our findings,” they added that “further studies are required to investigate the underlying mechanisms and establish causality.”
SOURCE:
The study was led by Cheng-Yuan Li, Taipei Veterans General Hospital, Taipei, Taiwan, and was published online in The British Journal of Dermatology.
LIMITATIONS:
Electronic health records lack information on sun protection habits, family history of skin cancer, diet, body mass index, and air pollution exposure, risk factors for NMSC. The study also lacked detailed information on enrollees’ lipid profiles and was focused mostly on patients in the United States, limiting the generalizability of the findings to other regions.
DISCLOSURES:
The study was supported by grants from Taipei Veterans General Hospital and the Ministry of Science and Technology, Taiwan. The authors reported no conflicts of interest.
This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.
TOPLINE:
Proprotein convertase subtilisin/kexin type 9 ( those older than 65 years, and those with immunosuppression.
METHODOLOGY:
- To evaluate the risk for NMSC — basal cell carcinoma (BCC) and squamous cell carcinoma (SCC) — in patients with ASCVD on PCSK9 inhibitors, researchers analyzed data from the US Collaborative Network in the TriNetX database of adults aged ≥ 40 years with ASCVD who received statin therapy between 2016 and 2022.
- A total of 73,636 patients were included, divided equally between those receiving a PCSK9 inhibitor (evolocumab, alirocumab, or inclisiran) plus statin therapy and the control group (those on statin therapy only).
- The analysis used propensity score matching for head-to-head comparisons, with hazard ratios (HRs) estimated using Cox proportional hazard models.
- Stratified analyses examined outcomes by age, sex, Fitzpatrick skin type, and immune status. (Immunosuppressed patients were those treated with immunosuppressants for more than 90 days in the year before the index date — the date when exposed patients were first prescribed a PCSK9 inhibitor, which was also index date for matched patients in the statin-only group.)
TAKEAWAY:
- Patients with ASCVD in the PCSK9 group showed significantly lower risks for NMSC (HR, 0.78; 95% CI, 0.71-0.87), BCC (HR, 0.78; 95% CI, 0.69-0.89), and SCC (HR, 0.79; 95% CI, 0.67-0.93) than control individuals on a statin only (P < .001 for all three).
- Both evolocumab and alirocumab demonstrated similar protective effects against the development of NMSC.
- The reduced risk for NMSC was particularly notable among patients aged 65-79 years (HR, 0.75; 95% CI, 0.66-0.86) and those aged ≥ 80 years (HR, 0.74; 95% CI, 0.60-0.91).
- Men showed a more pronounced reduction in the risk for NMSC (HR, 0.73; 95% CI, 0.64-0.83) than women (HR, 0.93; 95% CI, 0.78-1.11). The effect on lowering NMSC risk was also evident among immunosuppressed patients in the PCSK9 group (HR, 0.68; 95% CI, 0.60-0.75).
IN PRACTICE:
“The findings suggest the promising pleiotropic effect of PCSK9 inhibitors on the chemoprevention of NMSC,” the study authors wrote. Referring to previous studies that “provided mechanistic clues to our findings,” they added that “further studies are required to investigate the underlying mechanisms and establish causality.”
SOURCE:
The study was led by Cheng-Yuan Li, Taipei Veterans General Hospital, Taipei, Taiwan, and was published online in The British Journal of Dermatology.
LIMITATIONS:
Electronic health records lack information on sun protection habits, family history of skin cancer, diet, body mass index, and air pollution exposure, risk factors for NMSC. The study also lacked detailed information on enrollees’ lipid profiles and was focused mostly on patients in the United States, limiting the generalizability of the findings to other regions.
DISCLOSURES:
The study was supported by grants from Taipei Veterans General Hospital and the Ministry of Science and Technology, Taiwan. The authors reported no conflicts of interest.
This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.
TOPLINE:
Proprotein convertase subtilisin/kexin type 9 ( those older than 65 years, and those with immunosuppression.
METHODOLOGY:
- To evaluate the risk for NMSC — basal cell carcinoma (BCC) and squamous cell carcinoma (SCC) — in patients with ASCVD on PCSK9 inhibitors, researchers analyzed data from the US Collaborative Network in the TriNetX database of adults aged ≥ 40 years with ASCVD who received statin therapy between 2016 and 2022.
- A total of 73,636 patients were included, divided equally between those receiving a PCSK9 inhibitor (evolocumab, alirocumab, or inclisiran) plus statin therapy and the control group (those on statin therapy only).
- The analysis used propensity score matching for head-to-head comparisons, with hazard ratios (HRs) estimated using Cox proportional hazard models.
- Stratified analyses examined outcomes by age, sex, Fitzpatrick skin type, and immune status. (Immunosuppressed patients were those treated with immunosuppressants for more than 90 days in the year before the index date — the date when exposed patients were first prescribed a PCSK9 inhibitor, which was also index date for matched patients in the statin-only group.)
TAKEAWAY:
- Patients with ASCVD in the PCSK9 group showed significantly lower risks for NMSC (HR, 0.78; 95% CI, 0.71-0.87), BCC (HR, 0.78; 95% CI, 0.69-0.89), and SCC (HR, 0.79; 95% CI, 0.67-0.93) than control individuals on a statin only (P < .001 for all three).
- Both evolocumab and alirocumab demonstrated similar protective effects against the development of NMSC.
- The reduced risk for NMSC was particularly notable among patients aged 65-79 years (HR, 0.75; 95% CI, 0.66-0.86) and those aged ≥ 80 years (HR, 0.74; 95% CI, 0.60-0.91).
- Men showed a more pronounced reduction in the risk for NMSC (HR, 0.73; 95% CI, 0.64-0.83) than women (HR, 0.93; 95% CI, 0.78-1.11). The effect on lowering NMSC risk was also evident among immunosuppressed patients in the PCSK9 group (HR, 0.68; 95% CI, 0.60-0.75).
IN PRACTICE:
“The findings suggest the promising pleiotropic effect of PCSK9 inhibitors on the chemoprevention of NMSC,” the study authors wrote. Referring to previous studies that “provided mechanistic clues to our findings,” they added that “further studies are required to investigate the underlying mechanisms and establish causality.”
SOURCE:
The study was led by Cheng-Yuan Li, Taipei Veterans General Hospital, Taipei, Taiwan, and was published online in The British Journal of Dermatology.
LIMITATIONS:
Electronic health records lack information on sun protection habits, family history of skin cancer, diet, body mass index, and air pollution exposure, risk factors for NMSC. The study also lacked detailed information on enrollees’ lipid profiles and was focused mostly on patients in the United States, limiting the generalizability of the findings to other regions.
DISCLOSURES:
The study was supported by grants from Taipei Veterans General Hospital and the Ministry of Science and Technology, Taiwan. The authors reported no conflicts of interest.
This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.
New Cancer Vaccines on the Horizon: Renewed Hope or Hype?
Vaccines for treating and preventing cancer have long been considered a holy grail in oncology.
But aside from a few notable exceptions — including the human papillomavirus (HPV) vaccine, which has dramatically reduced the incidence of HPV-related cancers, and a Bacillus Calmette-Guerin vaccine, which helps prevent early-stage bladder cancer recurrence — most have failed to deliver.
Following a string of disappointments over the past decade, recent advances in the immunotherapy space are bringing renewed hope for progress.
In an American Association for Cancer Research (AACR) series earlier in 2024, Catherine J. Wu, MD, predicted big strides for cancer vaccines, especially for personalized vaccines that target patient-specific neoantigens — the proteins that form on cancer cells — as well as vaccines that can treat diverse tumor types.
said Wu, the Lavine Family Chair of Preventative Cancer Therapies at Dana-Farber Cancer Institute and a professor of medicine at Harvard Medical School, both in Boston, Massachusetts.
A prime example is a personalized, messenger RNA (mRNA)–based vaccine designed to prevent melanoma recurrence. The mRNA-4157 vaccine encodes up to 34 different patient-specific neoantigens.
“This is one of the most exciting developments in modern cancer therapy,” said Lawrence Young, a virologist and professor of molecular oncology at the University of Warwick, Coventry, England, who commented on the investigational vaccine via the UK-based Science Media Centre.
Other promising options are on the horizon as well. In August, BioNTech announced a phase 1 global trial to study BNT116 — a vaccine to treat non–small cell lung cancer (NSCLC). BNT116, like mRNA-4157, targets specific antigens in the lung cancer cells.
“This technology is the next big phase of cancer treatment,” Siow Ming Lee, MD, a consultant medical oncologist at University College London Hospitals in England, which is leading the UK trial for the lung cancer and melanoma vaccines, told The Guardian. “We are now entering this very exciting new era of mRNA-based immunotherapy clinical trials to investigate the treatment of lung cancer.”
Still, these predictions have a familiar ring. While the prospects are exciting, delivering on them is another story. There are simply no guarantees these strategies will work as hoped.
Then: Where We Were
Cancer vaccine research began to ramp up in the 2000s, and in 2006, the first-generation HPV vaccine, Gardasil, was approved. Gardasil prevents infection from four strains of HPV that cause about 80% of cervical cancer cases.
In 2010, the Food and Drug Administration approved sipuleucel-T, the first therapeutic cancer vaccine, which improved overall survival in patients with hormone-refractory prostate cancer.
Researchers predicted this approval would “pave the way for developing innovative, next generation of vaccines with enhanced antitumor potency.”
In a 2015 AACR research forecast report, Drew Pardoll, MD, PhD, co-director of the Cancer Immunology and Hematopoiesis Program at Johns Hopkins University, Baltimore, Maryland, said that “we can expect to see encouraging results from studies using cancer vaccines.”
Despite the excitement surrounding cancer vaccines alongside a few successes, the next decade brought a longer string of late-phase disappointments.
In 2016, the phase 3 ACT IV trial of a therapeutic vaccine to treat glioblastoma multiforme (CDX-110) was terminated after it failed to demonstrate improved survival.
In 2017, a phase 3 trial of the therapeutic pancreatic cancer vaccine, GVAX, was stopped early for lack of efficacy.
That year, an attenuated Listeria monocytogenes vaccine to treat pancreatic cancer and mesothelioma also failed to come to fruition. In late 2017, concerns over listeria infections prompted Aduro Biotech to cancel its listeria-based cancer treatment program.
In 2018, a phase 3 trial of belagenpumatucel-L, a therapeutic NSCLC vaccine, failed to demonstrate a significant improvement in survival and further study was discontinued.
And in 2019, a vaccine targeting MAGE-A3, a cancer-testis antigen present in multiple tumor types, failed to meet endpoints for improved survival in a phase 3 trial, leading to discontinuation of the vaccine program.
But these disappointments and failures are normal parts of medical research and drug development and have allowed for incremental advances that helped fuel renewed interest and hope for cancer vaccines, when the timing was right, explained vaccine pioneer Larry W. Kwak, MD, PhD, deputy director of the Comprehensive Cancer Center at City of Hope, Duarte, California.
When it comes to vaccine progress, timing makes a difference. In 2011, Kwak and colleagues published promising phase 3 trial results on a personalized vaccine. The vaccine was a patient-specific tumor-derived antigen for patients with follicular lymphoma in their first remission following chemotherapy. Patients who received the vaccine demonstrated significantly longer disease-free survival.
But, at the time, personalized vaccines faced strong headwinds due, largely, to high costs, and commercial interest failed to materialize. “That’s been the major hurdle for a long time,” said Kwak.
Now, however, interest has returned alongside advances in technology and research. The big shift has been the emergence of lower-cost rapid-production mRNA and DNA platforms and a better understanding of how vaccines and potent immune stimulants, like checkpoint inhibitors, can work together to improve outcomes, he explained.
“The timing wasn’t right” back then, Kwak noted. “Now, it’s a different environment and a different time.”
A Turning Point?
Indeed, a decade later, cancer vaccine development appears to be headed in a more promising direction.
Among key cancer vaccines to watch is the mRNA-4157 vaccine, developed by Merck and Moderna, designed to prevent melanoma recurrence. In a recent phase 2 study, patients receiving the mRNA-4157 vaccine alongside pembrolizumab had nearly half the risk for melanoma recurrence or death at 3 years compared with those receiving pembrolizumab alone. Investigators are now evaluating the vaccine in a global phase 3 study in patients with high-risk, stage IIB to IV melanoma following surgery.
Another one to watch is the BNT116 NSCLC vaccine from BioNTech. This vaccine presents the immune system with NSCLC tumor markers to encourage the body to fight cancer cells expressing those markers while ignoring healthy cells. BioNTech also launched a global clinical trial for its vaccine this year.
Other notables include a pancreatic cancer mRNA vaccine, which has shown promising early results in a small trial of 16 patients. Of 16 patients who received the vaccine alongside chemotherapy and after surgery and immunotherapy, 8 responded. Of these eight, six remained recurrence free at 3 years. Investigators noted that the vaccine appeared to stimulate a durable T-cell response in patients who responded.
Kwak has also continued his work on lymphoma vaccines. In August, his team published promising first-in-human data on the use of personalized neoantigen vaccines as an early intervention in untreated patients with lymphoplasmacytic lymphoma. Among nine asymptomatic patients who received the vaccine, all achieved stable disease or better, with no dose-limiting toxicities. One patient had a minor response, and the median time to progression was greater than 72 months.
“The current setting is more for advanced disease,” Kwak explained. “It’s a tougher task, but combined with checkpoint blockade, it may be potent enough to work.”
Still, caution is important. Despite early promise, it’s too soon to tell which, if any, of these investigational vaccines will pan out in the long run. Like investigational drugs, cancer vaccines may show big promising initially but then fail in larger trials.
One key to success, according to Kwak, is to design trials so that even negative results will inform next steps.
But, he noted, failures in large clinical trials will “put a chilling effect on cancer vaccine research again.”
“That’s what keeps me up at night,” he said. “We know the science is fundamentally sound and we have seen glimpses over decades of research that cancer vaccines can work, so it’s really just a matter of tweaking things to optimize trial design.”
Companies tend to design trials to test if a vaccine works or not, without trying to understand why, he said.
“What we need to do is design those so that we can learn from negative results,” he said. That’s what he and his colleagues attempted to do in their recent trial. “We didn’t just look at clinical results; we’re interrogating the actual tumor environment to understand what worked and didn’t and how to tweak that for the next trial.”
Kwak and his colleagues found, for instance, that the vaccine had a greater effect on B cell–derived tumor cells than on cells of plasma origin, so “the most rational design for the next iteration is to combine the vaccine with agents that work directly against plasma cells,” he explained.
As for what’s next, Kwak said: “We’re just focused on trying to do good science and understand. We’ve seen glimpses of success. That’s where we are.”
A version of this article first appeared on Medscape.com.
Vaccines for treating and preventing cancer have long been considered a holy grail in oncology.
But aside from a few notable exceptions — including the human papillomavirus (HPV) vaccine, which has dramatically reduced the incidence of HPV-related cancers, and a Bacillus Calmette-Guerin vaccine, which helps prevent early-stage bladder cancer recurrence — most have failed to deliver.
Following a string of disappointments over the past decade, recent advances in the immunotherapy space are bringing renewed hope for progress.
In an American Association for Cancer Research (AACR) series earlier in 2024, Catherine J. Wu, MD, predicted big strides for cancer vaccines, especially for personalized vaccines that target patient-specific neoantigens — the proteins that form on cancer cells — as well as vaccines that can treat diverse tumor types.
said Wu, the Lavine Family Chair of Preventative Cancer Therapies at Dana-Farber Cancer Institute and a professor of medicine at Harvard Medical School, both in Boston, Massachusetts.
A prime example is a personalized, messenger RNA (mRNA)–based vaccine designed to prevent melanoma recurrence. The mRNA-4157 vaccine encodes up to 34 different patient-specific neoantigens.
“This is one of the most exciting developments in modern cancer therapy,” said Lawrence Young, a virologist and professor of molecular oncology at the University of Warwick, Coventry, England, who commented on the investigational vaccine via the UK-based Science Media Centre.
Other promising options are on the horizon as well. In August, BioNTech announced a phase 1 global trial to study BNT116 — a vaccine to treat non–small cell lung cancer (NSCLC). BNT116, like mRNA-4157, targets specific antigens in the lung cancer cells.
“This technology is the next big phase of cancer treatment,” Siow Ming Lee, MD, a consultant medical oncologist at University College London Hospitals in England, which is leading the UK trial for the lung cancer and melanoma vaccines, told The Guardian. “We are now entering this very exciting new era of mRNA-based immunotherapy clinical trials to investigate the treatment of lung cancer.”
Still, these predictions have a familiar ring. While the prospects are exciting, delivering on them is another story. There are simply no guarantees these strategies will work as hoped.
Then: Where We Were
Cancer vaccine research began to ramp up in the 2000s, and in 2006, the first-generation HPV vaccine, Gardasil, was approved. Gardasil prevents infection from four strains of HPV that cause about 80% of cervical cancer cases.
In 2010, the Food and Drug Administration approved sipuleucel-T, the first therapeutic cancer vaccine, which improved overall survival in patients with hormone-refractory prostate cancer.
Researchers predicted this approval would “pave the way for developing innovative, next generation of vaccines with enhanced antitumor potency.”
In a 2015 AACR research forecast report, Drew Pardoll, MD, PhD, co-director of the Cancer Immunology and Hematopoiesis Program at Johns Hopkins University, Baltimore, Maryland, said that “we can expect to see encouraging results from studies using cancer vaccines.”
Despite the excitement surrounding cancer vaccines alongside a few successes, the next decade brought a longer string of late-phase disappointments.
In 2016, the phase 3 ACT IV trial of a therapeutic vaccine to treat glioblastoma multiforme (CDX-110) was terminated after it failed to demonstrate improved survival.
In 2017, a phase 3 trial of the therapeutic pancreatic cancer vaccine, GVAX, was stopped early for lack of efficacy.
That year, an attenuated Listeria monocytogenes vaccine to treat pancreatic cancer and mesothelioma also failed to come to fruition. In late 2017, concerns over listeria infections prompted Aduro Biotech to cancel its listeria-based cancer treatment program.
In 2018, a phase 3 trial of belagenpumatucel-L, a therapeutic NSCLC vaccine, failed to demonstrate a significant improvement in survival and further study was discontinued.
And in 2019, a vaccine targeting MAGE-A3, a cancer-testis antigen present in multiple tumor types, failed to meet endpoints for improved survival in a phase 3 trial, leading to discontinuation of the vaccine program.
But these disappointments and failures are normal parts of medical research and drug development and have allowed for incremental advances that helped fuel renewed interest and hope for cancer vaccines, when the timing was right, explained vaccine pioneer Larry W. Kwak, MD, PhD, deputy director of the Comprehensive Cancer Center at City of Hope, Duarte, California.
When it comes to vaccine progress, timing makes a difference. In 2011, Kwak and colleagues published promising phase 3 trial results on a personalized vaccine. The vaccine was a patient-specific tumor-derived antigen for patients with follicular lymphoma in their first remission following chemotherapy. Patients who received the vaccine demonstrated significantly longer disease-free survival.
But, at the time, personalized vaccines faced strong headwinds due, largely, to high costs, and commercial interest failed to materialize. “That’s been the major hurdle for a long time,” said Kwak.
Now, however, interest has returned alongside advances in technology and research. The big shift has been the emergence of lower-cost rapid-production mRNA and DNA platforms and a better understanding of how vaccines and potent immune stimulants, like checkpoint inhibitors, can work together to improve outcomes, he explained.
“The timing wasn’t right” back then, Kwak noted. “Now, it’s a different environment and a different time.”
A Turning Point?
Indeed, a decade later, cancer vaccine development appears to be headed in a more promising direction.
Among key cancer vaccines to watch is the mRNA-4157 vaccine, developed by Merck and Moderna, designed to prevent melanoma recurrence. In a recent phase 2 study, patients receiving the mRNA-4157 vaccine alongside pembrolizumab had nearly half the risk for melanoma recurrence or death at 3 years compared with those receiving pembrolizumab alone. Investigators are now evaluating the vaccine in a global phase 3 study in patients with high-risk, stage IIB to IV melanoma following surgery.
Another one to watch is the BNT116 NSCLC vaccine from BioNTech. This vaccine presents the immune system with NSCLC tumor markers to encourage the body to fight cancer cells expressing those markers while ignoring healthy cells. BioNTech also launched a global clinical trial for its vaccine this year.
Other notables include a pancreatic cancer mRNA vaccine, which has shown promising early results in a small trial of 16 patients. Of 16 patients who received the vaccine alongside chemotherapy and after surgery and immunotherapy, 8 responded. Of these eight, six remained recurrence free at 3 years. Investigators noted that the vaccine appeared to stimulate a durable T-cell response in patients who responded.
Kwak has also continued his work on lymphoma vaccines. In August, his team published promising first-in-human data on the use of personalized neoantigen vaccines as an early intervention in untreated patients with lymphoplasmacytic lymphoma. Among nine asymptomatic patients who received the vaccine, all achieved stable disease or better, with no dose-limiting toxicities. One patient had a minor response, and the median time to progression was greater than 72 months.
“The current setting is more for advanced disease,” Kwak explained. “It’s a tougher task, but combined with checkpoint blockade, it may be potent enough to work.”
Still, caution is important. Despite early promise, it’s too soon to tell which, if any, of these investigational vaccines will pan out in the long run. Like investigational drugs, cancer vaccines may show big promising initially but then fail in larger trials.
One key to success, according to Kwak, is to design trials so that even negative results will inform next steps.
But, he noted, failures in large clinical trials will “put a chilling effect on cancer vaccine research again.”
“That’s what keeps me up at night,” he said. “We know the science is fundamentally sound and we have seen glimpses over decades of research that cancer vaccines can work, so it’s really just a matter of tweaking things to optimize trial design.”
Companies tend to design trials to test if a vaccine works or not, without trying to understand why, he said.
“What we need to do is design those so that we can learn from negative results,” he said. That’s what he and his colleagues attempted to do in their recent trial. “We didn’t just look at clinical results; we’re interrogating the actual tumor environment to understand what worked and didn’t and how to tweak that for the next trial.”
Kwak and his colleagues found, for instance, that the vaccine had a greater effect on B cell–derived tumor cells than on cells of plasma origin, so “the most rational design for the next iteration is to combine the vaccine with agents that work directly against plasma cells,” he explained.
As for what’s next, Kwak said: “We’re just focused on trying to do good science and understand. We’ve seen glimpses of success. That’s where we are.”
A version of this article first appeared on Medscape.com.
Vaccines for treating and preventing cancer have long been considered a holy grail in oncology.
But aside from a few notable exceptions — including the human papillomavirus (HPV) vaccine, which has dramatically reduced the incidence of HPV-related cancers, and a Bacillus Calmette-Guerin vaccine, which helps prevent early-stage bladder cancer recurrence — most have failed to deliver.
Following a string of disappointments over the past decade, recent advances in the immunotherapy space are bringing renewed hope for progress.
In an American Association for Cancer Research (AACR) series earlier in 2024, Catherine J. Wu, MD, predicted big strides for cancer vaccines, especially for personalized vaccines that target patient-specific neoantigens — the proteins that form on cancer cells — as well as vaccines that can treat diverse tumor types.
said Wu, the Lavine Family Chair of Preventative Cancer Therapies at Dana-Farber Cancer Institute and a professor of medicine at Harvard Medical School, both in Boston, Massachusetts.
A prime example is a personalized, messenger RNA (mRNA)–based vaccine designed to prevent melanoma recurrence. The mRNA-4157 vaccine encodes up to 34 different patient-specific neoantigens.
“This is one of the most exciting developments in modern cancer therapy,” said Lawrence Young, a virologist and professor of molecular oncology at the University of Warwick, Coventry, England, who commented on the investigational vaccine via the UK-based Science Media Centre.
Other promising options are on the horizon as well. In August, BioNTech announced a phase 1 global trial to study BNT116 — a vaccine to treat non–small cell lung cancer (NSCLC). BNT116, like mRNA-4157, targets specific antigens in the lung cancer cells.
“This technology is the next big phase of cancer treatment,” Siow Ming Lee, MD, a consultant medical oncologist at University College London Hospitals in England, which is leading the UK trial for the lung cancer and melanoma vaccines, told The Guardian. “We are now entering this very exciting new era of mRNA-based immunotherapy clinical trials to investigate the treatment of lung cancer.”
Still, these predictions have a familiar ring. While the prospects are exciting, delivering on them is another story. There are simply no guarantees these strategies will work as hoped.
Then: Where We Were
Cancer vaccine research began to ramp up in the 2000s, and in 2006, the first-generation HPV vaccine, Gardasil, was approved. Gardasil prevents infection from four strains of HPV that cause about 80% of cervical cancer cases.
In 2010, the Food and Drug Administration approved sipuleucel-T, the first therapeutic cancer vaccine, which improved overall survival in patients with hormone-refractory prostate cancer.
Researchers predicted this approval would “pave the way for developing innovative, next generation of vaccines with enhanced antitumor potency.”
In a 2015 AACR research forecast report, Drew Pardoll, MD, PhD, co-director of the Cancer Immunology and Hematopoiesis Program at Johns Hopkins University, Baltimore, Maryland, said that “we can expect to see encouraging results from studies using cancer vaccines.”
Despite the excitement surrounding cancer vaccines alongside a few successes, the next decade brought a longer string of late-phase disappointments.
In 2016, the phase 3 ACT IV trial of a therapeutic vaccine to treat glioblastoma multiforme (CDX-110) was terminated after it failed to demonstrate improved survival.
In 2017, a phase 3 trial of the therapeutic pancreatic cancer vaccine, GVAX, was stopped early for lack of efficacy.
That year, an attenuated Listeria monocytogenes vaccine to treat pancreatic cancer and mesothelioma also failed to come to fruition. In late 2017, concerns over listeria infections prompted Aduro Biotech to cancel its listeria-based cancer treatment program.
In 2018, a phase 3 trial of belagenpumatucel-L, a therapeutic NSCLC vaccine, failed to demonstrate a significant improvement in survival and further study was discontinued.
And in 2019, a vaccine targeting MAGE-A3, a cancer-testis antigen present in multiple tumor types, failed to meet endpoints for improved survival in a phase 3 trial, leading to discontinuation of the vaccine program.
But these disappointments and failures are normal parts of medical research and drug development and have allowed for incremental advances that helped fuel renewed interest and hope for cancer vaccines, when the timing was right, explained vaccine pioneer Larry W. Kwak, MD, PhD, deputy director of the Comprehensive Cancer Center at City of Hope, Duarte, California.
When it comes to vaccine progress, timing makes a difference. In 2011, Kwak and colleagues published promising phase 3 trial results on a personalized vaccine. The vaccine was a patient-specific tumor-derived antigen for patients with follicular lymphoma in their first remission following chemotherapy. Patients who received the vaccine demonstrated significantly longer disease-free survival.
But, at the time, personalized vaccines faced strong headwinds due, largely, to high costs, and commercial interest failed to materialize. “That’s been the major hurdle for a long time,” said Kwak.
Now, however, interest has returned alongside advances in technology and research. The big shift has been the emergence of lower-cost rapid-production mRNA and DNA platforms and a better understanding of how vaccines and potent immune stimulants, like checkpoint inhibitors, can work together to improve outcomes, he explained.
“The timing wasn’t right” back then, Kwak noted. “Now, it’s a different environment and a different time.”
A Turning Point?
Indeed, a decade later, cancer vaccine development appears to be headed in a more promising direction.
Among key cancer vaccines to watch is the mRNA-4157 vaccine, developed by Merck and Moderna, designed to prevent melanoma recurrence. In a recent phase 2 study, patients receiving the mRNA-4157 vaccine alongside pembrolizumab had nearly half the risk for melanoma recurrence or death at 3 years compared with those receiving pembrolizumab alone. Investigators are now evaluating the vaccine in a global phase 3 study in patients with high-risk, stage IIB to IV melanoma following surgery.
Another one to watch is the BNT116 NSCLC vaccine from BioNTech. This vaccine presents the immune system with NSCLC tumor markers to encourage the body to fight cancer cells expressing those markers while ignoring healthy cells. BioNTech also launched a global clinical trial for its vaccine this year.
Other notables include a pancreatic cancer mRNA vaccine, which has shown promising early results in a small trial of 16 patients. Of 16 patients who received the vaccine alongside chemotherapy and after surgery and immunotherapy, 8 responded. Of these eight, six remained recurrence free at 3 years. Investigators noted that the vaccine appeared to stimulate a durable T-cell response in patients who responded.
Kwak has also continued his work on lymphoma vaccines. In August, his team published promising first-in-human data on the use of personalized neoantigen vaccines as an early intervention in untreated patients with lymphoplasmacytic lymphoma. Among nine asymptomatic patients who received the vaccine, all achieved stable disease or better, with no dose-limiting toxicities. One patient had a minor response, and the median time to progression was greater than 72 months.
“The current setting is more for advanced disease,” Kwak explained. “It’s a tougher task, but combined with checkpoint blockade, it may be potent enough to work.”
Still, caution is important. Despite early promise, it’s too soon to tell which, if any, of these investigational vaccines will pan out in the long run. Like investigational drugs, cancer vaccines may show big promising initially but then fail in larger trials.
One key to success, according to Kwak, is to design trials so that even negative results will inform next steps.
But, he noted, failures in large clinical trials will “put a chilling effect on cancer vaccine research again.”
“That’s what keeps me up at night,” he said. “We know the science is fundamentally sound and we have seen glimpses over decades of research that cancer vaccines can work, so it’s really just a matter of tweaking things to optimize trial design.”
Companies tend to design trials to test if a vaccine works or not, without trying to understand why, he said.
“What we need to do is design those so that we can learn from negative results,” he said. That’s what he and his colleagues attempted to do in their recent trial. “We didn’t just look at clinical results; we’re interrogating the actual tumor environment to understand what worked and didn’t and how to tweak that for the next trial.”
Kwak and his colleagues found, for instance, that the vaccine had a greater effect on B cell–derived tumor cells than on cells of plasma origin, so “the most rational design for the next iteration is to combine the vaccine with agents that work directly against plasma cells,” he explained.
As for what’s next, Kwak said: “We’re just focused on trying to do good science and understand. We’ve seen glimpses of success. That’s where we are.”
A version of this article first appeared on Medscape.com.
US Study Pinpoints Merkel Cell Risk Factors
TOPLINE:
in the United States.
METHODOLOGY:
- Researchers evaluated 38,020 MCC cases (38% women; 93% non-Hispanic White, 4% Hispanic, 1% non-Hispanic Black) diagnosed in the United States from 2001 to 2019 to estimate the contribution of potentially modifiable risk factors to the burden of MCC.
- Population-based cancer registries and linkages with HIV and transplant registries were utilized to identify MCC cases in patients with HIV, solid organ transplant recipients, and patients with chronic lymphocytic leukemia (CLL).
- Data on cloud-adjusted daily ambient UVR irradiance were merged with cancer registry information on the county of residence at diagnosis to assess UVR exposure. Studies reporting the prevalence of MCPyV in MCC specimens collected in the United States were combined via a meta-analysis.
- The study assessed population attributable fractions of MCC cases that were attributable to major immunosuppressive conditions (HIV, solid organ transplant, and chronic CLL), ambient UVR exposure, and MCPyV.
TAKEAWAY:
- The incidence of MCC was higher in people with HIV (standardized incidence ratio [SIR], 2.78), organ transplant recipients (SIR, 13.1), and patients with CLL (SIR, 5.75) than in the general US population. However, only 2.5% of MCC cases were attributable to these immunosuppressive conditions.
- Non-Hispanic White individuals showed elevated MCC incidence at both lower and higher ambient UVR exposure levels, with incidence rate ratios of 4.05 and 4.91, respectively, for MCC on the head and neck.
- A meta-analysis of 19 case series revealed that 63.8% of MCC cases were attributable to MCPyV, with a similar prevalence observed between immunocompromised and immunocompetent patients.
- Overall, 65.1% of MCC cases were attributable to ambient UVR exposure, with higher attribution for cases diagnosed on the head and neck than those diagnosed on other sites (72.1% vs 60.2%).
IN PRACTICE:
“The results of this study suggest that most MCC cases in the US are attributable to MCPyV and/or ambient UVR [UV radiation] exposure, with a smaller fraction attributable to three major immunosuppressive conditions,” the authors wrote. “Future studies should investigate UVR mutational signature, TMB [tumor mutational burden], and MCPyV prevalence according to race and ethnicity and patient immune status to help clarify the overlap between MCC risk factors.”
SOURCE:
The study was led by Jacob T. Tribble, BA, Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), Rockville, Maryland. It was published online on November 27, 2024, in JAMA Dermatology.
LIMITATIONS:
Incidences of MCC may have been inflated because of increased medical surveillance in immunosuppressed populations. The analysis assumed that only cases among non-Hispanic White individuals were associated with UVR. Additionally, the meta-analysis of MCPyV prevalence primarily included studies from large academic institutions, which may not be representative of the entire US population.
DISCLOSURES:
This study was supported in part by the Intramural Research Program of the NCI and the National Institutes of Health Medical Research Scholars Program. Additional funding was provided through a public-private partnership with contributions from the American Association for Dental Research and the Colgate-Palmolive Company to the Foundation for the National Institutes of Health. The authors reported no relevant conflicts of interest.
This article was created using several editorial tools, including artificial intelligence, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.
TOPLINE:
in the United States.
METHODOLOGY:
- Researchers evaluated 38,020 MCC cases (38% women; 93% non-Hispanic White, 4% Hispanic, 1% non-Hispanic Black) diagnosed in the United States from 2001 to 2019 to estimate the contribution of potentially modifiable risk factors to the burden of MCC.
- Population-based cancer registries and linkages with HIV and transplant registries were utilized to identify MCC cases in patients with HIV, solid organ transplant recipients, and patients with chronic lymphocytic leukemia (CLL).
- Data on cloud-adjusted daily ambient UVR irradiance were merged with cancer registry information on the county of residence at diagnosis to assess UVR exposure. Studies reporting the prevalence of MCPyV in MCC specimens collected in the United States were combined via a meta-analysis.
- The study assessed population attributable fractions of MCC cases that were attributable to major immunosuppressive conditions (HIV, solid organ transplant, and chronic CLL), ambient UVR exposure, and MCPyV.
TAKEAWAY:
- The incidence of MCC was higher in people with HIV (standardized incidence ratio [SIR], 2.78), organ transplant recipients (SIR, 13.1), and patients with CLL (SIR, 5.75) than in the general US population. However, only 2.5% of MCC cases were attributable to these immunosuppressive conditions.
- Non-Hispanic White individuals showed elevated MCC incidence at both lower and higher ambient UVR exposure levels, with incidence rate ratios of 4.05 and 4.91, respectively, for MCC on the head and neck.
- A meta-analysis of 19 case series revealed that 63.8% of MCC cases were attributable to MCPyV, with a similar prevalence observed between immunocompromised and immunocompetent patients.
- Overall, 65.1% of MCC cases were attributable to ambient UVR exposure, with higher attribution for cases diagnosed on the head and neck than those diagnosed on other sites (72.1% vs 60.2%).
IN PRACTICE:
“The results of this study suggest that most MCC cases in the US are attributable to MCPyV and/or ambient UVR [UV radiation] exposure, with a smaller fraction attributable to three major immunosuppressive conditions,” the authors wrote. “Future studies should investigate UVR mutational signature, TMB [tumor mutational burden], and MCPyV prevalence according to race and ethnicity and patient immune status to help clarify the overlap between MCC risk factors.”
SOURCE:
The study was led by Jacob T. Tribble, BA, Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), Rockville, Maryland. It was published online on November 27, 2024, in JAMA Dermatology.
LIMITATIONS:
Incidences of MCC may have been inflated because of increased medical surveillance in immunosuppressed populations. The analysis assumed that only cases among non-Hispanic White individuals were associated with UVR. Additionally, the meta-analysis of MCPyV prevalence primarily included studies from large academic institutions, which may not be representative of the entire US population.
DISCLOSURES:
This study was supported in part by the Intramural Research Program of the NCI and the National Institutes of Health Medical Research Scholars Program. Additional funding was provided through a public-private partnership with contributions from the American Association for Dental Research and the Colgate-Palmolive Company to the Foundation for the National Institutes of Health. The authors reported no relevant conflicts of interest.
This article was created using several editorial tools, including artificial intelligence, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.
TOPLINE:
in the United States.
METHODOLOGY:
- Researchers evaluated 38,020 MCC cases (38% women; 93% non-Hispanic White, 4% Hispanic, 1% non-Hispanic Black) diagnosed in the United States from 2001 to 2019 to estimate the contribution of potentially modifiable risk factors to the burden of MCC.
- Population-based cancer registries and linkages with HIV and transplant registries were utilized to identify MCC cases in patients with HIV, solid organ transplant recipients, and patients with chronic lymphocytic leukemia (CLL).
- Data on cloud-adjusted daily ambient UVR irradiance were merged with cancer registry information on the county of residence at diagnosis to assess UVR exposure. Studies reporting the prevalence of MCPyV in MCC specimens collected in the United States were combined via a meta-analysis.
- The study assessed population attributable fractions of MCC cases that were attributable to major immunosuppressive conditions (HIV, solid organ transplant, and chronic CLL), ambient UVR exposure, and MCPyV.
TAKEAWAY:
- The incidence of MCC was higher in people with HIV (standardized incidence ratio [SIR], 2.78), organ transplant recipients (SIR, 13.1), and patients with CLL (SIR, 5.75) than in the general US population. However, only 2.5% of MCC cases were attributable to these immunosuppressive conditions.
- Non-Hispanic White individuals showed elevated MCC incidence at both lower and higher ambient UVR exposure levels, with incidence rate ratios of 4.05 and 4.91, respectively, for MCC on the head and neck.
- A meta-analysis of 19 case series revealed that 63.8% of MCC cases were attributable to MCPyV, with a similar prevalence observed between immunocompromised and immunocompetent patients.
- Overall, 65.1% of MCC cases were attributable to ambient UVR exposure, with higher attribution for cases diagnosed on the head and neck than those diagnosed on other sites (72.1% vs 60.2%).
IN PRACTICE:
“The results of this study suggest that most MCC cases in the US are attributable to MCPyV and/or ambient UVR [UV radiation] exposure, with a smaller fraction attributable to three major immunosuppressive conditions,” the authors wrote. “Future studies should investigate UVR mutational signature, TMB [tumor mutational burden], and MCPyV prevalence according to race and ethnicity and patient immune status to help clarify the overlap between MCC risk factors.”
SOURCE:
The study was led by Jacob T. Tribble, BA, Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), Rockville, Maryland. It was published online on November 27, 2024, in JAMA Dermatology.
LIMITATIONS:
Incidences of MCC may have been inflated because of increased medical surveillance in immunosuppressed populations. The analysis assumed that only cases among non-Hispanic White individuals were associated with UVR. Additionally, the meta-analysis of MCPyV prevalence primarily included studies from large academic institutions, which may not be representative of the entire US population.
DISCLOSURES:
This study was supported in part by the Intramural Research Program of the NCI and the National Institutes of Health Medical Research Scholars Program. Additional funding was provided through a public-private partnership with contributions from the American Association for Dental Research and the Colgate-Palmolive Company to the Foundation for the National Institutes of Health. The authors reported no relevant conflicts of interest.
This article was created using several editorial tools, including artificial intelligence, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.
Does Screening at 40-49 Years Boost Breast Cancer Survival?
The data call into question draft guidelines from the Canadian Task Force on Preventive Health Care, which suggest not systematically screening women in this age group with mammography.
Overdiagnosis Challenged
Given that some jurisdictions in Canada have organized screening programs and some do not, there was an opportunity to compare breast cancer 10-year net survival of women who lived in jurisdictions with and without such programs, explained family physician Anna N. Wilkinson, MD, Ottawa regional cancer primary care lead and associate professor at the University of Ottawa in Ontario, Canada.
“The question was [whether] we could use big cancer data to figure out what’s going on,” she told this news organization.
To investigate, Wilkinson and co-investigators reviewed data from the Canadian Cancer Registry linked to mortality information and assessed outcomes for women aged 40-49 and 50-59 years diagnosed with breast cancer from 2002 to 2007. They compared 10-year net survival estimates in jurisdictions with organized screening programs for those aged 40-49 years with the jurisdictions without them.
“Net survival is important because it’s a survival measure that looks at only the cancer in question,” Wilkinson explained.
Investigators determined breast cancer to be the primary cause of 10-year mortality in women aged 40-49 years diagnosed with the disease (90.7% of deaths).
Furthermore, the 10-year net survival in jurisdictions that screened these women (84.8%) was 1.9 percentage points higher than for jurisdictions that did not (82.9%).
The difference in 10-year net survival favoring jurisdictions that offered screening was significant for women aged 45-49 years (2.6 percentage points) but not for those aged 40-44 years (0.9 percentage points).
Given that 90% of the deaths in women in their 40s who had a breast cancer diagnosis were due to breast cancer, Wilkinson challenged the concept of women in their 40s being overdiagnosed with breast cancer, meaning that the cancers detected were indolent and did not require treatment nor result in death.
Earlier detection would generally mean finding disease at an earlier stage and the need for less invasive treatment, she noted. “And one of the biggest benefits [of screening women in their 40s] is that you have diagnosis at earlier stage disease, which means fewer intensive therapies, less time off work, less long-term morbidity, and less cost to our healthcare system.”
Modeling Shows Little Screening Benefit
The task force’s draft guidelines, released earlier this year, were based on evidence from 165 studies including randomized, controlled trials, observational studies, time-trend studies and modeling. They suggest not systematically screening women 40-49 with mammography who are not high risk.
Family physician Guylène Thériault, MD, chair of the task force and its breast cancer working group, and director of the Pedagogy Center at the Outaouais Campus, McGill University, Montreal, Quebec, Canada, explained that to come to that conclusion, the task force had assessed the impact of organized screening for women in Canada aged 40-49 years and calculated the impact of mammography for every 1000 women over 10 years.
The model suggested that screening would yield 368 false positives, leading to 55 biopsies, and then to a breast cancer diagnosis in 19 women. Of those 19, the task force estimated 17 or 18 would not die of breast cancer over 10 years, two would be treated for breast cancer that would not have caused problems, ie, overdiagnosis, and one to two would die of breast cancer.
Without screening, on the other hand, the model suggested that 983 of 1000 women aged 40-49 years would not be diagnosed with breast cancer, and 17 would be, 15 of whom would not die from breast cancer over 10 years (no overdiagnosis, no deaths prevented) and two would die.
It is important that family physicians provide their patients with this information to assist in shared decision making about screening, Thériault said.
Wilkinson concluded that screening programs that included women in their 40s were associated with a significantly higher breast cancer 10-year survival, without an increased rate of diagnosis. She suggested that the study findings can inform the screening guidelines for women aged 40-49 years.
The study was supported by the University of Ottawa’s department of family medicine.
Wilkinson, MD, is a consultant for Thrive Health. Thériault, MD, disclosed no relevant financial relationships.
A version of this article appeared on Medscape.com.
The data call into question draft guidelines from the Canadian Task Force on Preventive Health Care, which suggest not systematically screening women in this age group with mammography.
Overdiagnosis Challenged
Given that some jurisdictions in Canada have organized screening programs and some do not, there was an opportunity to compare breast cancer 10-year net survival of women who lived in jurisdictions with and without such programs, explained family physician Anna N. Wilkinson, MD, Ottawa regional cancer primary care lead and associate professor at the University of Ottawa in Ontario, Canada.
“The question was [whether] we could use big cancer data to figure out what’s going on,” she told this news organization.
To investigate, Wilkinson and co-investigators reviewed data from the Canadian Cancer Registry linked to mortality information and assessed outcomes for women aged 40-49 and 50-59 years diagnosed with breast cancer from 2002 to 2007. They compared 10-year net survival estimates in jurisdictions with organized screening programs for those aged 40-49 years with the jurisdictions without them.
“Net survival is important because it’s a survival measure that looks at only the cancer in question,” Wilkinson explained.
Investigators determined breast cancer to be the primary cause of 10-year mortality in women aged 40-49 years diagnosed with the disease (90.7% of deaths).
Furthermore, the 10-year net survival in jurisdictions that screened these women (84.8%) was 1.9 percentage points higher than for jurisdictions that did not (82.9%).
The difference in 10-year net survival favoring jurisdictions that offered screening was significant for women aged 45-49 years (2.6 percentage points) but not for those aged 40-44 years (0.9 percentage points).
Given that 90% of the deaths in women in their 40s who had a breast cancer diagnosis were due to breast cancer, Wilkinson challenged the concept of women in their 40s being overdiagnosed with breast cancer, meaning that the cancers detected were indolent and did not require treatment nor result in death.
Earlier detection would generally mean finding disease at an earlier stage and the need for less invasive treatment, she noted. “And one of the biggest benefits [of screening women in their 40s] is that you have diagnosis at earlier stage disease, which means fewer intensive therapies, less time off work, less long-term morbidity, and less cost to our healthcare system.”
Modeling Shows Little Screening Benefit
The task force’s draft guidelines, released earlier this year, were based on evidence from 165 studies including randomized, controlled trials, observational studies, time-trend studies and modeling. They suggest not systematically screening women 40-49 with mammography who are not high risk.
Family physician Guylène Thériault, MD, chair of the task force and its breast cancer working group, and director of the Pedagogy Center at the Outaouais Campus, McGill University, Montreal, Quebec, Canada, explained that to come to that conclusion, the task force had assessed the impact of organized screening for women in Canada aged 40-49 years and calculated the impact of mammography for every 1000 women over 10 years.
The model suggested that screening would yield 368 false positives, leading to 55 biopsies, and then to a breast cancer diagnosis in 19 women. Of those 19, the task force estimated 17 or 18 would not die of breast cancer over 10 years, two would be treated for breast cancer that would not have caused problems, ie, overdiagnosis, and one to two would die of breast cancer.
Without screening, on the other hand, the model suggested that 983 of 1000 women aged 40-49 years would not be diagnosed with breast cancer, and 17 would be, 15 of whom would not die from breast cancer over 10 years (no overdiagnosis, no deaths prevented) and two would die.
It is important that family physicians provide their patients with this information to assist in shared decision making about screening, Thériault said.
Wilkinson concluded that screening programs that included women in their 40s were associated with a significantly higher breast cancer 10-year survival, without an increased rate of diagnosis. She suggested that the study findings can inform the screening guidelines for women aged 40-49 years.
The study was supported by the University of Ottawa’s department of family medicine.
Wilkinson, MD, is a consultant for Thrive Health. Thériault, MD, disclosed no relevant financial relationships.
A version of this article appeared on Medscape.com.
The data call into question draft guidelines from the Canadian Task Force on Preventive Health Care, which suggest not systematically screening women in this age group with mammography.
Overdiagnosis Challenged
Given that some jurisdictions in Canada have organized screening programs and some do not, there was an opportunity to compare breast cancer 10-year net survival of women who lived in jurisdictions with and without such programs, explained family physician Anna N. Wilkinson, MD, Ottawa regional cancer primary care lead and associate professor at the University of Ottawa in Ontario, Canada.
“The question was [whether] we could use big cancer data to figure out what’s going on,” she told this news organization.
To investigate, Wilkinson and co-investigators reviewed data from the Canadian Cancer Registry linked to mortality information and assessed outcomes for women aged 40-49 and 50-59 years diagnosed with breast cancer from 2002 to 2007. They compared 10-year net survival estimates in jurisdictions with organized screening programs for those aged 40-49 years with the jurisdictions without them.
“Net survival is important because it’s a survival measure that looks at only the cancer in question,” Wilkinson explained.
Investigators determined breast cancer to be the primary cause of 10-year mortality in women aged 40-49 years diagnosed with the disease (90.7% of deaths).
Furthermore, the 10-year net survival in jurisdictions that screened these women (84.8%) was 1.9 percentage points higher than for jurisdictions that did not (82.9%).
The difference in 10-year net survival favoring jurisdictions that offered screening was significant for women aged 45-49 years (2.6 percentage points) but not for those aged 40-44 years (0.9 percentage points).
Given that 90% of the deaths in women in their 40s who had a breast cancer diagnosis were due to breast cancer, Wilkinson challenged the concept of women in their 40s being overdiagnosed with breast cancer, meaning that the cancers detected were indolent and did not require treatment nor result in death.
Earlier detection would generally mean finding disease at an earlier stage and the need for less invasive treatment, she noted. “And one of the biggest benefits [of screening women in their 40s] is that you have diagnosis at earlier stage disease, which means fewer intensive therapies, less time off work, less long-term morbidity, and less cost to our healthcare system.”
Modeling Shows Little Screening Benefit
The task force’s draft guidelines, released earlier this year, were based on evidence from 165 studies including randomized, controlled trials, observational studies, time-trend studies and modeling. They suggest not systematically screening women 40-49 with mammography who are not high risk.
Family physician Guylène Thériault, MD, chair of the task force and its breast cancer working group, and director of the Pedagogy Center at the Outaouais Campus, McGill University, Montreal, Quebec, Canada, explained that to come to that conclusion, the task force had assessed the impact of organized screening for women in Canada aged 40-49 years and calculated the impact of mammography for every 1000 women over 10 years.
The model suggested that screening would yield 368 false positives, leading to 55 biopsies, and then to a breast cancer diagnosis in 19 women. Of those 19, the task force estimated 17 or 18 would not die of breast cancer over 10 years, two would be treated for breast cancer that would not have caused problems, ie, overdiagnosis, and one to two would die of breast cancer.
Without screening, on the other hand, the model suggested that 983 of 1000 women aged 40-49 years would not be diagnosed with breast cancer, and 17 would be, 15 of whom would not die from breast cancer over 10 years (no overdiagnosis, no deaths prevented) and two would die.
It is important that family physicians provide their patients with this information to assist in shared decision making about screening, Thériault said.
Wilkinson concluded that screening programs that included women in their 40s were associated with a significantly higher breast cancer 10-year survival, without an increased rate of diagnosis. She suggested that the study findings can inform the screening guidelines for women aged 40-49 years.
The study was supported by the University of Ottawa’s department of family medicine.
Wilkinson, MD, is a consultant for Thrive Health. Thériault, MD, disclosed no relevant financial relationships.
A version of this article appeared on Medscape.com.
FROM FMF 2024
Inside the Patient-Oncologist Bond: Why It’s Often So Strong
Rose Gerber was 39, mother to a third grader and a kindergartener, when the diagnosis came: Advanced HER2-positive breast cancer.
“On one of my first or second appointments, I took in a little picture of Alexander and Isabella,” Gerber said. Gerber showed her oncologist the picture and told her: “I’ll do anything. I just want to be there for them.”
That was 21 years ago. Today, her current cancer status is “no evidence of disease.”
Over the past 2 decades, Gerber has gotten to be there for her children. Her youngest is now a television producer and her oldest, a CPA.
In that time,
“I’ve seen multiple physicians over my 21 years, but my oncologist has always been the focal point, guiding me in the right direction,” Gerber said in an interview.
Over the years, Jaga guided Gerber through a range of treatment decisions, including a Herceptin clinical trial that the mom of two views as lifesaving. Jaga often took on the role of both doctor and therapist, even providing comfort in the smaller moments when Gerber would fret about her weight gain.
The oncologist-patient “bond is very, very, very special,” said Gerber, who now works as director of patient advocacy and education at the Community Oncology Alliance.
Gerber isn’t alone in calling out the depth of the oncologist-patient bond.
Over years, sometimes decades, patients and oncologists can experience a whole world together: The treatment successes, relapses, uncertainties, and tough calls. As a result, a deep therapeutic alliance often develops. And with each new hurdle or decision, that collaborative, human connection between doctor and patient continues to form new layers.
“It’s like a shared bonding experience over trauma, like strangers trapped on a subway and then we get out, and we’re now on the other side, celebrating together,” said Saad Khan, MD, an associate professor of medicine (oncology) at Stanford University in California.
Connecting Through Stress
Although studies exploring the oncologist-patient bond are limited, some research suggests that a strong therapeutic alliance between patients and oncologists not only provides a foundation for quality care but can also help improve patients’ quality of life, protect against suicidal ideation, and increase treatment adherence.
Because of how stressful and frightening a cancer diagnosis can be, creating “a trusting, uninterrupted, almost sacred environment for them” is paramount for Khan. “I have no doubt that the most important part of their treatment is that they find an oncologist in whom they have total confidence,” Khan wrote in a blog.
The stress that patients with cancer experience is well documented, but oncologists take on a lot themselves and can also experience intense stress (.
“I consider my patient’s battles to be my battles,” Khan wrote.
The stress can start with the daily schedule. Oncologists often have a high volume of patients and tend to spend more time with each individual than most.
According to a 2023 survey, oncologists see about 68 patients a week, on average, but some oncologists, like Khan, have many more. Khan typically sees 20-30 patients a day and continues to care for many over years.
The survey also found that oncologists tend to spend a lot of time with their patients. Compared with other physicians, oncologists are two times more likely to spend at least 25 minutes with each patient.
With this kind of patient volume and time, Khan said, “you’re going to be exhausted.”
What can compound the exhaustion are the occasions oncologists need to deliver bad news — this treatment isn’t working, your cancer has come roaring back and, perhaps the hardest, we have no therapeutic options left. The end-of-life conversations, in particular, can be heartbreaking, especially when a patient is young and not ready to stop trying.
“It can be hard for doctors to discuss the end of life,” Don Dizon, MD, director of the Pelvic Malignancies Program at Lifespan Cancer Institute and director of Medical Oncology at Rhode Island Hospital, Providence, wrote in a column in 2023. Instead, it can be tempting and is often easier to focus on the next treatment, “instilling hope that there’s more that can be done,” even if doing more will only do harm.
In the face of these challenging decisions, growing a personal connection with patients over time can help keep oncologists going.
“We’re not just chemotherapy salesmen,” Khan said in an interview. “We get to know their social support network, who’s going to be driving them [to and from appointments], where they go on vacation, their cat’s name, who their neighbors are.”
A ‘Special Relationship’
Ralph V. Boccia, MD, is often asked what he does.
The next question that often comes — “Why do I do what I do?” — is Boccia’s favorite.
“Someone needs to take these patients through their journey,” Boccia, the founder of The Center for Cancer and Blood Disorders, Bethesda, Maryland, typically responds. He also often notes that “it is a special relationship you develop with the patient and their families.”
Boccia thinks about one long-term patient who captures this bond.
Joan Pinson, 70, was diagnosed with multiple myeloma about 25 years ago, when patients’ average survival was about 4 years.
Over a quarter century, Pinson has pivoted to different treatments, amid multiple relapses and remissions. Throughout most of this cancer journey, Boccia has been her primary oncologist, performing a stem cell transplant in 2000 and steering her to six clinical trials.
Her last relapse was 2 years ago, and since then she has been doing well on oral chemotherapy.
“Every time I relapsed, by the next appointment, he’d say, ‘here is what we are going to do,’ ” Pinson recalled. “I never worried, I never panicked. I knew he would take care of me.”
Over the years, Pinson and Boccia have shared many personal moments, sometimes by accident. One special moment happened early on in Pinson’s cancer journey. During an appointment, Boccia had “one ear to the phone” as his wife was about to deliver their first baby, Pinson recalled.
Later, Pinson met that child as a young man working in Boccia’s lab. She has also met Boccia’s wife, a nurse, when she filled in one day in the chemotherapy room.
Boccia now also treats Pinson’s husband who has prostate cancer, and he ruled out cancer when Pinson’s son, now in his 40s, had some worrisome symptoms.
More than 2 decades ago, Pinson told Boccia her goal was to see her youngest child graduate from high school. Now, six grandsons later, she has lived far beyond that goal.
“He has kept me alive,” said Pinson.
The Dying Patient
Harsha Vyas, MD, FACP, remembers the first encounter his office had with a 29-year-old woman referred with a diagnosis of stage IV breast cancer.
After just 15 minutes in the waiting room, the woman announced she was leaving. Although office staff assured the woman that she was next, the patient walked out.
Several months later, Vyas was called for an inpatient consult. It was the same woman.
Her lungs were full of fluid, and she was struggling to breathe, said Vyas, president and CEO of the Cancer Center of Middle Georgia, Dublin, and assistant professor at Augusta University in Georgia.
The woman, a single mother, told Vyas about her three young kids at home and asked him, “Doc, do something, please help me,” he recalled.
“Absolutely,” Vyas told her. But he had to be brutally honest about her prognosis and firm that she needed to follow his instructions. “You have a breast cancer I cannot cure,” he said. “All I can do is control the disease.”
From that first day, until the day she died, she came to every appointment and followed the treatment plan Vyas laid out.
For about 2 years, she responded well to treatment. And as the time passed and the trust grew, she began to open up to him. She showed him pictures. She talked about her children and being a mother.
“I’ve got to get my kids in a better place. I’m going to be there for them,” he recalled her saying.
Vyas admired her resourcefulness. She held down a part-time job, working retail and at a local restaurant. She figured out childcare so she could get to her chemotherapy appointments every 3 weeks and manage the copays.
Several years later, when she knew she was approaching the end of her life, she asked Vyas a question that hit hard.
“Doc, I don’t want to die and my kids find me dead. What can we do about it?”
Vyas, who has three daughters, imagined how traumatic this would be for a child. She and Vyas made the shared decision to cease treatment and begin home hospice. When the end was approaching, a hospice worker took over, waiting for bodily functions to cease.
When news of a death comes, “I say a little prayer, it’s almost like a send-off for that soul. That helps me absorb the news ... and let it go.”
But when the bond grows strong over time, as with his patient with breast cancer, Vyas said, “a piece of her is still with me.”
Khan had no relevant disclosures. Boccia and Vyas had no disclosures.
A version of this article appeared on Medscape.com.
Rose Gerber was 39, mother to a third grader and a kindergartener, when the diagnosis came: Advanced HER2-positive breast cancer.
“On one of my first or second appointments, I took in a little picture of Alexander and Isabella,” Gerber said. Gerber showed her oncologist the picture and told her: “I’ll do anything. I just want to be there for them.”
That was 21 years ago. Today, her current cancer status is “no evidence of disease.”
Over the past 2 decades, Gerber has gotten to be there for her children. Her youngest is now a television producer and her oldest, a CPA.
In that time,
“I’ve seen multiple physicians over my 21 years, but my oncologist has always been the focal point, guiding me in the right direction,” Gerber said in an interview.
Over the years, Jaga guided Gerber through a range of treatment decisions, including a Herceptin clinical trial that the mom of two views as lifesaving. Jaga often took on the role of both doctor and therapist, even providing comfort in the smaller moments when Gerber would fret about her weight gain.
The oncologist-patient “bond is very, very, very special,” said Gerber, who now works as director of patient advocacy and education at the Community Oncology Alliance.
Gerber isn’t alone in calling out the depth of the oncologist-patient bond.
Over years, sometimes decades, patients and oncologists can experience a whole world together: The treatment successes, relapses, uncertainties, and tough calls. As a result, a deep therapeutic alliance often develops. And with each new hurdle or decision, that collaborative, human connection between doctor and patient continues to form new layers.
“It’s like a shared bonding experience over trauma, like strangers trapped on a subway and then we get out, and we’re now on the other side, celebrating together,” said Saad Khan, MD, an associate professor of medicine (oncology) at Stanford University in California.
Connecting Through Stress
Although studies exploring the oncologist-patient bond are limited, some research suggests that a strong therapeutic alliance between patients and oncologists not only provides a foundation for quality care but can also help improve patients’ quality of life, protect against suicidal ideation, and increase treatment adherence.
Because of how stressful and frightening a cancer diagnosis can be, creating “a trusting, uninterrupted, almost sacred environment for them” is paramount for Khan. “I have no doubt that the most important part of their treatment is that they find an oncologist in whom they have total confidence,” Khan wrote in a blog.
The stress that patients with cancer experience is well documented, but oncologists take on a lot themselves and can also experience intense stress (.
“I consider my patient’s battles to be my battles,” Khan wrote.
The stress can start with the daily schedule. Oncologists often have a high volume of patients and tend to spend more time with each individual than most.
According to a 2023 survey, oncologists see about 68 patients a week, on average, but some oncologists, like Khan, have many more. Khan typically sees 20-30 patients a day and continues to care for many over years.
The survey also found that oncologists tend to spend a lot of time with their patients. Compared with other physicians, oncologists are two times more likely to spend at least 25 minutes with each patient.
With this kind of patient volume and time, Khan said, “you’re going to be exhausted.”
What can compound the exhaustion are the occasions oncologists need to deliver bad news — this treatment isn’t working, your cancer has come roaring back and, perhaps the hardest, we have no therapeutic options left. The end-of-life conversations, in particular, can be heartbreaking, especially when a patient is young and not ready to stop trying.
“It can be hard for doctors to discuss the end of life,” Don Dizon, MD, director of the Pelvic Malignancies Program at Lifespan Cancer Institute and director of Medical Oncology at Rhode Island Hospital, Providence, wrote in a column in 2023. Instead, it can be tempting and is often easier to focus on the next treatment, “instilling hope that there’s more that can be done,” even if doing more will only do harm.
In the face of these challenging decisions, growing a personal connection with patients over time can help keep oncologists going.
“We’re not just chemotherapy salesmen,” Khan said in an interview. “We get to know their social support network, who’s going to be driving them [to and from appointments], where they go on vacation, their cat’s name, who their neighbors are.”
A ‘Special Relationship’
Ralph V. Boccia, MD, is often asked what he does.
The next question that often comes — “Why do I do what I do?” — is Boccia’s favorite.
“Someone needs to take these patients through their journey,” Boccia, the founder of The Center for Cancer and Blood Disorders, Bethesda, Maryland, typically responds. He also often notes that “it is a special relationship you develop with the patient and their families.”
Boccia thinks about one long-term patient who captures this bond.
Joan Pinson, 70, was diagnosed with multiple myeloma about 25 years ago, when patients’ average survival was about 4 years.
Over a quarter century, Pinson has pivoted to different treatments, amid multiple relapses and remissions. Throughout most of this cancer journey, Boccia has been her primary oncologist, performing a stem cell transplant in 2000 and steering her to six clinical trials.
Her last relapse was 2 years ago, and since then she has been doing well on oral chemotherapy.
“Every time I relapsed, by the next appointment, he’d say, ‘here is what we are going to do,’ ” Pinson recalled. “I never worried, I never panicked. I knew he would take care of me.”
Over the years, Pinson and Boccia have shared many personal moments, sometimes by accident. One special moment happened early on in Pinson’s cancer journey. During an appointment, Boccia had “one ear to the phone” as his wife was about to deliver their first baby, Pinson recalled.
Later, Pinson met that child as a young man working in Boccia’s lab. She has also met Boccia’s wife, a nurse, when she filled in one day in the chemotherapy room.
Boccia now also treats Pinson’s husband who has prostate cancer, and he ruled out cancer when Pinson’s son, now in his 40s, had some worrisome symptoms.
More than 2 decades ago, Pinson told Boccia her goal was to see her youngest child graduate from high school. Now, six grandsons later, she has lived far beyond that goal.
“He has kept me alive,” said Pinson.
The Dying Patient
Harsha Vyas, MD, FACP, remembers the first encounter his office had with a 29-year-old woman referred with a diagnosis of stage IV breast cancer.
After just 15 minutes in the waiting room, the woman announced she was leaving. Although office staff assured the woman that she was next, the patient walked out.
Several months later, Vyas was called for an inpatient consult. It was the same woman.
Her lungs were full of fluid, and she was struggling to breathe, said Vyas, president and CEO of the Cancer Center of Middle Georgia, Dublin, and assistant professor at Augusta University in Georgia.
The woman, a single mother, told Vyas about her three young kids at home and asked him, “Doc, do something, please help me,” he recalled.
“Absolutely,” Vyas told her. But he had to be brutally honest about her prognosis and firm that she needed to follow his instructions. “You have a breast cancer I cannot cure,” he said. “All I can do is control the disease.”
From that first day, until the day she died, she came to every appointment and followed the treatment plan Vyas laid out.
For about 2 years, she responded well to treatment. And as the time passed and the trust grew, she began to open up to him. She showed him pictures. She talked about her children and being a mother.
“I’ve got to get my kids in a better place. I’m going to be there for them,” he recalled her saying.
Vyas admired her resourcefulness. She held down a part-time job, working retail and at a local restaurant. She figured out childcare so she could get to her chemotherapy appointments every 3 weeks and manage the copays.
Several years later, when she knew she was approaching the end of her life, she asked Vyas a question that hit hard.
“Doc, I don’t want to die and my kids find me dead. What can we do about it?”
Vyas, who has three daughters, imagined how traumatic this would be for a child. She and Vyas made the shared decision to cease treatment and begin home hospice. When the end was approaching, a hospice worker took over, waiting for bodily functions to cease.
When news of a death comes, “I say a little prayer, it’s almost like a send-off for that soul. That helps me absorb the news ... and let it go.”
But when the bond grows strong over time, as with his patient with breast cancer, Vyas said, “a piece of her is still with me.”
Khan had no relevant disclosures. Boccia and Vyas had no disclosures.
A version of this article appeared on Medscape.com.
Rose Gerber was 39, mother to a third grader and a kindergartener, when the diagnosis came: Advanced HER2-positive breast cancer.
“On one of my first or second appointments, I took in a little picture of Alexander and Isabella,” Gerber said. Gerber showed her oncologist the picture and told her: “I’ll do anything. I just want to be there for them.”
That was 21 years ago. Today, her current cancer status is “no evidence of disease.”
Over the past 2 decades, Gerber has gotten to be there for her children. Her youngest is now a television producer and her oldest, a CPA.
In that time,
“I’ve seen multiple physicians over my 21 years, but my oncologist has always been the focal point, guiding me in the right direction,” Gerber said in an interview.
Over the years, Jaga guided Gerber through a range of treatment decisions, including a Herceptin clinical trial that the mom of two views as lifesaving. Jaga often took on the role of both doctor and therapist, even providing comfort in the smaller moments when Gerber would fret about her weight gain.
The oncologist-patient “bond is very, very, very special,” said Gerber, who now works as director of patient advocacy and education at the Community Oncology Alliance.
Gerber isn’t alone in calling out the depth of the oncologist-patient bond.
Over years, sometimes decades, patients and oncologists can experience a whole world together: The treatment successes, relapses, uncertainties, and tough calls. As a result, a deep therapeutic alliance often develops. And with each new hurdle or decision, that collaborative, human connection between doctor and patient continues to form new layers.
“It’s like a shared bonding experience over trauma, like strangers trapped on a subway and then we get out, and we’re now on the other side, celebrating together,” said Saad Khan, MD, an associate professor of medicine (oncology) at Stanford University in California.
Connecting Through Stress
Although studies exploring the oncologist-patient bond are limited, some research suggests that a strong therapeutic alliance between patients and oncologists not only provides a foundation for quality care but can also help improve patients’ quality of life, protect against suicidal ideation, and increase treatment adherence.
Because of how stressful and frightening a cancer diagnosis can be, creating “a trusting, uninterrupted, almost sacred environment for them” is paramount for Khan. “I have no doubt that the most important part of their treatment is that they find an oncologist in whom they have total confidence,” Khan wrote in a blog.
The stress that patients with cancer experience is well documented, but oncologists take on a lot themselves and can also experience intense stress (.
“I consider my patient’s battles to be my battles,” Khan wrote.
The stress can start with the daily schedule. Oncologists often have a high volume of patients and tend to spend more time with each individual than most.
According to a 2023 survey, oncologists see about 68 patients a week, on average, but some oncologists, like Khan, have many more. Khan typically sees 20-30 patients a day and continues to care for many over years.
The survey also found that oncologists tend to spend a lot of time with their patients. Compared with other physicians, oncologists are two times more likely to spend at least 25 minutes with each patient.
With this kind of patient volume and time, Khan said, “you’re going to be exhausted.”
What can compound the exhaustion are the occasions oncologists need to deliver bad news — this treatment isn’t working, your cancer has come roaring back and, perhaps the hardest, we have no therapeutic options left. The end-of-life conversations, in particular, can be heartbreaking, especially when a patient is young and not ready to stop trying.
“It can be hard for doctors to discuss the end of life,” Don Dizon, MD, director of the Pelvic Malignancies Program at Lifespan Cancer Institute and director of Medical Oncology at Rhode Island Hospital, Providence, wrote in a column in 2023. Instead, it can be tempting and is often easier to focus on the next treatment, “instilling hope that there’s more that can be done,” even if doing more will only do harm.
In the face of these challenging decisions, growing a personal connection with patients over time can help keep oncologists going.
“We’re not just chemotherapy salesmen,” Khan said in an interview. “We get to know their social support network, who’s going to be driving them [to and from appointments], where they go on vacation, their cat’s name, who their neighbors are.”
A ‘Special Relationship’
Ralph V. Boccia, MD, is often asked what he does.
The next question that often comes — “Why do I do what I do?” — is Boccia’s favorite.
“Someone needs to take these patients through their journey,” Boccia, the founder of The Center for Cancer and Blood Disorders, Bethesda, Maryland, typically responds. He also often notes that “it is a special relationship you develop with the patient and their families.”
Boccia thinks about one long-term patient who captures this bond.
Joan Pinson, 70, was diagnosed with multiple myeloma about 25 years ago, when patients’ average survival was about 4 years.
Over a quarter century, Pinson has pivoted to different treatments, amid multiple relapses and remissions. Throughout most of this cancer journey, Boccia has been her primary oncologist, performing a stem cell transplant in 2000 and steering her to six clinical trials.
Her last relapse was 2 years ago, and since then she has been doing well on oral chemotherapy.
“Every time I relapsed, by the next appointment, he’d say, ‘here is what we are going to do,’ ” Pinson recalled. “I never worried, I never panicked. I knew he would take care of me.”
Over the years, Pinson and Boccia have shared many personal moments, sometimes by accident. One special moment happened early on in Pinson’s cancer journey. During an appointment, Boccia had “one ear to the phone” as his wife was about to deliver their first baby, Pinson recalled.
Later, Pinson met that child as a young man working in Boccia’s lab. She has also met Boccia’s wife, a nurse, when she filled in one day in the chemotherapy room.
Boccia now also treats Pinson’s husband who has prostate cancer, and he ruled out cancer when Pinson’s son, now in his 40s, had some worrisome symptoms.
More than 2 decades ago, Pinson told Boccia her goal was to see her youngest child graduate from high school. Now, six grandsons later, she has lived far beyond that goal.
“He has kept me alive,” said Pinson.
The Dying Patient
Harsha Vyas, MD, FACP, remembers the first encounter his office had with a 29-year-old woman referred with a diagnosis of stage IV breast cancer.
After just 15 minutes in the waiting room, the woman announced she was leaving. Although office staff assured the woman that she was next, the patient walked out.
Several months later, Vyas was called for an inpatient consult. It was the same woman.
Her lungs were full of fluid, and she was struggling to breathe, said Vyas, president and CEO of the Cancer Center of Middle Georgia, Dublin, and assistant professor at Augusta University in Georgia.
The woman, a single mother, told Vyas about her three young kids at home and asked him, “Doc, do something, please help me,” he recalled.
“Absolutely,” Vyas told her. But he had to be brutally honest about her prognosis and firm that she needed to follow his instructions. “You have a breast cancer I cannot cure,” he said. “All I can do is control the disease.”
From that first day, until the day she died, she came to every appointment and followed the treatment plan Vyas laid out.
For about 2 years, she responded well to treatment. And as the time passed and the trust grew, she began to open up to him. She showed him pictures. She talked about her children and being a mother.
“I’ve got to get my kids in a better place. I’m going to be there for them,” he recalled her saying.
Vyas admired her resourcefulness. She held down a part-time job, working retail and at a local restaurant. She figured out childcare so she could get to her chemotherapy appointments every 3 weeks and manage the copays.
Several years later, when she knew she was approaching the end of her life, she asked Vyas a question that hit hard.
“Doc, I don’t want to die and my kids find me dead. What can we do about it?”
Vyas, who has three daughters, imagined how traumatic this would be for a child. She and Vyas made the shared decision to cease treatment and begin home hospice. When the end was approaching, a hospice worker took over, waiting for bodily functions to cease.
When news of a death comes, “I say a little prayer, it’s almost like a send-off for that soul. That helps me absorb the news ... and let it go.”
But when the bond grows strong over time, as with his patient with breast cancer, Vyas said, “a piece of her is still with me.”
Khan had no relevant disclosures. Boccia and Vyas had no disclosures.
A version of this article appeared on Medscape.com.
Is 1-Week Radiotherapy Safe for Breast Cancer?
TOPLINE:
Most patients also reported that the reduced treatment time was a major benefit of the 1-week radiotherapy schedule.
METHODOLOGY:
- In March 2020, during the COVID-19 pandemic, international and national guidelines recommended adopting a 1-week ultrahypofractionated radiotherapy schedule for patients with node-negative breast cancer. Subsequently, a phase 3 trial demonstrated that a 1-week regimen of 26 Gy in five fractions led to similar breast cancer outcomes compared with a standard moderately hypofractionated regimen.
- In this study, researchers wanted to assess real world toxicities following ultrahypofractionated radiotherapy and enrolled 135 consecutive patients who received 1-week ultrahypofractionated adjuvant radiation of 26 Gy in five fractions from March to August 2020 at three centers in Ireland, with 33 patients (25%) receiving a sequential boost.
- Researchers recorded patient-reported outcomes on breast pain, swelling, firmness, and hypersensitivity at baseline, 3, 6, and 12 months. Virtual consultations without video occurred at baseline, 3 months, 6 months, and video consultations were offered at 1 year for a physician-led breast evaluation.
- Researchers assessed patient perspectives on this new schedule and telehealth workflows using questionnaires.
- Overall, 90% of patients completed the 1-year assessment plus another assessment. The primary endpoint was the worst toxicity reported at each time point.
TAKEAWAY:
- Overall, 76% of patients reported no or mild toxicities at 3 and 6 months, and 82% reported no or mild toxicities 12 months.
- At 1 year, 20 patients (17%) reported moderate toxicity, most commonly breast pain, and only two patients (2%) reported marked toxicities, including breast firmness and skin changes.
- Researchers found no difference in toxicities between patients who received only 26 Gy in five fractions and those who received an additional sequential boost.
- Most patients reported reduced treatment time (78.6%) and infection control (59%) as major benefits of the 1-week radiotherapy regimen. Patients also reported high satisfaction with the use of telehealth, with 97.3% feeling well-informed about their diagnosis, 88% feeling well-informed about treatment side effects, and 94% feeling supported by the medical team. However, only 27% agreed to video consultations for breast inspections at 1 year.
IN PRACTICE:
“Ultrahypofractionated whole breast radiotherapy leads to acceptable late toxicity rates at 1 year even when followed by a hypofractionated tumour bed boost,” the authors wrote. “Patient satisfaction with ultrahypofractionated treatment and virtual consultations without video was high.”
SOURCE:
The study, led by Jill Nicholson, MBBS, MRCP, FFFRRCSI, St Luke’s Radiation Oncology Network, St. Luke’s Hospital, Dublin, Ireland, was published online in Advances in Radiation Oncology.
LIMITATIONS:
The short follow-up period might not capture all late toxicities. Variability in patient-reported outcomes could affect consistency. The range in boost received (four to eight fractions) could have influenced patients’ experiences.
DISCLOSURES:
Nicholson received funding from the St. Luke’s Institute of Cancer Research, Dublin, Ireland. No other relevant conflicts of interest were disclosed by the authors.
This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.
TOPLINE:
Most patients also reported that the reduced treatment time was a major benefit of the 1-week radiotherapy schedule.
METHODOLOGY:
- In March 2020, during the COVID-19 pandemic, international and national guidelines recommended adopting a 1-week ultrahypofractionated radiotherapy schedule for patients with node-negative breast cancer. Subsequently, a phase 3 trial demonstrated that a 1-week regimen of 26 Gy in five fractions led to similar breast cancer outcomes compared with a standard moderately hypofractionated regimen.
- In this study, researchers wanted to assess real world toxicities following ultrahypofractionated radiotherapy and enrolled 135 consecutive patients who received 1-week ultrahypofractionated adjuvant radiation of 26 Gy in five fractions from March to August 2020 at three centers in Ireland, with 33 patients (25%) receiving a sequential boost.
- Researchers recorded patient-reported outcomes on breast pain, swelling, firmness, and hypersensitivity at baseline, 3, 6, and 12 months. Virtual consultations without video occurred at baseline, 3 months, 6 months, and video consultations were offered at 1 year for a physician-led breast evaluation.
- Researchers assessed patient perspectives on this new schedule and telehealth workflows using questionnaires.
- Overall, 90% of patients completed the 1-year assessment plus another assessment. The primary endpoint was the worst toxicity reported at each time point.
TAKEAWAY:
- Overall, 76% of patients reported no or mild toxicities at 3 and 6 months, and 82% reported no or mild toxicities 12 months.
- At 1 year, 20 patients (17%) reported moderate toxicity, most commonly breast pain, and only two patients (2%) reported marked toxicities, including breast firmness and skin changes.
- Researchers found no difference in toxicities between patients who received only 26 Gy in five fractions and those who received an additional sequential boost.
- Most patients reported reduced treatment time (78.6%) and infection control (59%) as major benefits of the 1-week radiotherapy regimen. Patients also reported high satisfaction with the use of telehealth, with 97.3% feeling well-informed about their diagnosis, 88% feeling well-informed about treatment side effects, and 94% feeling supported by the medical team. However, only 27% agreed to video consultations for breast inspections at 1 year.
IN PRACTICE:
“Ultrahypofractionated whole breast radiotherapy leads to acceptable late toxicity rates at 1 year even when followed by a hypofractionated tumour bed boost,” the authors wrote. “Patient satisfaction with ultrahypofractionated treatment and virtual consultations without video was high.”
SOURCE:
The study, led by Jill Nicholson, MBBS, MRCP, FFFRRCSI, St Luke’s Radiation Oncology Network, St. Luke’s Hospital, Dublin, Ireland, was published online in Advances in Radiation Oncology.
LIMITATIONS:
The short follow-up period might not capture all late toxicities. Variability in patient-reported outcomes could affect consistency. The range in boost received (four to eight fractions) could have influenced patients’ experiences.
DISCLOSURES:
Nicholson received funding from the St. Luke’s Institute of Cancer Research, Dublin, Ireland. No other relevant conflicts of interest were disclosed by the authors.
This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.
TOPLINE:
Most patients also reported that the reduced treatment time was a major benefit of the 1-week radiotherapy schedule.
METHODOLOGY:
- In March 2020, during the COVID-19 pandemic, international and national guidelines recommended adopting a 1-week ultrahypofractionated radiotherapy schedule for patients with node-negative breast cancer. Subsequently, a phase 3 trial demonstrated that a 1-week regimen of 26 Gy in five fractions led to similar breast cancer outcomes compared with a standard moderately hypofractionated regimen.
- In this study, researchers wanted to assess real world toxicities following ultrahypofractionated radiotherapy and enrolled 135 consecutive patients who received 1-week ultrahypofractionated adjuvant radiation of 26 Gy in five fractions from March to August 2020 at three centers in Ireland, with 33 patients (25%) receiving a sequential boost.
- Researchers recorded patient-reported outcomes on breast pain, swelling, firmness, and hypersensitivity at baseline, 3, 6, and 12 months. Virtual consultations without video occurred at baseline, 3 months, 6 months, and video consultations were offered at 1 year for a physician-led breast evaluation.
- Researchers assessed patient perspectives on this new schedule and telehealth workflows using questionnaires.
- Overall, 90% of patients completed the 1-year assessment plus another assessment. The primary endpoint was the worst toxicity reported at each time point.
TAKEAWAY:
- Overall, 76% of patients reported no or mild toxicities at 3 and 6 months, and 82% reported no or mild toxicities 12 months.
- At 1 year, 20 patients (17%) reported moderate toxicity, most commonly breast pain, and only two patients (2%) reported marked toxicities, including breast firmness and skin changes.
- Researchers found no difference in toxicities between patients who received only 26 Gy in five fractions and those who received an additional sequential boost.
- Most patients reported reduced treatment time (78.6%) and infection control (59%) as major benefits of the 1-week radiotherapy regimen. Patients also reported high satisfaction with the use of telehealth, with 97.3% feeling well-informed about their diagnosis, 88% feeling well-informed about treatment side effects, and 94% feeling supported by the medical team. However, only 27% agreed to video consultations for breast inspections at 1 year.
IN PRACTICE:
“Ultrahypofractionated whole breast radiotherapy leads to acceptable late toxicity rates at 1 year even when followed by a hypofractionated tumour bed boost,” the authors wrote. “Patient satisfaction with ultrahypofractionated treatment and virtual consultations without video was high.”
SOURCE:
The study, led by Jill Nicholson, MBBS, MRCP, FFFRRCSI, St Luke’s Radiation Oncology Network, St. Luke’s Hospital, Dublin, Ireland, was published online in Advances in Radiation Oncology.
LIMITATIONS:
The short follow-up period might not capture all late toxicities. Variability in patient-reported outcomes could affect consistency. The range in boost received (four to eight fractions) could have influenced patients’ experiences.
DISCLOSURES:
Nicholson received funding from the St. Luke’s Institute of Cancer Research, Dublin, Ireland. No other relevant conflicts of interest were disclosed by the authors.
This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.