LayerRx Mapping ID
951
Slot System
Featured Buckets
Featured Buckets Admin
Reverse Chronological Sort
Forensiq API riskScore
80
Allow Teaser Image
Medscape Lead Concept
1551

100 coauthored papers, 10 years: Cancer transplant pioneers model 'team science'

Article Type
Changed
Thu, 01/12/2023 - 10:40

Two close colleagues at New York’s Memorial Sloan Kettering Cancer Center, world leaders in hematopoietic stem cell transplantation (HSCT) who were both promoted days after COVID-19 locked down the city in 2020, were too busy battling the pandemic’s impact on patients in the summer of 2021 to notice their latest shared career milestone.

On July 29, 2021, Sergio Giralt, MD, deputy division head of the division of hematologic malignancies and Miguel-Angel Perales, MD, chief of the adult bone marrow transplant service at MSKCC, published their 100th peer-reviewed paper as coauthors. Listing hundreds of such articles on a CV is standard for top-tier physicians, but the pair had gone one better: 100 publications written together in 10 years.

Their centenary article hit scientific newsstands almost exactly a decade after their first joint paper, which appeared in September 2011, not long after they met.

Born in Cuba, Dr. Giralt grew up in Venezuela. From the age of 14, he knew that medicine was his path, and in 1984 he earned a medical degree from the Universidad Central de Venezuela, Caracas. Next came a research position at Harvard Medical School, a residency at the Good Samaritan Hospital, Cincinnati, and a fellowship at the University of Texas MD Anderson Cancer Center, Houston. Dr. Giralt arrived at MSKCC in 2010 as the new chief of the adult bone marrow transplant service. There he was introduced to a new colleague, Dr. Perales. They soon learned that in addition to expertise in hematology, they had second language in common: Spanish.

Dr. Giralt said: “We both have a Spanish background and in a certain sense, there was an affinity there. ... We both have shared experiences.”

Dr. Perales was brought up in Belgium, a European nation with three official languages: French, Dutch, and German. He speaks five tongues in all and learned Spanish from his father, who came from Spain.

Courtesy MSKCC
Dr. Sergio Giralt

Fluency in Spanish enables both physicians to take care of the many New Yorkers who are more comfortable in that language – especially when navigating cancer treatment. However, both Dr. Giralt and Dr. Perales said that a second language is more than a professional tool. They described the enjoyable change of persona that happens when they switch to Spanish.

“People who are multilingual have different roles [as much as] different languages,” said Dr. Perales. “When I’m in Spanish, part of my brain is [thinking back to] summer vacations and hanging out with my cousins.”

When it comes to clinical science, however, English is the language of choice.
 

Global leaders in HSCT

Dr. Giralt and Dr. Perales are known worldwide in the field of allogeneic HSCT, a potentially curative treatment for an elongating list of both malignant and nonmalignant diseases.

In 1973, MSKCC conducted the first bone-marrow transplant from an unrelated donor. Fifty years on, medical oncologists in the United States conduct approximately 8,500 allogeneic transplants each year, 72% to treat acute leukemias or myelodysplastic syndrome (MDS).

However, stripping the immune system with intensive chemotherapy ‘conditioning,’ then rebuilding it with non-diseased donor hematopoietic cells is a hazardous undertaking. Older patients are less likely to survive the intensive conditioning, so historically have missed out. Also, even with a good human leukocyte antigen (HLA) match, the recipient needs often brutal immunosuppression.

Since Dr. Giralt and Dr. Perales began their partnership in 2010, the goals of their work have not changed: to develop safer, lower-intensity transplantation suitable for older, more vulnerable patients and reduce fearsome posttransplant sequelae such as graft-versus-host disease (GVHD).

Dr. Giralt’s publication list spans more than 600 peer-reviewed papers, articles and book chapters, almost exclusively on HSCT. Dr. Perales has more than 300 publication credits on the topic.

The two paired up on their first paper just months after Dr. Giralt arrived at MSKCC. That article, published in Biology of Blood and Marrow Transplantation, compared umbilical cord blood for HSCT with donor blood in 367 people with a variety of hematologic malignancies, including acute and chronic leukemias, MDS, and lymphoma.

Courtesy MSKCC
Dr. Miguel-Angel Perales

The MSKCC team found that transplant-related mortality in the first 180 days was higher for the cord blood (21%), but thereafter mortality and relapse were much lower than for donated blood, with the result that 2-year progression-free survival of 55% was similar. Dr. Perales, Dr. Giralt and their coauthors concluded that the data provided “strong support” for further work on cord blood as an alternative stem-cell source.

During their first decade of collaboration, Dr. Giralt and Dr. Perales worked on any promising avenue that could improve outcomes and the experience of HSCT recipients, including reduced-intensity conditioning regimens to allow older adults to benefit from curative HSCT and donor T-cell depletion by CD34 selection, to reduce graft-versus-host disease (GVHD).

The CD34 protein is typically found on the surface of early stage and highly active stem cell types. Selecting these cell types using a range of techniques can eliminate many other potentially interfering or inactive cells. This enriches the transplant population with the most effective cells and can lower the risk of GVHD.

The 100th paper on which Dr. Giralt and Dr. Perales were coauthors was published in Blood Advances on July 27, 2021. The retrospective study examined the fate of 58 MSKCC patients with a rare form of chronic lymphocytic leukemia, CLL with Richter’s transformation (CLL-RT). It was the largest such study to date of this rare disease.
M.D. Anderson Cancer Center had shown in 2006 that, despite chemotherapy, overall survival in patients with CLL-RT was approximately 8 months. HSCT improved survival dramatically (75% at 3 years; n = 7). However, with the advent of novel targeted drugs for CLL such as ibrutinib (Imbruvica), venetoclax (Venclexta), or idelalisib (Zydelig), the MSKCC team asked themselves: What was the role of reduced-intensive conditioning HSCT? Was it even safe? Among other findings, Dr. Giralt and Dr. Perales’ 100th paper showed that reduced-intensity HSCT remained a viable alternative after a CLL-RT patient progressed on a novel agent.

 

 

Impact of the pandemic

When COVID-19 hit, the team lost many research staff and developed a huge backlog, said Dr. Giralt. He and Dr. Perales realized that they needed to be “thoughtful and careful” about which studies to continue. “For example, the CD-34 selection trials we did not close because these are our workhorse trials,” Dr. Giralt said. “We have people we need to treat, and some of the patients that we need to treat can only be treated on trial.”

The team was also able to pivot some of their work into COVID 19 itself, and they collected crucial information on HSCT in recovered COVID-19 patients, as an example.

“We were living through a critical time, but that doesn’t mean we [aren’t] obligated to continue our mission, our research mission,” said Dr. Giralt. “It really is team science. The way we look at it ... there’s a common thread: We both like to do allogeneic transplant, and we both believe in trying to make CD-34 selection better. So we’re both very much [working on] how can we improve what we call ‘the Memorial way’ of doing transplants. Where we separate is, Miguel does primarily lymphoma. He doesn’t do myeloma [like me]. So in those two areas, we’re helping develop the junior faculty in a different way.”
 

Something more in common

Right from the start, Dr. Perales and Dr. Giralt also shared a commitment to mentoring. Since 2010, Dr. Perales has mentored 22 up-and-coming junior faculty, including 10 from Europe (8 from Spain) and 2 from Latin America.

“[It makes] the research enterprise much more productive but [these young scientists] really increase the visibility of the program,” said Dr. Giralt.

He cited Dr. Perales’ track record of mentoring as one of the reasons for his promotion to chief of the adult bone marrow transplant service. In March 2020, Dr. Perales seamlessly stepped into Dr. Giralt’s shoes, while Dr. Giralt moved on to his present role as deputy division head of the division of hematologic malignancies.

Dr. Perales said: “The key aspect [of these promotions] is the fantastic working relationship that we’ve had over the years. ... I consider Sergio my mentor, but also a good friend and colleague. And so I think it’s this ability that we’ve had to work together and that relationship of trust, which has been key.”

“Sergio is somebody who lifts people up,” Dr. Perales added. “Many people will tell you that Sergio has helped them in their career. ... And I think that’s a lesson I’ve learned from him: training the next generation. And [that’s] not just in the U.S., but outside. I think that’s a key role that we have. And our responsibility.”

Asked to comment on their 100th-paper milestone, Dr. Perales firmly turned the spotlight from himself and Dr. Giralt to the junior investigators who have passed through the doors of the bone-marrow transplant program: “This body of work represents not just our collaboration but also the many contributions of our team at MSK ... and beyond MSK.”

This article was updated 1/26/22.

Publications
Topics
Sections

Two close colleagues at New York’s Memorial Sloan Kettering Cancer Center, world leaders in hematopoietic stem cell transplantation (HSCT) who were both promoted days after COVID-19 locked down the city in 2020, were too busy battling the pandemic’s impact on patients in the summer of 2021 to notice their latest shared career milestone.

On July 29, 2021, Sergio Giralt, MD, deputy division head of the division of hematologic malignancies and Miguel-Angel Perales, MD, chief of the adult bone marrow transplant service at MSKCC, published their 100th peer-reviewed paper as coauthors. Listing hundreds of such articles on a CV is standard for top-tier physicians, but the pair had gone one better: 100 publications written together in 10 years.

Their centenary article hit scientific newsstands almost exactly a decade after their first joint paper, which appeared in September 2011, not long after they met.

Born in Cuba, Dr. Giralt grew up in Venezuela. From the age of 14, he knew that medicine was his path, and in 1984 he earned a medical degree from the Universidad Central de Venezuela, Caracas. Next came a research position at Harvard Medical School, a residency at the Good Samaritan Hospital, Cincinnati, and a fellowship at the University of Texas MD Anderson Cancer Center, Houston. Dr. Giralt arrived at MSKCC in 2010 as the new chief of the adult bone marrow transplant service. There he was introduced to a new colleague, Dr. Perales. They soon learned that in addition to expertise in hematology, they had second language in common: Spanish.

Dr. Giralt said: “We both have a Spanish background and in a certain sense, there was an affinity there. ... We both have shared experiences.”

Dr. Perales was brought up in Belgium, a European nation with three official languages: French, Dutch, and German. He speaks five tongues in all and learned Spanish from his father, who came from Spain.

Courtesy MSKCC
Dr. Sergio Giralt

Fluency in Spanish enables both physicians to take care of the many New Yorkers who are more comfortable in that language – especially when navigating cancer treatment. However, both Dr. Giralt and Dr. Perales said that a second language is more than a professional tool. They described the enjoyable change of persona that happens when they switch to Spanish.

“People who are multilingual have different roles [as much as] different languages,” said Dr. Perales. “When I’m in Spanish, part of my brain is [thinking back to] summer vacations and hanging out with my cousins.”

When it comes to clinical science, however, English is the language of choice.
 

Global leaders in HSCT

Dr. Giralt and Dr. Perales are known worldwide in the field of allogeneic HSCT, a potentially curative treatment for an elongating list of both malignant and nonmalignant diseases.

In 1973, MSKCC conducted the first bone-marrow transplant from an unrelated donor. Fifty years on, medical oncologists in the United States conduct approximately 8,500 allogeneic transplants each year, 72% to treat acute leukemias or myelodysplastic syndrome (MDS).

However, stripping the immune system with intensive chemotherapy ‘conditioning,’ then rebuilding it with non-diseased donor hematopoietic cells is a hazardous undertaking. Older patients are less likely to survive the intensive conditioning, so historically have missed out. Also, even with a good human leukocyte antigen (HLA) match, the recipient needs often brutal immunosuppression.

Since Dr. Giralt and Dr. Perales began their partnership in 2010, the goals of their work have not changed: to develop safer, lower-intensity transplantation suitable for older, more vulnerable patients and reduce fearsome posttransplant sequelae such as graft-versus-host disease (GVHD).

Dr. Giralt’s publication list spans more than 600 peer-reviewed papers, articles and book chapters, almost exclusively on HSCT. Dr. Perales has more than 300 publication credits on the topic.

The two paired up on their first paper just months after Dr. Giralt arrived at MSKCC. That article, published in Biology of Blood and Marrow Transplantation, compared umbilical cord blood for HSCT with donor blood in 367 people with a variety of hematologic malignancies, including acute and chronic leukemias, MDS, and lymphoma.

Courtesy MSKCC
Dr. Miguel-Angel Perales

The MSKCC team found that transplant-related mortality in the first 180 days was higher for the cord blood (21%), but thereafter mortality and relapse were much lower than for donated blood, with the result that 2-year progression-free survival of 55% was similar. Dr. Perales, Dr. Giralt and their coauthors concluded that the data provided “strong support” for further work on cord blood as an alternative stem-cell source.

During their first decade of collaboration, Dr. Giralt and Dr. Perales worked on any promising avenue that could improve outcomes and the experience of HSCT recipients, including reduced-intensity conditioning regimens to allow older adults to benefit from curative HSCT and donor T-cell depletion by CD34 selection, to reduce graft-versus-host disease (GVHD).

The CD34 protein is typically found on the surface of early stage and highly active stem cell types. Selecting these cell types using a range of techniques can eliminate many other potentially interfering or inactive cells. This enriches the transplant population with the most effective cells and can lower the risk of GVHD.

The 100th paper on which Dr. Giralt and Dr. Perales were coauthors was published in Blood Advances on July 27, 2021. The retrospective study examined the fate of 58 MSKCC patients with a rare form of chronic lymphocytic leukemia, CLL with Richter’s transformation (CLL-RT). It was the largest such study to date of this rare disease.
M.D. Anderson Cancer Center had shown in 2006 that, despite chemotherapy, overall survival in patients with CLL-RT was approximately 8 months. HSCT improved survival dramatically (75% at 3 years; n = 7). However, with the advent of novel targeted drugs for CLL such as ibrutinib (Imbruvica), venetoclax (Venclexta), or idelalisib (Zydelig), the MSKCC team asked themselves: What was the role of reduced-intensive conditioning HSCT? Was it even safe? Among other findings, Dr. Giralt and Dr. Perales’ 100th paper showed that reduced-intensity HSCT remained a viable alternative after a CLL-RT patient progressed on a novel agent.

 

 

Impact of the pandemic

When COVID-19 hit, the team lost many research staff and developed a huge backlog, said Dr. Giralt. He and Dr. Perales realized that they needed to be “thoughtful and careful” about which studies to continue. “For example, the CD-34 selection trials we did not close because these are our workhorse trials,” Dr. Giralt said. “We have people we need to treat, and some of the patients that we need to treat can only be treated on trial.”

The team was also able to pivot some of their work into COVID 19 itself, and they collected crucial information on HSCT in recovered COVID-19 patients, as an example.

“We were living through a critical time, but that doesn’t mean we [aren’t] obligated to continue our mission, our research mission,” said Dr. Giralt. “It really is team science. The way we look at it ... there’s a common thread: We both like to do allogeneic transplant, and we both believe in trying to make CD-34 selection better. So we’re both very much [working on] how can we improve what we call ‘the Memorial way’ of doing transplants. Where we separate is, Miguel does primarily lymphoma. He doesn’t do myeloma [like me]. So in those two areas, we’re helping develop the junior faculty in a different way.”
 

Something more in common

Right from the start, Dr. Perales and Dr. Giralt also shared a commitment to mentoring. Since 2010, Dr. Perales has mentored 22 up-and-coming junior faculty, including 10 from Europe (8 from Spain) and 2 from Latin America.

“[It makes] the research enterprise much more productive but [these young scientists] really increase the visibility of the program,” said Dr. Giralt.

He cited Dr. Perales’ track record of mentoring as one of the reasons for his promotion to chief of the adult bone marrow transplant service. In March 2020, Dr. Perales seamlessly stepped into Dr. Giralt’s shoes, while Dr. Giralt moved on to his present role as deputy division head of the division of hematologic malignancies.

Dr. Perales said: “The key aspect [of these promotions] is the fantastic working relationship that we’ve had over the years. ... I consider Sergio my mentor, but also a good friend and colleague. And so I think it’s this ability that we’ve had to work together and that relationship of trust, which has been key.”

“Sergio is somebody who lifts people up,” Dr. Perales added. “Many people will tell you that Sergio has helped them in their career. ... And I think that’s a lesson I’ve learned from him: training the next generation. And [that’s] not just in the U.S., but outside. I think that’s a key role that we have. And our responsibility.”

Asked to comment on their 100th-paper milestone, Dr. Perales firmly turned the spotlight from himself and Dr. Giralt to the junior investigators who have passed through the doors of the bone-marrow transplant program: “This body of work represents not just our collaboration but also the many contributions of our team at MSK ... and beyond MSK.”

This article was updated 1/26/22.

Two close colleagues at New York’s Memorial Sloan Kettering Cancer Center, world leaders in hematopoietic stem cell transplantation (HSCT) who were both promoted days after COVID-19 locked down the city in 2020, were too busy battling the pandemic’s impact on patients in the summer of 2021 to notice their latest shared career milestone.

On July 29, 2021, Sergio Giralt, MD, deputy division head of the division of hematologic malignancies and Miguel-Angel Perales, MD, chief of the adult bone marrow transplant service at MSKCC, published their 100th peer-reviewed paper as coauthors. Listing hundreds of such articles on a CV is standard for top-tier physicians, but the pair had gone one better: 100 publications written together in 10 years.

Their centenary article hit scientific newsstands almost exactly a decade after their first joint paper, which appeared in September 2011, not long after they met.

Born in Cuba, Dr. Giralt grew up in Venezuela. From the age of 14, he knew that medicine was his path, and in 1984 he earned a medical degree from the Universidad Central de Venezuela, Caracas. Next came a research position at Harvard Medical School, a residency at the Good Samaritan Hospital, Cincinnati, and a fellowship at the University of Texas MD Anderson Cancer Center, Houston. Dr. Giralt arrived at MSKCC in 2010 as the new chief of the adult bone marrow transplant service. There he was introduced to a new colleague, Dr. Perales. They soon learned that in addition to expertise in hematology, they had second language in common: Spanish.

Dr. Giralt said: “We both have a Spanish background and in a certain sense, there was an affinity there. ... We both have shared experiences.”

Dr. Perales was brought up in Belgium, a European nation with three official languages: French, Dutch, and German. He speaks five tongues in all and learned Spanish from his father, who came from Spain.

Courtesy MSKCC
Dr. Sergio Giralt

Fluency in Spanish enables both physicians to take care of the many New Yorkers who are more comfortable in that language – especially when navigating cancer treatment. However, both Dr. Giralt and Dr. Perales said that a second language is more than a professional tool. They described the enjoyable change of persona that happens when they switch to Spanish.

“People who are multilingual have different roles [as much as] different languages,” said Dr. Perales. “When I’m in Spanish, part of my brain is [thinking back to] summer vacations and hanging out with my cousins.”

When it comes to clinical science, however, English is the language of choice.
 

Global leaders in HSCT

Dr. Giralt and Dr. Perales are known worldwide in the field of allogeneic HSCT, a potentially curative treatment for an elongating list of both malignant and nonmalignant diseases.

In 1973, MSKCC conducted the first bone-marrow transplant from an unrelated donor. Fifty years on, medical oncologists in the United States conduct approximately 8,500 allogeneic transplants each year, 72% to treat acute leukemias or myelodysplastic syndrome (MDS).

However, stripping the immune system with intensive chemotherapy ‘conditioning,’ then rebuilding it with non-diseased donor hematopoietic cells is a hazardous undertaking. Older patients are less likely to survive the intensive conditioning, so historically have missed out. Also, even with a good human leukocyte antigen (HLA) match, the recipient needs often brutal immunosuppression.

Since Dr. Giralt and Dr. Perales began their partnership in 2010, the goals of their work have not changed: to develop safer, lower-intensity transplantation suitable for older, more vulnerable patients and reduce fearsome posttransplant sequelae such as graft-versus-host disease (GVHD).

Dr. Giralt’s publication list spans more than 600 peer-reviewed papers, articles and book chapters, almost exclusively on HSCT. Dr. Perales has more than 300 publication credits on the topic.

The two paired up on their first paper just months after Dr. Giralt arrived at MSKCC. That article, published in Biology of Blood and Marrow Transplantation, compared umbilical cord blood for HSCT with donor blood in 367 people with a variety of hematologic malignancies, including acute and chronic leukemias, MDS, and lymphoma.

Courtesy MSKCC
Dr. Miguel-Angel Perales

The MSKCC team found that transplant-related mortality in the first 180 days was higher for the cord blood (21%), but thereafter mortality and relapse were much lower than for donated blood, with the result that 2-year progression-free survival of 55% was similar. Dr. Perales, Dr. Giralt and their coauthors concluded that the data provided “strong support” for further work on cord blood as an alternative stem-cell source.

During their first decade of collaboration, Dr. Giralt and Dr. Perales worked on any promising avenue that could improve outcomes and the experience of HSCT recipients, including reduced-intensity conditioning regimens to allow older adults to benefit from curative HSCT and donor T-cell depletion by CD34 selection, to reduce graft-versus-host disease (GVHD).

The CD34 protein is typically found on the surface of early stage and highly active stem cell types. Selecting these cell types using a range of techniques can eliminate many other potentially interfering or inactive cells. This enriches the transplant population with the most effective cells and can lower the risk of GVHD.

The 100th paper on which Dr. Giralt and Dr. Perales were coauthors was published in Blood Advances on July 27, 2021. The retrospective study examined the fate of 58 MSKCC patients with a rare form of chronic lymphocytic leukemia, CLL with Richter’s transformation (CLL-RT). It was the largest such study to date of this rare disease.
M.D. Anderson Cancer Center had shown in 2006 that, despite chemotherapy, overall survival in patients with CLL-RT was approximately 8 months. HSCT improved survival dramatically (75% at 3 years; n = 7). However, with the advent of novel targeted drugs for CLL such as ibrutinib (Imbruvica), venetoclax (Venclexta), or idelalisib (Zydelig), the MSKCC team asked themselves: What was the role of reduced-intensive conditioning HSCT? Was it even safe? Among other findings, Dr. Giralt and Dr. Perales’ 100th paper showed that reduced-intensity HSCT remained a viable alternative after a CLL-RT patient progressed on a novel agent.

 

 

Impact of the pandemic

When COVID-19 hit, the team lost many research staff and developed a huge backlog, said Dr. Giralt. He and Dr. Perales realized that they needed to be “thoughtful and careful” about which studies to continue. “For example, the CD-34 selection trials we did not close because these are our workhorse trials,” Dr. Giralt said. “We have people we need to treat, and some of the patients that we need to treat can only be treated on trial.”

The team was also able to pivot some of their work into COVID 19 itself, and they collected crucial information on HSCT in recovered COVID-19 patients, as an example.

“We were living through a critical time, but that doesn’t mean we [aren’t] obligated to continue our mission, our research mission,” said Dr. Giralt. “It really is team science. The way we look at it ... there’s a common thread: We both like to do allogeneic transplant, and we both believe in trying to make CD-34 selection better. So we’re both very much [working on] how can we improve what we call ‘the Memorial way’ of doing transplants. Where we separate is, Miguel does primarily lymphoma. He doesn’t do myeloma [like me]. So in those two areas, we’re helping develop the junior faculty in a different way.”
 

Something more in common

Right from the start, Dr. Perales and Dr. Giralt also shared a commitment to mentoring. Since 2010, Dr. Perales has mentored 22 up-and-coming junior faculty, including 10 from Europe (8 from Spain) and 2 from Latin America.

“[It makes] the research enterprise much more productive but [these young scientists] really increase the visibility of the program,” said Dr. Giralt.

He cited Dr. Perales’ track record of mentoring as one of the reasons for his promotion to chief of the adult bone marrow transplant service. In March 2020, Dr. Perales seamlessly stepped into Dr. Giralt’s shoes, while Dr. Giralt moved on to his present role as deputy division head of the division of hematologic malignancies.

Dr. Perales said: “The key aspect [of these promotions] is the fantastic working relationship that we’ve had over the years. ... I consider Sergio my mentor, but also a good friend and colleague. And so I think it’s this ability that we’ve had to work together and that relationship of trust, which has been key.”

“Sergio is somebody who lifts people up,” Dr. Perales added. “Many people will tell you that Sergio has helped them in their career. ... And I think that’s a lesson I’ve learned from him: training the next generation. And [that’s] not just in the U.S., but outside. I think that’s a key role that we have. And our responsibility.”

Asked to comment on their 100th-paper milestone, Dr. Perales firmly turned the spotlight from himself and Dr. Giralt to the junior investigators who have passed through the doors of the bone-marrow transplant program: “This body of work represents not just our collaboration but also the many contributions of our team at MSK ... and beyond MSK.”

This article was updated 1/26/22.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Rituximab and COVID-19 vaccines: Studies begin to answer key questions

Article Type
Changed
Fri, 12/16/2022 - 11:59

Rituximab has presented something of a conundrum for patients taking the monoclonal antibody during the COVID-19 pandemic.

Used to manage a variety of autoimmune diseases and cancers, rituximab acts against CD20 proteins expressed on the surface of B cells, causing B-cell depletion. However, it is this B-cell depletion that may put these patients at greater risk of COVID-19 development, progression to more severe disease, and in-hospital mortality. Evidence for this appears to be mixed, with studies showing both that patients using rituximab to manage various diseases are and are not at increased risk for SARS-CoV-2 infection, COVID-19 progression, and mortality.

peterschreiber_media/iStock/Getty Images

As COVID-19 vaccine rollouts take place across the world, more questions have been raised about the relationship between B-cell depletion from anti-CD20 therapies and COVID-19 vaccines. Do rituximab and other anti-CD20 therapies affect a patient’s response to COVID-19 vaccines? If this is the case, does the timing of anti-CD20 treatment matter to maximize B-cell levels and improve the vaccine’s effectiveness? And how do COVID-19 vaccine booster doses factor into the equation?

This article aims to summarize the latest research on how rituximab affects humoral and cell-mediated response following a COVID-19 vaccine primary series, and whether the addition of a COVID-19 vaccine booster dose changes patient response.
 

Humoral and cell-mediated responses following COVID-19 vaccination

First, the bad news: The vaccine is unquestionably safe to administer in patients taking rituximab, but one thing that has been well established is that antibody response to COVID-19 vaccination in these individuals does is reduced. This isn’t entirely unprecedented, as previous studies have shown a weakened immune response to pneumococcal polysaccharide and keyhole limpet hemocyanin vaccines among patients taking rituximab.

Dr. Robert F. Spiera

“Compromised immunogenicity to the SARS-CoV-2 vaccines has been demonstrated in rituximab-treated patients, which is of particular concern given the observation that B-cell–depleting therapies may be associated with worse COVID outcomes,” Robert F. Spiera, MD, director of the Scleroderma, Vasculitis, and Myositis Center at the Hospital for Special Surgery in New York, said in an interview.

For example, in a recent study from the Medical University of Vienna, 29 (39%) of 74 patients receiving rituximab (43% as monotherapy, 57% with conventional-synthetic disease-modifying antirheumatic drugs) who were vaccinated with either the Comirnaty (Pfizer-BioNTech) or Spikevax (Moderna) COVID-19 vaccine achieved seroconversion, compared with 100% of patients in a healthy control group, and all but 1 patient without detectable CD19+ peripheral B cells did not develop anti–SARS-CoV-2 receptor-binding domain antibodies.

“There is an increasing number of studies in this field, and they confirm that patients treated with rituximab and other anti-CD20 agents have severely reduced serological responses to COVID-19 vaccines,” Ingrid Jyssum, MD, of the division of rheumatology and research at Diakonhjemmet Hospital in Oslo, said in an interview.

Dr. Ingrid Jyssum

One silver lining is that patients treated with anti-CD20 therapies appear to have a cell-mediated response following vaccination even if they don’t develop SARS-CoV-2 antibodies. “Studies that also investigate T-cell responses are starting to emerge, and so far, they show that, even if the patients do not have antibodies, they may have T-cell responses,” Dr. Jyssum said.

One study of 24 patients with autoimmune diseases taking rituximab that evaluated humoral and T-cell responses following vaccination with the Comirnaty vaccine found that none had a humoral response to the vaccine, but the T-cell response from that group did not significantly differ from 35 patients receiving other immunosuppressants and 26 patients in a healthy control group. In another study of rituximab- or ocrelizumab-treated patients who received mRNA-based COVID-19 vaccines, 69.4% developed SARS-CoV-2–specific antibodies, compared with a control group, but 96.2% of patients taking ocrelizumab and 81.8% of patients taking rituximab mounted a spike-specific CD8+ T-cell response, compared with 66.7% in the control group, and there were comparable rates (85%-90%) of spike-specific CD4+ T cells in all groups. In the study from the Medical University of Vienna, T-cell response was detected in rituximab-treated patients who both did and did not mount an antibody response.

The clinical relevance of how a blunted humoral immune response but a respectable T-cell response to COVID-19 vaccines affects patients treated with anti-CD20 therapies isn’t currently known, Dr. Jyssum said.

While these data are reassuring, they’re also incomplete, Dr. Spiera noted. “The ultimate outcome of relevance to assess vaccine efficacy is protection from COVID and from severe outcomes of COVID infection (i.e., hospitalization, mechanical ventilation, death). That data will require assessment of very large numbers of rituximab-treated vaccinated patients to be compared with rituximab-treated unvaccinated patients, and is unlikely to be forthcoming in the very near future.

“In the meantime, however, achieving serologic positivity, meaning having evidence of serologic as well as cellular immunity following vaccination, is a desired outcome, and likely implies more robust immunity.”
 

 

 

Does treatment timing impact COVID-19 vaccine response?

Given enough time, B-cell reconstitution will occur in patients taking rituximab. With that in mind, is it beneficial to wait a certain amount of time after a patient has stopped rituximab therapy or time since their last dose before giving them a COVID-19 vaccine? In their guidance on COVID-19 vaccines for patients with rheumatic and musculoskeletal diseases, the American College of Rheumatology said there is moderate evidence to consider “optimal timing of dosing and vaccination with the rheumatology provider before proceeding.”

“Guidelines and preliminary studies of serologic response to COVID vaccine in rituximab-treated patients have suggested that longer time from last rituximab exposure is associated with a greater likelihood of a serologic response,” Dr. Spiera said.

In a brief report published in Arthritis & Rheumatology, Dr. Spiera and colleagues performed a retrospective chart review of 56 patients with varying levels of last exposure to rituximab who received a COVID-19 vaccine. Their results showed that, when patients were vaccinated 6-12 months after the last rituximab dose, 55% were seronegative, and when this was more than 12 months, only 13% were seronegative, compared with seronegativity in 86% who were vaccinated less than 6 months after their last rituximab dose.

The RituxiVac trial, conducted by researchers in Switzerland, also examined vaccine responses of 96 rituximab-treated patients who received Comirnaty or Spikevax; results recently published in The Lancet Rheumatology showed findings similar to other studies, with reduced humoral and cell-mediated responses. In the RituxiVac trial, the median time to last anti-CD20 treatment was 1.07 years.



“The typical interval between rituximab doses [for treatment of rheumatoid arthritis, as well as for remission maintenance in antineutrophil cytoplasmic antibody–associated vasculitis] is typically 6 months, and this has become widely used as the interval from last rituximab to time of COVID vaccination, with a recommendation to wait 4 weeks (if possible) from time of vaccination until the next rituximab administration,” Dr. Spiera explained. However, this window seems to vary depending on the study.

Recent research published in Arthritis & Rheumatology indicates B-cell levels could be a relevant indicator for humoral and cell-mediated response in patients with rheumatic diseases treated with rituximab, with a level of 10 B cells/mcL (0.4% of lymphocytes) identified as one potential marker for likely seroconversion following COVID-19 vaccination.

“In some smaller case series, it has been further recognized that rituximab-treated patients who were beginning to reconstitute peripheral B cells were most likely to respond serologically. Our present study confirmed those findings, demonstrating that the presence of detectable B cells was strongly associated with vaccine responsiveness, and affords complementary information to time from last [rituximab dose] in informing the likelihood of a vaccine response,” Dr. Spiera said.

However, the literature is limited in this area, and an exact cutoff for B-cell counts in these patients isn’t currently known, Dr. Jyssum said. A better metric is time away from anti-CD20 therapies, with CD19 cell count being highly correlated with last infusion.

Dr. Spiera agreed that there is no consistent B-cell percentage that works as a cutoff. “In our study, we looked at it as a binary variable, although we did find that a higher percentage of B cells in the peripheral lymphocyte population was associated with a higher likelihood of seroconversion. We did not, however, identify a ‘threshold’ for vaccine serologic responsiveness.”

 

 

Should clinicians measure antibodies?

The Food and Drug Administration and the Centers for Disease Control and Prevention have recommended that health care providers and the public not use COVID-19 antibody tests as a way to gauge immunity after exposure to SARS-CoV-2 and after receiving a COVID-19 vaccination. The ACR’s guidance on COVID-19 vaccination for patients with rheumatic and musculoskeletal diseases strongly recommends against ordering antibody tests for patients with autoimmune inflammatory rheumatic diseases as a way to measure immunity.

“Generally, such measurements are not recommended as the clinical correlate of various antibody levels are not known,” Dr. Jyssum said. “With regular infusions of rituximab or other anti-CD20 agents, one cannot expect that these patients will develop significant levels of antibodies.”

However, she said there might be situations where it’s useful to know whether a patient has developed antibodies at all. “Assessing the significance of specific antibody levels is difficult, and the subject of scientific studies. Patients lacking a humoral vaccine response are left to rely on their T-cell responses and on infectious control measures to prevent disease.”

Dr. Spiera said he disagreed with guidelines recommending against checking antibody levels after vaccination, “particularly in patients treated with immunosuppressive medications that might be expected to blunt their serologic response to the vaccines.

“Although we cannot be sure what level of measurable antibodies offer what level of protection, most clinicians would agree that patients who demonstrate no detectable antibodies (which is a common finding in rituximab-treated patients) should be considered at higher risk,” he said. “Indeed, recommendations regarding booster vaccine administration in general was initially based on the observation of declining antibody levels with longer time from vaccination.”

Do COVID-19 vaccine boosters help patients on anti-CD20 therapy?

As of January 2022, the FDA and CDC have recommended a third primary series shot of COVID-19 vaccines for some moderately to severely immunocompromised patients as young as 5 years old (for Comirnaty vaccine) or a booster shot of either Comirnaty or Spikevax for everyone aged 12 years and older, including immunocompromised people, while the ACR goes into more detail and recommends clinicians time a patient’s booster shot with temporary treatment interruption.

In The Lancet Rheumatology, Dr. Jyssum and colleagues recently published results from the prospective Nor-vaC study examining the humoral and cell-mediated immune responses of 87 patients with RA being treated with rituximab who received the Comirnaty, Spikevax, or Vaxzevria (AstraZeneca) COVID-19 vaccines; of these, 49 patients received a booster dose at a median of 70 days after completing their primary series. The results showed 19 patients (28.1%) had a serologic response after their primary series, while 8 of 49 patients (16.3%) who received their booster dose had a serologic response.

All patients who received a third dose in the study had a T-cell response, Dr. Jyssum said. “This is reassuring for patients and clinicians. T cells have been found to be important in countering COVID-19 disease, but whether we can rely on the T-cell response alone in the absence of antibodies to protect patients from infection or from serious COVID disease is still not determined,” she said.

When asked if she would recommend COVID-19 vaccine booster doses for patients on rituximab, Dr. Jyssum replied: “Absolutely.”

Another study, recently published in Annals of the Rheumatic Diseases, examined heterologous and homologous booster doses for 60 patients receiving rituximab without seroconversion after their COVID-19 vaccine primary series. The results showed no significant difference in new seroconversion at 4 weeks based on whether the patient received a vector or mRNA vaccine (22% vs. 32%), but all patients who received a booster dose with a vector vaccine had specific T-cell responses, compared with 81% of patients who received an mRNA vaccine booster. There was a new humoral and/or cellular response in 9 of 11 patients (82%), and most patients with peripheral B cells (12 of 18 patients; 67%) achieved seroconversion.

“Our data show that a cellular and/or humoral immune response can be achieved on a third COVID-19 vaccination in most of the patients who initially developed neither a humoral nor a cellular immune response,” the researchers concluded. “The efficacy data together with the safety data seen in our trial provide a favorable risk/benefit ratio and support the implementation of a third vaccination for nonseroconverted high-risk autoimmune disease patients treated with B-cell–depleting agents.”

Dr. Spiera said booster doses are an important part of the equation, and “it is important to consider factors that would be associated with a greater likelihood of achieving a serologic response, particularly in those patients who did not demonstrate a serologic response to the initial vaccines series.

“Preliminary data shows that the beginnings of B-cell reconstitution is also associated with a positive serologic response following a booster of the COVID-19 vaccine,” he said.

The authors of the cited studies reported numerous relevant financial disclosures. Dr. Spiera and Dr. Jyssum reported no relevant financial disclosures.

Publications
Topics
Sections

Rituximab has presented something of a conundrum for patients taking the monoclonal antibody during the COVID-19 pandemic.

Used to manage a variety of autoimmune diseases and cancers, rituximab acts against CD20 proteins expressed on the surface of B cells, causing B-cell depletion. However, it is this B-cell depletion that may put these patients at greater risk of COVID-19 development, progression to more severe disease, and in-hospital mortality. Evidence for this appears to be mixed, with studies showing both that patients using rituximab to manage various diseases are and are not at increased risk for SARS-CoV-2 infection, COVID-19 progression, and mortality.

peterschreiber_media/iStock/Getty Images

As COVID-19 vaccine rollouts take place across the world, more questions have been raised about the relationship between B-cell depletion from anti-CD20 therapies and COVID-19 vaccines. Do rituximab and other anti-CD20 therapies affect a patient’s response to COVID-19 vaccines? If this is the case, does the timing of anti-CD20 treatment matter to maximize B-cell levels and improve the vaccine’s effectiveness? And how do COVID-19 vaccine booster doses factor into the equation?

This article aims to summarize the latest research on how rituximab affects humoral and cell-mediated response following a COVID-19 vaccine primary series, and whether the addition of a COVID-19 vaccine booster dose changes patient response.
 

Humoral and cell-mediated responses following COVID-19 vaccination

First, the bad news: The vaccine is unquestionably safe to administer in patients taking rituximab, but one thing that has been well established is that antibody response to COVID-19 vaccination in these individuals does is reduced. This isn’t entirely unprecedented, as previous studies have shown a weakened immune response to pneumococcal polysaccharide and keyhole limpet hemocyanin vaccines among patients taking rituximab.

Dr. Robert F. Spiera

“Compromised immunogenicity to the SARS-CoV-2 vaccines has been demonstrated in rituximab-treated patients, which is of particular concern given the observation that B-cell–depleting therapies may be associated with worse COVID outcomes,” Robert F. Spiera, MD, director of the Scleroderma, Vasculitis, and Myositis Center at the Hospital for Special Surgery in New York, said in an interview.

For example, in a recent study from the Medical University of Vienna, 29 (39%) of 74 patients receiving rituximab (43% as monotherapy, 57% with conventional-synthetic disease-modifying antirheumatic drugs) who were vaccinated with either the Comirnaty (Pfizer-BioNTech) or Spikevax (Moderna) COVID-19 vaccine achieved seroconversion, compared with 100% of patients in a healthy control group, and all but 1 patient without detectable CD19+ peripheral B cells did not develop anti–SARS-CoV-2 receptor-binding domain antibodies.

“There is an increasing number of studies in this field, and they confirm that patients treated with rituximab and other anti-CD20 agents have severely reduced serological responses to COVID-19 vaccines,” Ingrid Jyssum, MD, of the division of rheumatology and research at Diakonhjemmet Hospital in Oslo, said in an interview.

Dr. Ingrid Jyssum

One silver lining is that patients treated with anti-CD20 therapies appear to have a cell-mediated response following vaccination even if they don’t develop SARS-CoV-2 antibodies. “Studies that also investigate T-cell responses are starting to emerge, and so far, they show that, even if the patients do not have antibodies, they may have T-cell responses,” Dr. Jyssum said.

One study of 24 patients with autoimmune diseases taking rituximab that evaluated humoral and T-cell responses following vaccination with the Comirnaty vaccine found that none had a humoral response to the vaccine, but the T-cell response from that group did not significantly differ from 35 patients receiving other immunosuppressants and 26 patients in a healthy control group. In another study of rituximab- or ocrelizumab-treated patients who received mRNA-based COVID-19 vaccines, 69.4% developed SARS-CoV-2–specific antibodies, compared with a control group, but 96.2% of patients taking ocrelizumab and 81.8% of patients taking rituximab mounted a spike-specific CD8+ T-cell response, compared with 66.7% in the control group, and there were comparable rates (85%-90%) of spike-specific CD4+ T cells in all groups. In the study from the Medical University of Vienna, T-cell response was detected in rituximab-treated patients who both did and did not mount an antibody response.

The clinical relevance of how a blunted humoral immune response but a respectable T-cell response to COVID-19 vaccines affects patients treated with anti-CD20 therapies isn’t currently known, Dr. Jyssum said.

While these data are reassuring, they’re also incomplete, Dr. Spiera noted. “The ultimate outcome of relevance to assess vaccine efficacy is protection from COVID and from severe outcomes of COVID infection (i.e., hospitalization, mechanical ventilation, death). That data will require assessment of very large numbers of rituximab-treated vaccinated patients to be compared with rituximab-treated unvaccinated patients, and is unlikely to be forthcoming in the very near future.

“In the meantime, however, achieving serologic positivity, meaning having evidence of serologic as well as cellular immunity following vaccination, is a desired outcome, and likely implies more robust immunity.”
 

 

 

Does treatment timing impact COVID-19 vaccine response?

Given enough time, B-cell reconstitution will occur in patients taking rituximab. With that in mind, is it beneficial to wait a certain amount of time after a patient has stopped rituximab therapy or time since their last dose before giving them a COVID-19 vaccine? In their guidance on COVID-19 vaccines for patients with rheumatic and musculoskeletal diseases, the American College of Rheumatology said there is moderate evidence to consider “optimal timing of dosing and vaccination with the rheumatology provider before proceeding.”

“Guidelines and preliminary studies of serologic response to COVID vaccine in rituximab-treated patients have suggested that longer time from last rituximab exposure is associated with a greater likelihood of a serologic response,” Dr. Spiera said.

In a brief report published in Arthritis & Rheumatology, Dr. Spiera and colleagues performed a retrospective chart review of 56 patients with varying levels of last exposure to rituximab who received a COVID-19 vaccine. Their results showed that, when patients were vaccinated 6-12 months after the last rituximab dose, 55% were seronegative, and when this was more than 12 months, only 13% were seronegative, compared with seronegativity in 86% who were vaccinated less than 6 months after their last rituximab dose.

The RituxiVac trial, conducted by researchers in Switzerland, also examined vaccine responses of 96 rituximab-treated patients who received Comirnaty or Spikevax; results recently published in The Lancet Rheumatology showed findings similar to other studies, with reduced humoral and cell-mediated responses. In the RituxiVac trial, the median time to last anti-CD20 treatment was 1.07 years.



“The typical interval between rituximab doses [for treatment of rheumatoid arthritis, as well as for remission maintenance in antineutrophil cytoplasmic antibody–associated vasculitis] is typically 6 months, and this has become widely used as the interval from last rituximab to time of COVID vaccination, with a recommendation to wait 4 weeks (if possible) from time of vaccination until the next rituximab administration,” Dr. Spiera explained. However, this window seems to vary depending on the study.

Recent research published in Arthritis & Rheumatology indicates B-cell levels could be a relevant indicator for humoral and cell-mediated response in patients with rheumatic diseases treated with rituximab, with a level of 10 B cells/mcL (0.4% of lymphocytes) identified as one potential marker for likely seroconversion following COVID-19 vaccination.

“In some smaller case series, it has been further recognized that rituximab-treated patients who were beginning to reconstitute peripheral B cells were most likely to respond serologically. Our present study confirmed those findings, demonstrating that the presence of detectable B cells was strongly associated with vaccine responsiveness, and affords complementary information to time from last [rituximab dose] in informing the likelihood of a vaccine response,” Dr. Spiera said.

However, the literature is limited in this area, and an exact cutoff for B-cell counts in these patients isn’t currently known, Dr. Jyssum said. A better metric is time away from anti-CD20 therapies, with CD19 cell count being highly correlated with last infusion.

Dr. Spiera agreed that there is no consistent B-cell percentage that works as a cutoff. “In our study, we looked at it as a binary variable, although we did find that a higher percentage of B cells in the peripheral lymphocyte population was associated with a higher likelihood of seroconversion. We did not, however, identify a ‘threshold’ for vaccine serologic responsiveness.”

 

 

Should clinicians measure antibodies?

The Food and Drug Administration and the Centers for Disease Control and Prevention have recommended that health care providers and the public not use COVID-19 antibody tests as a way to gauge immunity after exposure to SARS-CoV-2 and after receiving a COVID-19 vaccination. The ACR’s guidance on COVID-19 vaccination for patients with rheumatic and musculoskeletal diseases strongly recommends against ordering antibody tests for patients with autoimmune inflammatory rheumatic diseases as a way to measure immunity.

“Generally, such measurements are not recommended as the clinical correlate of various antibody levels are not known,” Dr. Jyssum said. “With regular infusions of rituximab or other anti-CD20 agents, one cannot expect that these patients will develop significant levels of antibodies.”

However, she said there might be situations where it’s useful to know whether a patient has developed antibodies at all. “Assessing the significance of specific antibody levels is difficult, and the subject of scientific studies. Patients lacking a humoral vaccine response are left to rely on their T-cell responses and on infectious control measures to prevent disease.”

Dr. Spiera said he disagreed with guidelines recommending against checking antibody levels after vaccination, “particularly in patients treated with immunosuppressive medications that might be expected to blunt their serologic response to the vaccines.

“Although we cannot be sure what level of measurable antibodies offer what level of protection, most clinicians would agree that patients who demonstrate no detectable antibodies (which is a common finding in rituximab-treated patients) should be considered at higher risk,” he said. “Indeed, recommendations regarding booster vaccine administration in general was initially based on the observation of declining antibody levels with longer time from vaccination.”

Do COVID-19 vaccine boosters help patients on anti-CD20 therapy?

As of January 2022, the FDA and CDC have recommended a third primary series shot of COVID-19 vaccines for some moderately to severely immunocompromised patients as young as 5 years old (for Comirnaty vaccine) or a booster shot of either Comirnaty or Spikevax for everyone aged 12 years and older, including immunocompromised people, while the ACR goes into more detail and recommends clinicians time a patient’s booster shot with temporary treatment interruption.

In The Lancet Rheumatology, Dr. Jyssum and colleagues recently published results from the prospective Nor-vaC study examining the humoral and cell-mediated immune responses of 87 patients with RA being treated with rituximab who received the Comirnaty, Spikevax, or Vaxzevria (AstraZeneca) COVID-19 vaccines; of these, 49 patients received a booster dose at a median of 70 days after completing their primary series. The results showed 19 patients (28.1%) had a serologic response after their primary series, while 8 of 49 patients (16.3%) who received their booster dose had a serologic response.

All patients who received a third dose in the study had a T-cell response, Dr. Jyssum said. “This is reassuring for patients and clinicians. T cells have been found to be important in countering COVID-19 disease, but whether we can rely on the T-cell response alone in the absence of antibodies to protect patients from infection or from serious COVID disease is still not determined,” she said.

When asked if she would recommend COVID-19 vaccine booster doses for patients on rituximab, Dr. Jyssum replied: “Absolutely.”

Another study, recently published in Annals of the Rheumatic Diseases, examined heterologous and homologous booster doses for 60 patients receiving rituximab without seroconversion after their COVID-19 vaccine primary series. The results showed no significant difference in new seroconversion at 4 weeks based on whether the patient received a vector or mRNA vaccine (22% vs. 32%), but all patients who received a booster dose with a vector vaccine had specific T-cell responses, compared with 81% of patients who received an mRNA vaccine booster. There was a new humoral and/or cellular response in 9 of 11 patients (82%), and most patients with peripheral B cells (12 of 18 patients; 67%) achieved seroconversion.

“Our data show that a cellular and/or humoral immune response can be achieved on a third COVID-19 vaccination in most of the patients who initially developed neither a humoral nor a cellular immune response,” the researchers concluded. “The efficacy data together with the safety data seen in our trial provide a favorable risk/benefit ratio and support the implementation of a third vaccination for nonseroconverted high-risk autoimmune disease patients treated with B-cell–depleting agents.”

Dr. Spiera said booster doses are an important part of the equation, and “it is important to consider factors that would be associated with a greater likelihood of achieving a serologic response, particularly in those patients who did not demonstrate a serologic response to the initial vaccines series.

“Preliminary data shows that the beginnings of B-cell reconstitution is also associated with a positive serologic response following a booster of the COVID-19 vaccine,” he said.

The authors of the cited studies reported numerous relevant financial disclosures. Dr. Spiera and Dr. Jyssum reported no relevant financial disclosures.

Rituximab has presented something of a conundrum for patients taking the monoclonal antibody during the COVID-19 pandemic.

Used to manage a variety of autoimmune diseases and cancers, rituximab acts against CD20 proteins expressed on the surface of B cells, causing B-cell depletion. However, it is this B-cell depletion that may put these patients at greater risk of COVID-19 development, progression to more severe disease, and in-hospital mortality. Evidence for this appears to be mixed, with studies showing both that patients using rituximab to manage various diseases are and are not at increased risk for SARS-CoV-2 infection, COVID-19 progression, and mortality.

peterschreiber_media/iStock/Getty Images

As COVID-19 vaccine rollouts take place across the world, more questions have been raised about the relationship between B-cell depletion from anti-CD20 therapies and COVID-19 vaccines. Do rituximab and other anti-CD20 therapies affect a patient’s response to COVID-19 vaccines? If this is the case, does the timing of anti-CD20 treatment matter to maximize B-cell levels and improve the vaccine’s effectiveness? And how do COVID-19 vaccine booster doses factor into the equation?

This article aims to summarize the latest research on how rituximab affects humoral and cell-mediated response following a COVID-19 vaccine primary series, and whether the addition of a COVID-19 vaccine booster dose changes patient response.
 

Humoral and cell-mediated responses following COVID-19 vaccination

First, the bad news: The vaccine is unquestionably safe to administer in patients taking rituximab, but one thing that has been well established is that antibody response to COVID-19 vaccination in these individuals does is reduced. This isn’t entirely unprecedented, as previous studies have shown a weakened immune response to pneumococcal polysaccharide and keyhole limpet hemocyanin vaccines among patients taking rituximab.

Dr. Robert F. Spiera

“Compromised immunogenicity to the SARS-CoV-2 vaccines has been demonstrated in rituximab-treated patients, which is of particular concern given the observation that B-cell–depleting therapies may be associated with worse COVID outcomes,” Robert F. Spiera, MD, director of the Scleroderma, Vasculitis, and Myositis Center at the Hospital for Special Surgery in New York, said in an interview.

For example, in a recent study from the Medical University of Vienna, 29 (39%) of 74 patients receiving rituximab (43% as monotherapy, 57% with conventional-synthetic disease-modifying antirheumatic drugs) who were vaccinated with either the Comirnaty (Pfizer-BioNTech) or Spikevax (Moderna) COVID-19 vaccine achieved seroconversion, compared with 100% of patients in a healthy control group, and all but 1 patient without detectable CD19+ peripheral B cells did not develop anti–SARS-CoV-2 receptor-binding domain antibodies.

“There is an increasing number of studies in this field, and they confirm that patients treated with rituximab and other anti-CD20 agents have severely reduced serological responses to COVID-19 vaccines,” Ingrid Jyssum, MD, of the division of rheumatology and research at Diakonhjemmet Hospital in Oslo, said in an interview.

Dr. Ingrid Jyssum

One silver lining is that patients treated with anti-CD20 therapies appear to have a cell-mediated response following vaccination even if they don’t develop SARS-CoV-2 antibodies. “Studies that also investigate T-cell responses are starting to emerge, and so far, they show that, even if the patients do not have antibodies, they may have T-cell responses,” Dr. Jyssum said.

One study of 24 patients with autoimmune diseases taking rituximab that evaluated humoral and T-cell responses following vaccination with the Comirnaty vaccine found that none had a humoral response to the vaccine, but the T-cell response from that group did not significantly differ from 35 patients receiving other immunosuppressants and 26 patients in a healthy control group. In another study of rituximab- or ocrelizumab-treated patients who received mRNA-based COVID-19 vaccines, 69.4% developed SARS-CoV-2–specific antibodies, compared with a control group, but 96.2% of patients taking ocrelizumab and 81.8% of patients taking rituximab mounted a spike-specific CD8+ T-cell response, compared with 66.7% in the control group, and there were comparable rates (85%-90%) of spike-specific CD4+ T cells in all groups. In the study from the Medical University of Vienna, T-cell response was detected in rituximab-treated patients who both did and did not mount an antibody response.

The clinical relevance of how a blunted humoral immune response but a respectable T-cell response to COVID-19 vaccines affects patients treated with anti-CD20 therapies isn’t currently known, Dr. Jyssum said.

While these data are reassuring, they’re also incomplete, Dr. Spiera noted. “The ultimate outcome of relevance to assess vaccine efficacy is protection from COVID and from severe outcomes of COVID infection (i.e., hospitalization, mechanical ventilation, death). That data will require assessment of very large numbers of rituximab-treated vaccinated patients to be compared with rituximab-treated unvaccinated patients, and is unlikely to be forthcoming in the very near future.

“In the meantime, however, achieving serologic positivity, meaning having evidence of serologic as well as cellular immunity following vaccination, is a desired outcome, and likely implies more robust immunity.”
 

 

 

Does treatment timing impact COVID-19 vaccine response?

Given enough time, B-cell reconstitution will occur in patients taking rituximab. With that in mind, is it beneficial to wait a certain amount of time after a patient has stopped rituximab therapy or time since their last dose before giving them a COVID-19 vaccine? In their guidance on COVID-19 vaccines for patients with rheumatic and musculoskeletal diseases, the American College of Rheumatology said there is moderate evidence to consider “optimal timing of dosing and vaccination with the rheumatology provider before proceeding.”

“Guidelines and preliminary studies of serologic response to COVID vaccine in rituximab-treated patients have suggested that longer time from last rituximab exposure is associated with a greater likelihood of a serologic response,” Dr. Spiera said.

In a brief report published in Arthritis & Rheumatology, Dr. Spiera and colleagues performed a retrospective chart review of 56 patients with varying levels of last exposure to rituximab who received a COVID-19 vaccine. Their results showed that, when patients were vaccinated 6-12 months after the last rituximab dose, 55% were seronegative, and when this was more than 12 months, only 13% were seronegative, compared with seronegativity in 86% who were vaccinated less than 6 months after their last rituximab dose.

The RituxiVac trial, conducted by researchers in Switzerland, also examined vaccine responses of 96 rituximab-treated patients who received Comirnaty or Spikevax; results recently published in The Lancet Rheumatology showed findings similar to other studies, with reduced humoral and cell-mediated responses. In the RituxiVac trial, the median time to last anti-CD20 treatment was 1.07 years.



“The typical interval between rituximab doses [for treatment of rheumatoid arthritis, as well as for remission maintenance in antineutrophil cytoplasmic antibody–associated vasculitis] is typically 6 months, and this has become widely used as the interval from last rituximab to time of COVID vaccination, with a recommendation to wait 4 weeks (if possible) from time of vaccination until the next rituximab administration,” Dr. Spiera explained. However, this window seems to vary depending on the study.

Recent research published in Arthritis & Rheumatology indicates B-cell levels could be a relevant indicator for humoral and cell-mediated response in patients with rheumatic diseases treated with rituximab, with a level of 10 B cells/mcL (0.4% of lymphocytes) identified as one potential marker for likely seroconversion following COVID-19 vaccination.

“In some smaller case series, it has been further recognized that rituximab-treated patients who were beginning to reconstitute peripheral B cells were most likely to respond serologically. Our present study confirmed those findings, demonstrating that the presence of detectable B cells was strongly associated with vaccine responsiveness, and affords complementary information to time from last [rituximab dose] in informing the likelihood of a vaccine response,” Dr. Spiera said.

However, the literature is limited in this area, and an exact cutoff for B-cell counts in these patients isn’t currently known, Dr. Jyssum said. A better metric is time away from anti-CD20 therapies, with CD19 cell count being highly correlated with last infusion.

Dr. Spiera agreed that there is no consistent B-cell percentage that works as a cutoff. “In our study, we looked at it as a binary variable, although we did find that a higher percentage of B cells in the peripheral lymphocyte population was associated with a higher likelihood of seroconversion. We did not, however, identify a ‘threshold’ for vaccine serologic responsiveness.”

 

 

Should clinicians measure antibodies?

The Food and Drug Administration and the Centers for Disease Control and Prevention have recommended that health care providers and the public not use COVID-19 antibody tests as a way to gauge immunity after exposure to SARS-CoV-2 and after receiving a COVID-19 vaccination. The ACR’s guidance on COVID-19 vaccination for patients with rheumatic and musculoskeletal diseases strongly recommends against ordering antibody tests for patients with autoimmune inflammatory rheumatic diseases as a way to measure immunity.

“Generally, such measurements are not recommended as the clinical correlate of various antibody levels are not known,” Dr. Jyssum said. “With regular infusions of rituximab or other anti-CD20 agents, one cannot expect that these patients will develop significant levels of antibodies.”

However, she said there might be situations where it’s useful to know whether a patient has developed antibodies at all. “Assessing the significance of specific antibody levels is difficult, and the subject of scientific studies. Patients lacking a humoral vaccine response are left to rely on their T-cell responses and on infectious control measures to prevent disease.”

Dr. Spiera said he disagreed with guidelines recommending against checking antibody levels after vaccination, “particularly in patients treated with immunosuppressive medications that might be expected to blunt their serologic response to the vaccines.

“Although we cannot be sure what level of measurable antibodies offer what level of protection, most clinicians would agree that patients who demonstrate no detectable antibodies (which is a common finding in rituximab-treated patients) should be considered at higher risk,” he said. “Indeed, recommendations regarding booster vaccine administration in general was initially based on the observation of declining antibody levels with longer time from vaccination.”

Do COVID-19 vaccine boosters help patients on anti-CD20 therapy?

As of January 2022, the FDA and CDC have recommended a third primary series shot of COVID-19 vaccines for some moderately to severely immunocompromised patients as young as 5 years old (for Comirnaty vaccine) or a booster shot of either Comirnaty or Spikevax for everyone aged 12 years and older, including immunocompromised people, while the ACR goes into more detail and recommends clinicians time a patient’s booster shot with temporary treatment interruption.

In The Lancet Rheumatology, Dr. Jyssum and colleagues recently published results from the prospective Nor-vaC study examining the humoral and cell-mediated immune responses of 87 patients with RA being treated with rituximab who received the Comirnaty, Spikevax, or Vaxzevria (AstraZeneca) COVID-19 vaccines; of these, 49 patients received a booster dose at a median of 70 days after completing their primary series. The results showed 19 patients (28.1%) had a serologic response after their primary series, while 8 of 49 patients (16.3%) who received their booster dose had a serologic response.

All patients who received a third dose in the study had a T-cell response, Dr. Jyssum said. “This is reassuring for patients and clinicians. T cells have been found to be important in countering COVID-19 disease, but whether we can rely on the T-cell response alone in the absence of antibodies to protect patients from infection or from serious COVID disease is still not determined,” she said.

When asked if she would recommend COVID-19 vaccine booster doses for patients on rituximab, Dr. Jyssum replied: “Absolutely.”

Another study, recently published in Annals of the Rheumatic Diseases, examined heterologous and homologous booster doses for 60 patients receiving rituximab without seroconversion after their COVID-19 vaccine primary series. The results showed no significant difference in new seroconversion at 4 weeks based on whether the patient received a vector or mRNA vaccine (22% vs. 32%), but all patients who received a booster dose with a vector vaccine had specific T-cell responses, compared with 81% of patients who received an mRNA vaccine booster. There was a new humoral and/or cellular response in 9 of 11 patients (82%), and most patients with peripheral B cells (12 of 18 patients; 67%) achieved seroconversion.

“Our data show that a cellular and/or humoral immune response can be achieved on a third COVID-19 vaccination in most of the patients who initially developed neither a humoral nor a cellular immune response,” the researchers concluded. “The efficacy data together with the safety data seen in our trial provide a favorable risk/benefit ratio and support the implementation of a third vaccination for nonseroconverted high-risk autoimmune disease patients treated with B-cell–depleting agents.”

Dr. Spiera said booster doses are an important part of the equation, and “it is important to consider factors that would be associated with a greater likelihood of achieving a serologic response, particularly in those patients who did not demonstrate a serologic response to the initial vaccines series.

“Preliminary data shows that the beginnings of B-cell reconstitution is also associated with a positive serologic response following a booster of the COVID-19 vaccine,” he said.

The authors of the cited studies reported numerous relevant financial disclosures. Dr. Spiera and Dr. Jyssum reported no relevant financial disclosures.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

‘Highly encouraging’ MRD results for zanubrutinib add-on in CLL

Article Type
Changed
Fri, 12/16/2022 - 11:27

Almost 90% of treatment naive chronic lymphocytic leukemia/small lymphocytic lymphoma patients (33/37) had undetectable minimal residual disease (MRD) in both blood and bone marrow when the second-generation Bruton’s tyrosine kinase (BTK) inhibitor zanubrutinib (Brukinsa) was added on to obinutuzumab and venetoclax for a median of just 10 treatment cycles.

Treatment was stopped in the single-arm phase 2 trial when patients reached undetectable MRD, a novel use of MRD to guide treatment duration. At a median of 16 months after discontinuation, MRD remained undetectable in 31 of 33 patients (94%).

The team also found that a reduction to 1/400 of baseline MRD (delta-MRD400) by day 1 of cycle five predicted undetectable bone marrow MRD within eight treatment cycles.

delta-MRD400 is “a potential biomarker” to identify patients who’ll do well with a shorter treatment and flag others who require longer courses of therapy, said investigators led by Jacob Soumerai, MD, a hematologist/oncologist at Massachusetts General Hospital, Boston.

Overall, the results “are highly encouraging,” they said, with efficacy and safety comparing favorably to trials that added other BTK inhibitors – namely ibrutinib and acalabrutinib – to the standard obinutuzumab/venetoclax backbone, with a shorter treatment duration.

They said the novel triplet warrants further study in the first line and noted that they also “plan to prospectively validate early-MRD-response kinetics as a biomarker to guide treatment duration.” The study was published recently in The Lancet Haematology.

Two editorialistsDavide Rossi, MD, PhD, and Joyce Marques De Almeida, both of the of the Oncology Institute of Southern Switzerland, Bellinzona – were encouraged by the findings and wanted future research to assess how well MRD-guided treatment duration works in patients with tumor protein p53-disrupted disease, who “benefit less from time-limited therapies” then patients with wild-type TP53; the trial was too small to address the issue.

There was a two-cycle lead-in with zanubrutinib and obinutuzumab then venetoclax ramp-up starting at cycle 3, with each cycle running 28 days.

Zanubrutinib is approved in the U.S. for mantle cell lymphoma, Waldenström’s macroglobulinemia, and marginal zone lymphoma.

In a previous phase 2 trial of ibrutinib add-on to venetoclax-obinutuzumab for 14 cycles followed by ibrutinib monotherapy, the rate of undetectable MRD in both peripheral blood and bone marrow was 67%. The rate of bone marrow undetectable MRD was 77% in another phase 2 trial of acalabrutinib, venetoclax, and obinutuzumab for at least 15 cycles.

Dr. Soumerai and his team cautioned, however, that “comparisons across trials are fraught with selection bias resulting in differences in treated patient populations, and randomized data are needed to establish the optimal BTK inhibitor to combine with venetoclax with or without obinutuzumab, and to establish whether” the zanubrutinib triplet “improves progression-free survival and overall survival compared with current standard first-line therapy.”

There was grade 3 or worse neutropenia in 18% of subjects (7/39), one episode of febrile neutropenia (3%), lung infections in three patients (8%) patients, and five cases of hypertension (13%).

The editorialists characterized the numbers as low and the regimen as well tolerated. Past studies of ibrutinib, a first generation BTK, with venetoclax and obinutuzumab have pegged grade 3 or worse neutropenia at 56% and the hypertension incidence at 48%.

Granulocyte colony-stimulating factor administration “could partially account for the low incidence of severe neutropenia” in the trial, the investigators said.

The study was funded by zanubrutinib marketer Beigene as well as Genentech, the National Cancer Institute, and others. Many of the authors had industry ties, including Dr. Soumerai who reported being a consultant and researcher for Beigene and other companies. Dr. Rossi reported honoraria and research grants from AbbVie, AstraZeneca, and Janssen.

Publications
Topics
Sections

Almost 90% of treatment naive chronic lymphocytic leukemia/small lymphocytic lymphoma patients (33/37) had undetectable minimal residual disease (MRD) in both blood and bone marrow when the second-generation Bruton’s tyrosine kinase (BTK) inhibitor zanubrutinib (Brukinsa) was added on to obinutuzumab and venetoclax for a median of just 10 treatment cycles.

Treatment was stopped in the single-arm phase 2 trial when patients reached undetectable MRD, a novel use of MRD to guide treatment duration. At a median of 16 months after discontinuation, MRD remained undetectable in 31 of 33 patients (94%).

The team also found that a reduction to 1/400 of baseline MRD (delta-MRD400) by day 1 of cycle five predicted undetectable bone marrow MRD within eight treatment cycles.

delta-MRD400 is “a potential biomarker” to identify patients who’ll do well with a shorter treatment and flag others who require longer courses of therapy, said investigators led by Jacob Soumerai, MD, a hematologist/oncologist at Massachusetts General Hospital, Boston.

Overall, the results “are highly encouraging,” they said, with efficacy and safety comparing favorably to trials that added other BTK inhibitors – namely ibrutinib and acalabrutinib – to the standard obinutuzumab/venetoclax backbone, with a shorter treatment duration.

They said the novel triplet warrants further study in the first line and noted that they also “plan to prospectively validate early-MRD-response kinetics as a biomarker to guide treatment duration.” The study was published recently in The Lancet Haematology.

Two editorialistsDavide Rossi, MD, PhD, and Joyce Marques De Almeida, both of the of the Oncology Institute of Southern Switzerland, Bellinzona – were encouraged by the findings and wanted future research to assess how well MRD-guided treatment duration works in patients with tumor protein p53-disrupted disease, who “benefit less from time-limited therapies” then patients with wild-type TP53; the trial was too small to address the issue.

There was a two-cycle lead-in with zanubrutinib and obinutuzumab then venetoclax ramp-up starting at cycle 3, with each cycle running 28 days.

Zanubrutinib is approved in the U.S. for mantle cell lymphoma, Waldenström’s macroglobulinemia, and marginal zone lymphoma.

In a previous phase 2 trial of ibrutinib add-on to venetoclax-obinutuzumab for 14 cycles followed by ibrutinib monotherapy, the rate of undetectable MRD in both peripheral blood and bone marrow was 67%. The rate of bone marrow undetectable MRD was 77% in another phase 2 trial of acalabrutinib, venetoclax, and obinutuzumab for at least 15 cycles.

Dr. Soumerai and his team cautioned, however, that “comparisons across trials are fraught with selection bias resulting in differences in treated patient populations, and randomized data are needed to establish the optimal BTK inhibitor to combine with venetoclax with or without obinutuzumab, and to establish whether” the zanubrutinib triplet “improves progression-free survival and overall survival compared with current standard first-line therapy.”

There was grade 3 or worse neutropenia in 18% of subjects (7/39), one episode of febrile neutropenia (3%), lung infections in three patients (8%) patients, and five cases of hypertension (13%).

The editorialists characterized the numbers as low and the regimen as well tolerated. Past studies of ibrutinib, a first generation BTK, with venetoclax and obinutuzumab have pegged grade 3 or worse neutropenia at 56% and the hypertension incidence at 48%.

Granulocyte colony-stimulating factor administration “could partially account for the low incidence of severe neutropenia” in the trial, the investigators said.

The study was funded by zanubrutinib marketer Beigene as well as Genentech, the National Cancer Institute, and others. Many of the authors had industry ties, including Dr. Soumerai who reported being a consultant and researcher for Beigene and other companies. Dr. Rossi reported honoraria and research grants from AbbVie, AstraZeneca, and Janssen.

Almost 90% of treatment naive chronic lymphocytic leukemia/small lymphocytic lymphoma patients (33/37) had undetectable minimal residual disease (MRD) in both blood and bone marrow when the second-generation Bruton’s tyrosine kinase (BTK) inhibitor zanubrutinib (Brukinsa) was added on to obinutuzumab and venetoclax for a median of just 10 treatment cycles.

Treatment was stopped in the single-arm phase 2 trial when patients reached undetectable MRD, a novel use of MRD to guide treatment duration. At a median of 16 months after discontinuation, MRD remained undetectable in 31 of 33 patients (94%).

The team also found that a reduction to 1/400 of baseline MRD (delta-MRD400) by day 1 of cycle five predicted undetectable bone marrow MRD within eight treatment cycles.

delta-MRD400 is “a potential biomarker” to identify patients who’ll do well with a shorter treatment and flag others who require longer courses of therapy, said investigators led by Jacob Soumerai, MD, a hematologist/oncologist at Massachusetts General Hospital, Boston.

Overall, the results “are highly encouraging,” they said, with efficacy and safety comparing favorably to trials that added other BTK inhibitors – namely ibrutinib and acalabrutinib – to the standard obinutuzumab/venetoclax backbone, with a shorter treatment duration.

They said the novel triplet warrants further study in the first line and noted that they also “plan to prospectively validate early-MRD-response kinetics as a biomarker to guide treatment duration.” The study was published recently in The Lancet Haematology.

Two editorialistsDavide Rossi, MD, PhD, and Joyce Marques De Almeida, both of the of the Oncology Institute of Southern Switzerland, Bellinzona – were encouraged by the findings and wanted future research to assess how well MRD-guided treatment duration works in patients with tumor protein p53-disrupted disease, who “benefit less from time-limited therapies” then patients with wild-type TP53; the trial was too small to address the issue.

There was a two-cycle lead-in with zanubrutinib and obinutuzumab then venetoclax ramp-up starting at cycle 3, with each cycle running 28 days.

Zanubrutinib is approved in the U.S. for mantle cell lymphoma, Waldenström’s macroglobulinemia, and marginal zone lymphoma.

In a previous phase 2 trial of ibrutinib add-on to venetoclax-obinutuzumab for 14 cycles followed by ibrutinib monotherapy, the rate of undetectable MRD in both peripheral blood and bone marrow was 67%. The rate of bone marrow undetectable MRD was 77% in another phase 2 trial of acalabrutinib, venetoclax, and obinutuzumab for at least 15 cycles.

Dr. Soumerai and his team cautioned, however, that “comparisons across trials are fraught with selection bias resulting in differences in treated patient populations, and randomized data are needed to establish the optimal BTK inhibitor to combine with venetoclax with or without obinutuzumab, and to establish whether” the zanubrutinib triplet “improves progression-free survival and overall survival compared with current standard first-line therapy.”

There was grade 3 or worse neutropenia in 18% of subjects (7/39), one episode of febrile neutropenia (3%), lung infections in three patients (8%) patients, and five cases of hypertension (13%).

The editorialists characterized the numbers as low and the regimen as well tolerated. Past studies of ibrutinib, a first generation BTK, with venetoclax and obinutuzumab have pegged grade 3 or worse neutropenia at 56% and the hypertension incidence at 48%.

Granulocyte colony-stimulating factor administration “could partially account for the low incidence of severe neutropenia” in the trial, the investigators said.

The study was funded by zanubrutinib marketer Beigene as well as Genentech, the National Cancer Institute, and others. Many of the authors had industry ties, including Dr. Soumerai who reported being a consultant and researcher for Beigene and other companies. Dr. Rossi reported honoraria and research grants from AbbVie, AstraZeneca, and Janssen.

Publications
Publications
Topics
Article Type
Sections
Article Source

FROM THE LANCET HEMATOLOGY

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

CLL and COVID-19: Outcome trends and lessons learned

Article Type
Changed
Fri, 12/16/2022 - 11:27

Retrospective data suggest that improvements over time in overall survival (OS) among COVID-19-infected patients with chronic lymphocytic leukemia (CLL) mirror those observed in COVID-19–infected patients in general, but the data also highlight areas for further investigation, according to the researchers.

MSKCC
Dr. Lindsey Roeker

Specifically, “the data highlight opportunities for further investigation into optimal management of COVID-19, immune response after infection, and effective vaccination strategy for patients with CLL,” Lindsey E. Roeker, MD, a hematologic oncologist at Memorial Sloan Kettering Cancer Center, New York, and colleagues wrote in a Nov. 4, 2021, letter to the editor of Blood.

The researchers noted that recently reported COVID-19 case fatality rates from two large series of patients with CLL ranged from 31% to 33%, but trends over time were unclear.

“To understand change in outcomes over time, we present this follow-up study, which builds upon a previously reported cohort with extended follow up and addition of more recently diagnosed cases,” they wrote, explaining that “early data from a small series suggest that patients with CLL may not consistently generate anti–SARS-CoV-2 antibodies after infection.”

“This finding, along with previous reports of inadequate response to vaccines in patients with CLL, highlight significant questions regarding COVID-19 vaccine efficacy in this population,” they added.
 

Trends in outcomes

The review of outcomes in 374 CLL patients from 45 centers who were diagnosed with COVID-19 between Feb. 17, 2020, and Feb. 1, 2021, showed an overall case fatality rate (CFR) of 28%. Among the 278 patients (75%) admitted to the hospital, the CFR was 36%; among those not admitted, the CFR was 4.3%.

Independent predictors of poor survival were ages over 75 years (adjusted hazard ratio, 1.6) and Cumulative Illness Rating Scale–Geriatric (CIRS) scores greater than 6 (aHR, 1.6).

Updated data for 254 patients diagnosed from Feb. 17 to April 30, 2020, and 120 diagnosed from May 1, 2020, to Feb. 1, 2021, showed that more patients in the early versus later cohort were admitted to the hospital (85% vs. 55%) and more required ICU admission (32% vs. 11%).

The overall case fatality rates in the early and later cohorts were 35% and 11%, respectively (P < .001), and among those requiring hospitalization, the rates were 40% and 20% (P = .003).

“The proportion of hospitalized patients requiring ICU-level care was lower in the later cohort (37% vs. 29%), whereas the CFR remained high for the subset of patients who required ICU-level care (52% vs. 50%; P = .89),” the investigators wrote, noting that “[a] difference in management of BTKi[Bruton’s tyrosine kinase inhibitor]-treated patients was observed in the early versus the later cohort.”

“In the early cohort, 76% of patients receiving BTKi had their drug therapy suspended or discontinued. In the later cohort, only 20% of BTKi-treated patients had their therapy suspended or discontinued,” they added.

Univariate analyses showed significant associations between use of remdesivir and OS (HR, 0.48) and use of convalescent plasma and OS (HR, 0.50) in patients who were admitted, whereas admitted patients who received corticosteroids or hydroxychloroquine had an increased risk of death (HRs, 1.73 and 1.53, respectively).

“Corticosteroids were associated with increased risk of death when the data were adjusted for admission status (HR, 1.8) and the need for mechanical ventilation (HR, 2.0), although they were not significantly associated with survival when the data were adjusted for use of supplemental oxygen (HR, 1.4),” they wrote, also noting that admitted patients treated with corticosteroids in the later cohort did not experience an OS benefit (HR, 2.6).

The findings mirror population-based studies with decreasing CFR (35% in those diagnosed before May 1, 2020, versus 11% in those diagnosed after that date), they said, adding that “these trends suggest that patients in the later cohort experienced a less severe clinical course and that the observed difference in CFR over time may not just be due to more frequent testing and identification of less symptomatic patients.”

Of note, the outcomes observed for steroid-treated patients in the current cohort contrast with those from the RECOVERY trial as published in July 2020, which “may be an artifact of their use in patients with more severe disease,” they suggested.

They added that these data “are hypothesis generating and suggest that COVID-19 directed interventions, particularly immunomodulatory agents, require prospective study, specifically in immunocompromised populations.”

The investigators also noted that, consistent with a prior single-center study, 60% of patients with CLL developed positive anti–SARS-CoV-2 serology results after polymerase chain reaction diagnosis of COVID-19, adding further evidence of nonuniform antibody production after COVID-19 in patients with CLL.

Study is ongoing to gain understanding of the immune response to SARS-CoV-2 vaccination in patients with CLL, they said.
 

Changing the odds

In a related commentary also published in Blood, Yair Herishanu, MD, and Chava Perry, MD, PhD, of Tel Aviv Sourasky Medical Center called the reduction in mortality over time as reported by Dr. Roeker and colleagues “encouraging and intriguing.”

“One explanation is that the later cohort included a larger proportion of patients with mild symptoms who were diagnosed because of increased awareness of COVID-19 and more extensive screening to detect SARS-CoV-2 over time. That is supported by the lower hospitalization rates and lower rates of hospitalized patients requiring ICU care in the later cohort,” they wrote. “Another possibility is better patient management owing to increasing experience, expanding therapeutic options, and improved capacity of health systems to manage an influx of patients.”

The lower mortality in hospitalized patients over time may reflect better management of patients over time, but it also highlights the significance of “early introduction of various anti–COVID-19 therapies to prevent clinical deterioration to ICU-level care,” they added.

Also intriguing, according to Dr. Herishanu and Dr. Perry, was the finding of increased secondary infections and death rates among corticosteroid-treatment patients.

In the RECOVERY trial, the use of dexamethasone improved survival in patients hospitalized with COVID-19 who received respiratory support. Perhaps the impaired immune reactions in patients with CLL moderate the hyperinflammatory reactions to COVID-19, thus turning corticosteroids beneficial effects to somewhat redundant in this frail population,” they wrote.

Further, the finding that only 60% of patients with CLL seroconvert after the acute phase of SARS-CoV-2 infection suggests CLL patients may be at risk for reinfection, which “justifies vaccinating all patients with CLL who have recovered from COVID-19.”

“Likewise, patients with CLL may develop persistent COVID-19 infection,” they added, explaining that “prolonged shedding of infectious SARS-CoV-2 virus and within-host genomic evolution may eventually lead to emergence of new virus variants.”

Given the high risk of severe COVID-19 disease and impaired antibody-mediated immune response to the virus and its vaccine, a booster dose may be warranted in patients with CLL who fail to achieve seropositivity after 2 vaccine doses, they said.

The available data to date “call for early application of antiviral drugs, [monoclonal antibodies], and convalescent plasma as well as improved vaccination strategy, to improve the odds for patients with CLL confronting COVID-19,” they concluded, adding that large-scale prospective studies on the clinical disease course, outcomes, efficacy of treatments, and vaccination timing and schedule in patients with CLL and COVID-19 are still warranted.

The research was supported by a National Cancer Institute Cancer Center support grant. Dr. Roeker, Dr. Herishanu, and Dr. Perry reported having no financial disclosures.

Publications
Topics
Sections

Retrospective data suggest that improvements over time in overall survival (OS) among COVID-19-infected patients with chronic lymphocytic leukemia (CLL) mirror those observed in COVID-19–infected patients in general, but the data also highlight areas for further investigation, according to the researchers.

MSKCC
Dr. Lindsey Roeker

Specifically, “the data highlight opportunities for further investigation into optimal management of COVID-19, immune response after infection, and effective vaccination strategy for patients with CLL,” Lindsey E. Roeker, MD, a hematologic oncologist at Memorial Sloan Kettering Cancer Center, New York, and colleagues wrote in a Nov. 4, 2021, letter to the editor of Blood.

The researchers noted that recently reported COVID-19 case fatality rates from two large series of patients with CLL ranged from 31% to 33%, but trends over time were unclear.

“To understand change in outcomes over time, we present this follow-up study, which builds upon a previously reported cohort with extended follow up and addition of more recently diagnosed cases,” they wrote, explaining that “early data from a small series suggest that patients with CLL may not consistently generate anti–SARS-CoV-2 antibodies after infection.”

“This finding, along with previous reports of inadequate response to vaccines in patients with CLL, highlight significant questions regarding COVID-19 vaccine efficacy in this population,” they added.
 

Trends in outcomes

The review of outcomes in 374 CLL patients from 45 centers who were diagnosed with COVID-19 between Feb. 17, 2020, and Feb. 1, 2021, showed an overall case fatality rate (CFR) of 28%. Among the 278 patients (75%) admitted to the hospital, the CFR was 36%; among those not admitted, the CFR was 4.3%.

Independent predictors of poor survival were ages over 75 years (adjusted hazard ratio, 1.6) and Cumulative Illness Rating Scale–Geriatric (CIRS) scores greater than 6 (aHR, 1.6).

Updated data for 254 patients diagnosed from Feb. 17 to April 30, 2020, and 120 diagnosed from May 1, 2020, to Feb. 1, 2021, showed that more patients in the early versus later cohort were admitted to the hospital (85% vs. 55%) and more required ICU admission (32% vs. 11%).

The overall case fatality rates in the early and later cohorts were 35% and 11%, respectively (P < .001), and among those requiring hospitalization, the rates were 40% and 20% (P = .003).

“The proportion of hospitalized patients requiring ICU-level care was lower in the later cohort (37% vs. 29%), whereas the CFR remained high for the subset of patients who required ICU-level care (52% vs. 50%; P = .89),” the investigators wrote, noting that “[a] difference in management of BTKi[Bruton’s tyrosine kinase inhibitor]-treated patients was observed in the early versus the later cohort.”

“In the early cohort, 76% of patients receiving BTKi had their drug therapy suspended or discontinued. In the later cohort, only 20% of BTKi-treated patients had their therapy suspended or discontinued,” they added.

Univariate analyses showed significant associations between use of remdesivir and OS (HR, 0.48) and use of convalescent plasma and OS (HR, 0.50) in patients who were admitted, whereas admitted patients who received corticosteroids or hydroxychloroquine had an increased risk of death (HRs, 1.73 and 1.53, respectively).

“Corticosteroids were associated with increased risk of death when the data were adjusted for admission status (HR, 1.8) and the need for mechanical ventilation (HR, 2.0), although they were not significantly associated with survival when the data were adjusted for use of supplemental oxygen (HR, 1.4),” they wrote, also noting that admitted patients treated with corticosteroids in the later cohort did not experience an OS benefit (HR, 2.6).

The findings mirror population-based studies with decreasing CFR (35% in those diagnosed before May 1, 2020, versus 11% in those diagnosed after that date), they said, adding that “these trends suggest that patients in the later cohort experienced a less severe clinical course and that the observed difference in CFR over time may not just be due to more frequent testing and identification of less symptomatic patients.”

Of note, the outcomes observed for steroid-treated patients in the current cohort contrast with those from the RECOVERY trial as published in July 2020, which “may be an artifact of their use in patients with more severe disease,” they suggested.

They added that these data “are hypothesis generating and suggest that COVID-19 directed interventions, particularly immunomodulatory agents, require prospective study, specifically in immunocompromised populations.”

The investigators also noted that, consistent with a prior single-center study, 60% of patients with CLL developed positive anti–SARS-CoV-2 serology results after polymerase chain reaction diagnosis of COVID-19, adding further evidence of nonuniform antibody production after COVID-19 in patients with CLL.

Study is ongoing to gain understanding of the immune response to SARS-CoV-2 vaccination in patients with CLL, they said.
 

Changing the odds

In a related commentary also published in Blood, Yair Herishanu, MD, and Chava Perry, MD, PhD, of Tel Aviv Sourasky Medical Center called the reduction in mortality over time as reported by Dr. Roeker and colleagues “encouraging and intriguing.”

“One explanation is that the later cohort included a larger proportion of patients with mild symptoms who were diagnosed because of increased awareness of COVID-19 and more extensive screening to detect SARS-CoV-2 over time. That is supported by the lower hospitalization rates and lower rates of hospitalized patients requiring ICU care in the later cohort,” they wrote. “Another possibility is better patient management owing to increasing experience, expanding therapeutic options, and improved capacity of health systems to manage an influx of patients.”

The lower mortality in hospitalized patients over time may reflect better management of patients over time, but it also highlights the significance of “early introduction of various anti–COVID-19 therapies to prevent clinical deterioration to ICU-level care,” they added.

Also intriguing, according to Dr. Herishanu and Dr. Perry, was the finding of increased secondary infections and death rates among corticosteroid-treatment patients.

In the RECOVERY trial, the use of dexamethasone improved survival in patients hospitalized with COVID-19 who received respiratory support. Perhaps the impaired immune reactions in patients with CLL moderate the hyperinflammatory reactions to COVID-19, thus turning corticosteroids beneficial effects to somewhat redundant in this frail population,” they wrote.

Further, the finding that only 60% of patients with CLL seroconvert after the acute phase of SARS-CoV-2 infection suggests CLL patients may be at risk for reinfection, which “justifies vaccinating all patients with CLL who have recovered from COVID-19.”

“Likewise, patients with CLL may develop persistent COVID-19 infection,” they added, explaining that “prolonged shedding of infectious SARS-CoV-2 virus and within-host genomic evolution may eventually lead to emergence of new virus variants.”

Given the high risk of severe COVID-19 disease and impaired antibody-mediated immune response to the virus and its vaccine, a booster dose may be warranted in patients with CLL who fail to achieve seropositivity after 2 vaccine doses, they said.

The available data to date “call for early application of antiviral drugs, [monoclonal antibodies], and convalescent plasma as well as improved vaccination strategy, to improve the odds for patients with CLL confronting COVID-19,” they concluded, adding that large-scale prospective studies on the clinical disease course, outcomes, efficacy of treatments, and vaccination timing and schedule in patients with CLL and COVID-19 are still warranted.

The research was supported by a National Cancer Institute Cancer Center support grant. Dr. Roeker, Dr. Herishanu, and Dr. Perry reported having no financial disclosures.

Retrospective data suggest that improvements over time in overall survival (OS) among COVID-19-infected patients with chronic lymphocytic leukemia (CLL) mirror those observed in COVID-19–infected patients in general, but the data also highlight areas for further investigation, according to the researchers.

MSKCC
Dr. Lindsey Roeker

Specifically, “the data highlight opportunities for further investigation into optimal management of COVID-19, immune response after infection, and effective vaccination strategy for patients with CLL,” Lindsey E. Roeker, MD, a hematologic oncologist at Memorial Sloan Kettering Cancer Center, New York, and colleagues wrote in a Nov. 4, 2021, letter to the editor of Blood.

The researchers noted that recently reported COVID-19 case fatality rates from two large series of patients with CLL ranged from 31% to 33%, but trends over time were unclear.

“To understand change in outcomes over time, we present this follow-up study, which builds upon a previously reported cohort with extended follow up and addition of more recently diagnosed cases,” they wrote, explaining that “early data from a small series suggest that patients with CLL may not consistently generate anti–SARS-CoV-2 antibodies after infection.”

“This finding, along with previous reports of inadequate response to vaccines in patients with CLL, highlight significant questions regarding COVID-19 vaccine efficacy in this population,” they added.
 

Trends in outcomes

The review of outcomes in 374 CLL patients from 45 centers who were diagnosed with COVID-19 between Feb. 17, 2020, and Feb. 1, 2021, showed an overall case fatality rate (CFR) of 28%. Among the 278 patients (75%) admitted to the hospital, the CFR was 36%; among those not admitted, the CFR was 4.3%.

Independent predictors of poor survival were ages over 75 years (adjusted hazard ratio, 1.6) and Cumulative Illness Rating Scale–Geriatric (CIRS) scores greater than 6 (aHR, 1.6).

Updated data for 254 patients diagnosed from Feb. 17 to April 30, 2020, and 120 diagnosed from May 1, 2020, to Feb. 1, 2021, showed that more patients in the early versus later cohort were admitted to the hospital (85% vs. 55%) and more required ICU admission (32% vs. 11%).

The overall case fatality rates in the early and later cohorts were 35% and 11%, respectively (P < .001), and among those requiring hospitalization, the rates were 40% and 20% (P = .003).

“The proportion of hospitalized patients requiring ICU-level care was lower in the later cohort (37% vs. 29%), whereas the CFR remained high for the subset of patients who required ICU-level care (52% vs. 50%; P = .89),” the investigators wrote, noting that “[a] difference in management of BTKi[Bruton’s tyrosine kinase inhibitor]-treated patients was observed in the early versus the later cohort.”

“In the early cohort, 76% of patients receiving BTKi had their drug therapy suspended or discontinued. In the later cohort, only 20% of BTKi-treated patients had their therapy suspended or discontinued,” they added.

Univariate analyses showed significant associations between use of remdesivir and OS (HR, 0.48) and use of convalescent plasma and OS (HR, 0.50) in patients who were admitted, whereas admitted patients who received corticosteroids or hydroxychloroquine had an increased risk of death (HRs, 1.73 and 1.53, respectively).

“Corticosteroids were associated with increased risk of death when the data were adjusted for admission status (HR, 1.8) and the need for mechanical ventilation (HR, 2.0), although they were not significantly associated with survival when the data were adjusted for use of supplemental oxygen (HR, 1.4),” they wrote, also noting that admitted patients treated with corticosteroids in the later cohort did not experience an OS benefit (HR, 2.6).

The findings mirror population-based studies with decreasing CFR (35% in those diagnosed before May 1, 2020, versus 11% in those diagnosed after that date), they said, adding that “these trends suggest that patients in the later cohort experienced a less severe clinical course and that the observed difference in CFR over time may not just be due to more frequent testing and identification of less symptomatic patients.”

Of note, the outcomes observed for steroid-treated patients in the current cohort contrast with those from the RECOVERY trial as published in July 2020, which “may be an artifact of their use in patients with more severe disease,” they suggested.

They added that these data “are hypothesis generating and suggest that COVID-19 directed interventions, particularly immunomodulatory agents, require prospective study, specifically in immunocompromised populations.”

The investigators also noted that, consistent with a prior single-center study, 60% of patients with CLL developed positive anti–SARS-CoV-2 serology results after polymerase chain reaction diagnosis of COVID-19, adding further evidence of nonuniform antibody production after COVID-19 in patients with CLL.

Study is ongoing to gain understanding of the immune response to SARS-CoV-2 vaccination in patients with CLL, they said.
 

Changing the odds

In a related commentary also published in Blood, Yair Herishanu, MD, and Chava Perry, MD, PhD, of Tel Aviv Sourasky Medical Center called the reduction in mortality over time as reported by Dr. Roeker and colleagues “encouraging and intriguing.”

“One explanation is that the later cohort included a larger proportion of patients with mild symptoms who were diagnosed because of increased awareness of COVID-19 and more extensive screening to detect SARS-CoV-2 over time. That is supported by the lower hospitalization rates and lower rates of hospitalized patients requiring ICU care in the later cohort,” they wrote. “Another possibility is better patient management owing to increasing experience, expanding therapeutic options, and improved capacity of health systems to manage an influx of patients.”

The lower mortality in hospitalized patients over time may reflect better management of patients over time, but it also highlights the significance of “early introduction of various anti–COVID-19 therapies to prevent clinical deterioration to ICU-level care,” they added.

Also intriguing, according to Dr. Herishanu and Dr. Perry, was the finding of increased secondary infections and death rates among corticosteroid-treatment patients.

In the RECOVERY trial, the use of dexamethasone improved survival in patients hospitalized with COVID-19 who received respiratory support. Perhaps the impaired immune reactions in patients with CLL moderate the hyperinflammatory reactions to COVID-19, thus turning corticosteroids beneficial effects to somewhat redundant in this frail population,” they wrote.

Further, the finding that only 60% of patients with CLL seroconvert after the acute phase of SARS-CoV-2 infection suggests CLL patients may be at risk for reinfection, which “justifies vaccinating all patients with CLL who have recovered from COVID-19.”

“Likewise, patients with CLL may develop persistent COVID-19 infection,” they added, explaining that “prolonged shedding of infectious SARS-CoV-2 virus and within-host genomic evolution may eventually lead to emergence of new virus variants.”

Given the high risk of severe COVID-19 disease and impaired antibody-mediated immune response to the virus and its vaccine, a booster dose may be warranted in patients with CLL who fail to achieve seropositivity after 2 vaccine doses, they said.

The available data to date “call for early application of antiviral drugs, [monoclonal antibodies], and convalescent plasma as well as improved vaccination strategy, to improve the odds for patients with CLL confronting COVID-19,” they concluded, adding that large-scale prospective studies on the clinical disease course, outcomes, efficacy of treatments, and vaccination timing and schedule in patients with CLL and COVID-19 are still warranted.

The research was supported by a National Cancer Institute Cancer Center support grant. Dr. Roeker, Dr. Herishanu, and Dr. Perry reported having no financial disclosures.

Publications
Publications
Topics
Article Type
Sections
Article Source

FROM BLOOD

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Venetoclax heralded a new class of small-molecule blood cancer drugs

Article Type
Changed
Fri, 12/16/2022 - 11:27

Venetoclax’s regulatory approvals, its success as monotherapy for chronic lymphocytic leukemia (CLL) and other lymphoid neoplasms, and its activity in combination against acute myeloid leukemia (AML) have helped pave the way for BCL2 and MCL1 inhibitors that target prosurvival, antiapoptosis proteins.

A first-in-class specific inhibitor of BCL2, venetoclax has been quickly followed by drugs that target either BCL2 or proteins with similar prosurvival function, especially MCL1. A review by Andrew W. Roberts, MD, of the Walter and Eliza Hall Institute of Medical Research, Melbourne, and associates details their key features, including their activity and tolerability and resistance issues. The review was published in Blood .
 

BH3 mimetics

BH3 mimetics, a new class of small-molecule anticancer drugs, enable specific targeting of BCL2 and MCL1, commonly expressed antiapoptotic proteins in hematologic cancers. The BH3 mimetics inhibit prosurvival BCL2 proteins, enabling activation of the apoptosis effectors BAX and BK that make the outer mitochondrial membranes permeable. This result triggers apoptosis in many cells, while sensitizing others to cell death when the BH3 mimetics are combined with other antineoplastic drugs. The BAX/BAK–driven effect on mitochondrial membranes is to undermine normal energy production, allowing leakage of cell contents, including cytochrome c, a trigger of proteolytic enzymes and cellular demolition.

Navitoclax was the first potent BCL2 inhibitor to enter clinical trials. While it demonstrated moderate single-agent activity in relapsed CLL and indolent B-cell lymphomas, its dose-limiting toxicity of thrombocytopenia precluded further exploration of BCL2 inhibition. Navitoclax is being developed for hematologic disease (for example, myelofibrosis and acute lymphoblastic leukemia). Clinical development of other BH3 mimetics is only in the earliest stages, the authors wrote.

Venetoclax, to avoid this on-target thrombocytopenia, was designed to specifically inhibit BCL2 with great selectivity, a feature not found in naturally occurring BH3-only proteins. The fact that it could inhibit a single prosurvival protein and have important clinical activity proved enormously stimulating to development of this drug class. Potent BH3 mimetics now can also selectively target MCL1, which plays a central role in plasma cells (mature B lymphocytes are highly reliant on BCL2).

In CLL, dependence on BCL2 is high. Venetoclax, since it was first approved by the Food and Drug Administration in April 2016 as monotherapy for relapsed/refractory del(17p) CLL, has been approved widely in combination with rituximab in relapsed/refractory CLL and for unfit patients with newly diagnosed CLL in combination with obinutuzumab. With venetoclax monotherapy, quickly achieved high objective response rates (79%) and complete remissions (20%) revealed the drug’s dose-limiting toxicity of tumor lysis syndrome (TLS). This necessitated gradual ramp-up dosing in those with high disease burden or reduced renal function. Also, despite the adoption of a venetoclax/rituximab combination as standard for relapsed/refractory CLL, the authors underscored that evidence for an additive rituximab benefit is modest and limited.
 

Resistance

While resistance to venetoclax leading to treatment failure is uncommon in the first year, secondary resistance occurs through several independently occurring mechanisms, including mutations in BCL2 (for example, Gly101Val), overexpression of MCL1, and overexpression of BCLxL. Usual venetoclax therapy is now time limited. Early data on re-exposure shows high rates (about 70%) of secondary responses.

AML

In AML, a more heterogeneous disease than CLL, BCL2 expression varies widely and can be heterogeneous even within a single patient’s leukemic cell population. While responses to venetoclax monotherapy were not durable, combination therapy with azacitidine has revealed enhanced activity. The venetoclax/azacitidine combination has been widely adopted as first-line therapy for older and unfit AML patients. Myelosuppression is the major toxicity.

“As venetoclax is the first in a new class of anticancer drug,” Andrew W. Roberts, MD, said in an interview, “we are still in the process of working out how it can be best utilized. Regimens free of DNA-damaging chemotherapy using this BCL2 inhibitor in combination with obinutuzumab or rituximab in CLL are established. Across B-cell neoplasia (e.g. CLL, mantle cell lymphoma, follicular lymphoma), the challenge is to work out whether venetoclax can enhance other ‘chemotherapy-free’ regimens.” He continued: “In contrast, for AML, learning how venetoclax can be safely combined with intensive chemotherapy is a priority, as we seek to improve outcomes for patients with poor prognosis disease. For MCL1 inhibitors, there is excitement about their potential, but their clinical development remains in its infancy.”

The authors reported multiple financial disclosures.

Publications
Topics
Sections

Venetoclax’s regulatory approvals, its success as monotherapy for chronic lymphocytic leukemia (CLL) and other lymphoid neoplasms, and its activity in combination against acute myeloid leukemia (AML) have helped pave the way for BCL2 and MCL1 inhibitors that target prosurvival, antiapoptosis proteins.

A first-in-class specific inhibitor of BCL2, venetoclax has been quickly followed by drugs that target either BCL2 or proteins with similar prosurvival function, especially MCL1. A review by Andrew W. Roberts, MD, of the Walter and Eliza Hall Institute of Medical Research, Melbourne, and associates details their key features, including their activity and tolerability and resistance issues. The review was published in Blood .
 

BH3 mimetics

BH3 mimetics, a new class of small-molecule anticancer drugs, enable specific targeting of BCL2 and MCL1, commonly expressed antiapoptotic proteins in hematologic cancers. The BH3 mimetics inhibit prosurvival BCL2 proteins, enabling activation of the apoptosis effectors BAX and BK that make the outer mitochondrial membranes permeable. This result triggers apoptosis in many cells, while sensitizing others to cell death when the BH3 mimetics are combined with other antineoplastic drugs. The BAX/BAK–driven effect on mitochondrial membranes is to undermine normal energy production, allowing leakage of cell contents, including cytochrome c, a trigger of proteolytic enzymes and cellular demolition.

Navitoclax was the first potent BCL2 inhibitor to enter clinical trials. While it demonstrated moderate single-agent activity in relapsed CLL and indolent B-cell lymphomas, its dose-limiting toxicity of thrombocytopenia precluded further exploration of BCL2 inhibition. Navitoclax is being developed for hematologic disease (for example, myelofibrosis and acute lymphoblastic leukemia). Clinical development of other BH3 mimetics is only in the earliest stages, the authors wrote.

Venetoclax, to avoid this on-target thrombocytopenia, was designed to specifically inhibit BCL2 with great selectivity, a feature not found in naturally occurring BH3-only proteins. The fact that it could inhibit a single prosurvival protein and have important clinical activity proved enormously stimulating to development of this drug class. Potent BH3 mimetics now can also selectively target MCL1, which plays a central role in plasma cells (mature B lymphocytes are highly reliant on BCL2).

In CLL, dependence on BCL2 is high. Venetoclax, since it was first approved by the Food and Drug Administration in April 2016 as monotherapy for relapsed/refractory del(17p) CLL, has been approved widely in combination with rituximab in relapsed/refractory CLL and for unfit patients with newly diagnosed CLL in combination with obinutuzumab. With venetoclax monotherapy, quickly achieved high objective response rates (79%) and complete remissions (20%) revealed the drug’s dose-limiting toxicity of tumor lysis syndrome (TLS). This necessitated gradual ramp-up dosing in those with high disease burden or reduced renal function. Also, despite the adoption of a venetoclax/rituximab combination as standard for relapsed/refractory CLL, the authors underscored that evidence for an additive rituximab benefit is modest and limited.
 

Resistance

While resistance to venetoclax leading to treatment failure is uncommon in the first year, secondary resistance occurs through several independently occurring mechanisms, including mutations in BCL2 (for example, Gly101Val), overexpression of MCL1, and overexpression of BCLxL. Usual venetoclax therapy is now time limited. Early data on re-exposure shows high rates (about 70%) of secondary responses.

AML

In AML, a more heterogeneous disease than CLL, BCL2 expression varies widely and can be heterogeneous even within a single patient’s leukemic cell population. While responses to venetoclax monotherapy were not durable, combination therapy with azacitidine has revealed enhanced activity. The venetoclax/azacitidine combination has been widely adopted as first-line therapy for older and unfit AML patients. Myelosuppression is the major toxicity.

“As venetoclax is the first in a new class of anticancer drug,” Andrew W. Roberts, MD, said in an interview, “we are still in the process of working out how it can be best utilized. Regimens free of DNA-damaging chemotherapy using this BCL2 inhibitor in combination with obinutuzumab or rituximab in CLL are established. Across B-cell neoplasia (e.g. CLL, mantle cell lymphoma, follicular lymphoma), the challenge is to work out whether venetoclax can enhance other ‘chemotherapy-free’ regimens.” He continued: “In contrast, for AML, learning how venetoclax can be safely combined with intensive chemotherapy is a priority, as we seek to improve outcomes for patients with poor prognosis disease. For MCL1 inhibitors, there is excitement about their potential, but their clinical development remains in its infancy.”

The authors reported multiple financial disclosures.

Venetoclax’s regulatory approvals, its success as monotherapy for chronic lymphocytic leukemia (CLL) and other lymphoid neoplasms, and its activity in combination against acute myeloid leukemia (AML) have helped pave the way for BCL2 and MCL1 inhibitors that target prosurvival, antiapoptosis proteins.

A first-in-class specific inhibitor of BCL2, venetoclax has been quickly followed by drugs that target either BCL2 or proteins with similar prosurvival function, especially MCL1. A review by Andrew W. Roberts, MD, of the Walter and Eliza Hall Institute of Medical Research, Melbourne, and associates details their key features, including their activity and tolerability and resistance issues. The review was published in Blood .
 

BH3 mimetics

BH3 mimetics, a new class of small-molecule anticancer drugs, enable specific targeting of BCL2 and MCL1, commonly expressed antiapoptotic proteins in hematologic cancers. The BH3 mimetics inhibit prosurvival BCL2 proteins, enabling activation of the apoptosis effectors BAX and BK that make the outer mitochondrial membranes permeable. This result triggers apoptosis in many cells, while sensitizing others to cell death when the BH3 mimetics are combined with other antineoplastic drugs. The BAX/BAK–driven effect on mitochondrial membranes is to undermine normal energy production, allowing leakage of cell contents, including cytochrome c, a trigger of proteolytic enzymes and cellular demolition.

Navitoclax was the first potent BCL2 inhibitor to enter clinical trials. While it demonstrated moderate single-agent activity in relapsed CLL and indolent B-cell lymphomas, its dose-limiting toxicity of thrombocytopenia precluded further exploration of BCL2 inhibition. Navitoclax is being developed for hematologic disease (for example, myelofibrosis and acute lymphoblastic leukemia). Clinical development of other BH3 mimetics is only in the earliest stages, the authors wrote.

Venetoclax, to avoid this on-target thrombocytopenia, was designed to specifically inhibit BCL2 with great selectivity, a feature not found in naturally occurring BH3-only proteins. The fact that it could inhibit a single prosurvival protein and have important clinical activity proved enormously stimulating to development of this drug class. Potent BH3 mimetics now can also selectively target MCL1, which plays a central role in plasma cells (mature B lymphocytes are highly reliant on BCL2).

In CLL, dependence on BCL2 is high. Venetoclax, since it was first approved by the Food and Drug Administration in April 2016 as monotherapy for relapsed/refractory del(17p) CLL, has been approved widely in combination with rituximab in relapsed/refractory CLL and for unfit patients with newly diagnosed CLL in combination with obinutuzumab. With venetoclax monotherapy, quickly achieved high objective response rates (79%) and complete remissions (20%) revealed the drug’s dose-limiting toxicity of tumor lysis syndrome (TLS). This necessitated gradual ramp-up dosing in those with high disease burden or reduced renal function. Also, despite the adoption of a venetoclax/rituximab combination as standard for relapsed/refractory CLL, the authors underscored that evidence for an additive rituximab benefit is modest and limited.
 

Resistance

While resistance to venetoclax leading to treatment failure is uncommon in the first year, secondary resistance occurs through several independently occurring mechanisms, including mutations in BCL2 (for example, Gly101Val), overexpression of MCL1, and overexpression of BCLxL. Usual venetoclax therapy is now time limited. Early data on re-exposure shows high rates (about 70%) of secondary responses.

AML

In AML, a more heterogeneous disease than CLL, BCL2 expression varies widely and can be heterogeneous even within a single patient’s leukemic cell population. While responses to venetoclax monotherapy were not durable, combination therapy with azacitidine has revealed enhanced activity. The venetoclax/azacitidine combination has been widely adopted as first-line therapy for older and unfit AML patients. Myelosuppression is the major toxicity.

“As venetoclax is the first in a new class of anticancer drug,” Andrew W. Roberts, MD, said in an interview, “we are still in the process of working out how it can be best utilized. Regimens free of DNA-damaging chemotherapy using this BCL2 inhibitor in combination with obinutuzumab or rituximab in CLL are established. Across B-cell neoplasia (e.g. CLL, mantle cell lymphoma, follicular lymphoma), the challenge is to work out whether venetoclax can enhance other ‘chemotherapy-free’ regimens.” He continued: “In contrast, for AML, learning how venetoclax can be safely combined with intensive chemotherapy is a priority, as we seek to improve outcomes for patients with poor prognosis disease. For MCL1 inhibitors, there is excitement about their potential, but their clinical development remains in its infancy.”

The authors reported multiple financial disclosures.

Publications
Publications
Topics
Article Type
Sections
Article Source

FROM BLOOD

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

New trials in leukemia: Could your patient benefit?

Article Type
Changed
Fri, 12/16/2022 - 11:27

A number of late-phase clinical trials in leukemia have opened in recent months. Maybe one of your patients could benefit from being enrolled.

Adults and children with acute or chronic leukemias

A phase 2 study partnering with the National Marrow Donor Program is seeking individuals aged 1-65 years with lymphoma or one of the following leukemias: “acute leukemia”, acute lymphoblastic (ALL), acute myelogenous (AML), mixed-phenotype acute, chronic myelogenous (CML), and chronic lymphocytic (CLL). Researchers hope to find a way to improve outcomes of hematopoietic-cell transplantation from mismatched, unrelated donors. Participants will receive the transplant and one of seven drug regimens and will be followed for a year. The trial plans to enroll 180 people and began recruiting on Sept. 30 in California, New York, and Virginia. The primary outcome is overall survival (OS). Quality of life (QoL) will not be measured.

Mast-cell leukemia (MCL)

Adults with MCL are sought for a phase 2 study of bezuclastinib, an experimental tyrosine-kinase inhibitor (TKI) called CGT9486. CGT9486 blocks the activity of a mutated version of tyrosine-kinase receptor KIT, called KIT D816V, which is known to cause systemic mastocytosis. Participants will receive oral CGT9486 daily for up to 18 months. The study opened in October, aiming for 140 participants with any advanced systemic mastocytoses (including MCL) at sites in California, Florida, Massachusetts, New York, Ohio, Texas, and Utah. OS and QoL will be tracked.

Previously Treated CLL/Small Lymphocytic Lymphoma (SLL)

Patients with CLL/SLL who have progressed on previous therapy can join a phase 3 study of another experimental oral TIK, pirtobrutinib, this time targeting Bruton’s tyrosine kinase (BTK). BTK plays a key role in the lifecycle of white blood cells. Participants will receive either “fixed-duration” pirtobrutinib plus venetoclax (Venclexta) and rituximab (Ruxience, Riabni, Truxima, Rituxan, MabThera) or the venetoclax-rituximab combo only, for up to 5 years. Investigators started recruiting in September, aiming for 600 participants across Florida, Louisiana, Missouri, New York, and Tennessee. Progression-free survival is the primary outcome; OS is a secondary outcome and QoL will not be tracked.

High-grade myeloid cancers with measurable residual disease

Patients with AML, myelodysplastic syndrome with excess blasts-2 or myeloid neoplasm, and whose original disease is still present, are eligible for a phase 2 study of CPX-351 (daunorubicin-cytarabine, Vyxeos). The intravenous chemotherapy was approved in 2017 for certain types of AML. The goal of this study is to determine if pretreatment with CPX-351 improves the outcome of donor stem-cell transplantation. Patients will either undergo immediate transplantation or receive CPX-351 for up to 10 days followed 60 days later by the transplant. The study, being conducted at the Fred Hutchinson Cancer Research Center in Seattle, started recruiting 130 patients in August. The primary outcome is OS; QoL will not be tracked.

Newly diagnosed Philadelphia-negative ALL

Patients aged 22 or older with Philadelphia-negative ALL who have not received chemotherapy or radiation therapy are invited to join a trial of calaspargase pegol (Asparlas). The therapy was approved in 2018 for ALL in children and young adults (1 month to 21 years). The aim of this study is to confirm the recommended doses and evaluate the drug’s safety and pharmacodynamics in adults over aged 21. Each participant will receive six 2-hour infusions of calaspargase pegol over several months. The primary outcomes are safety and drug activity; OS is a secondary outcome and QoL will not be measured. The study opened on July 7 and aims to recruit 122 participants in 11 states.

Untreated adults with TP53-mutant AML

Adult patients with previously untreated AML who have at least one TP53 gene mutation are sought for a phase 3 study of magrolimab, an investigational anti-CD47 monoclonal antibody. Participants will be treated for up to 27 months with either magrolimab plus azacytidine (Vidaza), venetoclax plus azacytidine (patients deemed “appropriate for nonintensive therapy”), or standard chemotherapy (those “appropriate for intensive therapy”). In patients who received nonintensive therapy, OS is the primary outcome; OS in all participants is a secondary outcome, and QoL won’t be assessed. The trial opened in July and aims to recruit 346 individuals in Hong Kong, Australia, and the United States (California, Missouri, Oklahoma, Pennsylvania, South Carolina, and Texas).

All trial information is from the U.S. National Library of Medicine, National Institutes of Health.

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

A number of late-phase clinical trials in leukemia have opened in recent months. Maybe one of your patients could benefit from being enrolled.

Adults and children with acute or chronic leukemias

A phase 2 study partnering with the National Marrow Donor Program is seeking individuals aged 1-65 years with lymphoma or one of the following leukemias: “acute leukemia”, acute lymphoblastic (ALL), acute myelogenous (AML), mixed-phenotype acute, chronic myelogenous (CML), and chronic lymphocytic (CLL). Researchers hope to find a way to improve outcomes of hematopoietic-cell transplantation from mismatched, unrelated donors. Participants will receive the transplant and one of seven drug regimens and will be followed for a year. The trial plans to enroll 180 people and began recruiting on Sept. 30 in California, New York, and Virginia. The primary outcome is overall survival (OS). Quality of life (QoL) will not be measured.

Mast-cell leukemia (MCL)

Adults with MCL are sought for a phase 2 study of bezuclastinib, an experimental tyrosine-kinase inhibitor (TKI) called CGT9486. CGT9486 blocks the activity of a mutated version of tyrosine-kinase receptor KIT, called KIT D816V, which is known to cause systemic mastocytosis. Participants will receive oral CGT9486 daily for up to 18 months. The study opened in October, aiming for 140 participants with any advanced systemic mastocytoses (including MCL) at sites in California, Florida, Massachusetts, New York, Ohio, Texas, and Utah. OS and QoL will be tracked.

Previously Treated CLL/Small Lymphocytic Lymphoma (SLL)

Patients with CLL/SLL who have progressed on previous therapy can join a phase 3 study of another experimental oral TIK, pirtobrutinib, this time targeting Bruton’s tyrosine kinase (BTK). BTK plays a key role in the lifecycle of white blood cells. Participants will receive either “fixed-duration” pirtobrutinib plus venetoclax (Venclexta) and rituximab (Ruxience, Riabni, Truxima, Rituxan, MabThera) or the venetoclax-rituximab combo only, for up to 5 years. Investigators started recruiting in September, aiming for 600 participants across Florida, Louisiana, Missouri, New York, and Tennessee. Progression-free survival is the primary outcome; OS is a secondary outcome and QoL will not be tracked.

High-grade myeloid cancers with measurable residual disease

Patients with AML, myelodysplastic syndrome with excess blasts-2 or myeloid neoplasm, and whose original disease is still present, are eligible for a phase 2 study of CPX-351 (daunorubicin-cytarabine, Vyxeos). The intravenous chemotherapy was approved in 2017 for certain types of AML. The goal of this study is to determine if pretreatment with CPX-351 improves the outcome of donor stem-cell transplantation. Patients will either undergo immediate transplantation or receive CPX-351 for up to 10 days followed 60 days later by the transplant. The study, being conducted at the Fred Hutchinson Cancer Research Center in Seattle, started recruiting 130 patients in August. The primary outcome is OS; QoL will not be tracked.

Newly diagnosed Philadelphia-negative ALL

Patients aged 22 or older with Philadelphia-negative ALL who have not received chemotherapy or radiation therapy are invited to join a trial of calaspargase pegol (Asparlas). The therapy was approved in 2018 for ALL in children and young adults (1 month to 21 years). The aim of this study is to confirm the recommended doses and evaluate the drug’s safety and pharmacodynamics in adults over aged 21. Each participant will receive six 2-hour infusions of calaspargase pegol over several months. The primary outcomes are safety and drug activity; OS is a secondary outcome and QoL will not be measured. The study opened on July 7 and aims to recruit 122 participants in 11 states.

Untreated adults with TP53-mutant AML

Adult patients with previously untreated AML who have at least one TP53 gene mutation are sought for a phase 3 study of magrolimab, an investigational anti-CD47 monoclonal antibody. Participants will be treated for up to 27 months with either magrolimab plus azacytidine (Vidaza), venetoclax plus azacytidine (patients deemed “appropriate for nonintensive therapy”), or standard chemotherapy (those “appropriate for intensive therapy”). In patients who received nonintensive therapy, OS is the primary outcome; OS in all participants is a secondary outcome, and QoL won’t be assessed. The trial opened in July and aims to recruit 346 individuals in Hong Kong, Australia, and the United States (California, Missouri, Oklahoma, Pennsylvania, South Carolina, and Texas).

All trial information is from the U.S. National Library of Medicine, National Institutes of Health.

A version of this article first appeared on Medscape.com.

A number of late-phase clinical trials in leukemia have opened in recent months. Maybe one of your patients could benefit from being enrolled.

Adults and children with acute or chronic leukemias

A phase 2 study partnering with the National Marrow Donor Program is seeking individuals aged 1-65 years with lymphoma or one of the following leukemias: “acute leukemia”, acute lymphoblastic (ALL), acute myelogenous (AML), mixed-phenotype acute, chronic myelogenous (CML), and chronic lymphocytic (CLL). Researchers hope to find a way to improve outcomes of hematopoietic-cell transplantation from mismatched, unrelated donors. Participants will receive the transplant and one of seven drug regimens and will be followed for a year. The trial plans to enroll 180 people and began recruiting on Sept. 30 in California, New York, and Virginia. The primary outcome is overall survival (OS). Quality of life (QoL) will not be measured.

Mast-cell leukemia (MCL)

Adults with MCL are sought for a phase 2 study of bezuclastinib, an experimental tyrosine-kinase inhibitor (TKI) called CGT9486. CGT9486 blocks the activity of a mutated version of tyrosine-kinase receptor KIT, called KIT D816V, which is known to cause systemic mastocytosis. Participants will receive oral CGT9486 daily for up to 18 months. The study opened in October, aiming for 140 participants with any advanced systemic mastocytoses (including MCL) at sites in California, Florida, Massachusetts, New York, Ohio, Texas, and Utah. OS and QoL will be tracked.

Previously Treated CLL/Small Lymphocytic Lymphoma (SLL)

Patients with CLL/SLL who have progressed on previous therapy can join a phase 3 study of another experimental oral TIK, pirtobrutinib, this time targeting Bruton’s tyrosine kinase (BTK). BTK plays a key role in the lifecycle of white blood cells. Participants will receive either “fixed-duration” pirtobrutinib plus venetoclax (Venclexta) and rituximab (Ruxience, Riabni, Truxima, Rituxan, MabThera) or the venetoclax-rituximab combo only, for up to 5 years. Investigators started recruiting in September, aiming for 600 participants across Florida, Louisiana, Missouri, New York, and Tennessee. Progression-free survival is the primary outcome; OS is a secondary outcome and QoL will not be tracked.

High-grade myeloid cancers with measurable residual disease

Patients with AML, myelodysplastic syndrome with excess blasts-2 or myeloid neoplasm, and whose original disease is still present, are eligible for a phase 2 study of CPX-351 (daunorubicin-cytarabine, Vyxeos). The intravenous chemotherapy was approved in 2017 for certain types of AML. The goal of this study is to determine if pretreatment with CPX-351 improves the outcome of donor stem-cell transplantation. Patients will either undergo immediate transplantation or receive CPX-351 for up to 10 days followed 60 days later by the transplant. The study, being conducted at the Fred Hutchinson Cancer Research Center in Seattle, started recruiting 130 patients in August. The primary outcome is OS; QoL will not be tracked.

Newly diagnosed Philadelphia-negative ALL

Patients aged 22 or older with Philadelphia-negative ALL who have not received chemotherapy or radiation therapy are invited to join a trial of calaspargase pegol (Asparlas). The therapy was approved in 2018 for ALL in children and young adults (1 month to 21 years). The aim of this study is to confirm the recommended doses and evaluate the drug’s safety and pharmacodynamics in adults over aged 21. Each participant will receive six 2-hour infusions of calaspargase pegol over several months. The primary outcomes are safety and drug activity; OS is a secondary outcome and QoL will not be measured. The study opened on July 7 and aims to recruit 122 participants in 11 states.

Untreated adults with TP53-mutant AML

Adult patients with previously untreated AML who have at least one TP53 gene mutation are sought for a phase 3 study of magrolimab, an investigational anti-CD47 monoclonal antibody. Participants will be treated for up to 27 months with either magrolimab plus azacytidine (Vidaza), venetoclax plus azacytidine (patients deemed “appropriate for nonintensive therapy”), or standard chemotherapy (those “appropriate for intensive therapy”). In patients who received nonintensive therapy, OS is the primary outcome; OS in all participants is a secondary outcome, and QoL won’t be assessed. The trial opened in July and aims to recruit 346 individuals in Hong Kong, Australia, and the United States (California, Missouri, Oklahoma, Pennsylvania, South Carolina, and Texas).

All trial information is from the U.S. National Library of Medicine, National Institutes of Health.

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Decades spent searching for genes linked to rare blood cancer

Article Type
Changed
Thu, 01/12/2023 - 10:40

Mary Lou McMaster, MD, has spent her entire career at the National Cancer Institute (NCI) searching for the genetic underpinnings that give rise to Waldenstrom's macroglobulinemia (WM). 
After searching for decades, she has yet to uncover a "smoking gun," though a few tantalizing clues have emerged along the way. 
"Our questions are pretty basic: Why are some people more susceptible to developing WM, and why does WM sometimes cluster in families?" she explained. It turns out that the answers are not at all simple. 
Dr. McMaster described some of the clues that her team at the Clinical Genetics Branch of the NCI has unearthed in a presentation at the recent International Waldenstrom's Macroglobulinemia Foundation (IWMF) 2021 Virtual Educational Forum. 
Commenting after the presentation, Steven Treon, MD, PhD, professor of medicine, Harvard Medical School, Boston, who is collaborating with Dr. McMaster on this work, said: "From these familial studies, we can learn how familial genomics may give us insights into disease prevention and treatment." 

Identifying affected families  

Work began in 2001 to identify families in which two or more family members had been diagnosed with WM or in which there was one patient with WM and at least one other relative with a related B-cell cancer, such as chronic lymphocytic leukemia. 
For a frame of reference, they enrolled some families with only one member with WM and in which there was no known family history of the disease. 
"Overall, we have learned that familial WM is a rare disease but not nearly as rare as we first thought," Dr. McMaster said. 
For example, in a referral hospital setting, 5% of WM patients will report having a family member with the same disorder, and up to 20% of WM patients report having a family member with a related but different B-cell cancer, she noted. 
NCI researchers also discovered that environmental factors contribute to the development of WM. Notable chemical or occupational exposures include exposures to pesticides, herbicides, and fertilizers. Infections and autoimmune disease are additional factors. 
"This was not a surprise," Dr. McMaster commented regarding the role of occupational exposures. The research community has known for decades that a "lymphoma belt" cuts through the Midwest farming states. 
Focusing on genetic susceptibility, Dr. McMaster and colleagues first tried to identify a rare germline variant that can be passed down to offspring and that might confer high risk for the disease. 
"We used our high-risk families to study these types of changes, although they may be modified by other genes and environmental factors," Dr. McMaster explained. 
Much to their collective disappointment, the research team has been unable to identify any rare germline variant that could account for WM in many families. What they did find were many small changes in genes that are known to be important in B-cell development and function, but all of those would lead to only a small increase in WM risk. 
"What is holding us back is that, so far, we are not seeing the same gene affected in more than one family, so this suggests to us either that this is not the mechanism behind the development of WM in families, or we have an unfortunate situation where each family is going to have a genetic change that is private to that family and which is not found in other families," Dr. McMaster acknowledged. 

Sheer difficulty  

Given the difficulty of determining whether these small genetic changes had any detrimental functional effect in each and every family with a member who had WM, Dr. McMaster and colleagues have now turned their attention to genes that exert only a small effect on disease risk. 
"Here, we focused on specific genes that we knew were important in the function of the immune system," she explained. "We did find a few genes that may contribute to risk, but those have not yet been confirmed by us or others, and we cannot say they are causative without that confirmation," she said. 
The team has gone on to scan the highway of our genetic material so as to isolate genetic "mile markers." They then examine the area around a particular marker that they suspect contains genes that may be involved in WM. 
One study they conducted involved a cohort of 217 patients with WM in which numerous family members had WM and so was enriched with susceptibility genes. A second cohort comprised 312 WM patients in which there were few WM cases among family members. Both of these cohorts were compared with a group of healthy control persons. 
From these genome studies, "we found there are at least two regions of the genome that can contribute to WM susceptibility, the largest effect being on the short arm of chromosome 6, and the other on the long arm of chromosome 14," Dr. McMaster reported. Dr. McMaster feels that there are probably more regions on the genome that also contribute to WM, although they do not yet understand how these regions contribute to susceptibility. 
"It's more evidence that WM likely results from a combination of events rather than one single gene variant," she observed. Dr. McMaster and colleagues are now collaborating with a large consortium of WM researchers to confirm and extend their findings. Plans are underway to analyze data from approximately 1,350 WM patients and more than 20,000 control persons within the next year. 
"Our hope is that we will confirm our original findings and, because we now have a much larger sample, we will be able to discover additional regions of the genome that are contributing to susceptibility," Dr. McMaster said. 
"A single gene is not likely to account for all WM, as we've looked carefully and others have looked too," she commented. 
"So the risk for WM depends on a combination of genes and environmental exposures and possibly lifestyle factors as well, although we still estimate that approximately 25% of the heritability of WM can be attributed to these kinds of genetic changes," Dr. McMaster predicted. 
Dr. McMaster has disclosed no relevant financial relationships. Dr. Treon has served as a director, officer, partner, employee, advisor, consultant, or trustee for Janssen, Pfizer, PCYC, and BioGene.  


A version of this article first appeared on Medscape.com

Publications
Topics
Sections

Mary Lou McMaster, MD, has spent her entire career at the National Cancer Institute (NCI) searching for the genetic underpinnings that give rise to Waldenstrom's macroglobulinemia (WM). 
After searching for decades, she has yet to uncover a "smoking gun," though a few tantalizing clues have emerged along the way. 
"Our questions are pretty basic: Why are some people more susceptible to developing WM, and why does WM sometimes cluster in families?" she explained. It turns out that the answers are not at all simple. 
Dr. McMaster described some of the clues that her team at the Clinical Genetics Branch of the NCI has unearthed in a presentation at the recent International Waldenstrom's Macroglobulinemia Foundation (IWMF) 2021 Virtual Educational Forum. 
Commenting after the presentation, Steven Treon, MD, PhD, professor of medicine, Harvard Medical School, Boston, who is collaborating with Dr. McMaster on this work, said: "From these familial studies, we can learn how familial genomics may give us insights into disease prevention and treatment." 

Identifying affected families  

Work began in 2001 to identify families in which two or more family members had been diagnosed with WM or in which there was one patient with WM and at least one other relative with a related B-cell cancer, such as chronic lymphocytic leukemia. 
For a frame of reference, they enrolled some families with only one member with WM and in which there was no known family history of the disease. 
"Overall, we have learned that familial WM is a rare disease but not nearly as rare as we first thought," Dr. McMaster said. 
For example, in a referral hospital setting, 5% of WM patients will report having a family member with the same disorder, and up to 20% of WM patients report having a family member with a related but different B-cell cancer, she noted. 
NCI researchers also discovered that environmental factors contribute to the development of WM. Notable chemical or occupational exposures include exposures to pesticides, herbicides, and fertilizers. Infections and autoimmune disease are additional factors. 
"This was not a surprise," Dr. McMaster commented regarding the role of occupational exposures. The research community has known for decades that a "lymphoma belt" cuts through the Midwest farming states. 
Focusing on genetic susceptibility, Dr. McMaster and colleagues first tried to identify a rare germline variant that can be passed down to offspring and that might confer high risk for the disease. 
"We used our high-risk families to study these types of changes, although they may be modified by other genes and environmental factors," Dr. McMaster explained. 
Much to their collective disappointment, the research team has been unable to identify any rare germline variant that could account for WM in many families. What they did find were many small changes in genes that are known to be important in B-cell development and function, but all of those would lead to only a small increase in WM risk. 
"What is holding us back is that, so far, we are not seeing the same gene affected in more than one family, so this suggests to us either that this is not the mechanism behind the development of WM in families, or we have an unfortunate situation where each family is going to have a genetic change that is private to that family and which is not found in other families," Dr. McMaster acknowledged. 

Sheer difficulty  

Given the difficulty of determining whether these small genetic changes had any detrimental functional effect in each and every family with a member who had WM, Dr. McMaster and colleagues have now turned their attention to genes that exert only a small effect on disease risk. 
"Here, we focused on specific genes that we knew were important in the function of the immune system," she explained. "We did find a few genes that may contribute to risk, but those have not yet been confirmed by us or others, and we cannot say they are causative without that confirmation," she said. 
The team has gone on to scan the highway of our genetic material so as to isolate genetic "mile markers." They then examine the area around a particular marker that they suspect contains genes that may be involved in WM. 
One study they conducted involved a cohort of 217 patients with WM in which numerous family members had WM and so was enriched with susceptibility genes. A second cohort comprised 312 WM patients in which there were few WM cases among family members. Both of these cohorts were compared with a group of healthy control persons. 
From these genome studies, "we found there are at least two regions of the genome that can contribute to WM susceptibility, the largest effect being on the short arm of chromosome 6, and the other on the long arm of chromosome 14," Dr. McMaster reported. Dr. McMaster feels that there are probably more regions on the genome that also contribute to WM, although they do not yet understand how these regions contribute to susceptibility. 
"It's more evidence that WM likely results from a combination of events rather than one single gene variant," she observed. Dr. McMaster and colleagues are now collaborating with a large consortium of WM researchers to confirm and extend their findings. Plans are underway to analyze data from approximately 1,350 WM patients and more than 20,000 control persons within the next year. 
"Our hope is that we will confirm our original findings and, because we now have a much larger sample, we will be able to discover additional regions of the genome that are contributing to susceptibility," Dr. McMaster said. 
"A single gene is not likely to account for all WM, as we've looked carefully and others have looked too," she commented. 
"So the risk for WM depends on a combination of genes and environmental exposures and possibly lifestyle factors as well, although we still estimate that approximately 25% of the heritability of WM can be attributed to these kinds of genetic changes," Dr. McMaster predicted. 
Dr. McMaster has disclosed no relevant financial relationships. Dr. Treon has served as a director, officer, partner, employee, advisor, consultant, or trustee for Janssen, Pfizer, PCYC, and BioGene.  


A version of this article first appeared on Medscape.com

Mary Lou McMaster, MD, has spent her entire career at the National Cancer Institute (NCI) searching for the genetic underpinnings that give rise to Waldenstrom's macroglobulinemia (WM). 
After searching for decades, she has yet to uncover a "smoking gun," though a few tantalizing clues have emerged along the way. 
"Our questions are pretty basic: Why are some people more susceptible to developing WM, and why does WM sometimes cluster in families?" she explained. It turns out that the answers are not at all simple. 
Dr. McMaster described some of the clues that her team at the Clinical Genetics Branch of the NCI has unearthed in a presentation at the recent International Waldenstrom's Macroglobulinemia Foundation (IWMF) 2021 Virtual Educational Forum. 
Commenting after the presentation, Steven Treon, MD, PhD, professor of medicine, Harvard Medical School, Boston, who is collaborating with Dr. McMaster on this work, said: "From these familial studies, we can learn how familial genomics may give us insights into disease prevention and treatment." 

Identifying affected families  

Work began in 2001 to identify families in which two or more family members had been diagnosed with WM or in which there was one patient with WM and at least one other relative with a related B-cell cancer, such as chronic lymphocytic leukemia. 
For a frame of reference, they enrolled some families with only one member with WM and in which there was no known family history of the disease. 
"Overall, we have learned that familial WM is a rare disease but not nearly as rare as we first thought," Dr. McMaster said. 
For example, in a referral hospital setting, 5% of WM patients will report having a family member with the same disorder, and up to 20% of WM patients report having a family member with a related but different B-cell cancer, she noted. 
NCI researchers also discovered that environmental factors contribute to the development of WM. Notable chemical or occupational exposures include exposures to pesticides, herbicides, and fertilizers. Infections and autoimmune disease are additional factors. 
"This was not a surprise," Dr. McMaster commented regarding the role of occupational exposures. The research community has known for decades that a "lymphoma belt" cuts through the Midwest farming states. 
Focusing on genetic susceptibility, Dr. McMaster and colleagues first tried to identify a rare germline variant that can be passed down to offspring and that might confer high risk for the disease. 
"We used our high-risk families to study these types of changes, although they may be modified by other genes and environmental factors," Dr. McMaster explained. 
Much to their collective disappointment, the research team has been unable to identify any rare germline variant that could account for WM in many families. What they did find were many small changes in genes that are known to be important in B-cell development and function, but all of those would lead to only a small increase in WM risk. 
"What is holding us back is that, so far, we are not seeing the same gene affected in more than one family, so this suggests to us either that this is not the mechanism behind the development of WM in families, or we have an unfortunate situation where each family is going to have a genetic change that is private to that family and which is not found in other families," Dr. McMaster acknowledged. 

Sheer difficulty  

Given the difficulty of determining whether these small genetic changes had any detrimental functional effect in each and every family with a member who had WM, Dr. McMaster and colleagues have now turned their attention to genes that exert only a small effect on disease risk. 
"Here, we focused on specific genes that we knew were important in the function of the immune system," she explained. "We did find a few genes that may contribute to risk, but those have not yet been confirmed by us or others, and we cannot say they are causative without that confirmation," she said. 
The team has gone on to scan the highway of our genetic material so as to isolate genetic "mile markers." They then examine the area around a particular marker that they suspect contains genes that may be involved in WM. 
One study they conducted involved a cohort of 217 patients with WM in which numerous family members had WM and so was enriched with susceptibility genes. A second cohort comprised 312 WM patients in which there were few WM cases among family members. Both of these cohorts were compared with a group of healthy control persons. 
From these genome studies, "we found there are at least two regions of the genome that can contribute to WM susceptibility, the largest effect being on the short arm of chromosome 6, and the other on the long arm of chromosome 14," Dr. McMaster reported. Dr. McMaster feels that there are probably more regions on the genome that also contribute to WM, although they do not yet understand how these regions contribute to susceptibility. 
"It's more evidence that WM likely results from a combination of events rather than one single gene variant," she observed. Dr. McMaster and colleagues are now collaborating with a large consortium of WM researchers to confirm and extend their findings. Plans are underway to analyze data from approximately 1,350 WM patients and more than 20,000 control persons within the next year. 
"Our hope is that we will confirm our original findings and, because we now have a much larger sample, we will be able to discover additional regions of the genome that are contributing to susceptibility," Dr. McMaster said. 
"A single gene is not likely to account for all WM, as we've looked carefully and others have looked too," she commented. 
"So the risk for WM depends on a combination of genes and environmental exposures and possibly lifestyle factors as well, although we still estimate that approximately 25% of the heritability of WM can be attributed to these kinds of genetic changes," Dr. McMaster predicted. 
Dr. McMaster has disclosed no relevant financial relationships. Dr. Treon has served as a director, officer, partner, employee, advisor, consultant, or trustee for Janssen, Pfizer, PCYC, and BioGene.  


A version of this article first appeared on Medscape.com

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

BTKi resistance: ‘Achilles’ heel’ in effective treatment of B-cell malignancies

Article Type
Changed
Fri, 12/16/2022 - 11:27

While the use of Bruton tyrosine kinase inhibitors has significantly enhanced treatment of patients with B-cell malignancies, BTKi resistance is the “Achilles’ heel” of this otherwise effective therapeutic option, Deborah M. Stephens, DO, and John C. Byrd, MD, stated in a review article published in Blood.

Among patients with B-cell malignancies – including chronic lymphocytic leukemia (CLL), Waldenström’s macroglobulinemia (WM), mantle cell lymphoma (MCL), and marginal zone lymphoma (MZL) – BTKis have substantial efficacy. The review article focuses mainly on extremely rare primary or more common acquired BTKi resistance, particularly among patients with acquired resistance to ibrutinib (11%-38% in large studies).

Primary resistance suggests an alternative diagnosis or transformation to a more aggressive lymphoma. Acquired ibrutinib resistance manifests either as progressive CLL (typically after 2 years of therapy) or as early transformation (within the first 2 years of therapy) to more aggressive entities such as diffuse large B-cell lymphoma, Hodgkin lymphoma, or prolymphocytic leukemia. Less studied than ibrutinib, acquired resistance to acalabrutinib and zanubrutinib has been in the 12%-15% range.

Acquired resistance has meant a reduction in expected overall survival, and while the introduction of new therapies like venetoclax has extended OS, short progression-free survival (PFS) provides a rationale for research into mechanisms of resistance and alternative treatments.

Acquired resistance

Most often acquired, resistance to ibrutinib monotherapy in CLL patients has been associated with high-risk genomic features: complex karyotype, TP53 mutation, del(17)p13.1, and heavy pretreatment. In the phase 3 RESONATE trial, patients with both TP53 mutation and del(17)p13.1 had shorter PFS than those with only one or the other genomic feature. This feature may have explained the fairly good ibrutinib monotherapy outcomes in treatment-naive patients with del(17p)13.1.

Through univariable and multivariable analysis, a machine-learning program consistently identified TP53 mutation, prior CLL therapy, beta-2 microglobulin of at least5 mg/L, and lactate dehydrogenase greater than250 U/L as four risk factors associated with impaired survival. A second survival factor program comparing ibrutinib with chemoimmunotherapy identified beta-2 microglobulin levels of at least5 mg/L, lactate dehydrogenase greater than ULN, hemoglobin less than 110 g/L for women or less than120 g/L for men, and time from initiation of last therapy less than 24 months as risk factors.

While the mechanisms leading to ibrutinib resistance are not clearly known for patients with these risk factors, some research suggests that survival of TP53-mutated CLL cells is less dependent on the BCR pathway, making this CLL type more prone to ibrutinib resistance. TP53-mutated CLL cells, compared with T53–wild-type CLL cells, demonstrate a down-regulation of BCR-related genes and an up-regulation of prosurvival and antiapototic genes.
 

BTK mutations

Mutation of the active kinase domain on the BTK enzyme (C481) is the most common BTKi resistance mechanism described in CLL. A thymidine to adenine mutation (nucleotide 1634) leads to a 25-fold decrease in drug potency. Other known gene or chromosome regions affected in BTKi resistance include PLCy2, Del(8p), CARD11, TRAF2&3, BIRC3, MAP3k14, ARID2, SMARCA2, SMARCA4, MYD88, KLH14, and TNFAIP3.

Multiple mutations of PLCy2, the next most common BTKi resistance mechanism, include mutations of arginine to tryptophan, leucine to phenylalanine, serine to tyrosine, and others. When activated, these gain-of-function mutations prolong BCR signaling.

Ibrutinib resistance has also been associated with deletion of the short arm of chromosome 8 (del[8p]), with CLL cells harboring del(8p) insensitive to TRAIL-induced apoptosis, leading to continuous cell growth. Ibrutinib resistance in patients with WM has also been associated with del(8p).

CARD11 mutations, which allow for BTK-independent activation of NFkB, have been documented in ibrutinib-resistant patients with CLL and other lymphoid malignancies, as detailed in this review.
 

 

 

Novel therapies suggest promise

Survival in CLL after BTKi resistance develops is quite short, according to the authors, and they expressed hope that continued research into novel agents would prolong this population’s survival.

Venetoclax, an oral inhibitor of the antiapoptotic protein BCL2, is approved for all patients with CLL, both as monotherapy and in combination with an anti-CD20 monoclonal antibody. Data support its use after BTKi resistance has been detected. Some evidence in CLL cell lines supports use of the oral phosphoinositide 3-kinases inhibitors idelalisib and duvelisib in relapsed CLL and the BTK C481S mutation. Early response data with third-generation BTKis, such as ARQ-531 and LOXO-305, suggest promise in this setting. Also, for young and healthy patients who have progressed on both BTKi and venetoclax therapy, allogeneic hematopoietic stem cell transplantation could be considered.

In patients with heavily pretreated CLL, early clinical data support chimeric antigen receptor T-cell therapy (CAR T), a novel therapy where patients’ own T cells are extracted, engineered, and reinfused. A related immunotherapy, using a similar process of retroviral vector insertion of an anti-CD19 CAR into donor NK cells before infusion into the patient, is termed CAR-NK cell therapy. It shows promise in early data from patients with CLL who all had previously been heavily treated with ibrutinib.

More research, more hope

Despite the significant advance that BTKis represent, BTKi resistance, with shortened survival, remains a clinical problem for patients with B-cell malignancies. BTKi resistance has been associated with several genetic and clinical risk factors, with mutations in BTK and PLCy2 the most common and most thoroughly researched. “Ongoing clinical trials of third-generation noncovalent BTKis and cellular therapies, such as CAR T, provide much hope for these patients. ... Continued additional research is needed to further prolong the survival of patients with BTKi-resistant B-cell malignancies.”

Dr. Stephens has received research funding and has served on advisory boards for a variety of pharmaceutical and biotechnology companies. Dr. Byrd has received research funding and has consulted for a variety of pharmaceutical and biotechnology companies.

Publications
Topics
Sections

While the use of Bruton tyrosine kinase inhibitors has significantly enhanced treatment of patients with B-cell malignancies, BTKi resistance is the “Achilles’ heel” of this otherwise effective therapeutic option, Deborah M. Stephens, DO, and John C. Byrd, MD, stated in a review article published in Blood.

Among patients with B-cell malignancies – including chronic lymphocytic leukemia (CLL), Waldenström’s macroglobulinemia (WM), mantle cell lymphoma (MCL), and marginal zone lymphoma (MZL) – BTKis have substantial efficacy. The review article focuses mainly on extremely rare primary or more common acquired BTKi resistance, particularly among patients with acquired resistance to ibrutinib (11%-38% in large studies).

Primary resistance suggests an alternative diagnosis or transformation to a more aggressive lymphoma. Acquired ibrutinib resistance manifests either as progressive CLL (typically after 2 years of therapy) or as early transformation (within the first 2 years of therapy) to more aggressive entities such as diffuse large B-cell lymphoma, Hodgkin lymphoma, or prolymphocytic leukemia. Less studied than ibrutinib, acquired resistance to acalabrutinib and zanubrutinib has been in the 12%-15% range.

Acquired resistance has meant a reduction in expected overall survival, and while the introduction of new therapies like venetoclax has extended OS, short progression-free survival (PFS) provides a rationale for research into mechanisms of resistance and alternative treatments.

Acquired resistance

Most often acquired, resistance to ibrutinib monotherapy in CLL patients has been associated with high-risk genomic features: complex karyotype, TP53 mutation, del(17)p13.1, and heavy pretreatment. In the phase 3 RESONATE trial, patients with both TP53 mutation and del(17)p13.1 had shorter PFS than those with only one or the other genomic feature. This feature may have explained the fairly good ibrutinib monotherapy outcomes in treatment-naive patients with del(17p)13.1.

Through univariable and multivariable analysis, a machine-learning program consistently identified TP53 mutation, prior CLL therapy, beta-2 microglobulin of at least5 mg/L, and lactate dehydrogenase greater than250 U/L as four risk factors associated with impaired survival. A second survival factor program comparing ibrutinib with chemoimmunotherapy identified beta-2 microglobulin levels of at least5 mg/L, lactate dehydrogenase greater than ULN, hemoglobin less than 110 g/L for women or less than120 g/L for men, and time from initiation of last therapy less than 24 months as risk factors.

While the mechanisms leading to ibrutinib resistance are not clearly known for patients with these risk factors, some research suggests that survival of TP53-mutated CLL cells is less dependent on the BCR pathway, making this CLL type more prone to ibrutinib resistance. TP53-mutated CLL cells, compared with T53–wild-type CLL cells, demonstrate a down-regulation of BCR-related genes and an up-regulation of prosurvival and antiapototic genes.
 

BTK mutations

Mutation of the active kinase domain on the BTK enzyme (C481) is the most common BTKi resistance mechanism described in CLL. A thymidine to adenine mutation (nucleotide 1634) leads to a 25-fold decrease in drug potency. Other known gene or chromosome regions affected in BTKi resistance include PLCy2, Del(8p), CARD11, TRAF2&3, BIRC3, MAP3k14, ARID2, SMARCA2, SMARCA4, MYD88, KLH14, and TNFAIP3.

Multiple mutations of PLCy2, the next most common BTKi resistance mechanism, include mutations of arginine to tryptophan, leucine to phenylalanine, serine to tyrosine, and others. When activated, these gain-of-function mutations prolong BCR signaling.

Ibrutinib resistance has also been associated with deletion of the short arm of chromosome 8 (del[8p]), with CLL cells harboring del(8p) insensitive to TRAIL-induced apoptosis, leading to continuous cell growth. Ibrutinib resistance in patients with WM has also been associated with del(8p).

CARD11 mutations, which allow for BTK-independent activation of NFkB, have been documented in ibrutinib-resistant patients with CLL and other lymphoid malignancies, as detailed in this review.
 

 

 

Novel therapies suggest promise

Survival in CLL after BTKi resistance develops is quite short, according to the authors, and they expressed hope that continued research into novel agents would prolong this population’s survival.

Venetoclax, an oral inhibitor of the antiapoptotic protein BCL2, is approved for all patients with CLL, both as monotherapy and in combination with an anti-CD20 monoclonal antibody. Data support its use after BTKi resistance has been detected. Some evidence in CLL cell lines supports use of the oral phosphoinositide 3-kinases inhibitors idelalisib and duvelisib in relapsed CLL and the BTK C481S mutation. Early response data with third-generation BTKis, such as ARQ-531 and LOXO-305, suggest promise in this setting. Also, for young and healthy patients who have progressed on both BTKi and venetoclax therapy, allogeneic hematopoietic stem cell transplantation could be considered.

In patients with heavily pretreated CLL, early clinical data support chimeric antigen receptor T-cell therapy (CAR T), a novel therapy where patients’ own T cells are extracted, engineered, and reinfused. A related immunotherapy, using a similar process of retroviral vector insertion of an anti-CD19 CAR into donor NK cells before infusion into the patient, is termed CAR-NK cell therapy. It shows promise in early data from patients with CLL who all had previously been heavily treated with ibrutinib.

More research, more hope

Despite the significant advance that BTKis represent, BTKi resistance, with shortened survival, remains a clinical problem for patients with B-cell malignancies. BTKi resistance has been associated with several genetic and clinical risk factors, with mutations in BTK and PLCy2 the most common and most thoroughly researched. “Ongoing clinical trials of third-generation noncovalent BTKis and cellular therapies, such as CAR T, provide much hope for these patients. ... Continued additional research is needed to further prolong the survival of patients with BTKi-resistant B-cell malignancies.”

Dr. Stephens has received research funding and has served on advisory boards for a variety of pharmaceutical and biotechnology companies. Dr. Byrd has received research funding and has consulted for a variety of pharmaceutical and biotechnology companies.

While the use of Bruton tyrosine kinase inhibitors has significantly enhanced treatment of patients with B-cell malignancies, BTKi resistance is the “Achilles’ heel” of this otherwise effective therapeutic option, Deborah M. Stephens, DO, and John C. Byrd, MD, stated in a review article published in Blood.

Among patients with B-cell malignancies – including chronic lymphocytic leukemia (CLL), Waldenström’s macroglobulinemia (WM), mantle cell lymphoma (MCL), and marginal zone lymphoma (MZL) – BTKis have substantial efficacy. The review article focuses mainly on extremely rare primary or more common acquired BTKi resistance, particularly among patients with acquired resistance to ibrutinib (11%-38% in large studies).

Primary resistance suggests an alternative diagnosis or transformation to a more aggressive lymphoma. Acquired ibrutinib resistance manifests either as progressive CLL (typically after 2 years of therapy) or as early transformation (within the first 2 years of therapy) to more aggressive entities such as diffuse large B-cell lymphoma, Hodgkin lymphoma, or prolymphocytic leukemia. Less studied than ibrutinib, acquired resistance to acalabrutinib and zanubrutinib has been in the 12%-15% range.

Acquired resistance has meant a reduction in expected overall survival, and while the introduction of new therapies like venetoclax has extended OS, short progression-free survival (PFS) provides a rationale for research into mechanisms of resistance and alternative treatments.

Acquired resistance

Most often acquired, resistance to ibrutinib monotherapy in CLL patients has been associated with high-risk genomic features: complex karyotype, TP53 mutation, del(17)p13.1, and heavy pretreatment. In the phase 3 RESONATE trial, patients with both TP53 mutation and del(17)p13.1 had shorter PFS than those with only one or the other genomic feature. This feature may have explained the fairly good ibrutinib monotherapy outcomes in treatment-naive patients with del(17p)13.1.

Through univariable and multivariable analysis, a machine-learning program consistently identified TP53 mutation, prior CLL therapy, beta-2 microglobulin of at least5 mg/L, and lactate dehydrogenase greater than250 U/L as four risk factors associated with impaired survival. A second survival factor program comparing ibrutinib with chemoimmunotherapy identified beta-2 microglobulin levels of at least5 mg/L, lactate dehydrogenase greater than ULN, hemoglobin less than 110 g/L for women or less than120 g/L for men, and time from initiation of last therapy less than 24 months as risk factors.

While the mechanisms leading to ibrutinib resistance are not clearly known for patients with these risk factors, some research suggests that survival of TP53-mutated CLL cells is less dependent on the BCR pathway, making this CLL type more prone to ibrutinib resistance. TP53-mutated CLL cells, compared with T53–wild-type CLL cells, demonstrate a down-regulation of BCR-related genes and an up-regulation of prosurvival and antiapototic genes.
 

BTK mutations

Mutation of the active kinase domain on the BTK enzyme (C481) is the most common BTKi resistance mechanism described in CLL. A thymidine to adenine mutation (nucleotide 1634) leads to a 25-fold decrease in drug potency. Other known gene or chromosome regions affected in BTKi resistance include PLCy2, Del(8p), CARD11, TRAF2&3, BIRC3, MAP3k14, ARID2, SMARCA2, SMARCA4, MYD88, KLH14, and TNFAIP3.

Multiple mutations of PLCy2, the next most common BTKi resistance mechanism, include mutations of arginine to tryptophan, leucine to phenylalanine, serine to tyrosine, and others. When activated, these gain-of-function mutations prolong BCR signaling.

Ibrutinib resistance has also been associated with deletion of the short arm of chromosome 8 (del[8p]), with CLL cells harboring del(8p) insensitive to TRAIL-induced apoptosis, leading to continuous cell growth. Ibrutinib resistance in patients with WM has also been associated with del(8p).

CARD11 mutations, which allow for BTK-independent activation of NFkB, have been documented in ibrutinib-resistant patients with CLL and other lymphoid malignancies, as detailed in this review.
 

 

 

Novel therapies suggest promise

Survival in CLL after BTKi resistance develops is quite short, according to the authors, and they expressed hope that continued research into novel agents would prolong this population’s survival.

Venetoclax, an oral inhibitor of the antiapoptotic protein BCL2, is approved for all patients with CLL, both as monotherapy and in combination with an anti-CD20 monoclonal antibody. Data support its use after BTKi resistance has been detected. Some evidence in CLL cell lines supports use of the oral phosphoinositide 3-kinases inhibitors idelalisib and duvelisib in relapsed CLL and the BTK C481S mutation. Early response data with third-generation BTKis, such as ARQ-531 and LOXO-305, suggest promise in this setting. Also, for young and healthy patients who have progressed on both BTKi and venetoclax therapy, allogeneic hematopoietic stem cell transplantation could be considered.

In patients with heavily pretreated CLL, early clinical data support chimeric antigen receptor T-cell therapy (CAR T), a novel therapy where patients’ own T cells are extracted, engineered, and reinfused. A related immunotherapy, using a similar process of retroviral vector insertion of an anti-CD19 CAR into donor NK cells before infusion into the patient, is termed CAR-NK cell therapy. It shows promise in early data from patients with CLL who all had previously been heavily treated with ibrutinib.

More research, more hope

Despite the significant advance that BTKis represent, BTKi resistance, with shortened survival, remains a clinical problem for patients with B-cell malignancies. BTKi resistance has been associated with several genetic and clinical risk factors, with mutations in BTK and PLCy2 the most common and most thoroughly researched. “Ongoing clinical trials of third-generation noncovalent BTKis and cellular therapies, such as CAR T, provide much hope for these patients. ... Continued additional research is needed to further prolong the survival of patients with BTKi-resistant B-cell malignancies.”

Dr. Stephens has received research funding and has served on advisory boards for a variety of pharmaceutical and biotechnology companies. Dr. Byrd has received research funding and has consulted for a variety of pharmaceutical and biotechnology companies.

Publications
Publications
Topics
Article Type
Sections
Article Source

FROM BLOOD

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Transfusions, readmissions higher for patients with CLL after cardiac surgery

Article Type
Changed
Thu, 01/12/2023 - 10:40

Patients with chronic lymphocytic leukemia have similar outcomes following cardiac operations as patients without CLL, but commonly require more blood transfusions, according to the results of retrospective cohort study using the 2010-2017 Nationwide Readmissions Database (NRD).

The researchers assessed all adult patients undergoing elective coronary artery bypass grafting, valve repair, or valve replacement as identified using the NRD.

Patients were stratified by history of CLL and the incidence of in-hospital mortality, perioperative complications, blood transfusions, and readmission within 90 days were examined. A 3:1 nearest-neighbor matching was performed between patients with and without CLL for all primary and secondary outcomes of interest, according to the report, published online in Annals of Thoracic Surgery.
 

Comparable results

A total of 1,250,882 patients in the database were found who underwent cardiac operations. Of these, 0.23% had a diagnosis of CLL. Among 11,237 propensity-matched patients, those with CLL had similar rates of in-hospital mortality (3.8% vs. 2.6%, P = .08) and perioperative complications (33.4% vs. 33.6%, P = .92), compared with their non-CLL counterparts. However, the incidence of infection was comparable (8.5% vs. 9.4%, P = .38).

However, patients with CLL required blood transfusions more frequently (33.7% vs. 28.4%, P = .003) than did patients without CLL. In addition, patients with CLL were more likely to be readmitted within 90 days of discharge, compared with their counterparts, and “respiratory reasons, including pneumonia, contributed significantly to the readmission burden in this cohort,” the researchers, led by Josef Madrigal, BS, of the University of California, Los Angeles, stated.

“The inherent risk of transfusion and the possible benefits of blood conservation interventions must be considered in this patient population. Increased risk of rehospitalization in patients with CLL suggests the need for measures aimed at mitigating the risk of respiratory complications,” the researchers concluded.

There were no conflicts of interest reported in the article.

Publications
Topics
Sections

Patients with chronic lymphocytic leukemia have similar outcomes following cardiac operations as patients without CLL, but commonly require more blood transfusions, according to the results of retrospective cohort study using the 2010-2017 Nationwide Readmissions Database (NRD).

The researchers assessed all adult patients undergoing elective coronary artery bypass grafting, valve repair, or valve replacement as identified using the NRD.

Patients were stratified by history of CLL and the incidence of in-hospital mortality, perioperative complications, blood transfusions, and readmission within 90 days were examined. A 3:1 nearest-neighbor matching was performed between patients with and without CLL for all primary and secondary outcomes of interest, according to the report, published online in Annals of Thoracic Surgery.
 

Comparable results

A total of 1,250,882 patients in the database were found who underwent cardiac operations. Of these, 0.23% had a diagnosis of CLL. Among 11,237 propensity-matched patients, those with CLL had similar rates of in-hospital mortality (3.8% vs. 2.6%, P = .08) and perioperative complications (33.4% vs. 33.6%, P = .92), compared with their non-CLL counterparts. However, the incidence of infection was comparable (8.5% vs. 9.4%, P = .38).

However, patients with CLL required blood transfusions more frequently (33.7% vs. 28.4%, P = .003) than did patients without CLL. In addition, patients with CLL were more likely to be readmitted within 90 days of discharge, compared with their counterparts, and “respiratory reasons, including pneumonia, contributed significantly to the readmission burden in this cohort,” the researchers, led by Josef Madrigal, BS, of the University of California, Los Angeles, stated.

“The inherent risk of transfusion and the possible benefits of blood conservation interventions must be considered in this patient population. Increased risk of rehospitalization in patients with CLL suggests the need for measures aimed at mitigating the risk of respiratory complications,” the researchers concluded.

There were no conflicts of interest reported in the article.

Patients with chronic lymphocytic leukemia have similar outcomes following cardiac operations as patients without CLL, but commonly require more blood transfusions, according to the results of retrospective cohort study using the 2010-2017 Nationwide Readmissions Database (NRD).

The researchers assessed all adult patients undergoing elective coronary artery bypass grafting, valve repair, or valve replacement as identified using the NRD.

Patients were stratified by history of CLL and the incidence of in-hospital mortality, perioperative complications, blood transfusions, and readmission within 90 days were examined. A 3:1 nearest-neighbor matching was performed between patients with and without CLL for all primary and secondary outcomes of interest, according to the report, published online in Annals of Thoracic Surgery.
 

Comparable results

A total of 1,250,882 patients in the database were found who underwent cardiac operations. Of these, 0.23% had a diagnosis of CLL. Among 11,237 propensity-matched patients, those with CLL had similar rates of in-hospital mortality (3.8% vs. 2.6%, P = .08) and perioperative complications (33.4% vs. 33.6%, P = .92), compared with their non-CLL counterparts. However, the incidence of infection was comparable (8.5% vs. 9.4%, P = .38).

However, patients with CLL required blood transfusions more frequently (33.7% vs. 28.4%, P = .003) than did patients without CLL. In addition, patients with CLL were more likely to be readmitted within 90 days of discharge, compared with their counterparts, and “respiratory reasons, including pneumonia, contributed significantly to the readmission burden in this cohort,” the researchers, led by Josef Madrigal, BS, of the University of California, Los Angeles, stated.

“The inherent risk of transfusion and the possible benefits of blood conservation interventions must be considered in this patient population. Increased risk of rehospitalization in patients with CLL suggests the need for measures aimed at mitigating the risk of respiratory complications,” the researchers concluded.

There were no conflicts of interest reported in the article.

Publications
Publications
Topics
Article Type
Sections
Article Source

FROM THE ANNALS OF THORACIC SURGERY

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Targeted CLL treatments found effective in managing associated autoimmune cytopenias

Article Type
Changed
Fri, 12/16/2022 - 11:31

 

Newer targeted drugs for chronic lymphocytic leukemia also appear to have a beneficial impact on underlying autoimmune cytopenias (AICs), results of a large retrospective study suggest.

Many autoimmune cytopenias improved or resolved during treatment with ibrutinib, idelalisib, or venetoclax, according to authors of the study, which appears in the journal Blood.

Treatment-emergent autoimmune cytopenias were seen in a “negligible portion” of patients overall, according to the report. The prevalence was about 1% each for patients treated with ibrutinib or idelalisib, though seen more frequently (at 7%) among patients who received venetoclax.

Nevertheless, treatment-emergent autoimmune cytopenias were “easily manageable” without interventions such as steroids and rituximab, and without need to interrupt the targeted treatment for chronic lymphocytic leukemia (CLL), according to the authors, led by Candida Vitale, MD, PhD, of the department of molecular biotechnology and health sciences at the University of Torino in Italy.

“Ibrutinib, idelalisib, and venetoclax have a beneficial impact on CLL-related preexisting AICs, achieving in most patients, in parallel with the consolidated antitumor efficacy, an effective control of the autoimmune phenomena,” Dr. Vitale and coauthors wrote in their report.
 

Study results

The retrospective study included 815 patients, of whom 572 were treated with ibrutinib, 143 with idelalisib plus rituximab, and 100 with venetoclax. Nine percent of ibrutinib-treated patients and 12% of venetoclax-treated patients also received an anti-CD20 monoclonal antibody, rituximab or obinutuzumab.

One hundred and four patients (13%) had preexisting autoimmune cytopenias, though the majority were resolved or controlled at the time targeted therapy was started.

Of patients with autoimmune cytopenias that were unresolved at the beginning of targeted therapy, 80% improved or resolved after starting targeted treatment, authors reported.

Most patients who developed autoimmune cytopenias on treatment had high-risk features such as unmutated IGHV, del(17)p, or TP53 mutation, according to the report.

Those treatment-emergent autoimmune cytopenias were seen in 1% of the ibrutinib group, 0.9% of the idelalisib group, and 7% of the venetoclax group. Out of 12 total treatment-emergent autoimmune cytopenias, all but 2 were resolved or controlled with dose reductions or temporary suspensions and use of steroids or rituximab, the report shows.

The higher incidence of autoimmune cytopenias in the venetoclax group held steady even when considering just the patients who had relapsed/refractory disease or had at least two prior lines of therapy, suggesting a “more meaningful” incidence, compared to what was observed for ibrutinib and idelalisib, the investigators said.

“However, the risk of autoimmune cytopenia episodes should not limit the use of venetoclax, considering the strong efficacy of this drug in treating patients with CLL, including those with high-risk features, and the possibility of effectively managing autoimmune complications, mostly without treatment interruption,” they concluded in their report.
 

Implications for patients with CLL

Findings of this study indicate that targeted therapies are effective for managing both CLL and autoimmune cytopenias, according to Carol Moreno, MD, PhD, of Hospital Sant Pau in Barcelona.

Dr. Carol Moreno

Moreover, the targeted therapies do not appear to change the overall prevalence of autoimmune cytopenias, compared to untreated patients, Dr. Moreno said in a commentary on the findings also published in Blood.

“These results are consistent with the concept that targeted therapies are not associated with a higher risk of autoimmune cytopenias, and that, if present, can be managed with immunosuppressive agents,” she wrote.
 

 

 

Autoimmune cytopenias and CLL

Autoimmune cytopenias are a relatively common complication of CLL, occurring in 5%-9% of CLL patients, Dr. Vitale and coauthors said in their report. The most common presentations include autoimmune hemolytic anemia (AIHA) and immune thrombocytopenia (ITP).

Evidence from earlier studies suggests that treatment for CLL may trigger autoimmune cytopenias. Results of retrospective studies in the 1990s linked single-agent fludarabine to increased risk of AIHA, Dr. Moreno said in the commentary.

However, subsequent studies showed that fludarabine plus cyclophosphamide (FC) and fludarabine, cyclophosphamide, and rituximab (FCR) were associated with low proportions of AIHA.

“Taken together, these results convincingly suggest that rather than treatment, it is the lack of response to it that conveys a higher risk of AIC,” Dr. Moreno wrote.
 

Management considerations

There are currently no clinical practice guidelines that advise on how to manage patients who develop AICs during targeted treatment for CLL, Dr. Vitale and colleagues said in their report.

However, this new study data may help inform management of patients with CLL and an autoimmune cytopenia, Dr. Moreno said in the commentary.

If the patient doesn’t immediately require CLL treatment, patients can be managed according to existing guidelines for AIHA and ITP, she said. “Nonresponding patients should be given CLL therapy,” she added.

For CLL patients who do require therapy and have a preexisting or treatment-emergent AIC, a “CLL-oriented” treatment approach could be considered, according to Dr. Moreno.

“A reasonable approach consists of a short course (2 to 4 weeks) of corticosteroids followed by effective CLL therapy (i.e., FCR, bendamustine plus rituximab or ibrutinib), depending on the clinical situation,” she added.

Dr. Vitale reported receiving consultancy fees from Janssen outside the submitted work. Dr. Moreno declared no competing financial interests related to her commentary.

Publications
Topics
Sections

 

Newer targeted drugs for chronic lymphocytic leukemia also appear to have a beneficial impact on underlying autoimmune cytopenias (AICs), results of a large retrospective study suggest.

Many autoimmune cytopenias improved or resolved during treatment with ibrutinib, idelalisib, or venetoclax, according to authors of the study, which appears in the journal Blood.

Treatment-emergent autoimmune cytopenias were seen in a “negligible portion” of patients overall, according to the report. The prevalence was about 1% each for patients treated with ibrutinib or idelalisib, though seen more frequently (at 7%) among patients who received venetoclax.

Nevertheless, treatment-emergent autoimmune cytopenias were “easily manageable” without interventions such as steroids and rituximab, and without need to interrupt the targeted treatment for chronic lymphocytic leukemia (CLL), according to the authors, led by Candida Vitale, MD, PhD, of the department of molecular biotechnology and health sciences at the University of Torino in Italy.

“Ibrutinib, idelalisib, and venetoclax have a beneficial impact on CLL-related preexisting AICs, achieving in most patients, in parallel with the consolidated antitumor efficacy, an effective control of the autoimmune phenomena,” Dr. Vitale and coauthors wrote in their report.
 

Study results

The retrospective study included 815 patients, of whom 572 were treated with ibrutinib, 143 with idelalisib plus rituximab, and 100 with venetoclax. Nine percent of ibrutinib-treated patients and 12% of venetoclax-treated patients also received an anti-CD20 monoclonal antibody, rituximab or obinutuzumab.

One hundred and four patients (13%) had preexisting autoimmune cytopenias, though the majority were resolved or controlled at the time targeted therapy was started.

Of patients with autoimmune cytopenias that were unresolved at the beginning of targeted therapy, 80% improved or resolved after starting targeted treatment, authors reported.

Most patients who developed autoimmune cytopenias on treatment had high-risk features such as unmutated IGHV, del(17)p, or TP53 mutation, according to the report.

Those treatment-emergent autoimmune cytopenias were seen in 1% of the ibrutinib group, 0.9% of the idelalisib group, and 7% of the venetoclax group. Out of 12 total treatment-emergent autoimmune cytopenias, all but 2 were resolved or controlled with dose reductions or temporary suspensions and use of steroids or rituximab, the report shows.

The higher incidence of autoimmune cytopenias in the venetoclax group held steady even when considering just the patients who had relapsed/refractory disease or had at least two prior lines of therapy, suggesting a “more meaningful” incidence, compared to what was observed for ibrutinib and idelalisib, the investigators said.

“However, the risk of autoimmune cytopenia episodes should not limit the use of venetoclax, considering the strong efficacy of this drug in treating patients with CLL, including those with high-risk features, and the possibility of effectively managing autoimmune complications, mostly without treatment interruption,” they concluded in their report.
 

Implications for patients with CLL

Findings of this study indicate that targeted therapies are effective for managing both CLL and autoimmune cytopenias, according to Carol Moreno, MD, PhD, of Hospital Sant Pau in Barcelona.

Dr. Carol Moreno

Moreover, the targeted therapies do not appear to change the overall prevalence of autoimmune cytopenias, compared to untreated patients, Dr. Moreno said in a commentary on the findings also published in Blood.

“These results are consistent with the concept that targeted therapies are not associated with a higher risk of autoimmune cytopenias, and that, if present, can be managed with immunosuppressive agents,” she wrote.
 

 

 

Autoimmune cytopenias and CLL

Autoimmune cytopenias are a relatively common complication of CLL, occurring in 5%-9% of CLL patients, Dr. Vitale and coauthors said in their report. The most common presentations include autoimmune hemolytic anemia (AIHA) and immune thrombocytopenia (ITP).

Evidence from earlier studies suggests that treatment for CLL may trigger autoimmune cytopenias. Results of retrospective studies in the 1990s linked single-agent fludarabine to increased risk of AIHA, Dr. Moreno said in the commentary.

However, subsequent studies showed that fludarabine plus cyclophosphamide (FC) and fludarabine, cyclophosphamide, and rituximab (FCR) were associated with low proportions of AIHA.

“Taken together, these results convincingly suggest that rather than treatment, it is the lack of response to it that conveys a higher risk of AIC,” Dr. Moreno wrote.
 

Management considerations

There are currently no clinical practice guidelines that advise on how to manage patients who develop AICs during targeted treatment for CLL, Dr. Vitale and colleagues said in their report.

However, this new study data may help inform management of patients with CLL and an autoimmune cytopenia, Dr. Moreno said in the commentary.

If the patient doesn’t immediately require CLL treatment, patients can be managed according to existing guidelines for AIHA and ITP, she said. “Nonresponding patients should be given CLL therapy,” she added.

For CLL patients who do require therapy and have a preexisting or treatment-emergent AIC, a “CLL-oriented” treatment approach could be considered, according to Dr. Moreno.

“A reasonable approach consists of a short course (2 to 4 weeks) of corticosteroids followed by effective CLL therapy (i.e., FCR, bendamustine plus rituximab or ibrutinib), depending on the clinical situation,” she added.

Dr. Vitale reported receiving consultancy fees from Janssen outside the submitted work. Dr. Moreno declared no competing financial interests related to her commentary.

 

Newer targeted drugs for chronic lymphocytic leukemia also appear to have a beneficial impact on underlying autoimmune cytopenias (AICs), results of a large retrospective study suggest.

Many autoimmune cytopenias improved or resolved during treatment with ibrutinib, idelalisib, or venetoclax, according to authors of the study, which appears in the journal Blood.

Treatment-emergent autoimmune cytopenias were seen in a “negligible portion” of patients overall, according to the report. The prevalence was about 1% each for patients treated with ibrutinib or idelalisib, though seen more frequently (at 7%) among patients who received venetoclax.

Nevertheless, treatment-emergent autoimmune cytopenias were “easily manageable” without interventions such as steroids and rituximab, and without need to interrupt the targeted treatment for chronic lymphocytic leukemia (CLL), according to the authors, led by Candida Vitale, MD, PhD, of the department of molecular biotechnology and health sciences at the University of Torino in Italy.

“Ibrutinib, idelalisib, and venetoclax have a beneficial impact on CLL-related preexisting AICs, achieving in most patients, in parallel with the consolidated antitumor efficacy, an effective control of the autoimmune phenomena,” Dr. Vitale and coauthors wrote in their report.
 

Study results

The retrospective study included 815 patients, of whom 572 were treated with ibrutinib, 143 with idelalisib plus rituximab, and 100 with venetoclax. Nine percent of ibrutinib-treated patients and 12% of venetoclax-treated patients also received an anti-CD20 monoclonal antibody, rituximab or obinutuzumab.

One hundred and four patients (13%) had preexisting autoimmune cytopenias, though the majority were resolved or controlled at the time targeted therapy was started.

Of patients with autoimmune cytopenias that were unresolved at the beginning of targeted therapy, 80% improved or resolved after starting targeted treatment, authors reported.

Most patients who developed autoimmune cytopenias on treatment had high-risk features such as unmutated IGHV, del(17)p, or TP53 mutation, according to the report.

Those treatment-emergent autoimmune cytopenias were seen in 1% of the ibrutinib group, 0.9% of the idelalisib group, and 7% of the venetoclax group. Out of 12 total treatment-emergent autoimmune cytopenias, all but 2 were resolved or controlled with dose reductions or temporary suspensions and use of steroids or rituximab, the report shows.

The higher incidence of autoimmune cytopenias in the venetoclax group held steady even when considering just the patients who had relapsed/refractory disease or had at least two prior lines of therapy, suggesting a “more meaningful” incidence, compared to what was observed for ibrutinib and idelalisib, the investigators said.

“However, the risk of autoimmune cytopenia episodes should not limit the use of venetoclax, considering the strong efficacy of this drug in treating patients with CLL, including those with high-risk features, and the possibility of effectively managing autoimmune complications, mostly without treatment interruption,” they concluded in their report.
 

Implications for patients with CLL

Findings of this study indicate that targeted therapies are effective for managing both CLL and autoimmune cytopenias, according to Carol Moreno, MD, PhD, of Hospital Sant Pau in Barcelona.

Dr. Carol Moreno

Moreover, the targeted therapies do not appear to change the overall prevalence of autoimmune cytopenias, compared to untreated patients, Dr. Moreno said in a commentary on the findings also published in Blood.

“These results are consistent with the concept that targeted therapies are not associated with a higher risk of autoimmune cytopenias, and that, if present, can be managed with immunosuppressive agents,” she wrote.
 

 

 

Autoimmune cytopenias and CLL

Autoimmune cytopenias are a relatively common complication of CLL, occurring in 5%-9% of CLL patients, Dr. Vitale and coauthors said in their report. The most common presentations include autoimmune hemolytic anemia (AIHA) and immune thrombocytopenia (ITP).

Evidence from earlier studies suggests that treatment for CLL may trigger autoimmune cytopenias. Results of retrospective studies in the 1990s linked single-agent fludarabine to increased risk of AIHA, Dr. Moreno said in the commentary.

However, subsequent studies showed that fludarabine plus cyclophosphamide (FC) and fludarabine, cyclophosphamide, and rituximab (FCR) were associated with low proportions of AIHA.

“Taken together, these results convincingly suggest that rather than treatment, it is the lack of response to it that conveys a higher risk of AIC,” Dr. Moreno wrote.
 

Management considerations

There are currently no clinical practice guidelines that advise on how to manage patients who develop AICs during targeted treatment for CLL, Dr. Vitale and colleagues said in their report.

However, this new study data may help inform management of patients with CLL and an autoimmune cytopenia, Dr. Moreno said in the commentary.

If the patient doesn’t immediately require CLL treatment, patients can be managed according to existing guidelines for AIHA and ITP, she said. “Nonresponding patients should be given CLL therapy,” she added.

For CLL patients who do require therapy and have a preexisting or treatment-emergent AIC, a “CLL-oriented” treatment approach could be considered, according to Dr. Moreno.

“A reasonable approach consists of a short course (2 to 4 weeks) of corticosteroids followed by effective CLL therapy (i.e., FCR, bendamustine plus rituximab or ibrutinib), depending on the clinical situation,” she added.

Dr. Vitale reported receiving consultancy fees from Janssen outside the submitted work. Dr. Moreno declared no competing financial interests related to her commentary.

Publications
Publications
Topics
Article Type
Sections
Article Source

FROM BLOOD

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article