User login
A Novel Prostate Cancer Tracker Program
BACKGROUND
Prostate cancer is one of the most common oncologic diagnoses in VA. Follow-up after radiation treatment involves PSA lab work and a provider visit every 6 months to evaluate for recurrence and longterm side effects. This requires a large amount of VA resources in terms of staff time and can lead to reduced provider access and increased outsourcing costs. If the veteran has in person appointments, this also increases time and travel costs for the veteran.
METHODS
The Cleveland VA Radiation Oncology department has designed a novel Prostate Cancer Tracker to monitor veterans for prostate cancer follow-up. The novel workflow uses a combination of data analysis and sorting techniques along with a dedicated clinical team to triage patients to (1) direct counseling for biochemical recurrence or (2) continued follow-up through the tracker. This process improves resource utilization, efficiently tracks patients, and reduces the risk of a patient lost to follow-up. The program started in August 2022 and has been running in a pilot phase until January 2023. Patient statistics using VA analytics were collected for January 2023 to March 2023.
RESULTS
At the end of March 2023, the tracker contained 250 patients. 56 veterans had their lab work coordinated with PCP labs to avoid unnecessary needle sticks. 50 letters for overdue labs were sent out of which 31 resulted in returning to standard of care follow up. 6 patients were converted from the tracker to in person for counseling regarding biochemical recurrence. The number of in person appointments saved was 80 per month, resulting in better access for providers and savings for veterans for miles driven and veteran’s time. In addition, we have reduced outsourcing costs by re-capturing outsourced veterans back to VA for prostate cancer follow-up.
CONCLUSIONS
The prostate cancer tracker workflow is a novel workflow that has had a successful pilot as a VA iNET seed investee. We plan to expand its use within our department and further quantify improvements for the VA. We are actively looking to expand to other VA sites.
BACKGROUND
Prostate cancer is one of the most common oncologic diagnoses in VA. Follow-up after radiation treatment involves PSA lab work and a provider visit every 6 months to evaluate for recurrence and longterm side effects. This requires a large amount of VA resources in terms of staff time and can lead to reduced provider access and increased outsourcing costs. If the veteran has in person appointments, this also increases time and travel costs for the veteran.
METHODS
The Cleveland VA Radiation Oncology department has designed a novel Prostate Cancer Tracker to monitor veterans for prostate cancer follow-up. The novel workflow uses a combination of data analysis and sorting techniques along with a dedicated clinical team to triage patients to (1) direct counseling for biochemical recurrence or (2) continued follow-up through the tracker. This process improves resource utilization, efficiently tracks patients, and reduces the risk of a patient lost to follow-up. The program started in August 2022 and has been running in a pilot phase until January 2023. Patient statistics using VA analytics were collected for January 2023 to March 2023.
RESULTS
At the end of March 2023, the tracker contained 250 patients. 56 veterans had their lab work coordinated with PCP labs to avoid unnecessary needle sticks. 50 letters for overdue labs were sent out of which 31 resulted in returning to standard of care follow up. 6 patients were converted from the tracker to in person for counseling regarding biochemical recurrence. The number of in person appointments saved was 80 per month, resulting in better access for providers and savings for veterans for miles driven and veteran’s time. In addition, we have reduced outsourcing costs by re-capturing outsourced veterans back to VA for prostate cancer follow-up.
CONCLUSIONS
The prostate cancer tracker workflow is a novel workflow that has had a successful pilot as a VA iNET seed investee. We plan to expand its use within our department and further quantify improvements for the VA. We are actively looking to expand to other VA sites.
BACKGROUND
Prostate cancer is one of the most common oncologic diagnoses in VA. Follow-up after radiation treatment involves PSA lab work and a provider visit every 6 months to evaluate for recurrence and longterm side effects. This requires a large amount of VA resources in terms of staff time and can lead to reduced provider access and increased outsourcing costs. If the veteran has in person appointments, this also increases time and travel costs for the veteran.
METHODS
The Cleveland VA Radiation Oncology department has designed a novel Prostate Cancer Tracker to monitor veterans for prostate cancer follow-up. The novel workflow uses a combination of data analysis and sorting techniques along with a dedicated clinical team to triage patients to (1) direct counseling for biochemical recurrence or (2) continued follow-up through the tracker. This process improves resource utilization, efficiently tracks patients, and reduces the risk of a patient lost to follow-up. The program started in August 2022 and has been running in a pilot phase until January 2023. Patient statistics using VA analytics were collected for January 2023 to March 2023.
RESULTS
At the end of March 2023, the tracker contained 250 patients. 56 veterans had their lab work coordinated with PCP labs to avoid unnecessary needle sticks. 50 letters for overdue labs were sent out of which 31 resulted in returning to standard of care follow up. 6 patients were converted from the tracker to in person for counseling regarding biochemical recurrence. The number of in person appointments saved was 80 per month, resulting in better access for providers and savings for veterans for miles driven and veteran’s time. In addition, we have reduced outsourcing costs by re-capturing outsourced veterans back to VA for prostate cancer follow-up.
CONCLUSIONS
The prostate cancer tracker workflow is a novel workflow that has had a successful pilot as a VA iNET seed investee. We plan to expand its use within our department and further quantify improvements for the VA. We are actively looking to expand to other VA sites.
Implementation and Evaluation of a Clinical Pharmacist Practitioner-Led Pharmacogenomics Service in a Veterans Affairs Hematology and Oncology Clinic
BACKGROUND
The Pharmacogenomic Testing for Veterans (PHASER) program provides preemptive pharmacogenomic testing for Veterans nationally. Program implementation at the Madison VA began in the hematology and oncology (hem/onc) clinics. In these clinics, PHASER test results are reviewed by the hem/onc clinical pharmacist practitioner (CPP) who provides recommendations regarding therapy via an electronic health record note. The purpose of this retrospective chart review was to assess the impact of the CPP on medication management informed by pharmacogenomics.
METHODS
A retrospective chart review was completed for all Veterans enrolled in hem/onc services and offered PHASER testing between April 1, 2022 and November 1, 2022. The number and type of interventions recommended by the hem/onc CPP, acceptance of recommended interventions, and hem/onc CPP time spent were collected for all patients who accepted and completed PHASER testing. Interventions were categorized and descriptive statistics were used to summarize data.
RESULTS
Of the 98 patients reviewed by the CPP, 75 (77%) were prescribed a medication with potential pharmacogenomic implications. At least one actionable recommendation for medication therapy adjustment was identified for 40 (53%) of those patients based on their pharmacogenomic test results. The CPP spent an average of 12 minutes per patient review (range 5 to 30 minutes) and 100% of CPP recommendations were accepted.
CONCLUSIONS
The CPP efficiently reviewed pharmacogenomic test results and made meaningful recommendations for medication therapy adjustments. CPP recommendations were highly accepted in the hem/onc setting.
BACKGROUND
The Pharmacogenomic Testing for Veterans (PHASER) program provides preemptive pharmacogenomic testing for Veterans nationally. Program implementation at the Madison VA began in the hematology and oncology (hem/onc) clinics. In these clinics, PHASER test results are reviewed by the hem/onc clinical pharmacist practitioner (CPP) who provides recommendations regarding therapy via an electronic health record note. The purpose of this retrospective chart review was to assess the impact of the CPP on medication management informed by pharmacogenomics.
METHODS
A retrospective chart review was completed for all Veterans enrolled in hem/onc services and offered PHASER testing between April 1, 2022 and November 1, 2022. The number and type of interventions recommended by the hem/onc CPP, acceptance of recommended interventions, and hem/onc CPP time spent were collected for all patients who accepted and completed PHASER testing. Interventions were categorized and descriptive statistics were used to summarize data.
RESULTS
Of the 98 patients reviewed by the CPP, 75 (77%) were prescribed a medication with potential pharmacogenomic implications. At least one actionable recommendation for medication therapy adjustment was identified for 40 (53%) of those patients based on their pharmacogenomic test results. The CPP spent an average of 12 minutes per patient review (range 5 to 30 minutes) and 100% of CPP recommendations were accepted.
CONCLUSIONS
The CPP efficiently reviewed pharmacogenomic test results and made meaningful recommendations for medication therapy adjustments. CPP recommendations were highly accepted in the hem/onc setting.
BACKGROUND
The Pharmacogenomic Testing for Veterans (PHASER) program provides preemptive pharmacogenomic testing for Veterans nationally. Program implementation at the Madison VA began in the hematology and oncology (hem/onc) clinics. In these clinics, PHASER test results are reviewed by the hem/onc clinical pharmacist practitioner (CPP) who provides recommendations regarding therapy via an electronic health record note. The purpose of this retrospective chart review was to assess the impact of the CPP on medication management informed by pharmacogenomics.
METHODS
A retrospective chart review was completed for all Veterans enrolled in hem/onc services and offered PHASER testing between April 1, 2022 and November 1, 2022. The number and type of interventions recommended by the hem/onc CPP, acceptance of recommended interventions, and hem/onc CPP time spent were collected for all patients who accepted and completed PHASER testing. Interventions were categorized and descriptive statistics were used to summarize data.
RESULTS
Of the 98 patients reviewed by the CPP, 75 (77%) were prescribed a medication with potential pharmacogenomic implications. At least one actionable recommendation for medication therapy adjustment was identified for 40 (53%) of those patients based on their pharmacogenomic test results. The CPP spent an average of 12 minutes per patient review (range 5 to 30 minutes) and 100% of CPP recommendations were accepted.
CONCLUSIONS
The CPP efficiently reviewed pharmacogenomic test results and made meaningful recommendations for medication therapy adjustments. CPP recommendations were highly accepted in the hem/onc setting.
Enhancing Usability of Health Information Technology: Comparative Evaluation of Workflow Support Tools
BACKGROUND
The Breast and Gynecologic System of Excellence (BGSOE) program has developed a workflow support tool using health information technology to assist clinicians, coordinators and stakeholders in identifying, tracking and supporting Veterans with breast and gynecological cancers. This tool was designed and implemented through a novel process that involved clarifying program aims, defining workflows in process delivery diagrams, and identifying data, analytic products, and user needs. To determine the optimal tool for the program, a comparative usability evaluation was conducted, comparing the new workflow support tool with a previous tool that shared identical aims but utilized a different approach.
METHODS
Usability evaluation employed the System Usability Scale (SUS) and measured acceptance using modified items from a validated instrument used in a national survey of electronic health records. Task efficiency was evaluated based on time taken and the number of clicks required to complete tasks.
RESULTS
Eight healthcare professionals with experience in the BGSOE program or similar programs in the VA participated in the usability evaluation. This group comprised physicians (38%), clinical pharmacist (25%), health care coordinators (25%), and registered nurse (12%). The workflow support tool achieved an impressive SUS score of 89.06, with acceptance scores of 93% (positive statements) and 6% (negative statements), outperforming the standard tool, which scored score of 57.5 on the SUS and had acceptance scores of 53% (positive statements) and 50% (negative statements). In the comparative ranking, 100% of the users preferred the workflow support tool, citing its userfriendliness, intuitiveness, and ease of use. On average, users completed all tasks using the workflow support tool in 8 minutes with 31 clicks, while the standard tool required 18 minutes and 124 clicks.
CONCLUSIONS
The adoption of a workflow support tool in the design of health information technology interventions leads to improved usability, efficiency, and adoption. Based on the positive results from the usability evaluation, the BGSOE program has chosen to adopt the workflow support tool as its preferred health information technology solution.
BACKGROUND
The Breast and Gynecologic System of Excellence (BGSOE) program has developed a workflow support tool using health information technology to assist clinicians, coordinators and stakeholders in identifying, tracking and supporting Veterans with breast and gynecological cancers. This tool was designed and implemented through a novel process that involved clarifying program aims, defining workflows in process delivery diagrams, and identifying data, analytic products, and user needs. To determine the optimal tool for the program, a comparative usability evaluation was conducted, comparing the new workflow support tool with a previous tool that shared identical aims but utilized a different approach.
METHODS
Usability evaluation employed the System Usability Scale (SUS) and measured acceptance using modified items from a validated instrument used in a national survey of electronic health records. Task efficiency was evaluated based on time taken and the number of clicks required to complete tasks.
RESULTS
Eight healthcare professionals with experience in the BGSOE program or similar programs in the VA participated in the usability evaluation. This group comprised physicians (38%), clinical pharmacist (25%), health care coordinators (25%), and registered nurse (12%). The workflow support tool achieved an impressive SUS score of 89.06, with acceptance scores of 93% (positive statements) and 6% (negative statements), outperforming the standard tool, which scored score of 57.5 on the SUS and had acceptance scores of 53% (positive statements) and 50% (negative statements). In the comparative ranking, 100% of the users preferred the workflow support tool, citing its userfriendliness, intuitiveness, and ease of use. On average, users completed all tasks using the workflow support tool in 8 minutes with 31 clicks, while the standard tool required 18 minutes and 124 clicks.
CONCLUSIONS
The adoption of a workflow support tool in the design of health information technology interventions leads to improved usability, efficiency, and adoption. Based on the positive results from the usability evaluation, the BGSOE program has chosen to adopt the workflow support tool as its preferred health information technology solution.
BACKGROUND
The Breast and Gynecologic System of Excellence (BGSOE) program has developed a workflow support tool using health information technology to assist clinicians, coordinators and stakeholders in identifying, tracking and supporting Veterans with breast and gynecological cancers. This tool was designed and implemented through a novel process that involved clarifying program aims, defining workflows in process delivery diagrams, and identifying data, analytic products, and user needs. To determine the optimal tool for the program, a comparative usability evaluation was conducted, comparing the new workflow support tool with a previous tool that shared identical aims but utilized a different approach.
METHODS
Usability evaluation employed the System Usability Scale (SUS) and measured acceptance using modified items from a validated instrument used in a national survey of electronic health records. Task efficiency was evaluated based on time taken and the number of clicks required to complete tasks.
RESULTS
Eight healthcare professionals with experience in the BGSOE program or similar programs in the VA participated in the usability evaluation. This group comprised physicians (38%), clinical pharmacist (25%), health care coordinators (25%), and registered nurse (12%). The workflow support tool achieved an impressive SUS score of 89.06, with acceptance scores of 93% (positive statements) and 6% (negative statements), outperforming the standard tool, which scored score of 57.5 on the SUS and had acceptance scores of 53% (positive statements) and 50% (negative statements). In the comparative ranking, 100% of the users preferred the workflow support tool, citing its userfriendliness, intuitiveness, and ease of use. On average, users completed all tasks using the workflow support tool in 8 minutes with 31 clicks, while the standard tool required 18 minutes and 124 clicks.
CONCLUSIONS
The adoption of a workflow support tool in the design of health information technology interventions leads to improved usability, efficiency, and adoption. Based on the positive results from the usability evaluation, the BGSOE program has chosen to adopt the workflow support tool as its preferred health information technology solution.
An Interprofessional Effort to Reduce Infusion Drug Delivery Time
PURPOSE
This quality improvement project aimed at addressing the issue of long waiting times in the hematology/ oncology clinic at Stratton VA Medical Center, aiming to improve the delivery time of infusion drugs and enhance patient care.
BACKGROUND
Patient feedback indicated that long waiting times were a significant barrier to care, with 32% of patients identifying this as an issue. Prolonged wait times in the healthcare setting can have various negative consequences, including increased patient dissatisfaction, reduced patient engagement, compromised patient safety, and increased healthcare costs.
METHODS
An interdisciplinary team comprising physicians, nurses, and pharmacists conducted a study to identify the primary contributors to extended wait times. Inadequate preparation for patients with complex infusion needs and delays in administering premedications were identified as the key factors. Wait times were measured using two variables: Go To Label Print (GTLP) and Go To First Bag Scanned (GTFS). Baseline data were collected showing a median GTLP of 8 minutes and a median GTFS of 67 minutes.
DATA ANALYSIS
The team analyzed real-time data related to wait times and the impact of interventions.
RESULTS
Two interventions were implemented: 1) redistributing patients with complex needs across the schedule and 2) adding premedications to the automated medication dispensing system. Postintervention analysis revealed a significant improvement in wait times. The median GTLP decreased to 2 minutes, and the median GTFS reduced to 53 minutes, representing a 75% improvement in GTLP and a 21% improvement in GTFS. These changes are estimated to save 303 patient hours annually.
IMPLICATIONS
This quality improvement project highlighted the significance of addressing long wait times, as they can significantly impact patient care. The team’s efforts, including the analysis of real-time data, interprofessional collaboration, and the implementation of sustainable changes through Plan-Do- Study-Act cycles, successfully improved infusion drug delivery time. These findings and interventions can serve as a model for other healthcare facilities seeking to streamline workflow in infusion centers and enhance patient care.
PURPOSE
This quality improvement project aimed at addressing the issue of long waiting times in the hematology/ oncology clinic at Stratton VA Medical Center, aiming to improve the delivery time of infusion drugs and enhance patient care.
BACKGROUND
Patient feedback indicated that long waiting times were a significant barrier to care, with 32% of patients identifying this as an issue. Prolonged wait times in the healthcare setting can have various negative consequences, including increased patient dissatisfaction, reduced patient engagement, compromised patient safety, and increased healthcare costs.
METHODS
An interdisciplinary team comprising physicians, nurses, and pharmacists conducted a study to identify the primary contributors to extended wait times. Inadequate preparation for patients with complex infusion needs and delays in administering premedications were identified as the key factors. Wait times were measured using two variables: Go To Label Print (GTLP) and Go To First Bag Scanned (GTFS). Baseline data were collected showing a median GTLP of 8 minutes and a median GTFS of 67 minutes.
DATA ANALYSIS
The team analyzed real-time data related to wait times and the impact of interventions.
RESULTS
Two interventions were implemented: 1) redistributing patients with complex needs across the schedule and 2) adding premedications to the automated medication dispensing system. Postintervention analysis revealed a significant improvement in wait times. The median GTLP decreased to 2 minutes, and the median GTFS reduced to 53 minutes, representing a 75% improvement in GTLP and a 21% improvement in GTFS. These changes are estimated to save 303 patient hours annually.
IMPLICATIONS
This quality improvement project highlighted the significance of addressing long wait times, as they can significantly impact patient care. The team’s efforts, including the analysis of real-time data, interprofessional collaboration, and the implementation of sustainable changes through Plan-Do- Study-Act cycles, successfully improved infusion drug delivery time. These findings and interventions can serve as a model for other healthcare facilities seeking to streamline workflow in infusion centers and enhance patient care.
PURPOSE
This quality improvement project aimed at addressing the issue of long waiting times in the hematology/ oncology clinic at Stratton VA Medical Center, aiming to improve the delivery time of infusion drugs and enhance patient care.
BACKGROUND
Patient feedback indicated that long waiting times were a significant barrier to care, with 32% of patients identifying this as an issue. Prolonged wait times in the healthcare setting can have various negative consequences, including increased patient dissatisfaction, reduced patient engagement, compromised patient safety, and increased healthcare costs.
METHODS
An interdisciplinary team comprising physicians, nurses, and pharmacists conducted a study to identify the primary contributors to extended wait times. Inadequate preparation for patients with complex infusion needs and delays in administering premedications were identified as the key factors. Wait times were measured using two variables: Go To Label Print (GTLP) and Go To First Bag Scanned (GTFS). Baseline data were collected showing a median GTLP of 8 minutes and a median GTFS of 67 minutes.
DATA ANALYSIS
The team analyzed real-time data related to wait times and the impact of interventions.
RESULTS
Two interventions were implemented: 1) redistributing patients with complex needs across the schedule and 2) adding premedications to the automated medication dispensing system. Postintervention analysis revealed a significant improvement in wait times. The median GTLP decreased to 2 minutes, and the median GTFS reduced to 53 minutes, representing a 75% improvement in GTLP and a 21% improvement in GTFS. These changes are estimated to save 303 patient hours annually.
IMPLICATIONS
This quality improvement project highlighted the significance of addressing long wait times, as they can significantly impact patient care. The team’s efforts, including the analysis of real-time data, interprofessional collaboration, and the implementation of sustainable changes through Plan-Do- Study-Act cycles, successfully improved infusion drug delivery time. These findings and interventions can serve as a model for other healthcare facilities seeking to streamline workflow in infusion centers and enhance patient care.
Close to Me: Cost Savings Analysis and Improving Veteran Access
BACKGROUND
While the MISSION Act for community care has increased Veteran access to specialty services, this has caused considerable fragmentation of care and financial cost to U.S. taxpayers. The VA Salt Lake City Health Care System (VA SLCHCS) referral area spans 125,000 square miles, one of the largest geographic regions in the VA health care system. Numerous VA Community- Based Outpatient Clinics (CBOCs) have been established in central and southern Utah, eastern Nevada, and southern Idaho; however, these clinics do not currently provide specialty services.
DISCUSSION
In conjunction with the National Oncology Program’s Close to Me project team, we conducted a cost analysis to determine financial feasibility of providing low-risk oncology parenteral therapies at rural CBOCs. Based on FY22 DO Paid Claim PowerBI and Pyramid Analytics Reports, VA SLCHCS paid claims for Community Care Hematology/Oncology community services in excess of $5.7 million for 380 unique Veterans (approximately $15,060 per unique Veteran). Comparatively, Veterans received high quality oncology care through VA SLCHCS with an estimated average cost of care of $5,424 per unique Veteran. Cost of parenteral therapies was estimated via review of Community Care Paid Claims Reports for individual drug claim costs (based on Jcode), VA drug pricing data from the VA National Acquisition Center Catalog, and drug unit claims data. The unit price of VA-care and community care costs were calculated and drug cost at the VA versus non- VA was compared. By retaining or re-establishing Hematology/Oncology Veteran care within VA, we estimate cost savings of approximately $9,636 per unique Veteran.
CONCLUSIONS
By re-establishing oncology care within VA SLCHCS the facility could net a substantial cost savings while simultaneously making Veterans lives easier, reduce need for transportation to/from the main SLC VA site, decrease costs due to VA pricing contracts, lessen Veteran out-of-pocket costs, improve care coordination through use of one electronic medical record, and maintain Veteran care within VA SLCHCS. Additionally, VA SLCHCS oncology will help lead the effort to launch a system within the CBOC’s to deliver high-cost parental therapies that could benefit other medical specialties such as gastroenterology, dermatology, and rheumatology.
BACKGROUND
While the MISSION Act for community care has increased Veteran access to specialty services, this has caused considerable fragmentation of care and financial cost to U.S. taxpayers. The VA Salt Lake City Health Care System (VA SLCHCS) referral area spans 125,000 square miles, one of the largest geographic regions in the VA health care system. Numerous VA Community- Based Outpatient Clinics (CBOCs) have been established in central and southern Utah, eastern Nevada, and southern Idaho; however, these clinics do not currently provide specialty services.
DISCUSSION
In conjunction with the National Oncology Program’s Close to Me project team, we conducted a cost analysis to determine financial feasibility of providing low-risk oncology parenteral therapies at rural CBOCs. Based on FY22 DO Paid Claim PowerBI and Pyramid Analytics Reports, VA SLCHCS paid claims for Community Care Hematology/Oncology community services in excess of $5.7 million for 380 unique Veterans (approximately $15,060 per unique Veteran). Comparatively, Veterans received high quality oncology care through VA SLCHCS with an estimated average cost of care of $5,424 per unique Veteran. Cost of parenteral therapies was estimated via review of Community Care Paid Claims Reports for individual drug claim costs (based on Jcode), VA drug pricing data from the VA National Acquisition Center Catalog, and drug unit claims data. The unit price of VA-care and community care costs were calculated and drug cost at the VA versus non- VA was compared. By retaining or re-establishing Hematology/Oncology Veteran care within VA, we estimate cost savings of approximately $9,636 per unique Veteran.
CONCLUSIONS
By re-establishing oncology care within VA SLCHCS the facility could net a substantial cost savings while simultaneously making Veterans lives easier, reduce need for transportation to/from the main SLC VA site, decrease costs due to VA pricing contracts, lessen Veteran out-of-pocket costs, improve care coordination through use of one electronic medical record, and maintain Veteran care within VA SLCHCS. Additionally, VA SLCHCS oncology will help lead the effort to launch a system within the CBOC’s to deliver high-cost parental therapies that could benefit other medical specialties such as gastroenterology, dermatology, and rheumatology.
BACKGROUND
While the MISSION Act for community care has increased Veteran access to specialty services, this has caused considerable fragmentation of care and financial cost to U.S. taxpayers. The VA Salt Lake City Health Care System (VA SLCHCS) referral area spans 125,000 square miles, one of the largest geographic regions in the VA health care system. Numerous VA Community- Based Outpatient Clinics (CBOCs) have been established in central and southern Utah, eastern Nevada, and southern Idaho; however, these clinics do not currently provide specialty services.
DISCUSSION
In conjunction with the National Oncology Program’s Close to Me project team, we conducted a cost analysis to determine financial feasibility of providing low-risk oncology parenteral therapies at rural CBOCs. Based on FY22 DO Paid Claim PowerBI and Pyramid Analytics Reports, VA SLCHCS paid claims for Community Care Hematology/Oncology community services in excess of $5.7 million for 380 unique Veterans (approximately $15,060 per unique Veteran). Comparatively, Veterans received high quality oncology care through VA SLCHCS with an estimated average cost of care of $5,424 per unique Veteran. Cost of parenteral therapies was estimated via review of Community Care Paid Claims Reports for individual drug claim costs (based on Jcode), VA drug pricing data from the VA National Acquisition Center Catalog, and drug unit claims data. The unit price of VA-care and community care costs were calculated and drug cost at the VA versus non- VA was compared. By retaining or re-establishing Hematology/Oncology Veteran care within VA, we estimate cost savings of approximately $9,636 per unique Veteran.
CONCLUSIONS
By re-establishing oncology care within VA SLCHCS the facility could net a substantial cost savings while simultaneously making Veterans lives easier, reduce need for transportation to/from the main SLC VA site, decrease costs due to VA pricing contracts, lessen Veteran out-of-pocket costs, improve care coordination through use of one electronic medical record, and maintain Veteran care within VA SLCHCS. Additionally, VA SLCHCS oncology will help lead the effort to launch a system within the CBOC’s to deliver high-cost parental therapies that could benefit other medical specialties such as gastroenterology, dermatology, and rheumatology.
ClonoSEQ Testing for Minimal Residual Disease in Multiple Myeloma: Cleveland VA Experience And Cost Analysis
BACKGROUND
Minimal residual disease (MRD) testing in myeloma has been shown to be a strong prognostic marker for progression-free and overall survival. Limited data suggest MRD results may also be useful for therapy discontinuation decisions. The clonoSEQ Assay utilizes next generation sequencing involving a bone marrow sample, obtained at the time of diagnosis, to identify patient-specific sequence(s).
DISCUSSION
The same methodology is then applied later to assess for MRD. Although widely adopted at most US academic centers, there has been limited use of MRD across VA centers. In 2022 the Cleveland Louis Stokes VAMC partnered with Adaptive Biotechnologies to develop a process for MRD/clonoSEQ testing in myeloma pts. Hematology, Pathology, Medicine, Administration and Adaptive Biotechnologies representatives met to develop a streamlined process for ordering, sample procurement, billing and result documentation. In 5/2022 the 1st specimen was sent. EQUATE is a national cooperative group trial requiring baseline clono- SEQ testing with a positive sequence ID. Daratumumab hyaluronidase (part of standard treatment) is provided to the institution at no cost on the trial but otherwise would cost the VA $5,797.38/dose. clonoSEQ costs VA $1950/test. There have been 14 specimens sent involving 12 pts: 12 baseline marrow and 2 for MRD (posttransplant). All of the baseline specimens were found to have an identifiable sequence. Both of the MRD tracking specimens were positive. The average turnaround time for clonoSEQ results was 13.2 days (range 7 to 18 days). 4 of the 12 pts with a positive initial clonoSEQ ID qualified for the EQUATE trial but would not have been deemed eligible without the baseline clonoSEQ results. 2 of these pts have enrolled on the trial and started treatment. Costs for 14 clonoSEQ tests: $27,300. Estimated cost savings for the 2 pts enrolled onto EQUATE: $127, 542.36/pt/year= $255,084.72/year. Overall cost savings: $227,784.72.
CONCLUSIONS
An efficient process for baseline and post-treatment (MRD) clonoSEQ testing in myeloma pts was developed. Although expensive, use of this test resulted in significant overall cost savings by allowing enrollment onto a clinical trial. In addition, if studies determine that negative MRD results can guide therapeutic decisions, use of clonoSEQ testing may result in further benefits.
BACKGROUND
Minimal residual disease (MRD) testing in myeloma has been shown to be a strong prognostic marker for progression-free and overall survival. Limited data suggest MRD results may also be useful for therapy discontinuation decisions. The clonoSEQ Assay utilizes next generation sequencing involving a bone marrow sample, obtained at the time of diagnosis, to identify patient-specific sequence(s).
DISCUSSION
The same methodology is then applied later to assess for MRD. Although widely adopted at most US academic centers, there has been limited use of MRD across VA centers. In 2022 the Cleveland Louis Stokes VAMC partnered with Adaptive Biotechnologies to develop a process for MRD/clonoSEQ testing in myeloma pts. Hematology, Pathology, Medicine, Administration and Adaptive Biotechnologies representatives met to develop a streamlined process for ordering, sample procurement, billing and result documentation. In 5/2022 the 1st specimen was sent. EQUATE is a national cooperative group trial requiring baseline clono- SEQ testing with a positive sequence ID. Daratumumab hyaluronidase (part of standard treatment) is provided to the institution at no cost on the trial but otherwise would cost the VA $5,797.38/dose. clonoSEQ costs VA $1950/test. There have been 14 specimens sent involving 12 pts: 12 baseline marrow and 2 for MRD (posttransplant). All of the baseline specimens were found to have an identifiable sequence. Both of the MRD tracking specimens were positive. The average turnaround time for clonoSEQ results was 13.2 days (range 7 to 18 days). 4 of the 12 pts with a positive initial clonoSEQ ID qualified for the EQUATE trial but would not have been deemed eligible without the baseline clonoSEQ results. 2 of these pts have enrolled on the trial and started treatment. Costs for 14 clonoSEQ tests: $27,300. Estimated cost savings for the 2 pts enrolled onto EQUATE: $127, 542.36/pt/year= $255,084.72/year. Overall cost savings: $227,784.72.
CONCLUSIONS
An efficient process for baseline and post-treatment (MRD) clonoSEQ testing in myeloma pts was developed. Although expensive, use of this test resulted in significant overall cost savings by allowing enrollment onto a clinical trial. In addition, if studies determine that negative MRD results can guide therapeutic decisions, use of clonoSEQ testing may result in further benefits.
BACKGROUND
Minimal residual disease (MRD) testing in myeloma has been shown to be a strong prognostic marker for progression-free and overall survival. Limited data suggest MRD results may also be useful for therapy discontinuation decisions. The clonoSEQ Assay utilizes next generation sequencing involving a bone marrow sample, obtained at the time of diagnosis, to identify patient-specific sequence(s).
DISCUSSION
The same methodology is then applied later to assess for MRD. Although widely adopted at most US academic centers, there has been limited use of MRD across VA centers. In 2022 the Cleveland Louis Stokes VAMC partnered with Adaptive Biotechnologies to develop a process for MRD/clonoSEQ testing in myeloma pts. Hematology, Pathology, Medicine, Administration and Adaptive Biotechnologies representatives met to develop a streamlined process for ordering, sample procurement, billing and result documentation. In 5/2022 the 1st specimen was sent. EQUATE is a national cooperative group trial requiring baseline clono- SEQ testing with a positive sequence ID. Daratumumab hyaluronidase (part of standard treatment) is provided to the institution at no cost on the trial but otherwise would cost the VA $5,797.38/dose. clonoSEQ costs VA $1950/test. There have been 14 specimens sent involving 12 pts: 12 baseline marrow and 2 for MRD (posttransplant). All of the baseline specimens were found to have an identifiable sequence. Both of the MRD tracking specimens were positive. The average turnaround time for clonoSEQ results was 13.2 days (range 7 to 18 days). 4 of the 12 pts with a positive initial clonoSEQ ID qualified for the EQUATE trial but would not have been deemed eligible without the baseline clonoSEQ results. 2 of these pts have enrolled on the trial and started treatment. Costs for 14 clonoSEQ tests: $27,300. Estimated cost savings for the 2 pts enrolled onto EQUATE: $127, 542.36/pt/year= $255,084.72/year. Overall cost savings: $227,784.72.
CONCLUSIONS
An efficient process for baseline and post-treatment (MRD) clonoSEQ testing in myeloma pts was developed. Although expensive, use of this test resulted in significant overall cost savings by allowing enrollment onto a clinical trial. In addition, if studies determine that negative MRD results can guide therapeutic decisions, use of clonoSEQ testing may result in further benefits.
Revision of a Massive Transfusion Protocol to Allow for Verbal Orders
PURPOSE
To improve the time to release of blood products for patients with severe or life-threatening bleeding.
BACKGROUND
Exsanguination, and the resultant coagulopathy, is the number one cause of trauma-related death. Massive transfusion protocols (MTP) improve mortality by shortening the time to transfusion and correcting coagulopathy. Many patients do not meet criteria for massive transfusion (> 10 units RBCs in 24 hours), yet present with clinical instability and require rapid release (RR) of uncrossmatched blood. A quality improvement initiative was performed to identify barriers to the MTP/RR protocol at a single institution.
METHODS/DATA
A multidisciplinary subcommittee was formed to evaluate the safety and efficacy of the current MTP/RR process. Timed mock-MTP/RR trials were conducted to identify areas of delay with a goal to achieve a blood to bedside (B2B) time of under 10 minutes.
RESULTS
Timed mock-MTP/RR trials were conducted, which revealed a baseline B2B time of approximately 30 minutes. We identified problems and categorized them in terms of ordering (phase 1) and processing (phase 2). We found significant delays in phase 1. Reasons for delay were varied and included difficulty logging into the computer, staff unavailable to place orders (involved in resuscitation efforts), orders entered incorrectly, etc. Once orders were received, the blood bank could process them quickly in phase 2. Using root cause analysis, we discovered a critical step was to remove the barrier of electronic ordering. For this, a new process was developed in which the blood bank could accept verbal orders to release uncrossmatched blood during a medical emergency. Over the course of one year, a new policy for MTP/RR was drafted, an education training video was recorded, informational flyers were printed, and training drills were conducted. A repeat mock-MTP/RR scenario was performed after the change showing the B2B time was reduced by 90% from pre-intervention values to under 3 minutes. Since implementation, no new safety signals have been received, and the staff have reported improved satisfaction with the MTP/RR process.
IMPLICATIONS
A critical piece of any MTP/RR is the immediate availability of blood. Allowing verbal orders for blood products reduced time to transfusion by 90%. Through multidisciplinary effort, safe and efficient release of uncrossmatched blood products for nontraumatic massive transfusion can be achieved.
PURPOSE
To improve the time to release of blood products for patients with severe or life-threatening bleeding.
BACKGROUND
Exsanguination, and the resultant coagulopathy, is the number one cause of trauma-related death. Massive transfusion protocols (MTP) improve mortality by shortening the time to transfusion and correcting coagulopathy. Many patients do not meet criteria for massive transfusion (> 10 units RBCs in 24 hours), yet present with clinical instability and require rapid release (RR) of uncrossmatched blood. A quality improvement initiative was performed to identify barriers to the MTP/RR protocol at a single institution.
METHODS/DATA
A multidisciplinary subcommittee was formed to evaluate the safety and efficacy of the current MTP/RR process. Timed mock-MTP/RR trials were conducted to identify areas of delay with a goal to achieve a blood to bedside (B2B) time of under 10 minutes.
RESULTS
Timed mock-MTP/RR trials were conducted, which revealed a baseline B2B time of approximately 30 minutes. We identified problems and categorized them in terms of ordering (phase 1) and processing (phase 2). We found significant delays in phase 1. Reasons for delay were varied and included difficulty logging into the computer, staff unavailable to place orders (involved in resuscitation efforts), orders entered incorrectly, etc. Once orders were received, the blood bank could process them quickly in phase 2. Using root cause analysis, we discovered a critical step was to remove the barrier of electronic ordering. For this, a new process was developed in which the blood bank could accept verbal orders to release uncrossmatched blood during a medical emergency. Over the course of one year, a new policy for MTP/RR was drafted, an education training video was recorded, informational flyers were printed, and training drills were conducted. A repeat mock-MTP/RR scenario was performed after the change showing the B2B time was reduced by 90% from pre-intervention values to under 3 minutes. Since implementation, no new safety signals have been received, and the staff have reported improved satisfaction with the MTP/RR process.
IMPLICATIONS
A critical piece of any MTP/RR is the immediate availability of blood. Allowing verbal orders for blood products reduced time to transfusion by 90%. Through multidisciplinary effort, safe and efficient release of uncrossmatched blood products for nontraumatic massive transfusion can be achieved.
PURPOSE
To improve the time to release of blood products for patients with severe or life-threatening bleeding.
BACKGROUND
Exsanguination, and the resultant coagulopathy, is the number one cause of trauma-related death. Massive transfusion protocols (MTP) improve mortality by shortening the time to transfusion and correcting coagulopathy. Many patients do not meet criteria for massive transfusion (> 10 units RBCs in 24 hours), yet present with clinical instability and require rapid release (RR) of uncrossmatched blood. A quality improvement initiative was performed to identify barriers to the MTP/RR protocol at a single institution.
METHODS/DATA
A multidisciplinary subcommittee was formed to evaluate the safety and efficacy of the current MTP/RR process. Timed mock-MTP/RR trials were conducted to identify areas of delay with a goal to achieve a blood to bedside (B2B) time of under 10 minutes.
RESULTS
Timed mock-MTP/RR trials were conducted, which revealed a baseline B2B time of approximately 30 minutes. We identified problems and categorized them in terms of ordering (phase 1) and processing (phase 2). We found significant delays in phase 1. Reasons for delay were varied and included difficulty logging into the computer, staff unavailable to place orders (involved in resuscitation efforts), orders entered incorrectly, etc. Once orders were received, the blood bank could process them quickly in phase 2. Using root cause analysis, we discovered a critical step was to remove the barrier of electronic ordering. For this, a new process was developed in which the blood bank could accept verbal orders to release uncrossmatched blood during a medical emergency. Over the course of one year, a new policy for MTP/RR was drafted, an education training video was recorded, informational flyers were printed, and training drills were conducted. A repeat mock-MTP/RR scenario was performed after the change showing the B2B time was reduced by 90% from pre-intervention values to under 3 minutes. Since implementation, no new safety signals have been received, and the staff have reported improved satisfaction with the MTP/RR process.
IMPLICATIONS
A critical piece of any MTP/RR is the immediate availability of blood. Allowing verbal orders for blood products reduced time to transfusion by 90%. Through multidisciplinary effort, safe and efficient release of uncrossmatched blood products for nontraumatic massive transfusion can be achieved.
Implementation of an Interfacility Telehealth Cancer Genetics Clinic
BACKGROUND
Cancer risk assessment and genetic counseling are the processes to identify and counsel people at risk for familial or hereditary cancer syndromes. They serve to inform, educate and empower patients and family members to make informed decisions about testing, cancer screening, and prevention. Additionally, genetic testing can also provide therapeutic options and opportunities for research.
METHODS
Prior to this program initiative, there were no cancer genetics services available at the VA Pittsburgh Medical Center (VAPHS) and 100% of genetics consults were referred to the community. Each year over $100,000 was spent outside of VAPHS on genetic testing and counseling. Community care referral resulted in fragmented care, prolonged wait times of 3 to 5 months, communication issues, and added financial cost to the institution. Corporal Michael J. Crescenz VA Medical Center (CMCVAMC) had previously created a genetics consultation service staffed with an advanced practice nurse that increased access to genetics services and testing rates at the facility-level. VAPHS recently established an interfacility telegenetics clinic with CMCVAMC to provide virtual genetic counseling services to Veterans at VAPHS. Under this program, VAPHS providers place an interfacility consult for Veterans who need cancer genetics services. The consult is received and reviewed by the CMCVAMC team. VAPHS patients are then seen by CMCVAMC providers via VVC or CVT and provide recommendations regarding additional genetic testing and follow-up.
RESULTS
The telegenetics clinic opened in October 2022. The clinic initially focused on patients with metastatic prostate cancer but has since expanded to provide care for all patients for whom genetics testing and/ or counseling is recommended by NCCN guidelines. Since initiation, 29 consults have been placed and 26 have been completed or are in process (89.6%). In the year prior to creation of the clinic, only 31 of 67 (46%) of referred patients completed genetics evaluation.
CONCLUSIONS
Due to the success of the clinic, plans to expand services to the VISN-level and within VAPHS to include high risk breast cancer assessment are underway. Efforts to provide genetic counseling services via virtual care modalities have the potential to increase access to care and to improve outcomes for veterans with cancer.
BACKGROUND
Cancer risk assessment and genetic counseling are the processes to identify and counsel people at risk for familial or hereditary cancer syndromes. They serve to inform, educate and empower patients and family members to make informed decisions about testing, cancer screening, and prevention. Additionally, genetic testing can also provide therapeutic options and opportunities for research.
METHODS
Prior to this program initiative, there were no cancer genetics services available at the VA Pittsburgh Medical Center (VAPHS) and 100% of genetics consults were referred to the community. Each year over $100,000 was spent outside of VAPHS on genetic testing and counseling. Community care referral resulted in fragmented care, prolonged wait times of 3 to 5 months, communication issues, and added financial cost to the institution. Corporal Michael J. Crescenz VA Medical Center (CMCVAMC) had previously created a genetics consultation service staffed with an advanced practice nurse that increased access to genetics services and testing rates at the facility-level. VAPHS recently established an interfacility telegenetics clinic with CMCVAMC to provide virtual genetic counseling services to Veterans at VAPHS. Under this program, VAPHS providers place an interfacility consult for Veterans who need cancer genetics services. The consult is received and reviewed by the CMCVAMC team. VAPHS patients are then seen by CMCVAMC providers via VVC or CVT and provide recommendations regarding additional genetic testing and follow-up.
RESULTS
The telegenetics clinic opened in October 2022. The clinic initially focused on patients with metastatic prostate cancer but has since expanded to provide care for all patients for whom genetics testing and/ or counseling is recommended by NCCN guidelines. Since initiation, 29 consults have been placed and 26 have been completed or are in process (89.6%). In the year prior to creation of the clinic, only 31 of 67 (46%) of referred patients completed genetics evaluation.
CONCLUSIONS
Due to the success of the clinic, plans to expand services to the VISN-level and within VAPHS to include high risk breast cancer assessment are underway. Efforts to provide genetic counseling services via virtual care modalities have the potential to increase access to care and to improve outcomes for veterans with cancer.
BACKGROUND
Cancer risk assessment and genetic counseling are the processes to identify and counsel people at risk for familial or hereditary cancer syndromes. They serve to inform, educate and empower patients and family members to make informed decisions about testing, cancer screening, and prevention. Additionally, genetic testing can also provide therapeutic options and opportunities for research.
METHODS
Prior to this program initiative, there were no cancer genetics services available at the VA Pittsburgh Medical Center (VAPHS) and 100% of genetics consults were referred to the community. Each year over $100,000 was spent outside of VAPHS on genetic testing and counseling. Community care referral resulted in fragmented care, prolonged wait times of 3 to 5 months, communication issues, and added financial cost to the institution. Corporal Michael J. Crescenz VA Medical Center (CMCVAMC) had previously created a genetics consultation service staffed with an advanced practice nurse that increased access to genetics services and testing rates at the facility-level. VAPHS recently established an interfacility telegenetics clinic with CMCVAMC to provide virtual genetic counseling services to Veterans at VAPHS. Under this program, VAPHS providers place an interfacility consult for Veterans who need cancer genetics services. The consult is received and reviewed by the CMCVAMC team. VAPHS patients are then seen by CMCVAMC providers via VVC or CVT and provide recommendations regarding additional genetic testing and follow-up.
RESULTS
The telegenetics clinic opened in October 2022. The clinic initially focused on patients with metastatic prostate cancer but has since expanded to provide care for all patients for whom genetics testing and/ or counseling is recommended by NCCN guidelines. Since initiation, 29 consults have been placed and 26 have been completed or are in process (89.6%). In the year prior to creation of the clinic, only 31 of 67 (46%) of referred patients completed genetics evaluation.
CONCLUSIONS
Due to the success of the clinic, plans to expand services to the VISN-level and within VAPHS to include high risk breast cancer assessment are underway. Efforts to provide genetic counseling services via virtual care modalities have the potential to increase access to care and to improve outcomes for veterans with cancer.
Development of a National Precision Oncology Program (NPOP) Dashboard Suite and Data Mart For Monitoring Somatic Molecular Testing Use
BACKGROUND
As of May 2023, the Veterans Affairs (VA) National Precision Oncology Program (NPOP) has provided somatic molecular testing for nearly 36,000 Veterans with cancer. Automated tools to monitor test use (locally and nationally) have only been available for NGS testing in advanced stage lung and prostate cancer. To better track utilization of NPOP supported testing across all cancer indications, and to support strategies to promote wider adoption, we developed an automated data architecture to monitor program operations. Here, we describe the development of the NPOP data mart and summarize the core components of the NPOP Somatic Molecular Testing dashboards.
METHODS
SQL Server Integration Services was used to build the backend data mart, which required the ingestion of vendor-specific XML data and subsequent harmonization with data found in the VA’s Corporate Data Warehouse (CDW). The NPOP somatic testing dashboards, developed using Power BI, are securely hosted in the cloud, and accessible through SharePoint.
DATA ANALYSIS
The NPOP dashboard suite displays key measures using descriptive statistics, including counts, proportions, means, medians, and standard deviations. To support the visualization of comparisons we leveraged stacked and clustered bar charts, and violin plots.
RESULTS
The NPOP data mart refreshes nightly providing users with near real-time data. The NPOP somatic testing dashboards include an all vendor combined report and sub-reports organized by vendors: Foundation Medicine, Personalis, and Personal Genome Diagnostics and Tempus. All reports contain four views with the ability to toggle between tests ordered or completed. For current NPOP vendors, patient level data and turnaround time views were developed. Data are stratified by test category (i.e., NGS Solid, NGS Liquid, Heme, IHC) and can be viewed longitudinally (i.e., across time) and filtered by test date, VA facility, patient demographics, and cancer characteristics (diagnosis, stage). To date, over 50,000 tests have been ordered (90% through Foundation Medicine).
IMPLICATIONS
The NPOP data mart and operational dashboards synthesizes vast amounts of data into a visually consumable format that supports monitoring the uptake and variation of somatic molecular testing services being offered across the VA.
BACKGROUND
As of May 2023, the Veterans Affairs (VA) National Precision Oncology Program (NPOP) has provided somatic molecular testing for nearly 36,000 Veterans with cancer. Automated tools to monitor test use (locally and nationally) have only been available for NGS testing in advanced stage lung and prostate cancer. To better track utilization of NPOP supported testing across all cancer indications, and to support strategies to promote wider adoption, we developed an automated data architecture to monitor program operations. Here, we describe the development of the NPOP data mart and summarize the core components of the NPOP Somatic Molecular Testing dashboards.
METHODS
SQL Server Integration Services was used to build the backend data mart, which required the ingestion of vendor-specific XML data and subsequent harmonization with data found in the VA’s Corporate Data Warehouse (CDW). The NPOP somatic testing dashboards, developed using Power BI, are securely hosted in the cloud, and accessible through SharePoint.
DATA ANALYSIS
The NPOP dashboard suite displays key measures using descriptive statistics, including counts, proportions, means, medians, and standard deviations. To support the visualization of comparisons we leveraged stacked and clustered bar charts, and violin plots.
RESULTS
The NPOP data mart refreshes nightly providing users with near real-time data. The NPOP somatic testing dashboards include an all vendor combined report and sub-reports organized by vendors: Foundation Medicine, Personalis, and Personal Genome Diagnostics and Tempus. All reports contain four views with the ability to toggle between tests ordered or completed. For current NPOP vendors, patient level data and turnaround time views were developed. Data are stratified by test category (i.e., NGS Solid, NGS Liquid, Heme, IHC) and can be viewed longitudinally (i.e., across time) and filtered by test date, VA facility, patient demographics, and cancer characteristics (diagnosis, stage). To date, over 50,000 tests have been ordered (90% through Foundation Medicine).
IMPLICATIONS
The NPOP data mart and operational dashboards synthesizes vast amounts of data into a visually consumable format that supports monitoring the uptake and variation of somatic molecular testing services being offered across the VA.
BACKGROUND
As of May 2023, the Veterans Affairs (VA) National Precision Oncology Program (NPOP) has provided somatic molecular testing for nearly 36,000 Veterans with cancer. Automated tools to monitor test use (locally and nationally) have only been available for NGS testing in advanced stage lung and prostate cancer. To better track utilization of NPOP supported testing across all cancer indications, and to support strategies to promote wider adoption, we developed an automated data architecture to monitor program operations. Here, we describe the development of the NPOP data mart and summarize the core components of the NPOP Somatic Molecular Testing dashboards.
METHODS
SQL Server Integration Services was used to build the backend data mart, which required the ingestion of vendor-specific XML data and subsequent harmonization with data found in the VA’s Corporate Data Warehouse (CDW). The NPOP somatic testing dashboards, developed using Power BI, are securely hosted in the cloud, and accessible through SharePoint.
DATA ANALYSIS
The NPOP dashboard suite displays key measures using descriptive statistics, including counts, proportions, means, medians, and standard deviations. To support the visualization of comparisons we leveraged stacked and clustered bar charts, and violin plots.
RESULTS
The NPOP data mart refreshes nightly providing users with near real-time data. The NPOP somatic testing dashboards include an all vendor combined report and sub-reports organized by vendors: Foundation Medicine, Personalis, and Personal Genome Diagnostics and Tempus. All reports contain four views with the ability to toggle between tests ordered or completed. For current NPOP vendors, patient level data and turnaround time views were developed. Data are stratified by test category (i.e., NGS Solid, NGS Liquid, Heme, IHC) and can be viewed longitudinally (i.e., across time) and filtered by test date, VA facility, patient demographics, and cancer characteristics (diagnosis, stage). To date, over 50,000 tests have been ordered (90% through Foundation Medicine).
IMPLICATIONS
The NPOP data mart and operational dashboards synthesizes vast amounts of data into a visually consumable format that supports monitoring the uptake and variation of somatic molecular testing services being offered across the VA.
A Multi-Disciplinary Approach to Increasing Germline Genetic Testing for Prostate Cancer
PURPOSE
This quality improvement project aims to enhance the rate of germline genetic testing for prostate cancer at the Stratton VA Medical Center, improving risk reduction strategies and therapeutic options for patients.
BACKGROUND
Prostate cancer is prevalent at the Stratton VA Medical Center, yet the rate of genetic evaluation for prostate cancer remains suboptimal. National guidelines recommend genetic counseling and testing in specific patient populations. To address this gap, an interdisciplinary working group conducted gap analysis and root cause analysis, identifying four significant barriers.
METHODS
The working group comprised medical oncologists, urologists, primary care physicians, genetics counselors, data experts, and a LEAN coach. Interventions included implementing a prostate cancer pathway to educate staff on genetic testing indications and integrating genetic testing screening into clinic visits. After the interventions were implemented in January 2022, patient charts were reviewed for all genetic referrals and new prostate cancer diagnoses from January to December 2022.
DATA ANALYSIS
Descriptive analysis was conducted on referral rates, evaluation visit completion rates, and genetic testing outcomes among prostate cancer patients.
RESULTS
During the study period, 59 prostate cancer patients were referred for genetic evaluation. Notably, this was a large increase from no genetic referrals for prostate cancer in the previous year. Among them, 43 completed the evaluation visit, and 34 underwent genetic testing. Noteworthy findings were observed in 5 patients, including 3 variants of unknown significance and 2 pathogenic germline variants: HOXB13 and BRCA2 mutations.
IMPLICATIONS
This project highlights the power of a collaborative, multidisciplinary approach to overcome barriers and enhance the quality of care for prostate cancer patients. The team’s use of gap analysis and root cause analysis successfully identified barriers and proposed solutions, leading to increased referrals and the identification of significant genetic findings. Continued efforts to improve access to germline genetic testing are crucial for enhanced patient care and improved outcomes.
PURPOSE
This quality improvement project aims to enhance the rate of germline genetic testing for prostate cancer at the Stratton VA Medical Center, improving risk reduction strategies and therapeutic options for patients.
BACKGROUND
Prostate cancer is prevalent at the Stratton VA Medical Center, yet the rate of genetic evaluation for prostate cancer remains suboptimal. National guidelines recommend genetic counseling and testing in specific patient populations. To address this gap, an interdisciplinary working group conducted gap analysis and root cause analysis, identifying four significant barriers.
METHODS
The working group comprised medical oncologists, urologists, primary care physicians, genetics counselors, data experts, and a LEAN coach. Interventions included implementing a prostate cancer pathway to educate staff on genetic testing indications and integrating genetic testing screening into clinic visits. After the interventions were implemented in January 2022, patient charts were reviewed for all genetic referrals and new prostate cancer diagnoses from January to December 2022.
DATA ANALYSIS
Descriptive analysis was conducted on referral rates, evaluation visit completion rates, and genetic testing outcomes among prostate cancer patients.
RESULTS
During the study period, 59 prostate cancer patients were referred for genetic evaluation. Notably, this was a large increase from no genetic referrals for prostate cancer in the previous year. Among them, 43 completed the evaluation visit, and 34 underwent genetic testing. Noteworthy findings were observed in 5 patients, including 3 variants of unknown significance and 2 pathogenic germline variants: HOXB13 and BRCA2 mutations.
IMPLICATIONS
This project highlights the power of a collaborative, multidisciplinary approach to overcome barriers and enhance the quality of care for prostate cancer patients. The team’s use of gap analysis and root cause analysis successfully identified barriers and proposed solutions, leading to increased referrals and the identification of significant genetic findings. Continued efforts to improve access to germline genetic testing are crucial for enhanced patient care and improved outcomes.
PURPOSE
This quality improvement project aims to enhance the rate of germline genetic testing for prostate cancer at the Stratton VA Medical Center, improving risk reduction strategies and therapeutic options for patients.
BACKGROUND
Prostate cancer is prevalent at the Stratton VA Medical Center, yet the rate of genetic evaluation for prostate cancer remains suboptimal. National guidelines recommend genetic counseling and testing in specific patient populations. To address this gap, an interdisciplinary working group conducted gap analysis and root cause analysis, identifying four significant barriers.
METHODS
The working group comprised medical oncologists, urologists, primary care physicians, genetics counselors, data experts, and a LEAN coach. Interventions included implementing a prostate cancer pathway to educate staff on genetic testing indications and integrating genetic testing screening into clinic visits. After the interventions were implemented in January 2022, patient charts were reviewed for all genetic referrals and new prostate cancer diagnoses from January to December 2022.
DATA ANALYSIS
Descriptive analysis was conducted on referral rates, evaluation visit completion rates, and genetic testing outcomes among prostate cancer patients.
RESULTS
During the study period, 59 prostate cancer patients were referred for genetic evaluation. Notably, this was a large increase from no genetic referrals for prostate cancer in the previous year. Among them, 43 completed the evaluation visit, and 34 underwent genetic testing. Noteworthy findings were observed in 5 patients, including 3 variants of unknown significance and 2 pathogenic germline variants: HOXB13 and BRCA2 mutations.
IMPLICATIONS
This project highlights the power of a collaborative, multidisciplinary approach to overcome barriers and enhance the quality of care for prostate cancer patients. The team’s use of gap analysis and root cause analysis successfully identified barriers and proposed solutions, leading to increased referrals and the identification of significant genetic findings. Continued efforts to improve access to germline genetic testing are crucial for enhanced patient care and improved outcomes.