Bringing you the latest news, research and reviews, exclusive interviews, podcasts, quizzes, and more.

Theme
medstat_fp
Top Sections
Best Practices
Government and Regulations
Original Research
fed
Main menu
FP Main Menu
Explore menu
FP Explore Menu
Proclivity ID
18809001
Unpublish
Citation Name
Fed Pract
Negative Keywords
gaming
gambling
compulsive behaviors
ammunition
assault rifle
black jack
Boko Haram
bondage
child abuse
cocaine
Daech
drug paraphernalia
explosion
gun
human trafficking
ISIL
ISIS
Islamic caliphate
Islamic state
mixed martial arts
MMA
molestation
national rifle association
NRA
nsfw
pedophile
pedophilia
poker
porn
pornography
psychedelic drug
recreational drug
sex slave rings
slot machine
terrorism
terrorist
Texas hold 'em
UFC
substance abuse
abuseed
abuseer
abusees
abuseing
abusely
abuses
aeolus
aeolused
aeoluser
aeoluses
aeolusing
aeolusly
aeoluss
ahole
aholeed
aholeer
aholees
aholeing
aholely
aholes
alcohol
alcoholed
alcoholer
alcoholes
alcoholing
alcoholly
alcohols
allman
allmaned
allmaner
allmanes
allmaning
allmanly
allmans
alted
altes
alting
altly
alts
analed
analer
anales
analing
anally
analprobe
analprobeed
analprobeer
analprobees
analprobeing
analprobely
analprobes
anals
anilingus
anilingused
anilinguser
anilinguses
anilingusing
anilingusly
anilinguss
anus
anused
anuser
anuses
anusing
anusly
anuss
areola
areolaed
areolaer
areolaes
areolaing
areolaly
areolas
areole
areoleed
areoleer
areolees
areoleing
areolely
areoles
arian
arianed
arianer
arianes
arianing
arianly
arians
aryan
aryaned
aryaner
aryanes
aryaning
aryanly
aryans
asiaed
asiaer
asiaes
asiaing
asialy
asias
ass
ass hole
ass lick
ass licked
ass licker
ass lickes
ass licking
ass lickly
ass licks
assbang
assbanged
assbangeded
assbangeder
assbangedes
assbangeding
assbangedly
assbangeds
assbanger
assbanges
assbanging
assbangly
assbangs
assbangsed
assbangser
assbangses
assbangsing
assbangsly
assbangss
assed
asser
asses
assesed
asseser
asseses
assesing
assesly
assess
assfuck
assfucked
assfucker
assfuckered
assfuckerer
assfuckeres
assfuckering
assfuckerly
assfuckers
assfuckes
assfucking
assfuckly
assfucks
asshat
asshated
asshater
asshates
asshating
asshatly
asshats
assholeed
assholeer
assholees
assholeing
assholely
assholes
assholesed
assholeser
assholeses
assholesing
assholesly
assholess
assing
assly
assmaster
assmastered
assmasterer
assmasteres
assmastering
assmasterly
assmasters
assmunch
assmunched
assmuncher
assmunches
assmunching
assmunchly
assmunchs
asss
asswipe
asswipeed
asswipeer
asswipees
asswipeing
asswipely
asswipes
asswipesed
asswipeser
asswipeses
asswipesing
asswipesly
asswipess
azz
azzed
azzer
azzes
azzing
azzly
azzs
babeed
babeer
babees
babeing
babely
babes
babesed
babeser
babeses
babesing
babesly
babess
ballsac
ballsaced
ballsacer
ballsaces
ballsacing
ballsack
ballsacked
ballsacker
ballsackes
ballsacking
ballsackly
ballsacks
ballsacly
ballsacs
ballsed
ballser
ballses
ballsing
ballsly
ballss
barf
barfed
barfer
barfes
barfing
barfly
barfs
bastard
bastarded
bastarder
bastardes
bastarding
bastardly
bastards
bastardsed
bastardser
bastardses
bastardsing
bastardsly
bastardss
bawdy
bawdyed
bawdyer
bawdyes
bawdying
bawdyly
bawdys
beaner
beanered
beanerer
beaneres
beanering
beanerly
beaners
beardedclam
beardedclamed
beardedclamer
beardedclames
beardedclaming
beardedclamly
beardedclams
beastiality
beastialityed
beastialityer
beastialityes
beastialitying
beastialityly
beastialitys
beatch
beatched
beatcher
beatches
beatching
beatchly
beatchs
beater
beatered
beaterer
beateres
beatering
beaterly
beaters
beered
beerer
beeres
beering
beerly
beeyotch
beeyotched
beeyotcher
beeyotches
beeyotching
beeyotchly
beeyotchs
beotch
beotched
beotcher
beotches
beotching
beotchly
beotchs
biatch
biatched
biatcher
biatches
biatching
biatchly
biatchs
big tits
big titsed
big titser
big titses
big titsing
big titsly
big titss
bigtits
bigtitsed
bigtitser
bigtitses
bigtitsing
bigtitsly
bigtitss
bimbo
bimboed
bimboer
bimboes
bimboing
bimboly
bimbos
bisexualed
bisexualer
bisexuales
bisexualing
bisexually
bisexuals
bitch
bitched
bitcheded
bitcheder
bitchedes
bitcheding
bitchedly
bitcheds
bitcher
bitches
bitchesed
bitcheser
bitcheses
bitchesing
bitchesly
bitchess
bitching
bitchly
bitchs
bitchy
bitchyed
bitchyer
bitchyes
bitchying
bitchyly
bitchys
bleached
bleacher
bleaches
bleaching
bleachly
bleachs
blow job
blow jobed
blow jober
blow jobes
blow jobing
blow jobly
blow jobs
blowed
blower
blowes
blowing
blowjob
blowjobed
blowjober
blowjobes
blowjobing
blowjobly
blowjobs
blowjobsed
blowjobser
blowjobses
blowjobsing
blowjobsly
blowjobss
blowly
blows
boink
boinked
boinker
boinkes
boinking
boinkly
boinks
bollock
bollocked
bollocker
bollockes
bollocking
bollockly
bollocks
bollocksed
bollockser
bollockses
bollocksing
bollocksly
bollockss
bollok
bolloked
bolloker
bollokes
bolloking
bollokly
bolloks
boner
bonered
bonerer
boneres
bonering
bonerly
boners
bonersed
bonerser
bonerses
bonersing
bonersly
bonerss
bong
bonged
bonger
bonges
bonging
bongly
bongs
boob
boobed
boober
boobes
boobies
boobiesed
boobieser
boobieses
boobiesing
boobiesly
boobiess
boobing
boobly
boobs
boobsed
boobser
boobses
boobsing
boobsly
boobss
booby
boobyed
boobyer
boobyes
boobying
boobyly
boobys
booger
boogered
boogerer
boogeres
boogering
boogerly
boogers
bookie
bookieed
bookieer
bookiees
bookieing
bookiely
bookies
bootee
booteeed
booteeer
booteees
booteeing
booteely
bootees
bootie
bootieed
bootieer
bootiees
bootieing
bootiely
booties
booty
bootyed
bootyer
bootyes
bootying
bootyly
bootys
boozeed
boozeer
boozees
boozeing
boozely
boozer
boozered
boozerer
boozeres
boozering
boozerly
boozers
boozes
boozy
boozyed
boozyer
boozyes
boozying
boozyly
boozys
bosomed
bosomer
bosomes
bosoming
bosomly
bosoms
bosomy
bosomyed
bosomyer
bosomyes
bosomying
bosomyly
bosomys
bugger
buggered
buggerer
buggeres
buggering
buggerly
buggers
bukkake
bukkakeed
bukkakeer
bukkakees
bukkakeing
bukkakely
bukkakes
bull shit
bull shited
bull shiter
bull shites
bull shiting
bull shitly
bull shits
bullshit
bullshited
bullshiter
bullshites
bullshiting
bullshitly
bullshits
bullshitsed
bullshitser
bullshitses
bullshitsing
bullshitsly
bullshitss
bullshitted
bullshitteded
bullshitteder
bullshittedes
bullshitteding
bullshittedly
bullshitteds
bullturds
bullturdsed
bullturdser
bullturdses
bullturdsing
bullturdsly
bullturdss
bung
bunged
bunger
bunges
bunging
bungly
bungs
busty
bustyed
bustyer
bustyes
bustying
bustyly
bustys
butt
butt fuck
butt fucked
butt fucker
butt fuckes
butt fucking
butt fuckly
butt fucks
butted
buttes
buttfuck
buttfucked
buttfucker
buttfuckered
buttfuckerer
buttfuckeres
buttfuckering
buttfuckerly
buttfuckers
buttfuckes
buttfucking
buttfuckly
buttfucks
butting
buttly
buttplug
buttpluged
buttpluger
buttpluges
buttpluging
buttplugly
buttplugs
butts
caca
cacaed
cacaer
cacaes
cacaing
cacaly
cacas
cahone
cahoneed
cahoneer
cahonees
cahoneing
cahonely
cahones
cameltoe
cameltoeed
cameltoeer
cameltoees
cameltoeing
cameltoely
cameltoes
carpetmuncher
carpetmunchered
carpetmuncherer
carpetmuncheres
carpetmunchering
carpetmuncherly
carpetmunchers
cawk
cawked
cawker
cawkes
cawking
cawkly
cawks
chinc
chinced
chincer
chinces
chincing
chincly
chincs
chincsed
chincser
chincses
chincsing
chincsly
chincss
chink
chinked
chinker
chinkes
chinking
chinkly
chinks
chode
chodeed
chodeer
chodees
chodeing
chodely
chodes
chodesed
chodeser
chodeses
chodesing
chodesly
chodess
clit
clited
cliter
clites
cliting
clitly
clitoris
clitorised
clitoriser
clitorises
clitorising
clitorisly
clitoriss
clitorus
clitorused
clitoruser
clitoruses
clitorusing
clitorusly
clitoruss
clits
clitsed
clitser
clitses
clitsing
clitsly
clitss
clitty
clittyed
clittyer
clittyes
clittying
clittyly
clittys
cocain
cocaine
cocained
cocaineed
cocaineer
cocainees
cocaineing
cocainely
cocainer
cocaines
cocaining
cocainly
cocains
cock
cock sucker
cock suckered
cock suckerer
cock suckeres
cock suckering
cock suckerly
cock suckers
cockblock
cockblocked
cockblocker
cockblockes
cockblocking
cockblockly
cockblocks
cocked
cocker
cockes
cockholster
cockholstered
cockholsterer
cockholsteres
cockholstering
cockholsterly
cockholsters
cocking
cockknocker
cockknockered
cockknockerer
cockknockeres
cockknockering
cockknockerly
cockknockers
cockly
cocks
cocksed
cockser
cockses
cocksing
cocksly
cocksmoker
cocksmokered
cocksmokerer
cocksmokeres
cocksmokering
cocksmokerly
cocksmokers
cockss
cocksucker
cocksuckered
cocksuckerer
cocksuckeres
cocksuckering
cocksuckerly
cocksuckers
coital
coitaled
coitaler
coitales
coitaling
coitally
coitals
commie
commieed
commieer
commiees
commieing
commiely
commies
condomed
condomer
condomes
condoming
condomly
condoms
coon
cooned
cooner
coones
cooning
coonly
coons
coonsed
coonser
coonses
coonsing
coonsly
coonss
corksucker
corksuckered
corksuckerer
corksuckeres
corksuckering
corksuckerly
corksuckers
cracked
crackwhore
crackwhoreed
crackwhoreer
crackwhorees
crackwhoreing
crackwhorely
crackwhores
crap
craped
craper
crapes
craping
craply
crappy
crappyed
crappyer
crappyes
crappying
crappyly
crappys
cum
cumed
cumer
cumes
cuming
cumly
cummin
cummined
cumminer
cummines
cumming
cumminged
cumminger
cumminges
cumminging
cummingly
cummings
cummining
cumminly
cummins
cums
cumshot
cumshoted
cumshoter
cumshotes
cumshoting
cumshotly
cumshots
cumshotsed
cumshotser
cumshotses
cumshotsing
cumshotsly
cumshotss
cumslut
cumsluted
cumsluter
cumslutes
cumsluting
cumslutly
cumsluts
cumstain
cumstained
cumstainer
cumstaines
cumstaining
cumstainly
cumstains
cunilingus
cunilingused
cunilinguser
cunilinguses
cunilingusing
cunilingusly
cunilinguss
cunnilingus
cunnilingused
cunnilinguser
cunnilinguses
cunnilingusing
cunnilingusly
cunnilinguss
cunny
cunnyed
cunnyer
cunnyes
cunnying
cunnyly
cunnys
cunt
cunted
cunter
cuntes
cuntface
cuntfaceed
cuntfaceer
cuntfacees
cuntfaceing
cuntfacely
cuntfaces
cunthunter
cunthuntered
cunthunterer
cunthunteres
cunthuntering
cunthunterly
cunthunters
cunting
cuntlick
cuntlicked
cuntlicker
cuntlickered
cuntlickerer
cuntlickeres
cuntlickering
cuntlickerly
cuntlickers
cuntlickes
cuntlicking
cuntlickly
cuntlicks
cuntly
cunts
cuntsed
cuntser
cuntses
cuntsing
cuntsly
cuntss
dago
dagoed
dagoer
dagoes
dagoing
dagoly
dagos
dagosed
dagoser
dagoses
dagosing
dagosly
dagoss
dammit
dammited
dammiter
dammites
dammiting
dammitly
dammits
damn
damned
damneded
damneder
damnedes
damneding
damnedly
damneds
damner
damnes
damning
damnit
damnited
damniter
damnites
damniting
damnitly
damnits
damnly
damns
dick
dickbag
dickbaged
dickbager
dickbages
dickbaging
dickbagly
dickbags
dickdipper
dickdippered
dickdipperer
dickdipperes
dickdippering
dickdipperly
dickdippers
dicked
dicker
dickes
dickface
dickfaceed
dickfaceer
dickfacees
dickfaceing
dickfacely
dickfaces
dickflipper
dickflippered
dickflipperer
dickflipperes
dickflippering
dickflipperly
dickflippers
dickhead
dickheaded
dickheader
dickheades
dickheading
dickheadly
dickheads
dickheadsed
dickheadser
dickheadses
dickheadsing
dickheadsly
dickheadss
dicking
dickish
dickished
dickisher
dickishes
dickishing
dickishly
dickishs
dickly
dickripper
dickrippered
dickripperer
dickripperes
dickrippering
dickripperly
dickrippers
dicks
dicksipper
dicksippered
dicksipperer
dicksipperes
dicksippering
dicksipperly
dicksippers
dickweed
dickweeded
dickweeder
dickweedes
dickweeding
dickweedly
dickweeds
dickwhipper
dickwhippered
dickwhipperer
dickwhipperes
dickwhippering
dickwhipperly
dickwhippers
dickzipper
dickzippered
dickzipperer
dickzipperes
dickzippering
dickzipperly
dickzippers
diddle
diddleed
diddleer
diddlees
diddleing
diddlely
diddles
dike
dikeed
dikeer
dikees
dikeing
dikely
dikes
dildo
dildoed
dildoer
dildoes
dildoing
dildoly
dildos
dildosed
dildoser
dildoses
dildosing
dildosly
dildoss
diligaf
diligafed
diligafer
diligafes
diligafing
diligafly
diligafs
dillweed
dillweeded
dillweeder
dillweedes
dillweeding
dillweedly
dillweeds
dimwit
dimwited
dimwiter
dimwites
dimwiting
dimwitly
dimwits
dingle
dingleed
dingleer
dinglees
dingleing
dinglely
dingles
dipship
dipshiped
dipshiper
dipshipes
dipshiping
dipshiply
dipships
dizzyed
dizzyer
dizzyes
dizzying
dizzyly
dizzys
doggiestyleed
doggiestyleer
doggiestylees
doggiestyleing
doggiestylely
doggiestyles
doggystyleed
doggystyleer
doggystylees
doggystyleing
doggystylely
doggystyles
dong
donged
donger
donges
donging
dongly
dongs
doofus
doofused
doofuser
doofuses
doofusing
doofusly
doofuss
doosh
dooshed
doosher
dooshes
dooshing
dooshly
dooshs
dopeyed
dopeyer
dopeyes
dopeying
dopeyly
dopeys
douchebag
douchebaged
douchebager
douchebages
douchebaging
douchebagly
douchebags
douchebagsed
douchebagser
douchebagses
douchebagsing
douchebagsly
douchebagss
doucheed
doucheer
douchees
doucheing
douchely
douches
douchey
doucheyed
doucheyer
doucheyes
doucheying
doucheyly
doucheys
drunk
drunked
drunker
drunkes
drunking
drunkly
drunks
dumass
dumassed
dumasser
dumasses
dumassing
dumassly
dumasss
dumbass
dumbassed
dumbasser
dumbasses
dumbassesed
dumbasseser
dumbasseses
dumbassesing
dumbassesly
dumbassess
dumbassing
dumbassly
dumbasss
dummy
dummyed
dummyer
dummyes
dummying
dummyly
dummys
dyke
dykeed
dykeer
dykees
dykeing
dykely
dykes
dykesed
dykeser
dykeses
dykesing
dykesly
dykess
erotic
eroticed
eroticer
erotices
eroticing
eroticly
erotics
extacy
extacyed
extacyer
extacyes
extacying
extacyly
extacys
extasy
extasyed
extasyer
extasyes
extasying
extasyly
extasys
fack
facked
facker
fackes
facking
fackly
facks
fag
faged
fager
fages
fagg
fagged
faggeded
faggeder
faggedes
faggeding
faggedly
faggeds
fagger
fagges
fagging
faggit
faggited
faggiter
faggites
faggiting
faggitly
faggits
faggly
faggot
faggoted
faggoter
faggotes
faggoting
faggotly
faggots
faggs
faging
fagly
fagot
fagoted
fagoter
fagotes
fagoting
fagotly
fagots
fags
fagsed
fagser
fagses
fagsing
fagsly
fagss
faig
faiged
faiger
faiges
faiging
faigly
faigs
faigt
faigted
faigter
faigtes
faigting
faigtly
faigts
fannybandit
fannybandited
fannybanditer
fannybandites
fannybanditing
fannybanditly
fannybandits
farted
farter
fartes
farting
fartknocker
fartknockered
fartknockerer
fartknockeres
fartknockering
fartknockerly
fartknockers
fartly
farts
felch
felched
felcher
felchered
felcherer
felcheres
felchering
felcherly
felchers
felches
felching
felchinged
felchinger
felchinges
felchinging
felchingly
felchings
felchly
felchs
fellate
fellateed
fellateer
fellatees
fellateing
fellately
fellates
fellatio
fellatioed
fellatioer
fellatioes
fellatioing
fellatioly
fellatios
feltch
feltched
feltcher
feltchered
feltcherer
feltcheres
feltchering
feltcherly
feltchers
feltches
feltching
feltchly
feltchs
feom
feomed
feomer
feomes
feoming
feomly
feoms
fisted
fisteded
fisteder
fistedes
fisteding
fistedly
fisteds
fisting
fistinged
fistinger
fistinges
fistinging
fistingly
fistings
fisty
fistyed
fistyer
fistyes
fistying
fistyly
fistys
floozy
floozyed
floozyer
floozyes
floozying
floozyly
floozys
foad
foaded
foader
foades
foading
foadly
foads
fondleed
fondleer
fondlees
fondleing
fondlely
fondles
foobar
foobared
foobarer
foobares
foobaring
foobarly
foobars
freex
freexed
freexer
freexes
freexing
freexly
freexs
frigg
frigga
friggaed
friggaer
friggaes
friggaing
friggaly
friggas
frigged
frigger
frigges
frigging
friggly
friggs
fubar
fubared
fubarer
fubares
fubaring
fubarly
fubars
fuck
fuckass
fuckassed
fuckasser
fuckasses
fuckassing
fuckassly
fuckasss
fucked
fuckeded
fuckeder
fuckedes
fuckeding
fuckedly
fuckeds
fucker
fuckered
fuckerer
fuckeres
fuckering
fuckerly
fuckers
fuckes
fuckface
fuckfaceed
fuckfaceer
fuckfacees
fuckfaceing
fuckfacely
fuckfaces
fuckin
fuckined
fuckiner
fuckines
fucking
fuckinged
fuckinger
fuckinges
fuckinging
fuckingly
fuckings
fuckining
fuckinly
fuckins
fuckly
fucknugget
fucknuggeted
fucknuggeter
fucknuggetes
fucknuggeting
fucknuggetly
fucknuggets
fucknut
fucknuted
fucknuter
fucknutes
fucknuting
fucknutly
fucknuts
fuckoff
fuckoffed
fuckoffer
fuckoffes
fuckoffing
fuckoffly
fuckoffs
fucks
fucksed
fuckser
fuckses
fucksing
fucksly
fuckss
fucktard
fucktarded
fucktarder
fucktardes
fucktarding
fucktardly
fucktards
fuckup
fuckuped
fuckuper
fuckupes
fuckuping
fuckuply
fuckups
fuckwad
fuckwaded
fuckwader
fuckwades
fuckwading
fuckwadly
fuckwads
fuckwit
fuckwited
fuckwiter
fuckwites
fuckwiting
fuckwitly
fuckwits
fudgepacker
fudgepackered
fudgepackerer
fudgepackeres
fudgepackering
fudgepackerly
fudgepackers
fuk
fuked
fuker
fukes
fuking
fukly
fuks
fvck
fvcked
fvcker
fvckes
fvcking
fvckly
fvcks
fxck
fxcked
fxcker
fxckes
fxcking
fxckly
fxcks
gae
gaeed
gaeer
gaees
gaeing
gaely
gaes
gai
gaied
gaier
gaies
gaiing
gaily
gais
ganja
ganjaed
ganjaer
ganjaes
ganjaing
ganjaly
ganjas
gayed
gayer
gayes
gaying
gayly
gays
gaysed
gayser
gayses
gaysing
gaysly
gayss
gey
geyed
geyer
geyes
geying
geyly
geys
gfc
gfced
gfcer
gfces
gfcing
gfcly
gfcs
gfy
gfyed
gfyer
gfyes
gfying
gfyly
gfys
ghay
ghayed
ghayer
ghayes
ghaying
ghayly
ghays
ghey
gheyed
gheyer
gheyes
gheying
gheyly
gheys
gigolo
gigoloed
gigoloer
gigoloes
gigoloing
gigololy
gigolos
goatse
goatseed
goatseer
goatsees
goatseing
goatsely
goatses
godamn
godamned
godamner
godamnes
godamning
godamnit
godamnited
godamniter
godamnites
godamniting
godamnitly
godamnits
godamnly
godamns
goddam
goddamed
goddamer
goddames
goddaming
goddamly
goddammit
goddammited
goddammiter
goddammites
goddammiting
goddammitly
goddammits
goddamn
goddamned
goddamner
goddamnes
goddamning
goddamnly
goddamns
goddams
goldenshower
goldenshowered
goldenshowerer
goldenshoweres
goldenshowering
goldenshowerly
goldenshowers
gonad
gonaded
gonader
gonades
gonading
gonadly
gonads
gonadsed
gonadser
gonadses
gonadsing
gonadsly
gonadss
gook
gooked
gooker
gookes
gooking
gookly
gooks
gooksed
gookser
gookses
gooksing
gooksly
gookss
gringo
gringoed
gringoer
gringoes
gringoing
gringoly
gringos
gspot
gspoted
gspoter
gspotes
gspoting
gspotly
gspots
gtfo
gtfoed
gtfoer
gtfoes
gtfoing
gtfoly
gtfos
guido
guidoed
guidoer
guidoes
guidoing
guidoly
guidos
handjob
handjobed
handjober
handjobes
handjobing
handjobly
handjobs
hard on
hard oned
hard oner
hard ones
hard oning
hard only
hard ons
hardknight
hardknighted
hardknighter
hardknightes
hardknighting
hardknightly
hardknights
hebe
hebeed
hebeer
hebees
hebeing
hebely
hebes
heeb
heebed
heeber
heebes
heebing
heebly
heebs
hell
helled
heller
helles
helling
hellly
hells
hemp
hemped
hemper
hempes
hemping
hemply
hemps
heroined
heroiner
heroines
heroining
heroinly
heroins
herp
herped
herper
herpes
herpesed
herpeser
herpeses
herpesing
herpesly
herpess
herping
herply
herps
herpy
herpyed
herpyer
herpyes
herpying
herpyly
herpys
hitler
hitlered
hitlerer
hitleres
hitlering
hitlerly
hitlers
hived
hiver
hives
hiving
hivly
hivs
hobag
hobaged
hobager
hobages
hobaging
hobagly
hobags
homey
homeyed
homeyer
homeyes
homeying
homeyly
homeys
homo
homoed
homoer
homoes
homoey
homoeyed
homoeyer
homoeyes
homoeying
homoeyly
homoeys
homoing
homoly
homos
honky
honkyed
honkyer
honkyes
honkying
honkyly
honkys
hooch
hooched
hoocher
hooches
hooching
hoochly
hoochs
hookah
hookahed
hookaher
hookahes
hookahing
hookahly
hookahs
hooker
hookered
hookerer
hookeres
hookering
hookerly
hookers
hoor
hoored
hoorer
hoores
hooring
hoorly
hoors
hootch
hootched
hootcher
hootches
hootching
hootchly
hootchs
hooter
hootered
hooterer
hooteres
hootering
hooterly
hooters
hootersed
hooterser
hooterses
hootersing
hootersly
hooterss
horny
hornyed
hornyer
hornyes
hornying
hornyly
hornys
houstoned
houstoner
houstones
houstoning
houstonly
houstons
hump
humped
humpeded
humpeder
humpedes
humpeding
humpedly
humpeds
humper
humpes
humping
humpinged
humpinger
humpinges
humpinging
humpingly
humpings
humply
humps
husbanded
husbander
husbandes
husbanding
husbandly
husbands
hussy
hussyed
hussyer
hussyes
hussying
hussyly
hussys
hymened
hymener
hymenes
hymening
hymenly
hymens
inbred
inbreded
inbreder
inbredes
inbreding
inbredly
inbreds
incest
incested
incester
incestes
incesting
incestly
incests
injun
injuned
injuner
injunes
injuning
injunly
injuns
jackass
jackassed
jackasser
jackasses
jackassing
jackassly
jackasss
jackhole
jackholeed
jackholeer
jackholees
jackholeing
jackholely
jackholes
jackoff
jackoffed
jackoffer
jackoffes
jackoffing
jackoffly
jackoffs
jap
japed
japer
japes
japing
japly
japs
japsed
japser
japses
japsing
japsly
japss
jerkoff
jerkoffed
jerkoffer
jerkoffes
jerkoffing
jerkoffly
jerkoffs
jerks
jism
jismed
jismer
jismes
jisming
jismly
jisms
jiz
jized
jizer
jizes
jizing
jizly
jizm
jizmed
jizmer
jizmes
jizming
jizmly
jizms
jizs
jizz
jizzed
jizzeded
jizzeder
jizzedes
jizzeding
jizzedly
jizzeds
jizzer
jizzes
jizzing
jizzly
jizzs
junkie
junkieed
junkieer
junkiees
junkieing
junkiely
junkies
junky
junkyed
junkyer
junkyes
junkying
junkyly
junkys
kike
kikeed
kikeer
kikees
kikeing
kikely
kikes
kikesed
kikeser
kikeses
kikesing
kikesly
kikess
killed
killer
killes
killing
killly
kills
kinky
kinkyed
kinkyer
kinkyes
kinkying
kinkyly
kinkys
kkk
kkked
kkker
kkkes
kkking
kkkly
kkks
klan
klaned
klaner
klanes
klaning
klanly
klans
knobend
knobended
knobender
knobendes
knobending
knobendly
knobends
kooch
kooched
koocher
kooches
koochesed
koocheser
koocheses
koochesing
koochesly
koochess
kooching
koochly
koochs
kootch
kootched
kootcher
kootches
kootching
kootchly
kootchs
kraut
krauted
krauter
krautes
krauting
krautly
krauts
kyke
kykeed
kykeer
kykees
kykeing
kykely
kykes
lech
leched
lecher
leches
leching
lechly
lechs
leper
lepered
leperer
leperes
lepering
leperly
lepers
lesbiansed
lesbianser
lesbianses
lesbiansing
lesbiansly
lesbianss
lesbo
lesboed
lesboer
lesboes
lesboing
lesboly
lesbos
lesbosed
lesboser
lesboses
lesbosing
lesbosly
lesboss
lez
lezbianed
lezbianer
lezbianes
lezbianing
lezbianly
lezbians
lezbiansed
lezbianser
lezbianses
lezbiansing
lezbiansly
lezbianss
lezbo
lezboed
lezboer
lezboes
lezboing
lezboly
lezbos
lezbosed
lezboser
lezboses
lezbosing
lezbosly
lezboss
lezed
lezer
lezes
lezing
lezly
lezs
lezzie
lezzieed
lezzieer
lezziees
lezzieing
lezziely
lezzies
lezziesed
lezzieser
lezzieses
lezziesing
lezziesly
lezziess
lezzy
lezzyed
lezzyer
lezzyes
lezzying
lezzyly
lezzys
lmaoed
lmaoer
lmaoes
lmaoing
lmaoly
lmaos
lmfao
lmfaoed
lmfaoer
lmfaoes
lmfaoing
lmfaoly
lmfaos
loined
loiner
loines
loining
loinly
loins
loinsed
loinser
loinses
loinsing
loinsly
loinss
lubeed
lubeer
lubees
lubeing
lubely
lubes
lusty
lustyed
lustyer
lustyes
lustying
lustyly
lustys
massa
massaed
massaer
massaes
massaing
massaly
massas
masterbate
masterbateed
masterbateer
masterbatees
masterbateing
masterbately
masterbates
masterbating
masterbatinged
masterbatinger
masterbatinges
masterbatinging
masterbatingly
masterbatings
masterbation
masterbationed
masterbationer
masterbationes
masterbationing
masterbationly
masterbations
masturbate
masturbateed
masturbateer
masturbatees
masturbateing
masturbately
masturbates
masturbating
masturbatinged
masturbatinger
masturbatinges
masturbatinging
masturbatingly
masturbatings
masturbation
masturbationed
masturbationer
masturbationes
masturbationing
masturbationly
masturbations
methed
mether
methes
mething
methly
meths
militaryed
militaryer
militaryes
militarying
militaryly
militarys
mofo
mofoed
mofoer
mofoes
mofoing
mofoly
mofos
molest
molested
molester
molestes
molesting
molestly
molests
moolie
moolieed
moolieer
mooliees
moolieing
mooliely
moolies
moron
moroned
moroner
morones
moroning
moronly
morons
motherfucka
motherfuckaed
motherfuckaer
motherfuckaes
motherfuckaing
motherfuckaly
motherfuckas
motherfucker
motherfuckered
motherfuckerer
motherfuckeres
motherfuckering
motherfuckerly
motherfuckers
motherfucking
motherfuckinged
motherfuckinger
motherfuckinges
motherfuckinging
motherfuckingly
motherfuckings
mtherfucker
mtherfuckered
mtherfuckerer
mtherfuckeres
mtherfuckering
mtherfuckerly
mtherfuckers
mthrfucker
mthrfuckered
mthrfuckerer
mthrfuckeres
mthrfuckering
mthrfuckerly
mthrfuckers
mthrfucking
mthrfuckinged
mthrfuckinger
mthrfuckinges
mthrfuckinging
mthrfuckingly
mthrfuckings
muff
muffdiver
muffdivered
muffdiverer
muffdiveres
muffdivering
muffdiverly
muffdivers
muffed
muffer
muffes
muffing
muffly
muffs
murdered
murderer
murderes
murdering
murderly
murders
muthafuckaz
muthafuckazed
muthafuckazer
muthafuckazes
muthafuckazing
muthafuckazly
muthafuckazs
muthafucker
muthafuckered
muthafuckerer
muthafuckeres
muthafuckering
muthafuckerly
muthafuckers
mutherfucker
mutherfuckered
mutherfuckerer
mutherfuckeres
mutherfuckering
mutherfuckerly
mutherfuckers
mutherfucking
mutherfuckinged
mutherfuckinger
mutherfuckinges
mutherfuckinging
mutherfuckingly
mutherfuckings
muthrfucking
muthrfuckinged
muthrfuckinger
muthrfuckinges
muthrfuckinging
muthrfuckingly
muthrfuckings
nad
naded
nader
nades
nading
nadly
nads
nadsed
nadser
nadses
nadsing
nadsly
nadss
nakeded
nakeder
nakedes
nakeding
nakedly
nakeds
napalm
napalmed
napalmer
napalmes
napalming
napalmly
napalms
nappy
nappyed
nappyer
nappyes
nappying
nappyly
nappys
nazi
nazied
nazier
nazies
naziing
nazily
nazis
nazism
nazismed
nazismer
nazismes
nazisming
nazismly
nazisms
negro
negroed
negroer
negroes
negroing
negroly
negros
nigga
niggaed
niggaer
niggaes
niggah
niggahed
niggaher
niggahes
niggahing
niggahly
niggahs
niggaing
niggaly
niggas
niggased
niggaser
niggases
niggasing
niggasly
niggass
niggaz
niggazed
niggazer
niggazes
niggazing
niggazly
niggazs
nigger
niggered
niggerer
niggeres
niggering
niggerly
niggers
niggersed
niggerser
niggerses
niggersing
niggersly
niggerss
niggle
niggleed
niggleer
nigglees
niggleing
nigglely
niggles
niglet
nigleted
nigleter
nigletes
nigleting
nigletly
niglets
nimrod
nimroded
nimroder
nimrodes
nimroding
nimrodly
nimrods
ninny
ninnyed
ninnyer
ninnyes
ninnying
ninnyly
ninnys
nooky
nookyed
nookyer
nookyes
nookying
nookyly
nookys
nuccitelli
nuccitellied
nuccitellier
nuccitellies
nuccitelliing
nuccitellily
nuccitellis
nympho
nymphoed
nymphoer
nymphoes
nymphoing
nympholy
nymphos
opium
opiumed
opiumer
opiumes
opiuming
opiumly
opiums
orgies
orgiesed
orgieser
orgieses
orgiesing
orgiesly
orgiess
orgy
orgyed
orgyer
orgyes
orgying
orgyly
orgys
paddy
paddyed
paddyer
paddyes
paddying
paddyly
paddys
paki
pakied
pakier
pakies
pakiing
pakily
pakis
pantie
pantieed
pantieer
pantiees
pantieing
pantiely
panties
pantiesed
pantieser
pantieses
pantiesing
pantiesly
pantiess
panty
pantyed
pantyer
pantyes
pantying
pantyly
pantys
pastie
pastieed
pastieer
pastiees
pastieing
pastiely
pasties
pasty
pastyed
pastyer
pastyes
pastying
pastyly
pastys
pecker
peckered
peckerer
peckeres
peckering
peckerly
peckers
pedo
pedoed
pedoer
pedoes
pedoing
pedoly
pedophile
pedophileed
pedophileer
pedophilees
pedophileing
pedophilely
pedophiles
pedophilia
pedophiliac
pedophiliaced
pedophiliacer
pedophiliaces
pedophiliacing
pedophiliacly
pedophiliacs
pedophiliaed
pedophiliaer
pedophiliaes
pedophiliaing
pedophilialy
pedophilias
pedos
penial
penialed
penialer
peniales
penialing
penially
penials
penile
penileed
penileer
penilees
penileing
penilely
peniles
penis
penised
peniser
penises
penising
penisly
peniss
perversion
perversioned
perversioner
perversiones
perversioning
perversionly
perversions
peyote
peyoteed
peyoteer
peyotees
peyoteing
peyotely
peyotes
phuck
phucked
phucker
phuckes
phucking
phuckly
phucks
pillowbiter
pillowbitered
pillowbiterer
pillowbiteres
pillowbitering
pillowbiterly
pillowbiters
pimp
pimped
pimper
pimpes
pimping
pimply
pimps
pinko
pinkoed
pinkoer
pinkoes
pinkoing
pinkoly
pinkos
pissed
pisseded
pisseder
pissedes
pisseding
pissedly
pisseds
pisser
pisses
pissing
pissly
pissoff
pissoffed
pissoffer
pissoffes
pissoffing
pissoffly
pissoffs
pisss
polack
polacked
polacker
polackes
polacking
polackly
polacks
pollock
pollocked
pollocker
pollockes
pollocking
pollockly
pollocks
poon
pooned
pooner
poones
pooning
poonly
poons
poontang
poontanged
poontanger
poontanges
poontanging
poontangly
poontangs
porn
porned
porner
pornes
porning
pornly
porno
pornoed
pornoer
pornoes
pornography
pornographyed
pornographyer
pornographyes
pornographying
pornographyly
pornographys
pornoing
pornoly
pornos
porns
prick
pricked
pricker
prickes
pricking
prickly
pricks
prig
priged
priger
priges
priging
prigly
prigs
prostitute
prostituteed
prostituteer
prostitutees
prostituteing
prostitutely
prostitutes
prude
prudeed
prudeer
prudees
prudeing
prudely
prudes
punkass
punkassed
punkasser
punkasses
punkassing
punkassly
punkasss
punky
punkyed
punkyer
punkyes
punkying
punkyly
punkys
puss
pussed
pusser
pusses
pussies
pussiesed
pussieser
pussieses
pussiesing
pussiesly
pussiess
pussing
pussly
pusss
pussy
pussyed
pussyer
pussyes
pussying
pussyly
pussypounder
pussypoundered
pussypounderer
pussypounderes
pussypoundering
pussypounderly
pussypounders
pussys
puto
putoed
putoer
putoes
putoing
putoly
putos
queaf
queafed
queafer
queafes
queafing
queafly
queafs
queef
queefed
queefer
queefes
queefing
queefly
queefs
queer
queered
queerer
queeres
queering
queerly
queero
queeroed
queeroer
queeroes
queeroing
queeroly
queeros
queers
queersed
queerser
queerses
queersing
queersly
queerss
quicky
quickyed
quickyer
quickyes
quickying
quickyly
quickys
quim
quimed
quimer
quimes
quiming
quimly
quims
racy
racyed
racyer
racyes
racying
racyly
racys
rape
raped
rapeded
rapeder
rapedes
rapeding
rapedly
rapeds
rapeed
rapeer
rapees
rapeing
rapely
raper
rapered
raperer
raperes
rapering
raperly
rapers
rapes
rapist
rapisted
rapister
rapistes
rapisting
rapistly
rapists
raunch
raunched
rauncher
raunches
raunching
raunchly
raunchs
rectus
rectused
rectuser
rectuses
rectusing
rectusly
rectuss
reefer
reefered
reeferer
reeferes
reefering
reeferly
reefers
reetard
reetarded
reetarder
reetardes
reetarding
reetardly
reetards
reich
reiched
reicher
reiches
reiching
reichly
reichs
retard
retarded
retardeded
retardeder
retardedes
retardeding
retardedly
retardeds
retarder
retardes
retarding
retardly
retards
rimjob
rimjobed
rimjober
rimjobes
rimjobing
rimjobly
rimjobs
ritard
ritarded
ritarder
ritardes
ritarding
ritardly
ritards
rtard
rtarded
rtarder
rtardes
rtarding
rtardly
rtards
rum
rumed
rumer
rumes
ruming
rumly
rump
rumped
rumper
rumpes
rumping
rumply
rumprammer
rumprammered
rumprammerer
rumprammeres
rumprammering
rumprammerly
rumprammers
rumps
rums
ruski
ruskied
ruskier
ruskies
ruskiing
ruskily
ruskis
sadism
sadismed
sadismer
sadismes
sadisming
sadismly
sadisms
sadist
sadisted
sadister
sadistes
sadisting
sadistly
sadists
scag
scaged
scager
scages
scaging
scagly
scags
scantily
scantilyed
scantilyer
scantilyes
scantilying
scantilyly
scantilys
schlong
schlonged
schlonger
schlonges
schlonging
schlongly
schlongs
scrog
scroged
scroger
scroges
scroging
scrogly
scrogs
scrot
scrote
scroted
scroteed
scroteer
scrotees
scroteing
scrotely
scroter
scrotes
scroting
scrotly
scrots
scrotum
scrotumed
scrotumer
scrotumes
scrotuming
scrotumly
scrotums
scrud
scruded
scruder
scrudes
scruding
scrudly
scruds
scum
scumed
scumer
scumes
scuming
scumly
scums
seaman
seamaned
seamaner
seamanes
seamaning
seamanly
seamans
seamen
seamened
seamener
seamenes
seamening
seamenly
seamens
seduceed
seduceer
seducees
seduceing
seducely
seduces
semen
semened
semener
semenes
semening
semenly
semens
shamedame
shamedameed
shamedameer
shamedamees
shamedameing
shamedamely
shamedames
shit
shite
shiteater
shiteatered
shiteaterer
shiteateres
shiteatering
shiteaterly
shiteaters
shited
shiteed
shiteer
shitees
shiteing
shitely
shiter
shites
shitface
shitfaceed
shitfaceer
shitfacees
shitfaceing
shitfacely
shitfaces
shithead
shitheaded
shitheader
shitheades
shitheading
shitheadly
shitheads
shithole
shitholeed
shitholeer
shitholees
shitholeing
shitholely
shitholes
shithouse
shithouseed
shithouseer
shithousees
shithouseing
shithousely
shithouses
shiting
shitly
shits
shitsed
shitser
shitses
shitsing
shitsly
shitss
shitt
shitted
shitteded
shitteder
shittedes
shitteding
shittedly
shitteds
shitter
shittered
shitterer
shitteres
shittering
shitterly
shitters
shittes
shitting
shittly
shitts
shitty
shittyed
shittyer
shittyes
shittying
shittyly
shittys
shiz
shized
shizer
shizes
shizing
shizly
shizs
shooted
shooter
shootes
shooting
shootly
shoots
sissy
sissyed
sissyer
sissyes
sissying
sissyly
sissys
skag
skaged
skager
skages
skaging
skagly
skags
skank
skanked
skanker
skankes
skanking
skankly
skanks
slave
slaveed
slaveer
slavees
slaveing
slavely
slaves
sleaze
sleazeed
sleazeer
sleazees
sleazeing
sleazely
sleazes
sleazy
sleazyed
sleazyer
sleazyes
sleazying
sleazyly
sleazys
slut
slutdumper
slutdumpered
slutdumperer
slutdumperes
slutdumpering
slutdumperly
slutdumpers
sluted
sluter
slutes
sluting
slutkiss
slutkissed
slutkisser
slutkisses
slutkissing
slutkissly
slutkisss
slutly
sluts
slutsed
slutser
slutses
slutsing
slutsly
slutss
smegma
smegmaed
smegmaer
smegmaes
smegmaing
smegmaly
smegmas
smut
smuted
smuter
smutes
smuting
smutly
smuts
smutty
smuttyed
smuttyer
smuttyes
smuttying
smuttyly
smuttys
snatch
snatched
snatcher
snatches
snatching
snatchly
snatchs
sniper
snipered
sniperer
sniperes
snipering
sniperly
snipers
snort
snorted
snorter
snortes
snorting
snortly
snorts
snuff
snuffed
snuffer
snuffes
snuffing
snuffly
snuffs
sodom
sodomed
sodomer
sodomes
sodoming
sodomly
sodoms
spic
spiced
spicer
spices
spicing
spick
spicked
spicker
spickes
spicking
spickly
spicks
spicly
spics
spik
spoof
spoofed
spoofer
spoofes
spoofing
spoofly
spoofs
spooge
spoogeed
spoogeer
spoogees
spoogeing
spoogely
spooges
spunk
spunked
spunker
spunkes
spunking
spunkly
spunks
steamyed
steamyer
steamyes
steamying
steamyly
steamys
stfu
stfued
stfuer
stfues
stfuing
stfuly
stfus
stiffy
stiffyed
stiffyer
stiffyes
stiffying
stiffyly
stiffys
stoneded
stoneder
stonedes
stoneding
stonedly
stoneds
stupided
stupider
stupides
stupiding
stupidly
stupids
suckeded
suckeder
suckedes
suckeding
suckedly
suckeds
sucker
suckes
sucking
suckinged
suckinger
suckinges
suckinging
suckingly
suckings
suckly
sucks
sumofabiatch
sumofabiatched
sumofabiatcher
sumofabiatches
sumofabiatching
sumofabiatchly
sumofabiatchs
tard
tarded
tarder
tardes
tarding
tardly
tards
tawdry
tawdryed
tawdryer
tawdryes
tawdrying
tawdryly
tawdrys
teabagging
teabagginged
teabagginger
teabagginges
teabagginging
teabaggingly
teabaggings
terd
terded
terder
terdes
terding
terdly
terds
teste
testee
testeed
testeeed
testeeer
testeees
testeeing
testeely
testeer
testees
testeing
testely
testes
testesed
testeser
testeses
testesing
testesly
testess
testicle
testicleed
testicleer
testiclees
testicleing
testiclely
testicles
testis
testised
testiser
testises
testising
testisly
testiss
thrusted
thruster
thrustes
thrusting
thrustly
thrusts
thug
thuged
thuger
thuges
thuging
thugly
thugs
tinkle
tinkleed
tinkleer
tinklees
tinkleing
tinklely
tinkles
tit
tited
titer
tites
titfuck
titfucked
titfucker
titfuckes
titfucking
titfuckly
titfucks
titi
titied
titier
tities
titiing
titily
titing
titis
titly
tits
titsed
titser
titses
titsing
titsly
titss
tittiefucker
tittiefuckered
tittiefuckerer
tittiefuckeres
tittiefuckering
tittiefuckerly
tittiefuckers
titties
tittiesed
tittieser
tittieses
tittiesing
tittiesly
tittiess
titty
tittyed
tittyer
tittyes
tittyfuck
tittyfucked
tittyfucker
tittyfuckered
tittyfuckerer
tittyfuckeres
tittyfuckering
tittyfuckerly
tittyfuckers
tittyfuckes
tittyfucking
tittyfuckly
tittyfucks
tittying
tittyly
tittys
toke
tokeed
tokeer
tokees
tokeing
tokely
tokes
toots
tootsed
tootser
tootses
tootsing
tootsly
tootss
tramp
tramped
tramper
trampes
tramping
tramply
tramps
transsexualed
transsexualer
transsexuales
transsexualing
transsexually
transsexuals
trashy
trashyed
trashyer
trashyes
trashying
trashyly
trashys
tubgirl
tubgirled
tubgirler
tubgirles
tubgirling
tubgirlly
tubgirls
turd
turded
turder
turdes
turding
turdly
turds
tush
tushed
tusher
tushes
tushing
tushly
tushs
twat
twated
twater
twates
twating
twatly
twats
twatsed
twatser
twatses
twatsing
twatsly
twatss
undies
undiesed
undieser
undieses
undiesing
undiesly
undiess
unweded
unweder
unwedes
unweding
unwedly
unweds
uzi
uzied
uzier
uzies
uziing
uzily
uzis
vag
vaged
vager
vages
vaging
vagly
vags
valium
valiumed
valiumer
valiumes
valiuming
valiumly
valiums
venous
virgined
virginer
virgines
virgining
virginly
virgins
vixen
vixened
vixener
vixenes
vixening
vixenly
vixens
vodkaed
vodkaer
vodkaes
vodkaing
vodkaly
vodkas
voyeur
voyeured
voyeurer
voyeures
voyeuring
voyeurly
voyeurs
vulgar
vulgared
vulgarer
vulgares
vulgaring
vulgarly
vulgars
wang
wanged
wanger
wanges
wanging
wangly
wangs
wank
wanked
wanker
wankered
wankerer
wankeres
wankering
wankerly
wankers
wankes
wanking
wankly
wanks
wazoo
wazooed
wazooer
wazooes
wazooing
wazooly
wazoos
wedgie
wedgieed
wedgieer
wedgiees
wedgieing
wedgiely
wedgies
weeded
weeder
weedes
weeding
weedly
weeds
weenie
weenieed
weenieer
weeniees
weenieing
weeniely
weenies
weewee
weeweeed
weeweeer
weeweees
weeweeing
weeweely
weewees
weiner
weinered
weinerer
weineres
weinering
weinerly
weiners
weirdo
weirdoed
weirdoer
weirdoes
weirdoing
weirdoly
weirdos
wench
wenched
wencher
wenches
wenching
wenchly
wenchs
wetback
wetbacked
wetbacker
wetbackes
wetbacking
wetbackly
wetbacks
whitey
whiteyed
whiteyer
whiteyes
whiteying
whiteyly
whiteys
whiz
whized
whizer
whizes
whizing
whizly
whizs
whoralicious
whoralicioused
whoraliciouser
whoraliciouses
whoraliciousing
whoraliciously
whoraliciouss
whore
whorealicious
whorealicioused
whorealiciouser
whorealiciouses
whorealiciousing
whorealiciously
whorealiciouss
whored
whoreded
whoreder
whoredes
whoreding
whoredly
whoreds
whoreed
whoreer
whorees
whoreface
whorefaceed
whorefaceer
whorefacees
whorefaceing
whorefacely
whorefaces
whorehopper
whorehoppered
whorehopperer
whorehopperes
whorehoppering
whorehopperly
whorehoppers
whorehouse
whorehouseed
whorehouseer
whorehousees
whorehouseing
whorehousely
whorehouses
whoreing
whorely
whores
whoresed
whoreser
whoreses
whoresing
whoresly
whoress
whoring
whoringed
whoringer
whoringes
whoringing
whoringly
whorings
wigger
wiggered
wiggerer
wiggeres
wiggering
wiggerly
wiggers
woody
woodyed
woodyer
woodyes
woodying
woodyly
woodys
wop
woped
woper
wopes
woping
woply
wops
wtf
wtfed
wtfer
wtfes
wtfing
wtfly
wtfs
xxx
xxxed
xxxer
xxxes
xxxing
xxxly
xxxs
yeasty
yeastyed
yeastyer
yeastyes
yeastying
yeastyly
yeastys
yobbo
yobboed
yobboer
yobboes
yobboing
yobboly
yobbos
zoophile
zoophileed
zoophileer
zoophilees
zoophileing
zoophilely
zoophiles
anal
ass
ass lick
balls
ballsac
bisexual
bleach
causas
cheap
cost of miracles
cunt
display network stats
fart
fda and death
fda AND warn
fda AND warning
fda AND warns
feom
fuck
gfc
humira AND expensive
illegal
madvocate
masturbation
nuccitelli
overdose
porn
shit
snort
texarkana
Bipolar depression
Depression
adolescent depression
adolescent major depressive disorder
adolescent schizophrenia
adolescent with major depressive disorder
animals
autism
baby
brexpiprazole
child
child bipolar
child depression
child schizophrenia
children with bipolar disorder
children with depression
children with major depressive disorder
compulsive behaviors
cure
elderly bipolar
elderly depression
elderly major depressive disorder
elderly schizophrenia
elderly with dementia
first break
first episode
gambling
gaming
geriatric depression
geriatric major depressive disorder
geriatric schizophrenia
infant
kid
major depressive disorder
major depressive disorder in adolescents
major depressive disorder in children
parenting
pediatric
pediatric bipolar
pediatric depression
pediatric major depressive disorder
pediatric schizophrenia
pregnancy
pregnant
rexulti
skin care
teen
wine
Negative Keywords Excluded Elements
header[@id='header']
section[contains(@class, 'nav-hidden')]
footer[@id='footer']
div[contains(@class, 'pane-node-field-article-topics')]
section[contains(@class, 'footer-nav-section-wrapper')]
section[contains(@class, 'content-row')]
div[contains(@class, 'panel-pane pane-article-read-next')]
Altmetric
DSM Affiliated
Display in offset block
QuickLearn Excluded Topics/Sections
Best Practices
CME
CME Supplements
Education Center
Medical Education Library
Disqus Exclude
Best Practices
CE/CME
Education Center
Medical Education Library
Enable Disqus
Display Author and Disclosure Link
Publication Type
Clinical
Slot System
Featured Buckets
Disable Sticky Ads
Disable Ad Block Mitigation
Featured Buckets Admin
Publication LayerRX Default ID
782
Show Ads on this Publication's Homepage
Consolidated Pub
Show Article Page Numbers on TOC
Use larger logo size
On
publication_blueconic_enabled
Off
Show More Destinations Menu
Disable Adhesion on Publication
Off
Restore Menu Label on Mobile Navigation
Disable Facebook Pixel from Publication
Exclude this publication from publication selection on articles and quiz
Gating Strategy
First Peek Free
Challenge Center
Disable Inline Native ads
Current Issue
Title
Current Issue
Description

A peer-reviewed clinical journal serving healthcare professionals working with the Department of Veterans Affairs, the Department of Defense, and the Public Health Service.

Current Issue Reference

Role of JAK2 in Polycythemia Vera

Article Type
Changed
Mon, 06/03/2024 - 12:16
Display Headline
Role of JAK2 in Polycythemia Vera

How does the presence of the JAK2 V617F mutation affect the diagnosis and classification of myeloproliferative neoplasms?

 

Dr. Richard: The JAK2 V617F mutation is found in > 90% of patients with polycythemia vera (PV). The remaining patients with PV have mutations in a different portion of the JAK2 gene. Since JAK2 mutations are found in virtually all patients with PV, having the mutation helps make the diagnosis, but does not carry prognostic significance. Some studies suggest that the allele burden of the mutated JAK2 V617F could be used to identify aggressive disease, but that finding is not universally accepted across all health care entities or practitioners. Variations in acceptance may be due to factors such as evolution of knowledge based on the latest evidence, clinical practice variability and priorities, availability of testing, and complexity of disease management.

 

This is not true of the 2 other classical myeloproliferative neoplasms (MPNs) that we see commonly in our clinics: essential thrombocytosis (ET) and myelofibrosis (MF). The CALR mutation can be seen in patients with ET and MF and signals a less aggressive form of the disease.

 

The presence of JAK2 V617F is critical for prognosis. Although it does not directly help to inform the patient of what to expect, identifying the mutation provides us with important information about the patient’s prognosis, which helps guide treatment decisions such as the intensity of therapy and monitoring for thrombotic events.

 

What are the potential implications of the JAK2 V617F mutation in the treatment of PV?

 

Dr. Richard: The discovery of the JAK2 V617F mutation in MPNs in 2005 led to the hope that perhaps there would be targeted therapy that could result in disease remissions. We had all hoped that the spectacular responses observed in patients with chronic myelogenous leukemia (CML) treated with imatinib could be replicated with JAK2 inhibitors. It turned out that blocking JAK2 was insufficient to reverse the disease. Studies are still ongoing whether drugs that can decrease the JAK2 V617F allele burden could be used to achieve a type of remission. Perhaps combination therapies will need to be developed.

 

I am hopeful that in the future we do see advancements that provide improved diagnosis and monitoring to help facilitate early detection, personalized treatment approaches to offer more effective and well tolerated therapies, risk stratification and prognostication to help identify higher risk progression, combination therapies to possibly improve efficacy and adherence, and novel therapeutic targets to help discover new treatments and provide improved outcomes.

 

How can JAK2 V617F lead to 3 different forms of myeloproliferative neoplasms?

 

Dr. Richard: The short answer is no one knows exactly. The phenotypic differences between PV and the other 2 MPN variants are most likely determined by the integration of other signaling pathways that are activated by the corresponding driver mutation, and interactions with other mutations. What also seems to matter is the sequence in which the individual mutations are acquired.

 

There have been documented cases of post-polycythemic leukemia that no longer have the JAK2 V617F mutation. However, at some point that mutation was lost, and the cells acquired other driver mutations that resulted in leukemia.

 

What we do know now is that there are several potential interactions that can coexist with JAK2 V617F. There is MPL mutation, which contributes to disease pathogenesis and thrombotic risk. Independent of JAK2 V617F pathways is CALR mutation, which is another driver of MPNs. In addition are other JAK mutations, epigenetic alterations, and microenvironmental factors. All of these have the potential to influence clinical manifestations by impacting clinical outcomes, affecting expression patterns and signaling inflammation within the bone marrow microenvironment.

 

Are there any ongoing research efforts or clinical trials exploring targeted therapies that specifically address the JAK2 V617F mutation in patients with PV?

 

Dr. Richard: The ongoing research efforts to address JAK2-targeted therapies are looking at options like novel JAK inhibitors, combination therapies, resistance mechanisms, improved safety profiles, biomarker identification, exploring new indications, and preclinical studies that involve the development and testing of new JAK inhibitors.

 

Other JAK2-targeted therapies continue to be in development. At this time, we have ruxolitinib, pacritinib, fedratinib, and momelotinib. None of them appear to be a magic bullet the way imatinib was with CML. Perhaps a better disease comparison is chronic lymphocytic leukemia (CLL). In CLL, targeted therapies against Bruton tyrosine kinase and BCL2 are being combined to result in many years of disease control. JAK2 inhibition may need to be combined with another active drug, perhaps against a mutation or pathway that has not yet been identified.

Author and Disclosure Information

Robert E. Richard, MD, Associate Professor, Department of Medicine, Division of Hematology-Oncology, University of Washington School of Medicine; Chief of Hematology, VA Puget Sound, Seattle, Washington.


Robert E. Richard, MD, has disclosed no relevant financial relationships.

Publications
Sections
Author and Disclosure Information

Robert E. Richard, MD, Associate Professor, Department of Medicine, Division of Hematology-Oncology, University of Washington School of Medicine; Chief of Hematology, VA Puget Sound, Seattle, Washington.


Robert E. Richard, MD, has disclosed no relevant financial relationships.

Author and Disclosure Information

Robert E. Richard, MD, Associate Professor, Department of Medicine, Division of Hematology-Oncology, University of Washington School of Medicine; Chief of Hematology, VA Puget Sound, Seattle, Washington.


Robert E. Richard, MD, has disclosed no relevant financial relationships.

How does the presence of the JAK2 V617F mutation affect the diagnosis and classification of myeloproliferative neoplasms?

 

Dr. Richard: The JAK2 V617F mutation is found in > 90% of patients with polycythemia vera (PV). The remaining patients with PV have mutations in a different portion of the JAK2 gene. Since JAK2 mutations are found in virtually all patients with PV, having the mutation helps make the diagnosis, but does not carry prognostic significance. Some studies suggest that the allele burden of the mutated JAK2 V617F could be used to identify aggressive disease, but that finding is not universally accepted across all health care entities or practitioners. Variations in acceptance may be due to factors such as evolution of knowledge based on the latest evidence, clinical practice variability and priorities, availability of testing, and complexity of disease management.

 

This is not true of the 2 other classical myeloproliferative neoplasms (MPNs) that we see commonly in our clinics: essential thrombocytosis (ET) and myelofibrosis (MF). The CALR mutation can be seen in patients with ET and MF and signals a less aggressive form of the disease.

 

The presence of JAK2 V617F is critical for prognosis. Although it does not directly help to inform the patient of what to expect, identifying the mutation provides us with important information about the patient’s prognosis, which helps guide treatment decisions such as the intensity of therapy and monitoring for thrombotic events.

 

What are the potential implications of the JAK2 V617F mutation in the treatment of PV?

 

Dr. Richard: The discovery of the JAK2 V617F mutation in MPNs in 2005 led to the hope that perhaps there would be targeted therapy that could result in disease remissions. We had all hoped that the spectacular responses observed in patients with chronic myelogenous leukemia (CML) treated with imatinib could be replicated with JAK2 inhibitors. It turned out that blocking JAK2 was insufficient to reverse the disease. Studies are still ongoing whether drugs that can decrease the JAK2 V617F allele burden could be used to achieve a type of remission. Perhaps combination therapies will need to be developed.

 

I am hopeful that in the future we do see advancements that provide improved diagnosis and monitoring to help facilitate early detection, personalized treatment approaches to offer more effective and well tolerated therapies, risk stratification and prognostication to help identify higher risk progression, combination therapies to possibly improve efficacy and adherence, and novel therapeutic targets to help discover new treatments and provide improved outcomes.

 

How can JAK2 V617F lead to 3 different forms of myeloproliferative neoplasms?

 

Dr. Richard: The short answer is no one knows exactly. The phenotypic differences between PV and the other 2 MPN variants are most likely determined by the integration of other signaling pathways that are activated by the corresponding driver mutation, and interactions with other mutations. What also seems to matter is the sequence in which the individual mutations are acquired.

 

There have been documented cases of post-polycythemic leukemia that no longer have the JAK2 V617F mutation. However, at some point that mutation was lost, and the cells acquired other driver mutations that resulted in leukemia.

 

What we do know now is that there are several potential interactions that can coexist with JAK2 V617F. There is MPL mutation, which contributes to disease pathogenesis and thrombotic risk. Independent of JAK2 V617F pathways is CALR mutation, which is another driver of MPNs. In addition are other JAK mutations, epigenetic alterations, and microenvironmental factors. All of these have the potential to influence clinical manifestations by impacting clinical outcomes, affecting expression patterns and signaling inflammation within the bone marrow microenvironment.

 

Are there any ongoing research efforts or clinical trials exploring targeted therapies that specifically address the JAK2 V617F mutation in patients with PV?

 

Dr. Richard: The ongoing research efforts to address JAK2-targeted therapies are looking at options like novel JAK inhibitors, combination therapies, resistance mechanisms, improved safety profiles, biomarker identification, exploring new indications, and preclinical studies that involve the development and testing of new JAK inhibitors.

 

Other JAK2-targeted therapies continue to be in development. At this time, we have ruxolitinib, pacritinib, fedratinib, and momelotinib. None of them appear to be a magic bullet the way imatinib was with CML. Perhaps a better disease comparison is chronic lymphocytic leukemia (CLL). In CLL, targeted therapies against Bruton tyrosine kinase and BCL2 are being combined to result in many years of disease control. JAK2 inhibition may need to be combined with another active drug, perhaps against a mutation or pathway that has not yet been identified.

How does the presence of the JAK2 V617F mutation affect the diagnosis and classification of myeloproliferative neoplasms?

 

Dr. Richard: The JAK2 V617F mutation is found in > 90% of patients with polycythemia vera (PV). The remaining patients with PV have mutations in a different portion of the JAK2 gene. Since JAK2 mutations are found in virtually all patients with PV, having the mutation helps make the diagnosis, but does not carry prognostic significance. Some studies suggest that the allele burden of the mutated JAK2 V617F could be used to identify aggressive disease, but that finding is not universally accepted across all health care entities or practitioners. Variations in acceptance may be due to factors such as evolution of knowledge based on the latest evidence, clinical practice variability and priorities, availability of testing, and complexity of disease management.

 

This is not true of the 2 other classical myeloproliferative neoplasms (MPNs) that we see commonly in our clinics: essential thrombocytosis (ET) and myelofibrosis (MF). The CALR mutation can be seen in patients with ET and MF and signals a less aggressive form of the disease.

 

The presence of JAK2 V617F is critical for prognosis. Although it does not directly help to inform the patient of what to expect, identifying the mutation provides us with important information about the patient’s prognosis, which helps guide treatment decisions such as the intensity of therapy and monitoring for thrombotic events.

 

What are the potential implications of the JAK2 V617F mutation in the treatment of PV?

 

Dr. Richard: The discovery of the JAK2 V617F mutation in MPNs in 2005 led to the hope that perhaps there would be targeted therapy that could result in disease remissions. We had all hoped that the spectacular responses observed in patients with chronic myelogenous leukemia (CML) treated with imatinib could be replicated with JAK2 inhibitors. It turned out that blocking JAK2 was insufficient to reverse the disease. Studies are still ongoing whether drugs that can decrease the JAK2 V617F allele burden could be used to achieve a type of remission. Perhaps combination therapies will need to be developed.

 

I am hopeful that in the future we do see advancements that provide improved diagnosis and monitoring to help facilitate early detection, personalized treatment approaches to offer more effective and well tolerated therapies, risk stratification and prognostication to help identify higher risk progression, combination therapies to possibly improve efficacy and adherence, and novel therapeutic targets to help discover new treatments and provide improved outcomes.

 

How can JAK2 V617F lead to 3 different forms of myeloproliferative neoplasms?

 

Dr. Richard: The short answer is no one knows exactly. The phenotypic differences between PV and the other 2 MPN variants are most likely determined by the integration of other signaling pathways that are activated by the corresponding driver mutation, and interactions with other mutations. What also seems to matter is the sequence in which the individual mutations are acquired.

 

There have been documented cases of post-polycythemic leukemia that no longer have the JAK2 V617F mutation. However, at some point that mutation was lost, and the cells acquired other driver mutations that resulted in leukemia.

 

What we do know now is that there are several potential interactions that can coexist with JAK2 V617F. There is MPL mutation, which contributes to disease pathogenesis and thrombotic risk. Independent of JAK2 V617F pathways is CALR mutation, which is another driver of MPNs. In addition are other JAK mutations, epigenetic alterations, and microenvironmental factors. All of these have the potential to influence clinical manifestations by impacting clinical outcomes, affecting expression patterns and signaling inflammation within the bone marrow microenvironment.

 

Are there any ongoing research efforts or clinical trials exploring targeted therapies that specifically address the JAK2 V617F mutation in patients with PV?

 

Dr. Richard: The ongoing research efforts to address JAK2-targeted therapies are looking at options like novel JAK inhibitors, combination therapies, resistance mechanisms, improved safety profiles, biomarker identification, exploring new indications, and preclinical studies that involve the development and testing of new JAK inhibitors.

 

Other JAK2-targeted therapies continue to be in development. At this time, we have ruxolitinib, pacritinib, fedratinib, and momelotinib. None of them appear to be a magic bullet the way imatinib was with CML. Perhaps a better disease comparison is chronic lymphocytic leukemia (CLL). In CLL, targeted therapies against Bruton tyrosine kinase and BCL2 are being combined to result in many years of disease control. JAK2 inhibition may need to be combined with another active drug, perhaps against a mutation or pathway that has not yet been identified.

Publications
Publications
Article Type
Display Headline
Role of JAK2 in Polycythemia Vera
Display Headline
Role of JAK2 in Polycythemia Vera
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Eyebrow Default
Expert Interview
Gate On Date
Mon, 05/20/2024 - 10:00
Un-Gate On Date
Mon, 05/20/2024 - 10:00
Use ProPublica
CFC Schedule Remove Status
Mon, 05/20/2024 - 10:00
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article
Activity Salesforce Deliverable ID
401202.1
Activity ID
109223
Product Name
Expert Interview Article Serie
Product ID
106
Supporter Name /ID
Jakafi [ 3322 ]

Military burn pits: Their evidence and implications for respiratory health

Article Type
Changed
Thu, 05/30/2024 - 12:18

Military service is a hazard-ridden profession. It’s easy to recognize the direct dangers from warfighting, such as gunfire and explosions, but the risks from environmental, chemical, and other occupational exposures can be harder to see.

Combustion-based waste management systems, otherwise known as “burn pits,” were used in deployed environments by the US military from the 1990s to the early 2010s. These burn pits were commonly used to eliminate plastics, electronics, munitions, metals, wood, chemicals, and even human waste. At the height of the recent conflicts in Afghanistan, Iraq, and other southwest Asia locations, more than 70% of military installations employed at least one, and nearly 4 million service members were exposed to some degree to their emissions.

CHEST
Dr. Zachary A. Haynes

Reports of burn pits being related to organic disease have garnered widespread media attention. Initially, this came through anecdotal reports of post-deployment respiratory symptoms. Over time, the conditions attributed to burn pits expanded to include newly diagnosed respiratory diseases and malignancies. The composition of burn pit emissions sparked concern after fine particulate matter, volatile organic compounds, dioxins, and polycyclic aromatic hydrocarbons were detected. Each has previously been associated with an increased risk of respiratory disease or malignancy.

Ultimately, Congress passed the 2022 Promise to Address Comprehensive Toxins (PACT) Act, presumptively linking more than 20 diagnoses to burn pits. The PACT Act provides countless veterans access to low-cost or free medical care for their respective conditions.
 

What do we know about burn pits and deployment-related respiratory disease?

Data from the Millennium Cohort Study noted an approximately 40% increase in respiratory symptoms among individuals returning from deployment but no increase in the frequency of diagnosed respiratory diseases.1 This study and others definitively established a temporal relationship between deployment and respiratory symptoms. Soon after, a retrospective, observational study of service members with post-deployment respiratory symptoms found a high prevalence of constrictive bronchiolitis (CB) identified by lung biopsy.2 Patients in this group reported exposure to burn pits and a sulfur mine fire in the Mosul area while deployed. Most had normal imaging and pulmonary function testing before biopsy, confounding the clinical significance of the CB finding. The publication of this report led to increased investigation of respiratory function during and after deployment.

CHEST
Dr. Joel Anthony Nations

In a series of prospective studies that included full pulmonary function testing, impulse oscillometry, cardiopulmonary exercise testing, bronchoscopy, and, occasionally, lung biopsy to evaluate post-deployment dyspnea, only a small minority received a diagnosis of clinically significant lung disease.3,4 Additionally, when comparing spirometry and impulse oscillometry results from before and after deployment, no decline in lung function was observed in a population of service members reporting regular burn pit exposure.5 These studies suggest that at the population level, deployment does not lead to abnormalities in the structure and function of the respiratory system.

The National Academies of Sciences published two separate reviews of burn pit exposure and outcomes in 2011 and 2020.6,7 They found insufficient evidence to support a causal relationship between burn pit exposure and pulmonary disease. They highlighted studies on the composition of emissions from the area surrounding the largest military burn pit in Iraq. Levels of particulate matter, volatile organic compounds, and polycyclic aromatic hydrocarbons were elevated when compared with those of a typical American city but were similar to the pollution levels seen in the region at the time. Given these findings, they suggested ambient air pollution may have contributed more to clinically significant disease than burn pit emissions.
 

 

 

How do we interpret this mixed data?

At the population level, we have yet to find conclusive data directly linking burn pit exposure to the development of any respiratory disease. Does this mean that burn pits are not harmful?

Not necessarily. Research on outcomes related to burn pit exposure is challenging given the heterogeneity in exposure volume. Much of the research is retrospective and subject to recall bias. Relationships may be distorted, and the precision of reported symptoms and exposure levels is altered. Given these challenges, it’s unsurprising that evidence of causality has yet to be proven. In addition, some portion of service members has been diagnosed with respiratory disease that could be related to burn pit exposure.

What is now indisputable is that deployment to southwest Asia leads to an increase in respiratory complaints. Whether veteran respiratory symptoms are due to burn pits, ambient pollution, environmental particulate matter, or dust storms is less clinically relevant. These symptoms require attention, investigation, and management.
 

What does this mean for the future medical care of service members and veterans?

Many veterans with post-deployment respiratory symptoms undergo extensive evaluations without obtaining a definitive diagnosis. A recent consensus statement on deployment-related respiratory symptoms provides a framework for evaluation in such cases.8 In keeping with that statement, we recommend veterans be referred to centers with expertise in this field, such as the Department of Veterans Affairs (VA) or military health centers, when deployment-related respiratory symptoms are reported. When the evaluation does not lead to a treatable diagnosis, these centers can provide multidisciplinary care to address the symptoms of dyspnea, cough, fatigue, and exercise intolerance to improve functional status.

Despite uncertainty in the evidence or challenges in diagnosis, both the Department of Defense (DoD) and VA remain fully committed to addressing the health concerns of service members and veterans. Notably, the VA has already screened more than 5 million veterans for toxic military exposures in accordance with the PACT Act and is providing ongoing screening and care for veterans with post-deployment respiratory symptoms. Furthermore, the DoD and VA have dedicated large portions of their research budgets to investigating the impacts of exposures during military service and optimizing the care of those with respiratory symptoms. With these commitments to patient care and research, our veterans’ respiratory health can now be optimized, and future risks can be mitigated.
 

Dr. Haynes is Fellow, Pulmonary and Critical Care Medicine, Walter Reed National Military Medical Center, Assistant Professor of Medicine, Uniformed Services University. Dr. Nations is Pulmonary and Critical Care Medicine, Deputy Chief of Staff for Operations, Washington DC VA Medical Center, Associate Professor of Medicine, Uniformed Services University.

References

1. Smith B, Wong CA, Smith TC, Boyko EJ, Gackstetter GD; Margaret A. K. Ryan for the Millennium Cohort Study Team. Newly reported respiratory symptoms and conditions among military personnel deployed to Iraq and Afghanistan: a prospective population-based study. Am J Epidemiol. 2009;170(11):1433-1442. Preprint. Posted online October 22, 2009. PMID: 19850627. doi: 10.1093/aje/kwp287

2. King MS, Eisenberg R, Newman JH, et al. Constrictive bronchiolitis in soldiers returning from Iraq and Afghanistan. N Engl J Med. 2011;365(3):222-230. Erratum in: N Engl J Med. 2011;365(18):1749. PMID: 21774710; PMCID: PMC3296566. doi: 10.1056/NEJMoa1101388

3. Morris MJ, Dodson DW, Lucero PF, et al. Study of active duty military for pulmonary disease related to environmental deployment exposures (STAMPEDE). Am J Respir Crit Care Med. 2014;190(1):77-84. PMID: 24922562. doi: 10.1164/rccm.201402-0372OC

4. Morris MJ, Walter RJ, McCann ET, et al. Clinical evaluation of deployed military personnel with chronic respiratory symptoms: study of active duty military for pulmonary disease related to environmental deployment exposures (STAMPEDE) III. Chest. 2020;157(6):1559-1567. Preprint. Posted online February 1, 2020. PMID: 32017933. doi: 10.1016/j.chest.2020.01.024

5. Morris MJ, Skabelund AJ, Rawlins FA 3rd, Gallup RA, Aden JK, Holley AB. Study of active duty military personnel for environmental deployment exposures: pre- and post-deployment spirometry (STAMPEDE II). Respir Care. 2019;64(5):536-544. Preprint. Posted online January 8, 2019.PMID: 30622173. doi: 10.4187/respcare.06396

6. Institute of Medicine. Long-Term Health Consequences of Exposure to Burn Pits in Iraq and Afghanistan. The National Academies Press; 2011. https://doi.org/10.17226/13209

7. National Academies of Sciences, Engineering, and Medicine. Respiratory Health Effects of Airborne Hazards Exposures in the Southwest Asia Theater of Military Operations. The National Academies Press; 2020. https://doi.org/10.17226/25837

8. Falvo MJ, Sotolongo AM, Osterholzer JJ, et al. Consensus statements on deployment-related respiratory disease, inclusive of constrictive bronchiolitis: a modified Delphi study. Chest. 2023;163(3):599-609. Preprint. Posted November 4, 2022. PMID: 36343686; PMCID: PMC10154857. doi: 10.1016/j.chest.2022.10.031

Publications
Topics
Sections

Military service is a hazard-ridden profession. It’s easy to recognize the direct dangers from warfighting, such as gunfire and explosions, but the risks from environmental, chemical, and other occupational exposures can be harder to see.

Combustion-based waste management systems, otherwise known as “burn pits,” were used in deployed environments by the US military from the 1990s to the early 2010s. These burn pits were commonly used to eliminate plastics, electronics, munitions, metals, wood, chemicals, and even human waste. At the height of the recent conflicts in Afghanistan, Iraq, and other southwest Asia locations, more than 70% of military installations employed at least one, and nearly 4 million service members were exposed to some degree to their emissions.

CHEST
Dr. Zachary A. Haynes

Reports of burn pits being related to organic disease have garnered widespread media attention. Initially, this came through anecdotal reports of post-deployment respiratory symptoms. Over time, the conditions attributed to burn pits expanded to include newly diagnosed respiratory diseases and malignancies. The composition of burn pit emissions sparked concern after fine particulate matter, volatile organic compounds, dioxins, and polycyclic aromatic hydrocarbons were detected. Each has previously been associated with an increased risk of respiratory disease or malignancy.

Ultimately, Congress passed the 2022 Promise to Address Comprehensive Toxins (PACT) Act, presumptively linking more than 20 diagnoses to burn pits. The PACT Act provides countless veterans access to low-cost or free medical care for their respective conditions.
 

What do we know about burn pits and deployment-related respiratory disease?

Data from the Millennium Cohort Study noted an approximately 40% increase in respiratory symptoms among individuals returning from deployment but no increase in the frequency of diagnosed respiratory diseases.1 This study and others definitively established a temporal relationship between deployment and respiratory symptoms. Soon after, a retrospective, observational study of service members with post-deployment respiratory symptoms found a high prevalence of constrictive bronchiolitis (CB) identified by lung biopsy.2 Patients in this group reported exposure to burn pits and a sulfur mine fire in the Mosul area while deployed. Most had normal imaging and pulmonary function testing before biopsy, confounding the clinical significance of the CB finding. The publication of this report led to increased investigation of respiratory function during and after deployment.

CHEST
Dr. Joel Anthony Nations

In a series of prospective studies that included full pulmonary function testing, impulse oscillometry, cardiopulmonary exercise testing, bronchoscopy, and, occasionally, lung biopsy to evaluate post-deployment dyspnea, only a small minority received a diagnosis of clinically significant lung disease.3,4 Additionally, when comparing spirometry and impulse oscillometry results from before and after deployment, no decline in lung function was observed in a population of service members reporting regular burn pit exposure.5 These studies suggest that at the population level, deployment does not lead to abnormalities in the structure and function of the respiratory system.

The National Academies of Sciences published two separate reviews of burn pit exposure and outcomes in 2011 and 2020.6,7 They found insufficient evidence to support a causal relationship between burn pit exposure and pulmonary disease. They highlighted studies on the composition of emissions from the area surrounding the largest military burn pit in Iraq. Levels of particulate matter, volatile organic compounds, and polycyclic aromatic hydrocarbons were elevated when compared with those of a typical American city but were similar to the pollution levels seen in the region at the time. Given these findings, they suggested ambient air pollution may have contributed more to clinically significant disease than burn pit emissions.
 

 

 

How do we interpret this mixed data?

At the population level, we have yet to find conclusive data directly linking burn pit exposure to the development of any respiratory disease. Does this mean that burn pits are not harmful?

Not necessarily. Research on outcomes related to burn pit exposure is challenging given the heterogeneity in exposure volume. Much of the research is retrospective and subject to recall bias. Relationships may be distorted, and the precision of reported symptoms and exposure levels is altered. Given these challenges, it’s unsurprising that evidence of causality has yet to be proven. In addition, some portion of service members has been diagnosed with respiratory disease that could be related to burn pit exposure.

What is now indisputable is that deployment to southwest Asia leads to an increase in respiratory complaints. Whether veteran respiratory symptoms are due to burn pits, ambient pollution, environmental particulate matter, or dust storms is less clinically relevant. These symptoms require attention, investigation, and management.
 

What does this mean for the future medical care of service members and veterans?

Many veterans with post-deployment respiratory symptoms undergo extensive evaluations without obtaining a definitive diagnosis. A recent consensus statement on deployment-related respiratory symptoms provides a framework for evaluation in such cases.8 In keeping with that statement, we recommend veterans be referred to centers with expertise in this field, such as the Department of Veterans Affairs (VA) or military health centers, when deployment-related respiratory symptoms are reported. When the evaluation does not lead to a treatable diagnosis, these centers can provide multidisciplinary care to address the symptoms of dyspnea, cough, fatigue, and exercise intolerance to improve functional status.

Despite uncertainty in the evidence or challenges in diagnosis, both the Department of Defense (DoD) and VA remain fully committed to addressing the health concerns of service members and veterans. Notably, the VA has already screened more than 5 million veterans for toxic military exposures in accordance with the PACT Act and is providing ongoing screening and care for veterans with post-deployment respiratory symptoms. Furthermore, the DoD and VA have dedicated large portions of their research budgets to investigating the impacts of exposures during military service and optimizing the care of those with respiratory symptoms. With these commitments to patient care and research, our veterans’ respiratory health can now be optimized, and future risks can be mitigated.
 

Dr. Haynes is Fellow, Pulmonary and Critical Care Medicine, Walter Reed National Military Medical Center, Assistant Professor of Medicine, Uniformed Services University. Dr. Nations is Pulmonary and Critical Care Medicine, Deputy Chief of Staff for Operations, Washington DC VA Medical Center, Associate Professor of Medicine, Uniformed Services University.

References

1. Smith B, Wong CA, Smith TC, Boyko EJ, Gackstetter GD; Margaret A. K. Ryan for the Millennium Cohort Study Team. Newly reported respiratory symptoms and conditions among military personnel deployed to Iraq and Afghanistan: a prospective population-based study. Am J Epidemiol. 2009;170(11):1433-1442. Preprint. Posted online October 22, 2009. PMID: 19850627. doi: 10.1093/aje/kwp287

2. King MS, Eisenberg R, Newman JH, et al. Constrictive bronchiolitis in soldiers returning from Iraq and Afghanistan. N Engl J Med. 2011;365(3):222-230. Erratum in: N Engl J Med. 2011;365(18):1749. PMID: 21774710; PMCID: PMC3296566. doi: 10.1056/NEJMoa1101388

3. Morris MJ, Dodson DW, Lucero PF, et al. Study of active duty military for pulmonary disease related to environmental deployment exposures (STAMPEDE). Am J Respir Crit Care Med. 2014;190(1):77-84. PMID: 24922562. doi: 10.1164/rccm.201402-0372OC

4. Morris MJ, Walter RJ, McCann ET, et al. Clinical evaluation of deployed military personnel with chronic respiratory symptoms: study of active duty military for pulmonary disease related to environmental deployment exposures (STAMPEDE) III. Chest. 2020;157(6):1559-1567. Preprint. Posted online February 1, 2020. PMID: 32017933. doi: 10.1016/j.chest.2020.01.024

5. Morris MJ, Skabelund AJ, Rawlins FA 3rd, Gallup RA, Aden JK, Holley AB. Study of active duty military personnel for environmental deployment exposures: pre- and post-deployment spirometry (STAMPEDE II). Respir Care. 2019;64(5):536-544. Preprint. Posted online January 8, 2019.PMID: 30622173. doi: 10.4187/respcare.06396

6. Institute of Medicine. Long-Term Health Consequences of Exposure to Burn Pits in Iraq and Afghanistan. The National Academies Press; 2011. https://doi.org/10.17226/13209

7. National Academies of Sciences, Engineering, and Medicine. Respiratory Health Effects of Airborne Hazards Exposures in the Southwest Asia Theater of Military Operations. The National Academies Press; 2020. https://doi.org/10.17226/25837

8. Falvo MJ, Sotolongo AM, Osterholzer JJ, et al. Consensus statements on deployment-related respiratory disease, inclusive of constrictive bronchiolitis: a modified Delphi study. Chest. 2023;163(3):599-609. Preprint. Posted November 4, 2022. PMID: 36343686; PMCID: PMC10154857. doi: 10.1016/j.chest.2022.10.031

Military service is a hazard-ridden profession. It’s easy to recognize the direct dangers from warfighting, such as gunfire and explosions, but the risks from environmental, chemical, and other occupational exposures can be harder to see.

Combustion-based waste management systems, otherwise known as “burn pits,” were used in deployed environments by the US military from the 1990s to the early 2010s. These burn pits were commonly used to eliminate plastics, electronics, munitions, metals, wood, chemicals, and even human waste. At the height of the recent conflicts in Afghanistan, Iraq, and other southwest Asia locations, more than 70% of military installations employed at least one, and nearly 4 million service members were exposed to some degree to their emissions.

CHEST
Dr. Zachary A. Haynes

Reports of burn pits being related to organic disease have garnered widespread media attention. Initially, this came through anecdotal reports of post-deployment respiratory symptoms. Over time, the conditions attributed to burn pits expanded to include newly diagnosed respiratory diseases and malignancies. The composition of burn pit emissions sparked concern after fine particulate matter, volatile organic compounds, dioxins, and polycyclic aromatic hydrocarbons were detected. Each has previously been associated with an increased risk of respiratory disease or malignancy.

Ultimately, Congress passed the 2022 Promise to Address Comprehensive Toxins (PACT) Act, presumptively linking more than 20 diagnoses to burn pits. The PACT Act provides countless veterans access to low-cost or free medical care for their respective conditions.
 

What do we know about burn pits and deployment-related respiratory disease?

Data from the Millennium Cohort Study noted an approximately 40% increase in respiratory symptoms among individuals returning from deployment but no increase in the frequency of diagnosed respiratory diseases.1 This study and others definitively established a temporal relationship between deployment and respiratory symptoms. Soon after, a retrospective, observational study of service members with post-deployment respiratory symptoms found a high prevalence of constrictive bronchiolitis (CB) identified by lung biopsy.2 Patients in this group reported exposure to burn pits and a sulfur mine fire in the Mosul area while deployed. Most had normal imaging and pulmonary function testing before biopsy, confounding the clinical significance of the CB finding. The publication of this report led to increased investigation of respiratory function during and after deployment.

CHEST
Dr. Joel Anthony Nations

In a series of prospective studies that included full pulmonary function testing, impulse oscillometry, cardiopulmonary exercise testing, bronchoscopy, and, occasionally, lung biopsy to evaluate post-deployment dyspnea, only a small minority received a diagnosis of clinically significant lung disease.3,4 Additionally, when comparing spirometry and impulse oscillometry results from before and after deployment, no decline in lung function was observed in a population of service members reporting regular burn pit exposure.5 These studies suggest that at the population level, deployment does not lead to abnormalities in the structure and function of the respiratory system.

The National Academies of Sciences published two separate reviews of burn pit exposure and outcomes in 2011 and 2020.6,7 They found insufficient evidence to support a causal relationship between burn pit exposure and pulmonary disease. They highlighted studies on the composition of emissions from the area surrounding the largest military burn pit in Iraq. Levels of particulate matter, volatile organic compounds, and polycyclic aromatic hydrocarbons were elevated when compared with those of a typical American city but were similar to the pollution levels seen in the region at the time. Given these findings, they suggested ambient air pollution may have contributed more to clinically significant disease than burn pit emissions.
 

 

 

How do we interpret this mixed data?

At the population level, we have yet to find conclusive data directly linking burn pit exposure to the development of any respiratory disease. Does this mean that burn pits are not harmful?

Not necessarily. Research on outcomes related to burn pit exposure is challenging given the heterogeneity in exposure volume. Much of the research is retrospective and subject to recall bias. Relationships may be distorted, and the precision of reported symptoms and exposure levels is altered. Given these challenges, it’s unsurprising that evidence of causality has yet to be proven. In addition, some portion of service members has been diagnosed with respiratory disease that could be related to burn pit exposure.

What is now indisputable is that deployment to southwest Asia leads to an increase in respiratory complaints. Whether veteran respiratory symptoms are due to burn pits, ambient pollution, environmental particulate matter, or dust storms is less clinically relevant. These symptoms require attention, investigation, and management.
 

What does this mean for the future medical care of service members and veterans?

Many veterans with post-deployment respiratory symptoms undergo extensive evaluations without obtaining a definitive diagnosis. A recent consensus statement on deployment-related respiratory symptoms provides a framework for evaluation in such cases.8 In keeping with that statement, we recommend veterans be referred to centers with expertise in this field, such as the Department of Veterans Affairs (VA) or military health centers, when deployment-related respiratory symptoms are reported. When the evaluation does not lead to a treatable diagnosis, these centers can provide multidisciplinary care to address the symptoms of dyspnea, cough, fatigue, and exercise intolerance to improve functional status.

Despite uncertainty in the evidence or challenges in diagnosis, both the Department of Defense (DoD) and VA remain fully committed to addressing the health concerns of service members and veterans. Notably, the VA has already screened more than 5 million veterans for toxic military exposures in accordance with the PACT Act and is providing ongoing screening and care for veterans with post-deployment respiratory symptoms. Furthermore, the DoD and VA have dedicated large portions of their research budgets to investigating the impacts of exposures during military service and optimizing the care of those with respiratory symptoms. With these commitments to patient care and research, our veterans’ respiratory health can now be optimized, and future risks can be mitigated.
 

Dr. Haynes is Fellow, Pulmonary and Critical Care Medicine, Walter Reed National Military Medical Center, Assistant Professor of Medicine, Uniformed Services University. Dr. Nations is Pulmonary and Critical Care Medicine, Deputy Chief of Staff for Operations, Washington DC VA Medical Center, Associate Professor of Medicine, Uniformed Services University.

References

1. Smith B, Wong CA, Smith TC, Boyko EJ, Gackstetter GD; Margaret A. K. Ryan for the Millennium Cohort Study Team. Newly reported respiratory symptoms and conditions among military personnel deployed to Iraq and Afghanistan: a prospective population-based study. Am J Epidemiol. 2009;170(11):1433-1442. Preprint. Posted online October 22, 2009. PMID: 19850627. doi: 10.1093/aje/kwp287

2. King MS, Eisenberg R, Newman JH, et al. Constrictive bronchiolitis in soldiers returning from Iraq and Afghanistan. N Engl J Med. 2011;365(3):222-230. Erratum in: N Engl J Med. 2011;365(18):1749. PMID: 21774710; PMCID: PMC3296566. doi: 10.1056/NEJMoa1101388

3. Morris MJ, Dodson DW, Lucero PF, et al. Study of active duty military for pulmonary disease related to environmental deployment exposures (STAMPEDE). Am J Respir Crit Care Med. 2014;190(1):77-84. PMID: 24922562. doi: 10.1164/rccm.201402-0372OC

4. Morris MJ, Walter RJ, McCann ET, et al. Clinical evaluation of deployed military personnel with chronic respiratory symptoms: study of active duty military for pulmonary disease related to environmental deployment exposures (STAMPEDE) III. Chest. 2020;157(6):1559-1567. Preprint. Posted online February 1, 2020. PMID: 32017933. doi: 10.1016/j.chest.2020.01.024

5. Morris MJ, Skabelund AJ, Rawlins FA 3rd, Gallup RA, Aden JK, Holley AB. Study of active duty military personnel for environmental deployment exposures: pre- and post-deployment spirometry (STAMPEDE II). Respir Care. 2019;64(5):536-544. Preprint. Posted online January 8, 2019.PMID: 30622173. doi: 10.4187/respcare.06396

6. Institute of Medicine. Long-Term Health Consequences of Exposure to Burn Pits in Iraq and Afghanistan. The National Academies Press; 2011. https://doi.org/10.17226/13209

7. National Academies of Sciences, Engineering, and Medicine. Respiratory Health Effects of Airborne Hazards Exposures in the Southwest Asia Theater of Military Operations. The National Academies Press; 2020. https://doi.org/10.17226/25837

8. Falvo MJ, Sotolongo AM, Osterholzer JJ, et al. Consensus statements on deployment-related respiratory disease, inclusive of constrictive bronchiolitis: a modified Delphi study. Chest. 2023;163(3):599-609. Preprint. Posted November 4, 2022. PMID: 36343686; PMCID: PMC10154857. doi: 10.1016/j.chest.2022.10.031

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Late-Night Eaters May Have Increased Risk for Colorectal Cancer

Article Type
Changed
Mon, 06/10/2024 - 17:11

 

WASHINGTON — Eating within 3 hours of bedtime at least 4 days a week could increase chances for developing colorectal cancer, according to the results of research presented at the annual Digestive Disease Week® (DDW).

Investigators in a new study questioned 664 people getting a colonoscopy to screen for cancer, and 42% said they were late eaters. This group was 46% more likely than non–late eaters to have an adenoma found during colonoscopy. An estimated 5% to 10% of them become cancerous over time.

“A lot of other studies are about what we eat but not when we eat,” said Edena Khoshaba, lead investigator and a medical student at Rush University Medical College in Chicago. “The common advice includes not eating red meat, eating more fruits and vegetables — which is great, of course — but we wanted to see if the timing affects us at all.”

Ms. Khoshaba and colleagues found it did. Late eaters were 5.5 times more likely to have three or more tubular adenomas compared to non–late eaters, even after adjusting for what people were eating. Tubular adenomas are the most common type of polyp found in the colon.

So, what’s the possible connection between late eating and the risk for colorectal cancer?
 

Resetting Your Internal Clock

Eating close to bedtime could be throwing off the body’s circadian rhythm. But in this case, it’s not the central circadian center located in the brain — the one that releases melatonin. Instead, late eating could disrupt the peripheral circadian rhythm, part of which is found in the GI tract. For example, if a person is eating late at night, the brain thinks it is nighttime while the gut thinks it is daytime, Ms. Khoshaba said in an interview.

This is an interesting study, said Amy Bragagnini, MS, RD, spokesperson for the Academy of Nutrition and Dietetics, when asked to comment on the research. “It is true that eating later at night can disrupt your circadian rhythm.”

“In addition, many of my patients have told me that when they do eat later at night, they don’t always make the healthiest food choices,” Ms. Bragagnini said. “Their late-night food choices are generally higher in added sugar and fat. This may cause them to consume far more calories than their body needs.” So, eating late at night can also lead to unwanted weight gain.

An unanswered question is if late eating is connected in any way at all to increasing rates of colorectal cancer seen in younger patients.

This was an observational study, and another possible limitation, Ms. Khoshaba said, is that people were asked to recall their diets over 24 hours, which may not always be accurate.

Some of the organisms in the gut have their own internal clocks that follow a daily rhythm, and what someone eat determines how many different kinds of these organisms are active, Ms. Bragagnini said.

“So, if your late-night eating consists of foods high in sugar and fat, you may be negatively impacting your microbiome.” she said.

The next step for Ms. Khoshaba and colleagues is a study examining the peripheral circadian rhythm, changes in the gut microbiome, and the risk for developing metabolic syndrome. Ms. Khoshaba and Ms. Bragagnini had no relevant disclosures.

A version of this article appeared on Medscape.com.

Meeting/Event
Publications
Topics
Sections
Meeting/Event
Meeting/Event

 

WASHINGTON — Eating within 3 hours of bedtime at least 4 days a week could increase chances for developing colorectal cancer, according to the results of research presented at the annual Digestive Disease Week® (DDW).

Investigators in a new study questioned 664 people getting a colonoscopy to screen for cancer, and 42% said they were late eaters. This group was 46% more likely than non–late eaters to have an adenoma found during colonoscopy. An estimated 5% to 10% of them become cancerous over time.

“A lot of other studies are about what we eat but not when we eat,” said Edena Khoshaba, lead investigator and a medical student at Rush University Medical College in Chicago. “The common advice includes not eating red meat, eating more fruits and vegetables — which is great, of course — but we wanted to see if the timing affects us at all.”

Ms. Khoshaba and colleagues found it did. Late eaters were 5.5 times more likely to have three or more tubular adenomas compared to non–late eaters, even after adjusting for what people were eating. Tubular adenomas are the most common type of polyp found in the colon.

So, what’s the possible connection between late eating and the risk for colorectal cancer?
 

Resetting Your Internal Clock

Eating close to bedtime could be throwing off the body’s circadian rhythm. But in this case, it’s not the central circadian center located in the brain — the one that releases melatonin. Instead, late eating could disrupt the peripheral circadian rhythm, part of which is found in the GI tract. For example, if a person is eating late at night, the brain thinks it is nighttime while the gut thinks it is daytime, Ms. Khoshaba said in an interview.

This is an interesting study, said Amy Bragagnini, MS, RD, spokesperson for the Academy of Nutrition and Dietetics, when asked to comment on the research. “It is true that eating later at night can disrupt your circadian rhythm.”

“In addition, many of my patients have told me that when they do eat later at night, they don’t always make the healthiest food choices,” Ms. Bragagnini said. “Their late-night food choices are generally higher in added sugar and fat. This may cause them to consume far more calories than their body needs.” So, eating late at night can also lead to unwanted weight gain.

An unanswered question is if late eating is connected in any way at all to increasing rates of colorectal cancer seen in younger patients.

This was an observational study, and another possible limitation, Ms. Khoshaba said, is that people were asked to recall their diets over 24 hours, which may not always be accurate.

Some of the organisms in the gut have their own internal clocks that follow a daily rhythm, and what someone eat determines how many different kinds of these organisms are active, Ms. Bragagnini said.

“So, if your late-night eating consists of foods high in sugar and fat, you may be negatively impacting your microbiome.” she said.

The next step for Ms. Khoshaba and colleagues is a study examining the peripheral circadian rhythm, changes in the gut microbiome, and the risk for developing metabolic syndrome. Ms. Khoshaba and Ms. Bragagnini had no relevant disclosures.

A version of this article appeared on Medscape.com.

 

WASHINGTON — Eating within 3 hours of bedtime at least 4 days a week could increase chances for developing colorectal cancer, according to the results of research presented at the annual Digestive Disease Week® (DDW).

Investigators in a new study questioned 664 people getting a colonoscopy to screen for cancer, and 42% said they were late eaters. This group was 46% more likely than non–late eaters to have an adenoma found during colonoscopy. An estimated 5% to 10% of them become cancerous over time.

“A lot of other studies are about what we eat but not when we eat,” said Edena Khoshaba, lead investigator and a medical student at Rush University Medical College in Chicago. “The common advice includes not eating red meat, eating more fruits and vegetables — which is great, of course — but we wanted to see if the timing affects us at all.”

Ms. Khoshaba and colleagues found it did. Late eaters were 5.5 times more likely to have three or more tubular adenomas compared to non–late eaters, even after adjusting for what people were eating. Tubular adenomas are the most common type of polyp found in the colon.

So, what’s the possible connection between late eating and the risk for colorectal cancer?
 

Resetting Your Internal Clock

Eating close to bedtime could be throwing off the body’s circadian rhythm. But in this case, it’s not the central circadian center located in the brain — the one that releases melatonin. Instead, late eating could disrupt the peripheral circadian rhythm, part of which is found in the GI tract. For example, if a person is eating late at night, the brain thinks it is nighttime while the gut thinks it is daytime, Ms. Khoshaba said in an interview.

This is an interesting study, said Amy Bragagnini, MS, RD, spokesperson for the Academy of Nutrition and Dietetics, when asked to comment on the research. “It is true that eating later at night can disrupt your circadian rhythm.”

“In addition, many of my patients have told me that when they do eat later at night, they don’t always make the healthiest food choices,” Ms. Bragagnini said. “Their late-night food choices are generally higher in added sugar and fat. This may cause them to consume far more calories than their body needs.” So, eating late at night can also lead to unwanted weight gain.

An unanswered question is if late eating is connected in any way at all to increasing rates of colorectal cancer seen in younger patients.

This was an observational study, and another possible limitation, Ms. Khoshaba said, is that people were asked to recall their diets over 24 hours, which may not always be accurate.

Some of the organisms in the gut have their own internal clocks that follow a daily rhythm, and what someone eat determines how many different kinds of these organisms are active, Ms. Bragagnini said.

“So, if your late-night eating consists of foods high in sugar and fat, you may be negatively impacting your microbiome.” she said.

The next step for Ms. Khoshaba and colleagues is a study examining the peripheral circadian rhythm, changes in the gut microbiome, and the risk for developing metabolic syndrome. Ms. Khoshaba and Ms. Bragagnini had no relevant disclosures.

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Article Source

FROM DDW 2024

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Obesity and Cancer: Untangling a Complex Web

Article Type
Changed
Tue, 05/28/2024 - 15:41

 

According to the Centers for Disease Control and Prevention (CDC), over 684,000 Americans are diagnosed with an “obesity-associated” cancer each year.

The incidence of many of these cancers has been rising in recent years, particularly among younger people — a trend that sits in contrast with the overall decline in cancers with no established relationship to excess weight, such as lung and skin cancers. 

Is obesity the new smoking? Not exactly.

Tracing a direct line between excess fat and cancer is much less clear-cut than it is with tobacco. While about 42% of cancers — including common ones such as colorectal and postmenopausal breast cancers — are considered obesity-related, only about 8% of incident cancers are attributed to excess body weight. People often develop those diseases regardless of weight.

Although plenty of evidence points to excess body fat as a cancer risk factor, it’s unclear at what point excess weight has an effect. Is gaining weight later in life, for instance, better or worse for cancer risk than being overweight or obese from a young age?

There’s another glaring knowledge gap: Does losing weight at some point in adulthood change the picture? In other words, how many of those 684,000 diagnoses might have been prevented if people shed excess pounds?

When it comes to weight and cancer risk, “there’s a lot we don’t know,” said Jennifer W. Bea, PhD, associate professor, health promotion sciences, University of Arizona, Tucson.

A Consistent but Complicated Relationship

Given the growing incidence of obesity — which currently affects about 42% of US adults and 20% of children and teenagers — it’s no surprise that many studies have delved into the potential effects of excess weight on cancer rates.

Although virtually all the evidence comes from large cohort studies, leaving the cause-effect question open, certain associations keep showing up.

“What we know is that, consistently, a higher body mass index [BMI] — particularly in the obese category — leads to a higher risk of multiple cancers,” said Jeffrey A. Meyerhardt, MD, MPH, codirector, Colon and Rectal Cancer Center, Dana-Farber Cancer Institute, Boston.

In a widely cited report published in The New England Journal of Medicine in 2016, the International Agency for Research on Cancer (IARC) analyzed over 1000 epidemiologic studies on body fat and cancer. The agency pointed to over a dozen cancers, including some of the most common and deadly, linked to excess body weight.

That list includes esophageal adenocarcinoma and endometrial cancer — associated with the highest risk — along with kidney, liver, stomach (gastric cardia), pancreatic, colorectal, postmenopausal breast, gallbladder, ovarian, and thyroid cancers, plus multiple myeloma and meningioma. There’s also “limited” evidence linking excess weight to additional cancer types, including aggressive prostate cancer and certain head and neck cancers.

At the same time, Dr. Meyerhardt said, many of those same cancers are also associated with issues that lead to, or coexist with, overweight and obesity, including poor diet, lack of exercise, and metabolic conditions such as diabetes. 

It’s a complicated web, and it’s likely, Dr. Meyerhardt said, that high BMI both directly affects cancer risk and is part of a “causal pathway” of other factors that do.

Regarding direct effects, preclinical research has pointed to multiple ways in which excess body fat could contribute to cancer, said Karen M. Basen-Engquist, PhD, MPH, professor, Division of Cancer Prevention and Population Services, The University of Texas MD Anderson Cancer Center, Houston.

One broad mechanism to help explain the obesity-cancer link is chronic systemic inflammation because excess fat tissue can raise levels of substances in the body, such as tumor necrosis factor alpha and interleukin 6, which fuel inflammation. Excess fat also contributes to hyperinsulinemia — too much insulin in the blood — which can help promote the growth and spread of tumor cells. 

But the underlying reasons also appear to vary by cancer type, Dr. Basen-Engquist said. With hormonally driven cancer types, such as breast and endometrial, excess body fat may alter hormone levels in ways that spur tumor growth. Extra fat tissue may, for example, convert androgens into estrogens, which could help feed estrogen-dependent tumors.

That, Dr. Basen-Engquist noted, could be why excess weight is associated with postmenopausal, not premenopausal, breast cancer: Before menopause, body fat is a relatively minor contributor to estrogen levels but becomes more important after menopause.

 

 

How Big Is the Effect?

While more than a dozen cancers have been consistently linked to excess weight, the strength of those associations varies considerably. 

Endometrial and esophageal cancers are two that stand out. In the 2016 IARC analysis, people with severe obesity had a seven-times greater risk for endometrial cancer and 4.8-times greater risk for esophageal adenocarcinoma vs people with a normal BMI.

With other cancers, the risk increases for those with severe obesity compared with a normal BMI were far more modest: 10% for ovarian cancer, 30% for colorectal cancer, and 80% for kidney and stomach cancers, for example. For postmenopausal breast cancer, every five-unit increase in BMI was associated with a 10% relative risk increase.

A 2018 study from the American Cancer Society, which attempted to estimate the proportion of cancers in the United States attributable to modifiable risk factors — including alcohol consumption, ultraviolet rays exposure, and physical inactivity — found that smoking accounted for the highest proportion of cancer cases by a wide margin (19%), but excess weight came in second (7.8%).

Again, weight appeared to play a bigger role in certain cancers than others: An estimated 60% of endometrial cancers were linked to excess weight, as were roughly one third of esophageal, kidney, and liver cancers. At the other end of the spectrum, just over 11% of breast, 5% of colorectal, and 4% of ovarian cancers were attributable to excess weight.

Even at the lower end, those rates could make a big difference on the population level, especially for groups with higher rates of obesity.

CDC data show that obesity-related cancers are rising among women younger than 50 years, most rapidly among Hispanic women, and some less common obesity-related cancers, such as stomach, thyroid and pancreatic, are also rising among Black individuals and Hispanic Americans.

Obesity may be one reason for growing cancer disparities, said Leah Ferrucci, PhD, MPH, assistant professor, epidemiology, Yale School of Public Health, New Haven, Connecticut. But, she added, the evidence is limited because Black individuals and Hispanic Americans are understudied.

When Do Extra Pounds Matter?

When it comes to cancer risk, at what point in life does excess weight, or weight gain, matter? Is the standard weight gain in middle age, for instance, as hazardous as being overweight or obese from a young age?

Some evidence suggests there’s no “safe” time for putting on excess pounds.

A recent meta-analysis concluded that weight gain at any point after age 18 years is associated with incremental increases in the risk for postmenopausal breast cancer. A 2023 study in JAMA Network Open found a similar pattern with colorectal and other gastrointestinal cancers: People who had sustained overweight or obesity from age 20 years through middle age faced an increased risk of developing those cancers after age 55 years. 

The timing of weight gain didn’t seem to matter either. The same elevated risk held among people who were normal weight in their younger years but became overweight after age 55 years.

Those studies focused on later-onset disease. But, in recent years, experts have tracked a troubling rise in early-onset cancers — those diagnosed before age 50 years — particularly gastrointestinal cancers. 

An obvious question, Dr. Meyerhardt said, is whether the growing prevalence of obesity among young people is partly to blame.

There’s some data to support that, he said. An analysis from the Nurses’ Health Study II found that women with obesity had double the risk for early-onset colorectal cancer as those with a normal BMI. And every 5-kg increase in weight after age 18 years was associated with a 9% increase in colorectal cancer risk.

But while obesity trends probably partly explain the rise in early-onset cancers, there is likely more to the story, Dr. Meyerhardt said.

“I think all of us who see an increasing number of patients under 50 with colorectal cancer know there’s a fair number who do not fit that [high BMI] profile,” he said. “There’s a fair number over 50 who don’t either.”

 

 

Does Weight Loss Help?

With all the evidence pointing to high BMI as a cancer risk factor, a logical conclusion is that weight loss should reduce that excess risk. However, Dr. Bea said, there’s actually little data to support that, and what exists comes from observational studies.

Some research has focused on people who had substantial weight loss after bariatric surgery, with encouraging results. A study published in JAMA found that among 5053 people who underwent bariatric surgery, 2.9% developed an obesity-related cancer over 10 years compared with 4.9% in the nonsurgery group.

Most people, however, aim for less dramatic weight loss, with the help of diet and exercise or sometimes medication. Some evidence shows that a modest degree of weight loss may lower the risks for postmenopausal breast and endometrial cancers. 

A 2020 pooled analysis found, for instance, that among women aged ≥ 50 years, those who lost as little as 2.0-4.5 kg, or 4.4-10.0 pounds, and kept it off for 10 years had a lower risk for breast cancer than women whose weight remained stable. And losing more weight — 9 kg, or about 20 pounds, or more — was even better for lowering cancer risk.

But other research suggests the opposite. A recent analysis found that people who lost weight within the past 2 years through diet and exercise had a higher risk for a range of cancers compared with those who did not lose weight. Overall, though, the increased risk was quite low.

Whatever the research does, or doesn’t, show about weight and cancer risk, Dr. Basen-Engquist said, it’s important that risk factors, obesity and otherwise, aren’t “used as blame tools.”

“With obesity, behavior certainly plays into it,” she said. “But there are so many influences on our behavior that are socially determined.”

Both Dr. Basen-Engquist and Dr. Meyerhardt said it’s important for clinicians to consider the individual in front of them and for everyone to set realistic expectations. 

People with obesity should not feel they have to become thin to be healthier, and no one has to leap from being sedentary to exercising several hours a week

“We don’t want patients to feel that if they don’t get to a stated goal in a guideline, it’s all for naught,” Dr. Meyerhardt said.

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

 

According to the Centers for Disease Control and Prevention (CDC), over 684,000 Americans are diagnosed with an “obesity-associated” cancer each year.

The incidence of many of these cancers has been rising in recent years, particularly among younger people — a trend that sits in contrast with the overall decline in cancers with no established relationship to excess weight, such as lung and skin cancers. 

Is obesity the new smoking? Not exactly.

Tracing a direct line between excess fat and cancer is much less clear-cut than it is with tobacco. While about 42% of cancers — including common ones such as colorectal and postmenopausal breast cancers — are considered obesity-related, only about 8% of incident cancers are attributed to excess body weight. People often develop those diseases regardless of weight.

Although plenty of evidence points to excess body fat as a cancer risk factor, it’s unclear at what point excess weight has an effect. Is gaining weight later in life, for instance, better or worse for cancer risk than being overweight or obese from a young age?

There’s another glaring knowledge gap: Does losing weight at some point in adulthood change the picture? In other words, how many of those 684,000 diagnoses might have been prevented if people shed excess pounds?

When it comes to weight and cancer risk, “there’s a lot we don’t know,” said Jennifer W. Bea, PhD, associate professor, health promotion sciences, University of Arizona, Tucson.

A Consistent but Complicated Relationship

Given the growing incidence of obesity — which currently affects about 42% of US adults and 20% of children and teenagers — it’s no surprise that many studies have delved into the potential effects of excess weight on cancer rates.

Although virtually all the evidence comes from large cohort studies, leaving the cause-effect question open, certain associations keep showing up.

“What we know is that, consistently, a higher body mass index [BMI] — particularly in the obese category — leads to a higher risk of multiple cancers,” said Jeffrey A. Meyerhardt, MD, MPH, codirector, Colon and Rectal Cancer Center, Dana-Farber Cancer Institute, Boston.

In a widely cited report published in The New England Journal of Medicine in 2016, the International Agency for Research on Cancer (IARC) analyzed over 1000 epidemiologic studies on body fat and cancer. The agency pointed to over a dozen cancers, including some of the most common and deadly, linked to excess body weight.

That list includes esophageal adenocarcinoma and endometrial cancer — associated with the highest risk — along with kidney, liver, stomach (gastric cardia), pancreatic, colorectal, postmenopausal breast, gallbladder, ovarian, and thyroid cancers, plus multiple myeloma and meningioma. There’s also “limited” evidence linking excess weight to additional cancer types, including aggressive prostate cancer and certain head and neck cancers.

At the same time, Dr. Meyerhardt said, many of those same cancers are also associated with issues that lead to, or coexist with, overweight and obesity, including poor diet, lack of exercise, and metabolic conditions such as diabetes. 

It’s a complicated web, and it’s likely, Dr. Meyerhardt said, that high BMI both directly affects cancer risk and is part of a “causal pathway” of other factors that do.

Regarding direct effects, preclinical research has pointed to multiple ways in which excess body fat could contribute to cancer, said Karen M. Basen-Engquist, PhD, MPH, professor, Division of Cancer Prevention and Population Services, The University of Texas MD Anderson Cancer Center, Houston.

One broad mechanism to help explain the obesity-cancer link is chronic systemic inflammation because excess fat tissue can raise levels of substances in the body, such as tumor necrosis factor alpha and interleukin 6, which fuel inflammation. Excess fat also contributes to hyperinsulinemia — too much insulin in the blood — which can help promote the growth and spread of tumor cells. 

But the underlying reasons also appear to vary by cancer type, Dr. Basen-Engquist said. With hormonally driven cancer types, such as breast and endometrial, excess body fat may alter hormone levels in ways that spur tumor growth. Extra fat tissue may, for example, convert androgens into estrogens, which could help feed estrogen-dependent tumors.

That, Dr. Basen-Engquist noted, could be why excess weight is associated with postmenopausal, not premenopausal, breast cancer: Before menopause, body fat is a relatively minor contributor to estrogen levels but becomes more important after menopause.

 

 

How Big Is the Effect?

While more than a dozen cancers have been consistently linked to excess weight, the strength of those associations varies considerably. 

Endometrial and esophageal cancers are two that stand out. In the 2016 IARC analysis, people with severe obesity had a seven-times greater risk for endometrial cancer and 4.8-times greater risk for esophageal adenocarcinoma vs people with a normal BMI.

With other cancers, the risk increases for those with severe obesity compared with a normal BMI were far more modest: 10% for ovarian cancer, 30% for colorectal cancer, and 80% for kidney and stomach cancers, for example. For postmenopausal breast cancer, every five-unit increase in BMI was associated with a 10% relative risk increase.

A 2018 study from the American Cancer Society, which attempted to estimate the proportion of cancers in the United States attributable to modifiable risk factors — including alcohol consumption, ultraviolet rays exposure, and physical inactivity — found that smoking accounted for the highest proportion of cancer cases by a wide margin (19%), but excess weight came in second (7.8%).

Again, weight appeared to play a bigger role in certain cancers than others: An estimated 60% of endometrial cancers were linked to excess weight, as were roughly one third of esophageal, kidney, and liver cancers. At the other end of the spectrum, just over 11% of breast, 5% of colorectal, and 4% of ovarian cancers were attributable to excess weight.

Even at the lower end, those rates could make a big difference on the population level, especially for groups with higher rates of obesity.

CDC data show that obesity-related cancers are rising among women younger than 50 years, most rapidly among Hispanic women, and some less common obesity-related cancers, such as stomach, thyroid and pancreatic, are also rising among Black individuals and Hispanic Americans.

Obesity may be one reason for growing cancer disparities, said Leah Ferrucci, PhD, MPH, assistant professor, epidemiology, Yale School of Public Health, New Haven, Connecticut. But, she added, the evidence is limited because Black individuals and Hispanic Americans are understudied.

When Do Extra Pounds Matter?

When it comes to cancer risk, at what point in life does excess weight, or weight gain, matter? Is the standard weight gain in middle age, for instance, as hazardous as being overweight or obese from a young age?

Some evidence suggests there’s no “safe” time for putting on excess pounds.

A recent meta-analysis concluded that weight gain at any point after age 18 years is associated with incremental increases in the risk for postmenopausal breast cancer. A 2023 study in JAMA Network Open found a similar pattern with colorectal and other gastrointestinal cancers: People who had sustained overweight or obesity from age 20 years through middle age faced an increased risk of developing those cancers after age 55 years. 

The timing of weight gain didn’t seem to matter either. The same elevated risk held among people who were normal weight in their younger years but became overweight after age 55 years.

Those studies focused on later-onset disease. But, in recent years, experts have tracked a troubling rise in early-onset cancers — those diagnosed before age 50 years — particularly gastrointestinal cancers. 

An obvious question, Dr. Meyerhardt said, is whether the growing prevalence of obesity among young people is partly to blame.

There’s some data to support that, he said. An analysis from the Nurses’ Health Study II found that women with obesity had double the risk for early-onset colorectal cancer as those with a normal BMI. And every 5-kg increase in weight after age 18 years was associated with a 9% increase in colorectal cancer risk.

But while obesity trends probably partly explain the rise in early-onset cancers, there is likely more to the story, Dr. Meyerhardt said.

“I think all of us who see an increasing number of patients under 50 with colorectal cancer know there’s a fair number who do not fit that [high BMI] profile,” he said. “There’s a fair number over 50 who don’t either.”

 

 

Does Weight Loss Help?

With all the evidence pointing to high BMI as a cancer risk factor, a logical conclusion is that weight loss should reduce that excess risk. However, Dr. Bea said, there’s actually little data to support that, and what exists comes from observational studies.

Some research has focused on people who had substantial weight loss after bariatric surgery, with encouraging results. A study published in JAMA found that among 5053 people who underwent bariatric surgery, 2.9% developed an obesity-related cancer over 10 years compared with 4.9% in the nonsurgery group.

Most people, however, aim for less dramatic weight loss, with the help of diet and exercise or sometimes medication. Some evidence shows that a modest degree of weight loss may lower the risks for postmenopausal breast and endometrial cancers. 

A 2020 pooled analysis found, for instance, that among women aged ≥ 50 years, those who lost as little as 2.0-4.5 kg, or 4.4-10.0 pounds, and kept it off for 10 years had a lower risk for breast cancer than women whose weight remained stable. And losing more weight — 9 kg, or about 20 pounds, or more — was even better for lowering cancer risk.

But other research suggests the opposite. A recent analysis found that people who lost weight within the past 2 years through diet and exercise had a higher risk for a range of cancers compared with those who did not lose weight. Overall, though, the increased risk was quite low.

Whatever the research does, or doesn’t, show about weight and cancer risk, Dr. Basen-Engquist said, it’s important that risk factors, obesity and otherwise, aren’t “used as blame tools.”

“With obesity, behavior certainly plays into it,” she said. “But there are so many influences on our behavior that are socially determined.”

Both Dr. Basen-Engquist and Dr. Meyerhardt said it’s important for clinicians to consider the individual in front of them and for everyone to set realistic expectations. 

People with obesity should not feel they have to become thin to be healthier, and no one has to leap from being sedentary to exercising several hours a week

“We don’t want patients to feel that if they don’t get to a stated goal in a guideline, it’s all for naught,” Dr. Meyerhardt said.

A version of this article appeared on Medscape.com.

 

According to the Centers for Disease Control and Prevention (CDC), over 684,000 Americans are diagnosed with an “obesity-associated” cancer each year.

The incidence of many of these cancers has been rising in recent years, particularly among younger people — a trend that sits in contrast with the overall decline in cancers with no established relationship to excess weight, such as lung and skin cancers. 

Is obesity the new smoking? Not exactly.

Tracing a direct line between excess fat and cancer is much less clear-cut than it is with tobacco. While about 42% of cancers — including common ones such as colorectal and postmenopausal breast cancers — are considered obesity-related, only about 8% of incident cancers are attributed to excess body weight. People often develop those diseases regardless of weight.

Although plenty of evidence points to excess body fat as a cancer risk factor, it’s unclear at what point excess weight has an effect. Is gaining weight later in life, for instance, better or worse for cancer risk than being overweight or obese from a young age?

There’s another glaring knowledge gap: Does losing weight at some point in adulthood change the picture? In other words, how many of those 684,000 diagnoses might have been prevented if people shed excess pounds?

When it comes to weight and cancer risk, “there’s a lot we don’t know,” said Jennifer W. Bea, PhD, associate professor, health promotion sciences, University of Arizona, Tucson.

A Consistent but Complicated Relationship

Given the growing incidence of obesity — which currently affects about 42% of US adults and 20% of children and teenagers — it’s no surprise that many studies have delved into the potential effects of excess weight on cancer rates.

Although virtually all the evidence comes from large cohort studies, leaving the cause-effect question open, certain associations keep showing up.

“What we know is that, consistently, a higher body mass index [BMI] — particularly in the obese category — leads to a higher risk of multiple cancers,” said Jeffrey A. Meyerhardt, MD, MPH, codirector, Colon and Rectal Cancer Center, Dana-Farber Cancer Institute, Boston.

In a widely cited report published in The New England Journal of Medicine in 2016, the International Agency for Research on Cancer (IARC) analyzed over 1000 epidemiologic studies on body fat and cancer. The agency pointed to over a dozen cancers, including some of the most common and deadly, linked to excess body weight.

That list includes esophageal adenocarcinoma and endometrial cancer — associated with the highest risk — along with kidney, liver, stomach (gastric cardia), pancreatic, colorectal, postmenopausal breast, gallbladder, ovarian, and thyroid cancers, plus multiple myeloma and meningioma. There’s also “limited” evidence linking excess weight to additional cancer types, including aggressive prostate cancer and certain head and neck cancers.

At the same time, Dr. Meyerhardt said, many of those same cancers are also associated with issues that lead to, or coexist with, overweight and obesity, including poor diet, lack of exercise, and metabolic conditions such as diabetes. 

It’s a complicated web, and it’s likely, Dr. Meyerhardt said, that high BMI both directly affects cancer risk and is part of a “causal pathway” of other factors that do.

Regarding direct effects, preclinical research has pointed to multiple ways in which excess body fat could contribute to cancer, said Karen M. Basen-Engquist, PhD, MPH, professor, Division of Cancer Prevention and Population Services, The University of Texas MD Anderson Cancer Center, Houston.

One broad mechanism to help explain the obesity-cancer link is chronic systemic inflammation because excess fat tissue can raise levels of substances in the body, such as tumor necrosis factor alpha and interleukin 6, which fuel inflammation. Excess fat also contributes to hyperinsulinemia — too much insulin in the blood — which can help promote the growth and spread of tumor cells. 

But the underlying reasons also appear to vary by cancer type, Dr. Basen-Engquist said. With hormonally driven cancer types, such as breast and endometrial, excess body fat may alter hormone levels in ways that spur tumor growth. Extra fat tissue may, for example, convert androgens into estrogens, which could help feed estrogen-dependent tumors.

That, Dr. Basen-Engquist noted, could be why excess weight is associated with postmenopausal, not premenopausal, breast cancer: Before menopause, body fat is a relatively minor contributor to estrogen levels but becomes more important after menopause.

 

 

How Big Is the Effect?

While more than a dozen cancers have been consistently linked to excess weight, the strength of those associations varies considerably. 

Endometrial and esophageal cancers are two that stand out. In the 2016 IARC analysis, people with severe obesity had a seven-times greater risk for endometrial cancer and 4.8-times greater risk for esophageal adenocarcinoma vs people with a normal BMI.

With other cancers, the risk increases for those with severe obesity compared with a normal BMI were far more modest: 10% for ovarian cancer, 30% for colorectal cancer, and 80% for kidney and stomach cancers, for example. For postmenopausal breast cancer, every five-unit increase in BMI was associated with a 10% relative risk increase.

A 2018 study from the American Cancer Society, which attempted to estimate the proportion of cancers in the United States attributable to modifiable risk factors — including alcohol consumption, ultraviolet rays exposure, and physical inactivity — found that smoking accounted for the highest proportion of cancer cases by a wide margin (19%), but excess weight came in second (7.8%).

Again, weight appeared to play a bigger role in certain cancers than others: An estimated 60% of endometrial cancers were linked to excess weight, as were roughly one third of esophageal, kidney, and liver cancers. At the other end of the spectrum, just over 11% of breast, 5% of colorectal, and 4% of ovarian cancers were attributable to excess weight.

Even at the lower end, those rates could make a big difference on the population level, especially for groups with higher rates of obesity.

CDC data show that obesity-related cancers are rising among women younger than 50 years, most rapidly among Hispanic women, and some less common obesity-related cancers, such as stomach, thyroid and pancreatic, are also rising among Black individuals and Hispanic Americans.

Obesity may be one reason for growing cancer disparities, said Leah Ferrucci, PhD, MPH, assistant professor, epidemiology, Yale School of Public Health, New Haven, Connecticut. But, she added, the evidence is limited because Black individuals and Hispanic Americans are understudied.

When Do Extra Pounds Matter?

When it comes to cancer risk, at what point in life does excess weight, or weight gain, matter? Is the standard weight gain in middle age, for instance, as hazardous as being overweight or obese from a young age?

Some evidence suggests there’s no “safe” time for putting on excess pounds.

A recent meta-analysis concluded that weight gain at any point after age 18 years is associated with incremental increases in the risk for postmenopausal breast cancer. A 2023 study in JAMA Network Open found a similar pattern with colorectal and other gastrointestinal cancers: People who had sustained overweight or obesity from age 20 years through middle age faced an increased risk of developing those cancers after age 55 years. 

The timing of weight gain didn’t seem to matter either. The same elevated risk held among people who were normal weight in their younger years but became overweight after age 55 years.

Those studies focused on later-onset disease. But, in recent years, experts have tracked a troubling rise in early-onset cancers — those diagnosed before age 50 years — particularly gastrointestinal cancers. 

An obvious question, Dr. Meyerhardt said, is whether the growing prevalence of obesity among young people is partly to blame.

There’s some data to support that, he said. An analysis from the Nurses’ Health Study II found that women with obesity had double the risk for early-onset colorectal cancer as those with a normal BMI. And every 5-kg increase in weight after age 18 years was associated with a 9% increase in colorectal cancer risk.

But while obesity trends probably partly explain the rise in early-onset cancers, there is likely more to the story, Dr. Meyerhardt said.

“I think all of us who see an increasing number of patients under 50 with colorectal cancer know there’s a fair number who do not fit that [high BMI] profile,” he said. “There’s a fair number over 50 who don’t either.”

 

 

Does Weight Loss Help?

With all the evidence pointing to high BMI as a cancer risk factor, a logical conclusion is that weight loss should reduce that excess risk. However, Dr. Bea said, there’s actually little data to support that, and what exists comes from observational studies.

Some research has focused on people who had substantial weight loss after bariatric surgery, with encouraging results. A study published in JAMA found that among 5053 people who underwent bariatric surgery, 2.9% developed an obesity-related cancer over 10 years compared with 4.9% in the nonsurgery group.

Most people, however, aim for less dramatic weight loss, with the help of diet and exercise or sometimes medication. Some evidence shows that a modest degree of weight loss may lower the risks for postmenopausal breast and endometrial cancers. 

A 2020 pooled analysis found, for instance, that among women aged ≥ 50 years, those who lost as little as 2.0-4.5 kg, or 4.4-10.0 pounds, and kept it off for 10 years had a lower risk for breast cancer than women whose weight remained stable. And losing more weight — 9 kg, or about 20 pounds, or more — was even better for lowering cancer risk.

But other research suggests the opposite. A recent analysis found that people who lost weight within the past 2 years through diet and exercise had a higher risk for a range of cancers compared with those who did not lose weight. Overall, though, the increased risk was quite low.

Whatever the research does, or doesn’t, show about weight and cancer risk, Dr. Basen-Engquist said, it’s important that risk factors, obesity and otherwise, aren’t “used as blame tools.”

“With obesity, behavior certainly plays into it,” she said. “But there are so many influences on our behavior that are socially determined.”

Both Dr. Basen-Engquist and Dr. Meyerhardt said it’s important for clinicians to consider the individual in front of them and for everyone to set realistic expectations. 

People with obesity should not feel they have to become thin to be healthier, and no one has to leap from being sedentary to exercising several hours a week

“We don’t want patients to feel that if they don’t get to a stated goal in a guideline, it’s all for naught,” Dr. Meyerhardt said.

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Urine Test Could Prevent Unnecessary Prostate Biopsies

Article Type
Changed
Tue, 05/28/2024 - 15:42

To date, men undergoing screening through the measurement of prostate-specific antigen (PSA) levels have had a significant reduction in neoplastic mortality. Because of its low specificity, however, this practice often leads to frequent, unnecessary, invasive biopsies and the diagnosis of low-grade, indolent cancer. While guided biopsies with multiparametric MRI can improve the diagnosis of grade 2 prostate cancers, widespread implementation remains challenging. The use of noninvasive biomarkers to stratify the risk for prostate cancer may be a more practical option.

The National Comprehensive Cancer Network proposes a test consisting of six blood and urine biomarkers for all grades of prostate cancer, and it outperforms PSA testing. However, current practice focuses on detecting high-grade cancers. It has been hypothesized that increasing the number of biomarkers by including molecules specifically expressed in aggressive high-grade prostate cancers could improve test accuracy. Based on the identification of new genes that are overexpressed in high-grade cancers, a polymerase chain reaction (PCR) technique targeting 54 candidate markers was used to develop an optimal 18-gene test that could be used before imaging (with MRI) and biopsy and to assess whether the latter procedures are warranted.
 

Development Cohort

In the development cohort (n = 815; median age, 63 years), quantitative PCR (qPCR) analysis of the 54 candidate genes was performed on urine samples that had been prospectively collected before biopsy following a digital rectal examination. Patients with previously diagnosed prostate cancer, abnormal MRI results, and those who had already undergone a prostate biopsy were excluded. Participants’ PSA levels ranged from 3 to 10 ng/mL (median interquartile range [IQR], 5.6 [4.6-7.2] ng/mL). Valid qPCR results were obtained from 761 participants (93.4%). Subsequently, prostate biopsy revealed grade 2 or higher cancer in 293 participants (38.5%).

Thus, a urine test called MyProstateScore 2.0 (MPSA) was developed, with two formulations: MPSA2 and MPSA2+, depending on whether a prostate volume was considered. The final MPSA2 development model included clinical data and 17 of the most informative markers, including nine specific to cancer, which were associated with the KLK3 reference gene.
 

Validation and Analyses

The external validation cohort (n = 813) consisted of participants in the NCI EDRN PCA3 Evaluation trial. Valid qPCR results were obtained from 743 participants, of whom 151 (20.3%) were found to have high-grade prostate cancer.

The median MPS2 score was higher in patients with grade 2 or higher prostate cancer (0.44; IQR, 0.23-0.69) than in those with noncontributory biopsies (0.08; IQR, 0.03-0.19; P < .001) or grade 1 cancer (0.25; IQR, 0.09-0.48; P < .01).

Comparative analyses included PSA, the Prostate Cancer Prevention Trial risk calculator, the Prostate Health Index (PHI), and various previous genetic models. Decision curve analyses quantified the benefit of each biomarker studied. The 151 participants with high-grade prostate cancer had operating curve values ranging from 0.60 for PSA alone to 0.77 for PHI and 0.76 for a two-gene multiplex model. The MPSA model had values of 0.81 and 0.82 for MPSA2+. For a required sensitivity of 95%, the MPS2 model could reduce the rate of unnecessary initial biopsies in the population by 35%-42%, with an impact of 15%-30% for other tests. Among the subgroups analyzed, MPS2 models showed negative predictive values of 95%-99% for grade 2 or higher prostate cancers and 99% for grade 3 or higher tumors.
 

 

 

MPS2 and Competitors

Existing biomarkers have reduced selectivity in detecting high-grade prostate tumors. This lower performance has led to the development of a new urine test including, for the first time, markers specifically overexpressed in high-grade prostate cancer. This new MPS2 test has a sensitivity of 95% for high-grade prostate cancer and a specificity ranging from 35% to 51%, depending on the subgroups. For clinicians, widespread use of MPS2 could greatly reduce the number of unnecessary biopsies while maintaining a high detection rate of grade 2 or higher prostate cancer.

Among patients who have had a negative first biopsy, MPS2 would have a sensitivity of 94.4% and a specificity of 51%, which is much higher than other tests like prostate cancer antigen 3 gene, three-gene model, and MPS. In addition, in patients with grade 1 prostate cancer, urinary markers for high-grade cancer could indicate the existence of a more aggressive tumor requiring increased monitoring.

This study has limitations, however. The ethnic diversity of its population was limited. A few Black men were included, for example. Second, a systematic biopsy was used as the reference, which can increase negative predictive value and decrease positive predictive value. Classification errors may have occurred. Therefore, further studies are needed to confirm these initial results and the long-term positive impact of using MPS2.

In conclusion, an 18-gene urine test seems to be more relevant for diagnosing high-grade prostate cancer than existing tests. It could prevent additional imaging or biopsy examinations in 35%-41% of patients. Therefore, the use of such tests in patients with high PSA levels could reduce the potential risks associated with prostate cancer screening while preserving its long-term benefits.

This story was translated from JIM, which is part of the Medscape professional network, using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.

Publications
Topics
Sections

To date, men undergoing screening through the measurement of prostate-specific antigen (PSA) levels have had a significant reduction in neoplastic mortality. Because of its low specificity, however, this practice often leads to frequent, unnecessary, invasive biopsies and the diagnosis of low-grade, indolent cancer. While guided biopsies with multiparametric MRI can improve the diagnosis of grade 2 prostate cancers, widespread implementation remains challenging. The use of noninvasive biomarkers to stratify the risk for prostate cancer may be a more practical option.

The National Comprehensive Cancer Network proposes a test consisting of six blood and urine biomarkers for all grades of prostate cancer, and it outperforms PSA testing. However, current practice focuses on detecting high-grade cancers. It has been hypothesized that increasing the number of biomarkers by including molecules specifically expressed in aggressive high-grade prostate cancers could improve test accuracy. Based on the identification of new genes that are overexpressed in high-grade cancers, a polymerase chain reaction (PCR) technique targeting 54 candidate markers was used to develop an optimal 18-gene test that could be used before imaging (with MRI) and biopsy and to assess whether the latter procedures are warranted.
 

Development Cohort

In the development cohort (n = 815; median age, 63 years), quantitative PCR (qPCR) analysis of the 54 candidate genes was performed on urine samples that had been prospectively collected before biopsy following a digital rectal examination. Patients with previously diagnosed prostate cancer, abnormal MRI results, and those who had already undergone a prostate biopsy were excluded. Participants’ PSA levels ranged from 3 to 10 ng/mL (median interquartile range [IQR], 5.6 [4.6-7.2] ng/mL). Valid qPCR results were obtained from 761 participants (93.4%). Subsequently, prostate biopsy revealed grade 2 or higher cancer in 293 participants (38.5%).

Thus, a urine test called MyProstateScore 2.0 (MPSA) was developed, with two formulations: MPSA2 and MPSA2+, depending on whether a prostate volume was considered. The final MPSA2 development model included clinical data and 17 of the most informative markers, including nine specific to cancer, which were associated with the KLK3 reference gene.
 

Validation and Analyses

The external validation cohort (n = 813) consisted of participants in the NCI EDRN PCA3 Evaluation trial. Valid qPCR results were obtained from 743 participants, of whom 151 (20.3%) were found to have high-grade prostate cancer.

The median MPS2 score was higher in patients with grade 2 or higher prostate cancer (0.44; IQR, 0.23-0.69) than in those with noncontributory biopsies (0.08; IQR, 0.03-0.19; P < .001) or grade 1 cancer (0.25; IQR, 0.09-0.48; P < .01).

Comparative analyses included PSA, the Prostate Cancer Prevention Trial risk calculator, the Prostate Health Index (PHI), and various previous genetic models. Decision curve analyses quantified the benefit of each biomarker studied. The 151 participants with high-grade prostate cancer had operating curve values ranging from 0.60 for PSA alone to 0.77 for PHI and 0.76 for a two-gene multiplex model. The MPSA model had values of 0.81 and 0.82 for MPSA2+. For a required sensitivity of 95%, the MPS2 model could reduce the rate of unnecessary initial biopsies in the population by 35%-42%, with an impact of 15%-30% for other tests. Among the subgroups analyzed, MPS2 models showed negative predictive values of 95%-99% for grade 2 or higher prostate cancers and 99% for grade 3 or higher tumors.
 

 

 

MPS2 and Competitors

Existing biomarkers have reduced selectivity in detecting high-grade prostate tumors. This lower performance has led to the development of a new urine test including, for the first time, markers specifically overexpressed in high-grade prostate cancer. This new MPS2 test has a sensitivity of 95% for high-grade prostate cancer and a specificity ranging from 35% to 51%, depending on the subgroups. For clinicians, widespread use of MPS2 could greatly reduce the number of unnecessary biopsies while maintaining a high detection rate of grade 2 or higher prostate cancer.

Among patients who have had a negative first biopsy, MPS2 would have a sensitivity of 94.4% and a specificity of 51%, which is much higher than other tests like prostate cancer antigen 3 gene, three-gene model, and MPS. In addition, in patients with grade 1 prostate cancer, urinary markers for high-grade cancer could indicate the existence of a more aggressive tumor requiring increased monitoring.

This study has limitations, however. The ethnic diversity of its population was limited. A few Black men were included, for example. Second, a systematic biopsy was used as the reference, which can increase negative predictive value and decrease positive predictive value. Classification errors may have occurred. Therefore, further studies are needed to confirm these initial results and the long-term positive impact of using MPS2.

In conclusion, an 18-gene urine test seems to be more relevant for diagnosing high-grade prostate cancer than existing tests. It could prevent additional imaging or biopsy examinations in 35%-41% of patients. Therefore, the use of such tests in patients with high PSA levels could reduce the potential risks associated with prostate cancer screening while preserving its long-term benefits.

This story was translated from JIM, which is part of the Medscape professional network, using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.

To date, men undergoing screening through the measurement of prostate-specific antigen (PSA) levels have had a significant reduction in neoplastic mortality. Because of its low specificity, however, this practice often leads to frequent, unnecessary, invasive biopsies and the diagnosis of low-grade, indolent cancer. While guided biopsies with multiparametric MRI can improve the diagnosis of grade 2 prostate cancers, widespread implementation remains challenging. The use of noninvasive biomarkers to stratify the risk for prostate cancer may be a more practical option.

The National Comprehensive Cancer Network proposes a test consisting of six blood and urine biomarkers for all grades of prostate cancer, and it outperforms PSA testing. However, current practice focuses on detecting high-grade cancers. It has been hypothesized that increasing the number of biomarkers by including molecules specifically expressed in aggressive high-grade prostate cancers could improve test accuracy. Based on the identification of new genes that are overexpressed in high-grade cancers, a polymerase chain reaction (PCR) technique targeting 54 candidate markers was used to develop an optimal 18-gene test that could be used before imaging (with MRI) and biopsy and to assess whether the latter procedures are warranted.
 

Development Cohort

In the development cohort (n = 815; median age, 63 years), quantitative PCR (qPCR) analysis of the 54 candidate genes was performed on urine samples that had been prospectively collected before biopsy following a digital rectal examination. Patients with previously diagnosed prostate cancer, abnormal MRI results, and those who had already undergone a prostate biopsy were excluded. Participants’ PSA levels ranged from 3 to 10 ng/mL (median interquartile range [IQR], 5.6 [4.6-7.2] ng/mL). Valid qPCR results were obtained from 761 participants (93.4%). Subsequently, prostate biopsy revealed grade 2 or higher cancer in 293 participants (38.5%).

Thus, a urine test called MyProstateScore 2.0 (MPSA) was developed, with two formulations: MPSA2 and MPSA2+, depending on whether a prostate volume was considered. The final MPSA2 development model included clinical data and 17 of the most informative markers, including nine specific to cancer, which were associated with the KLK3 reference gene.
 

Validation and Analyses

The external validation cohort (n = 813) consisted of participants in the NCI EDRN PCA3 Evaluation trial. Valid qPCR results were obtained from 743 participants, of whom 151 (20.3%) were found to have high-grade prostate cancer.

The median MPS2 score was higher in patients with grade 2 or higher prostate cancer (0.44; IQR, 0.23-0.69) than in those with noncontributory biopsies (0.08; IQR, 0.03-0.19; P < .001) or grade 1 cancer (0.25; IQR, 0.09-0.48; P < .01).

Comparative analyses included PSA, the Prostate Cancer Prevention Trial risk calculator, the Prostate Health Index (PHI), and various previous genetic models. Decision curve analyses quantified the benefit of each biomarker studied. The 151 participants with high-grade prostate cancer had operating curve values ranging from 0.60 for PSA alone to 0.77 for PHI and 0.76 for a two-gene multiplex model. The MPSA model had values of 0.81 and 0.82 for MPSA2+. For a required sensitivity of 95%, the MPS2 model could reduce the rate of unnecessary initial biopsies in the population by 35%-42%, with an impact of 15%-30% for other tests. Among the subgroups analyzed, MPS2 models showed negative predictive values of 95%-99% for grade 2 or higher prostate cancers and 99% for grade 3 or higher tumors.
 

 

 

MPS2 and Competitors

Existing biomarkers have reduced selectivity in detecting high-grade prostate tumors. This lower performance has led to the development of a new urine test including, for the first time, markers specifically overexpressed in high-grade prostate cancer. This new MPS2 test has a sensitivity of 95% for high-grade prostate cancer and a specificity ranging from 35% to 51%, depending on the subgroups. For clinicians, widespread use of MPS2 could greatly reduce the number of unnecessary biopsies while maintaining a high detection rate of grade 2 or higher prostate cancer.

Among patients who have had a negative first biopsy, MPS2 would have a sensitivity of 94.4% and a specificity of 51%, which is much higher than other tests like prostate cancer antigen 3 gene, three-gene model, and MPS. In addition, in patients with grade 1 prostate cancer, urinary markers for high-grade cancer could indicate the existence of a more aggressive tumor requiring increased monitoring.

This study has limitations, however. The ethnic diversity of its population was limited. A few Black men were included, for example. Second, a systematic biopsy was used as the reference, which can increase negative predictive value and decrease positive predictive value. Classification errors may have occurred. Therefore, further studies are needed to confirm these initial results and the long-term positive impact of using MPS2.

In conclusion, an 18-gene urine test seems to be more relevant for diagnosing high-grade prostate cancer than existing tests. It could prevent additional imaging or biopsy examinations in 35%-41% of patients. Therefore, the use of such tests in patients with high PSA levels could reduce the potential risks associated with prostate cancer screening while preserving its long-term benefits.

This story was translated from JIM, which is part of the Medscape professional network, using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

New Gel Makes Alcohol 50% Less Toxic, Curbs Organ Damage

Article Type
Changed
Wed, 06/05/2024 - 14:05

It sounds like a gimmick. Drink a couple glasses of wine and feel only half as intoxicated as you normally would — and sustain less damage to your liver and other organs.

But that’s the promise of a new gel, developed by researchers in Switzerland, that changes how the body processes alcohol. The gel has been tested in mice so far, but the researchers hope to make it available to people soon. The goal: To protect people from alcohol-related accidents and chronic disease — responsible for more than three million annual deaths worldwide.

“It is a global, urgent issue,” said study coauthor Raffaele Mezzenga, PhD, a professor at ETH Zürich, Switzerland.

The advance builds on a decades-long quest among scientists to reduce the toxicity of alcohol, said Che-Hong Chen, PhD, a molecular biologist at Stanford School of Medicine, Stanford, California, who was not involved in the study. Some probiotic-based products aim to help process alcohol’s toxic byproduct acetaldehyde in the gut, but their effects seem inconsistent from one person to another, Dr. Chen said. Intravenous infusions of natural enzyme complexes, such as those that mimic liver cells to speed up alcohol metabolism, can actually produce some acetaldehyde, mitigating their detoxifying effects.

“Our method has the potential to fill the gap of most of the approaches being explored,” Dr. Mezzenga said. “We hope and plan to move to clinical studies as soon as possible.” 

Usually, the liver processes alcohol, causing the release of toxic acetaldehyde followed by less harmful acetic acid. Acetaldehyde can cause DNA damage, oxidative stress, and vascular inflammation. Too much acetaldehyde can increase the risk for cancer.

But the gel catalyzes the breakdown of alcohol in the digestive tract, converting about half of it into acetic acid. Only the remaining 45% enters the bloodstream and becomes acetaldehyde.

“The concentration of acetaldehyde will be decreased by a factor of more than two and so will the ‘intoxicating’ effect of the alcohol,” said Dr. Mezzenga.

Ideally, someone would ingest the gel immediately before or when consuming alcohol. It’s designed to continue working for several hours.

Some of the mice received one serving of alcohol, while others were served regularly for 10 days. The gel slashed their blood alcohol level by 40% after half an hour and by up to 56% after 5 hours compared with a control group given alcohol but not the gel. Mice that consumed the gel also had less liver and intestinal damage.

“The results, both the short-term behavior of the mice and in the long term for the preservation of organs, were way beyond our expectation,” said Dr. Mezzenga.

Casual drinkers could benefit from the gel. However, the gel could also lead people to consume more alcohol than they would normally to feel intoxicated, Dr. Chen said.
 

Bypassing a Problematic Pathway

A liver enzyme called alcohol dehydrogenase (ADH) converts alcohol to acetaldehyde before a second enzyme called aldehyde dehydrogenase (ALDH2) helps process acetaldehyde into acetic acid. But with the gel, alcohol transforms directly to acetic acid in the digestive tract.

“This chemical reaction seems to bypass the known biological pathway of alcohol metabolism. That’s new to me,” said Dr. Chen, a senior research scientist at Stanford and country director at the Center for Asian Health Research and Education Center. The processing of alcohol before it passes through the mucous membrane of the digestive tract is “another novel aspect,”Dr. Chen said.

To make the gel, the researchers boil whey proteins — also found in milk — to produce stringy fibrils. Next, they add salt and water to cause the fibrils to crosslink, forming a gel. The gel gets infused with iron atoms, which catalyze the conversion of alcohol into acetic acid. That conversion relies on hydrogen peroxide, the byproduct of a reaction between gold and glucose, both of which are also added to the gel.

A previous version of the technology used iron nanoparticles, which needed to be “digested down to ionic form by the acidic pH in the stomach,” said Dr. Mezzenga. That process took too long, giving alcohol more time to cross into the bloodstream. By “decorating” the protein fibrils with single iron atoms, the researchers were able to “increase their catalytic efficiency,” he added.
 

 

 

What’s Next?

With animal studies completed, human clinical studies are next. How soon that could happen will depend on ethical clearance and financial support, the researchers said.

An “interesting next step,” said Dr. Chen, would be to give the gel to mice with a genetic mutation in ALDH2. The mutation makes it harder to process acetaldehyde, often causing facial redness. Prevalent among East Asian populations, the mutation affects about 560 million people and has been linked to Alzheimer’s disease. Dr. Chen’s lab found a chemical compound that can increase the activity of ADH2, which is expected to begin phase 2 clinical trials this year.
 

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

It sounds like a gimmick. Drink a couple glasses of wine and feel only half as intoxicated as you normally would — and sustain less damage to your liver and other organs.

But that’s the promise of a new gel, developed by researchers in Switzerland, that changes how the body processes alcohol. The gel has been tested in mice so far, but the researchers hope to make it available to people soon. The goal: To protect people from alcohol-related accidents and chronic disease — responsible for more than three million annual deaths worldwide.

“It is a global, urgent issue,” said study coauthor Raffaele Mezzenga, PhD, a professor at ETH Zürich, Switzerland.

The advance builds on a decades-long quest among scientists to reduce the toxicity of alcohol, said Che-Hong Chen, PhD, a molecular biologist at Stanford School of Medicine, Stanford, California, who was not involved in the study. Some probiotic-based products aim to help process alcohol’s toxic byproduct acetaldehyde in the gut, but their effects seem inconsistent from one person to another, Dr. Chen said. Intravenous infusions of natural enzyme complexes, such as those that mimic liver cells to speed up alcohol metabolism, can actually produce some acetaldehyde, mitigating their detoxifying effects.

“Our method has the potential to fill the gap of most of the approaches being explored,” Dr. Mezzenga said. “We hope and plan to move to clinical studies as soon as possible.” 

Usually, the liver processes alcohol, causing the release of toxic acetaldehyde followed by less harmful acetic acid. Acetaldehyde can cause DNA damage, oxidative stress, and vascular inflammation. Too much acetaldehyde can increase the risk for cancer.

But the gel catalyzes the breakdown of alcohol in the digestive tract, converting about half of it into acetic acid. Only the remaining 45% enters the bloodstream and becomes acetaldehyde.

“The concentration of acetaldehyde will be decreased by a factor of more than two and so will the ‘intoxicating’ effect of the alcohol,” said Dr. Mezzenga.

Ideally, someone would ingest the gel immediately before or when consuming alcohol. It’s designed to continue working for several hours.

Some of the mice received one serving of alcohol, while others were served regularly for 10 days. The gel slashed their blood alcohol level by 40% after half an hour and by up to 56% after 5 hours compared with a control group given alcohol but not the gel. Mice that consumed the gel also had less liver and intestinal damage.

“The results, both the short-term behavior of the mice and in the long term for the preservation of organs, were way beyond our expectation,” said Dr. Mezzenga.

Casual drinkers could benefit from the gel. However, the gel could also lead people to consume more alcohol than they would normally to feel intoxicated, Dr. Chen said.
 

Bypassing a Problematic Pathway

A liver enzyme called alcohol dehydrogenase (ADH) converts alcohol to acetaldehyde before a second enzyme called aldehyde dehydrogenase (ALDH2) helps process acetaldehyde into acetic acid. But with the gel, alcohol transforms directly to acetic acid in the digestive tract.

“This chemical reaction seems to bypass the known biological pathway of alcohol metabolism. That’s new to me,” said Dr. Chen, a senior research scientist at Stanford and country director at the Center for Asian Health Research and Education Center. The processing of alcohol before it passes through the mucous membrane of the digestive tract is “another novel aspect,”Dr. Chen said.

To make the gel, the researchers boil whey proteins — also found in milk — to produce stringy fibrils. Next, they add salt and water to cause the fibrils to crosslink, forming a gel. The gel gets infused with iron atoms, which catalyze the conversion of alcohol into acetic acid. That conversion relies on hydrogen peroxide, the byproduct of a reaction between gold and glucose, both of which are also added to the gel.

A previous version of the technology used iron nanoparticles, which needed to be “digested down to ionic form by the acidic pH in the stomach,” said Dr. Mezzenga. That process took too long, giving alcohol more time to cross into the bloodstream. By “decorating” the protein fibrils with single iron atoms, the researchers were able to “increase their catalytic efficiency,” he added.
 

 

 

What’s Next?

With animal studies completed, human clinical studies are next. How soon that could happen will depend on ethical clearance and financial support, the researchers said.

An “interesting next step,” said Dr. Chen, would be to give the gel to mice with a genetic mutation in ALDH2. The mutation makes it harder to process acetaldehyde, often causing facial redness. Prevalent among East Asian populations, the mutation affects about 560 million people and has been linked to Alzheimer’s disease. Dr. Chen’s lab found a chemical compound that can increase the activity of ADH2, which is expected to begin phase 2 clinical trials this year.
 

A version of this article appeared on Medscape.com.

It sounds like a gimmick. Drink a couple glasses of wine and feel only half as intoxicated as you normally would — and sustain less damage to your liver and other organs.

But that’s the promise of a new gel, developed by researchers in Switzerland, that changes how the body processes alcohol. The gel has been tested in mice so far, but the researchers hope to make it available to people soon. The goal: To protect people from alcohol-related accidents and chronic disease — responsible for more than three million annual deaths worldwide.

“It is a global, urgent issue,” said study coauthor Raffaele Mezzenga, PhD, a professor at ETH Zürich, Switzerland.

The advance builds on a decades-long quest among scientists to reduce the toxicity of alcohol, said Che-Hong Chen, PhD, a molecular biologist at Stanford School of Medicine, Stanford, California, who was not involved in the study. Some probiotic-based products aim to help process alcohol’s toxic byproduct acetaldehyde in the gut, but their effects seem inconsistent from one person to another, Dr. Chen said. Intravenous infusions of natural enzyme complexes, such as those that mimic liver cells to speed up alcohol metabolism, can actually produce some acetaldehyde, mitigating their detoxifying effects.

“Our method has the potential to fill the gap of most of the approaches being explored,” Dr. Mezzenga said. “We hope and plan to move to clinical studies as soon as possible.” 

Usually, the liver processes alcohol, causing the release of toxic acetaldehyde followed by less harmful acetic acid. Acetaldehyde can cause DNA damage, oxidative stress, and vascular inflammation. Too much acetaldehyde can increase the risk for cancer.

But the gel catalyzes the breakdown of alcohol in the digestive tract, converting about half of it into acetic acid. Only the remaining 45% enters the bloodstream and becomes acetaldehyde.

“The concentration of acetaldehyde will be decreased by a factor of more than two and so will the ‘intoxicating’ effect of the alcohol,” said Dr. Mezzenga.

Ideally, someone would ingest the gel immediately before or when consuming alcohol. It’s designed to continue working for several hours.

Some of the mice received one serving of alcohol, while others were served regularly for 10 days. The gel slashed their blood alcohol level by 40% after half an hour and by up to 56% after 5 hours compared with a control group given alcohol but not the gel. Mice that consumed the gel also had less liver and intestinal damage.

“The results, both the short-term behavior of the mice and in the long term for the preservation of organs, were way beyond our expectation,” said Dr. Mezzenga.

Casual drinkers could benefit from the gel. However, the gel could also lead people to consume more alcohol than they would normally to feel intoxicated, Dr. Chen said.
 

Bypassing a Problematic Pathway

A liver enzyme called alcohol dehydrogenase (ADH) converts alcohol to acetaldehyde before a second enzyme called aldehyde dehydrogenase (ALDH2) helps process acetaldehyde into acetic acid. But with the gel, alcohol transforms directly to acetic acid in the digestive tract.

“This chemical reaction seems to bypass the known biological pathway of alcohol metabolism. That’s new to me,” said Dr. Chen, a senior research scientist at Stanford and country director at the Center for Asian Health Research and Education Center. The processing of alcohol before it passes through the mucous membrane of the digestive tract is “another novel aspect,”Dr. Chen said.

To make the gel, the researchers boil whey proteins — also found in milk — to produce stringy fibrils. Next, they add salt and water to cause the fibrils to crosslink, forming a gel. The gel gets infused with iron atoms, which catalyze the conversion of alcohol into acetic acid. That conversion relies on hydrogen peroxide, the byproduct of a reaction between gold and glucose, both of which are also added to the gel.

A previous version of the technology used iron nanoparticles, which needed to be “digested down to ionic form by the acidic pH in the stomach,” said Dr. Mezzenga. That process took too long, giving alcohol more time to cross into the bloodstream. By “decorating” the protein fibrils with single iron atoms, the researchers were able to “increase their catalytic efficiency,” he added.
 

 

 

What’s Next?

With animal studies completed, human clinical studies are next. How soon that could happen will depend on ethical clearance and financial support, the researchers said.

An “interesting next step,” said Dr. Chen, would be to give the gel to mice with a genetic mutation in ALDH2. The mutation makes it harder to process acetaldehyde, often causing facial redness. Prevalent among East Asian populations, the mutation affects about 560 million people and has been linked to Alzheimer’s disease. Dr. Chen’s lab found a chemical compound that can increase the activity of ADH2, which is expected to begin phase 2 clinical trials this year.
 

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

LDCT Lung Cancer Screening Finds Undiagnosed Pulmonary Comorbidities in High-Risk Population

Article Type
Changed
Tue, 05/28/2024 - 15:40

Lung cancer screening with low-dose CT (LDCT) can effectively evaluate a high-risk population for undiagnosed chronic obstructive pulmonary disease (COPD) and airflow obstruction, based on data from a new study of approximately 2000 individuals.

Previous research suggests that approximately 70%-90% of individuals with COPD are undiagnosed, especially low-income and minority populations who may be less likely to undergo screening, said Michaela A. Seigo, DO, of Temple University Hospital, Philadelphia, in a study presented at the American Thoracic Society (ATS) 2024 International Conference.

Although the current guidance from the United States Preventive Services Task Force (USPSTF) recommends against universal COPD screening in asymptomatic adults, the use of LDCT may be an option for evaluating a high-risk population, the researchers noted.

The researchers reviewed data from 2083 adults enrolled in the Temple Healthy Chest Initiative, an urban health system-wide lung cancer screening program, combined with the detection of symptoms and comorbidities.
 

Baseline LDCT for Identification of Comorbidities

Study participants underwent baseline LDCT between October 2021 and October 2022. The images were reviewed by radiologists for pulmonary comorbidities including emphysema, airway disease, bronchiectasis, and interstitial lung disease. In addition, 604 participants (29%) completed a symptom survey, and 624 (30%) underwent spirometry. The mean age of the participants was 65.8 years and 63.9 years for those with and without a history of COPD, respectively.

Approximately half of the participants in both groups were female.

Overall, 66 of 181 (36.5%) individuals previously undiagnosed with COPD had spirometry consistent with airflow obstruction (forced expiratory volume in 1 second/forced vital capacity, < 70%). Individuals with previously undiagnosed COPD were more likely to be younger, male, current smokers, and identified as Hispanic or other race (not Black, White, Hispanic, or Asian/Native American/Pacific Islander).

Individuals without a reported history of COPD had fewer pulmonary comorbidities on LDCT and lower rates of respiratory symptoms than those with COPD. However, nearly 25% of individuals with no reported history of COPD said that breathing issues affected their “ability to do things,” Ms. Seigo said, and a majority of those with no COPD diagnosis exhibited airway disease (76.2% compared with 84% of diagnosed patients with COPD). In addition, 88.1% reported ever experiencing dyspnea and 72.6% reported experiencing cough; both symptoms are compatible with a clinical diagnosis of COPD, the researchers noted.

“We detected pulmonary comorbidities at higher rates than previously published,” Ms. Seigo said in an interview. The increase likely reflects the patient population at Temple, which includes a relatively high percentage of city-dwelling, lower-income individuals, as well as more racial-ethnic minorities and persons of color, she said.

However, “these findings will help clinicians target the most at-risk populations for previously undiagnosed COPD,” Ms. Seigo said.

Looking ahead, Ms. Seigo said she sees a dominant role for artificial intelligence (AI) in COPD screening. “At-risk populations will get LDCT scans, and AI will identify pulmonary and extra-pulmonary comorbidities that may need to be addressed,” she said.

A combination of symptom detection plus strategic and more widely available access to screening offers “a huge opportunity to intervene earlier and potentially save lives,” she told this news organization.
 

 

 

Lung Cancer Screening May Promote Earlier COPD Intervention

The current study examines the prevalence of undiagnosed COPD, especially among low-income and minority populations, in an asymptomatic high-risk group. “By integrating lung cancer CT screening with the detection of pulmonary comorbidities on LDCT and respiratory symptoms, the current study aimed to identify individuals with undiagnosed COPD,” said Dharani K. Narendra, MD, of Baylor College of Medicine, Houston, in an interview.

“The study highlighted the feasibility and potential benefits of coupling lung cancer screening tests with COPD detection, which is noteworthy, and hits two targets with one arrow — early detection of lung cancer and COPD — in high-risk groups, Dr. Narendra said.

“Although the USPSTF recommends against screening for COPD in asymptomatic patients, abnormal pulmonary comorbidities observed on CT chest scans could serve as a gateway for clinicians to screen for COPD,” said Dr. Narendra. “This approach allows for early diagnosis, education on smoking cessation, and timely treatment of COPD, potentially preventing lung function deterioration and reducing the risk of exacerbations,” she noted.

The finding that one third of previously undiagnosed and asymptomatic patients with COPD showed significant rates of airflow obstruction on spirometry is consistent with previous research, Dr. Narendra told this news organization.

“Interestingly, in questions about specific symptoms, undiagnosed COPD patients reported higher rates of dyspnea, more cough, and breathing difficulties affecting their daily activities, at 16.1%, 27.4%, and 24.5%, respectively, highlighting a lower perception of symptoms,” she said.

“Barriers to lung cancer screening in urban, high-risk communities include limited healthcare facility access, insufficient awareness of screening programs, financial constraints, and cultural or language barriers,” said Dr. Narendra.

Potential strategies to overcome these barriers include improving access through additional screening centers and providing transportation, implementing community-based education and outreach programs to increase awareness about the benefits of lung cancer screening and early COPD detection, and providing financial assistance in the form of free screening options and collaboration with insurers to cover screening expenses, she said.

“Healthcare providers must recognize the dual benefits of lung cancer screening programs, including the opportunity to screen for undiagnosed COPD,” Dr. Narendra emphasized. “This integrated approach is crucial in identifying high-risk individuals who could benefit from early intervention and effective management of COPD. Clinicians should actively support implementing comprehensive screening programs incorporating assessments for pulmonary comorbidities through LDCT and screening questionnaires for COPD symptoms,” she said.

“Further research is needed to evaluate long-term mortality outcomes and identify best practices to determine the most effective methods and cost-effectiveness for implementing and sustaining combined screening programs in various urban settings,” Dr. Narendra told this news organization.

Other areas to address in future studies include investigating specific barriers to screening among different high-risk groups and tailoring interventions to improve screening uptake and adherence, Narendra said. “By addressing these research gaps, health care providers can optimize screening programs and enhance the overall health of urban, high-risk populations,” she added.

The study received no outside funding. The researchers had no financial conflicts to disclose. Dr. Narendra serves on the editorial board of CHEST Physician.

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

Lung cancer screening with low-dose CT (LDCT) can effectively evaluate a high-risk population for undiagnosed chronic obstructive pulmonary disease (COPD) and airflow obstruction, based on data from a new study of approximately 2000 individuals.

Previous research suggests that approximately 70%-90% of individuals with COPD are undiagnosed, especially low-income and minority populations who may be less likely to undergo screening, said Michaela A. Seigo, DO, of Temple University Hospital, Philadelphia, in a study presented at the American Thoracic Society (ATS) 2024 International Conference.

Although the current guidance from the United States Preventive Services Task Force (USPSTF) recommends against universal COPD screening in asymptomatic adults, the use of LDCT may be an option for evaluating a high-risk population, the researchers noted.

The researchers reviewed data from 2083 adults enrolled in the Temple Healthy Chest Initiative, an urban health system-wide lung cancer screening program, combined with the detection of symptoms and comorbidities.
 

Baseline LDCT for Identification of Comorbidities

Study participants underwent baseline LDCT between October 2021 and October 2022. The images were reviewed by radiologists for pulmonary comorbidities including emphysema, airway disease, bronchiectasis, and interstitial lung disease. In addition, 604 participants (29%) completed a symptom survey, and 624 (30%) underwent spirometry. The mean age of the participants was 65.8 years and 63.9 years for those with and without a history of COPD, respectively.

Approximately half of the participants in both groups were female.

Overall, 66 of 181 (36.5%) individuals previously undiagnosed with COPD had spirometry consistent with airflow obstruction (forced expiratory volume in 1 second/forced vital capacity, < 70%). Individuals with previously undiagnosed COPD were more likely to be younger, male, current smokers, and identified as Hispanic or other race (not Black, White, Hispanic, or Asian/Native American/Pacific Islander).

Individuals without a reported history of COPD had fewer pulmonary comorbidities on LDCT and lower rates of respiratory symptoms than those with COPD. However, nearly 25% of individuals with no reported history of COPD said that breathing issues affected their “ability to do things,” Ms. Seigo said, and a majority of those with no COPD diagnosis exhibited airway disease (76.2% compared with 84% of diagnosed patients with COPD). In addition, 88.1% reported ever experiencing dyspnea and 72.6% reported experiencing cough; both symptoms are compatible with a clinical diagnosis of COPD, the researchers noted.

“We detected pulmonary comorbidities at higher rates than previously published,” Ms. Seigo said in an interview. The increase likely reflects the patient population at Temple, which includes a relatively high percentage of city-dwelling, lower-income individuals, as well as more racial-ethnic minorities and persons of color, she said.

However, “these findings will help clinicians target the most at-risk populations for previously undiagnosed COPD,” Ms. Seigo said.

Looking ahead, Ms. Seigo said she sees a dominant role for artificial intelligence (AI) in COPD screening. “At-risk populations will get LDCT scans, and AI will identify pulmonary and extra-pulmonary comorbidities that may need to be addressed,” she said.

A combination of symptom detection plus strategic and more widely available access to screening offers “a huge opportunity to intervene earlier and potentially save lives,” she told this news organization.
 

 

 

Lung Cancer Screening May Promote Earlier COPD Intervention

The current study examines the prevalence of undiagnosed COPD, especially among low-income and minority populations, in an asymptomatic high-risk group. “By integrating lung cancer CT screening with the detection of pulmonary comorbidities on LDCT and respiratory symptoms, the current study aimed to identify individuals with undiagnosed COPD,” said Dharani K. Narendra, MD, of Baylor College of Medicine, Houston, in an interview.

“The study highlighted the feasibility and potential benefits of coupling lung cancer screening tests with COPD detection, which is noteworthy, and hits two targets with one arrow — early detection of lung cancer and COPD — in high-risk groups, Dr. Narendra said.

“Although the USPSTF recommends against screening for COPD in asymptomatic patients, abnormal pulmonary comorbidities observed on CT chest scans could serve as a gateway for clinicians to screen for COPD,” said Dr. Narendra. “This approach allows for early diagnosis, education on smoking cessation, and timely treatment of COPD, potentially preventing lung function deterioration and reducing the risk of exacerbations,” she noted.

The finding that one third of previously undiagnosed and asymptomatic patients with COPD showed significant rates of airflow obstruction on spirometry is consistent with previous research, Dr. Narendra told this news organization.

“Interestingly, in questions about specific symptoms, undiagnosed COPD patients reported higher rates of dyspnea, more cough, and breathing difficulties affecting their daily activities, at 16.1%, 27.4%, and 24.5%, respectively, highlighting a lower perception of symptoms,” she said.

“Barriers to lung cancer screening in urban, high-risk communities include limited healthcare facility access, insufficient awareness of screening programs, financial constraints, and cultural or language barriers,” said Dr. Narendra.

Potential strategies to overcome these barriers include improving access through additional screening centers and providing transportation, implementing community-based education and outreach programs to increase awareness about the benefits of lung cancer screening and early COPD detection, and providing financial assistance in the form of free screening options and collaboration with insurers to cover screening expenses, she said.

“Healthcare providers must recognize the dual benefits of lung cancer screening programs, including the opportunity to screen for undiagnosed COPD,” Dr. Narendra emphasized. “This integrated approach is crucial in identifying high-risk individuals who could benefit from early intervention and effective management of COPD. Clinicians should actively support implementing comprehensive screening programs incorporating assessments for pulmonary comorbidities through LDCT and screening questionnaires for COPD symptoms,” she said.

“Further research is needed to evaluate long-term mortality outcomes and identify best practices to determine the most effective methods and cost-effectiveness for implementing and sustaining combined screening programs in various urban settings,” Dr. Narendra told this news organization.

Other areas to address in future studies include investigating specific barriers to screening among different high-risk groups and tailoring interventions to improve screening uptake and adherence, Narendra said. “By addressing these research gaps, health care providers can optimize screening programs and enhance the overall health of urban, high-risk populations,” she added.

The study received no outside funding. The researchers had no financial conflicts to disclose. Dr. Narendra serves on the editorial board of CHEST Physician.

A version of this article first appeared on Medscape.com.

Lung cancer screening with low-dose CT (LDCT) can effectively evaluate a high-risk population for undiagnosed chronic obstructive pulmonary disease (COPD) and airflow obstruction, based on data from a new study of approximately 2000 individuals.

Previous research suggests that approximately 70%-90% of individuals with COPD are undiagnosed, especially low-income and minority populations who may be less likely to undergo screening, said Michaela A. Seigo, DO, of Temple University Hospital, Philadelphia, in a study presented at the American Thoracic Society (ATS) 2024 International Conference.

Although the current guidance from the United States Preventive Services Task Force (USPSTF) recommends against universal COPD screening in asymptomatic adults, the use of LDCT may be an option for evaluating a high-risk population, the researchers noted.

The researchers reviewed data from 2083 adults enrolled in the Temple Healthy Chest Initiative, an urban health system-wide lung cancer screening program, combined with the detection of symptoms and comorbidities.
 

Baseline LDCT for Identification of Comorbidities

Study participants underwent baseline LDCT between October 2021 and October 2022. The images were reviewed by radiologists for pulmonary comorbidities including emphysema, airway disease, bronchiectasis, and interstitial lung disease. In addition, 604 participants (29%) completed a symptom survey, and 624 (30%) underwent spirometry. The mean age of the participants was 65.8 years and 63.9 years for those with and without a history of COPD, respectively.

Approximately half of the participants in both groups were female.

Overall, 66 of 181 (36.5%) individuals previously undiagnosed with COPD had spirometry consistent with airflow obstruction (forced expiratory volume in 1 second/forced vital capacity, < 70%). Individuals with previously undiagnosed COPD were more likely to be younger, male, current smokers, and identified as Hispanic or other race (not Black, White, Hispanic, or Asian/Native American/Pacific Islander).

Individuals without a reported history of COPD had fewer pulmonary comorbidities on LDCT and lower rates of respiratory symptoms than those with COPD. However, nearly 25% of individuals with no reported history of COPD said that breathing issues affected their “ability to do things,” Ms. Seigo said, and a majority of those with no COPD diagnosis exhibited airway disease (76.2% compared with 84% of diagnosed patients with COPD). In addition, 88.1% reported ever experiencing dyspnea and 72.6% reported experiencing cough; both symptoms are compatible with a clinical diagnosis of COPD, the researchers noted.

“We detected pulmonary comorbidities at higher rates than previously published,” Ms. Seigo said in an interview. The increase likely reflects the patient population at Temple, which includes a relatively high percentage of city-dwelling, lower-income individuals, as well as more racial-ethnic minorities and persons of color, she said.

However, “these findings will help clinicians target the most at-risk populations for previously undiagnosed COPD,” Ms. Seigo said.

Looking ahead, Ms. Seigo said she sees a dominant role for artificial intelligence (AI) in COPD screening. “At-risk populations will get LDCT scans, and AI will identify pulmonary and extra-pulmonary comorbidities that may need to be addressed,” she said.

A combination of symptom detection plus strategic and more widely available access to screening offers “a huge opportunity to intervene earlier and potentially save lives,” she told this news organization.
 

 

 

Lung Cancer Screening May Promote Earlier COPD Intervention

The current study examines the prevalence of undiagnosed COPD, especially among low-income and minority populations, in an asymptomatic high-risk group. “By integrating lung cancer CT screening with the detection of pulmonary comorbidities on LDCT and respiratory symptoms, the current study aimed to identify individuals with undiagnosed COPD,” said Dharani K. Narendra, MD, of Baylor College of Medicine, Houston, in an interview.

“The study highlighted the feasibility and potential benefits of coupling lung cancer screening tests with COPD detection, which is noteworthy, and hits two targets with one arrow — early detection of lung cancer and COPD — in high-risk groups, Dr. Narendra said.

“Although the USPSTF recommends against screening for COPD in asymptomatic patients, abnormal pulmonary comorbidities observed on CT chest scans could serve as a gateway for clinicians to screen for COPD,” said Dr. Narendra. “This approach allows for early diagnosis, education on smoking cessation, and timely treatment of COPD, potentially preventing lung function deterioration and reducing the risk of exacerbations,” she noted.

The finding that one third of previously undiagnosed and asymptomatic patients with COPD showed significant rates of airflow obstruction on spirometry is consistent with previous research, Dr. Narendra told this news organization.

“Interestingly, in questions about specific symptoms, undiagnosed COPD patients reported higher rates of dyspnea, more cough, and breathing difficulties affecting their daily activities, at 16.1%, 27.4%, and 24.5%, respectively, highlighting a lower perception of symptoms,” she said.

“Barriers to lung cancer screening in urban, high-risk communities include limited healthcare facility access, insufficient awareness of screening programs, financial constraints, and cultural or language barriers,” said Dr. Narendra.

Potential strategies to overcome these barriers include improving access through additional screening centers and providing transportation, implementing community-based education and outreach programs to increase awareness about the benefits of lung cancer screening and early COPD detection, and providing financial assistance in the form of free screening options and collaboration with insurers to cover screening expenses, she said.

“Healthcare providers must recognize the dual benefits of lung cancer screening programs, including the opportunity to screen for undiagnosed COPD,” Dr. Narendra emphasized. “This integrated approach is crucial in identifying high-risk individuals who could benefit from early intervention and effective management of COPD. Clinicians should actively support implementing comprehensive screening programs incorporating assessments for pulmonary comorbidities through LDCT and screening questionnaires for COPD symptoms,” she said.

“Further research is needed to evaluate long-term mortality outcomes and identify best practices to determine the most effective methods and cost-effectiveness for implementing and sustaining combined screening programs in various urban settings,” Dr. Narendra told this news organization.

Other areas to address in future studies include investigating specific barriers to screening among different high-risk groups and tailoring interventions to improve screening uptake and adherence, Narendra said. “By addressing these research gaps, health care providers can optimize screening programs and enhance the overall health of urban, high-risk populations,” she added.

The study received no outside funding. The researchers had no financial conflicts to disclose. Dr. Narendra serves on the editorial board of CHEST Physician.

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Most women can conceive after breast cancer treatment

Article Type
Changed
Tue, 06/04/2024 - 15:20

Most younger women diagnosed with nonmetastatic breast cancer will succeed if they attempt to become pregnant after treatment, according to new research.

The findings, presented May 23 in advance of the annual meeting of the American Society of Clinical Oncology (ASCO) represent the most comprehensive look to date at fertility outcomes following treatment for women diagnosed with breast cancer before age 40 (Abstract 1518).

Kimia Sorouri, MD, a research fellow at the Dana-Farber Cancer Center in Boston, Massachusetts, and her colleagues, looked at data from the Young Women’s Breast Cancer study, a multicenter longitudinal cohort study, for 1213 U.S. and Canadian women (74% non-Hispanic white) who were diagnosed with stages 0-III breast cancer between 2006 and 2016. None of the included patients had metastatic disease, prior hysterectomy, or prior oophorectomy at diagnosis.

During a median 11 years of follow up, 197 of the women reported attempting pregnancy. Of these, 73% reported becoming pregnant, and 65% delivered a live infant a median 4 years after cancer diagnosis. The median age at diagnosis was 32 years, and 28% opted for egg or embryo freezing to preserve fertility. Importantly, 68% received chemotherapy, which can impair fertility, with only a small percentage undergoing ovarian suppression during chemotherapy treatment.

Key predictors of pregnancy or live birth in this study were “financial comfort,” a self-reported measure defined as having money left over to spend after bills are paid (odds ratio [OR], 2.04; 95% CI 1.01-4.12; P = .047); younger age at the time of diagnosis; and undergoing fertility preservation interventions at diagnosis (OR, 2.78; 95% CI 1.29-6.00; P = .009). Chemotherapy and other treatment factors were not seen to be associated with pregnancy or birth outcomes.

“Current research that informs our understanding of the impact of breast cancer treatment on pregnancy and live birth rates is fairly limited,” Dr. Sorouri said during an online press conference announcing the findings. Quality data on fertility outcomes has been limited to studies in certain subgroups, such as women with estrogen receptor–positive breast cancers, she noted, while other studies “have short-term follow-up and critically lack prospective assessment of attempt at conception.”

The new findings show, Dr. Sorouri said, “that in this modern cohort with a heightened awareness of fertility, access to fertility preservation can help to mitigate a portion of the damage from chemotherapy and other agents. Importantly, this highlights the need for increased accessibility of fertility preservation services for women newly diagnosed with breast cancer who are interested in a future pregnancy.”

Commenting on Dr. Sorouri and colleagues’ findings, Julie Gralow, MD, a breast cancer researcher and ASCO’s chief medical officer, stressed that, while younger age at diagnosis and financial comfort were two factors outside the scope of clinical oncology practice, “we can impact fertility preservation prior to treatment.”

She called it “critical” that every patient be informed of the impact of a breast cancer diagnosis and treatment on future fertility, and that all young patients interested in future fertility be offered fertility preservation prior to beginning treatment.

Ann Partridge, MD, of Dana-Farber, said in an interview that the findings reflected a decades’ long change in approach. “Twenty years ago when we first started this cohort, people would tell women ‘you can’t get pregnant. It’s too dangerous. You won’t be able to.’ And some indeed aren’t able to, but the majority who are attempting are succeeding, especially if they preserve their eggs or embryos. So even if chemo puts you into menopause or made you subfertile, if you’ve preserved eggs or embryos, we now can mitigate that distressing effect that many cancer patients have suffered from historically. That’s the good news here.”

Nonetheless, Dr. Partridge, an oncologist and the last author of the study, noted, the results reflected success only for women actively attempting pregnancy. “Remember, we’re not including the people who didn’t attempt. There may be some who went into menopause who never banked eggs or embryos, and may never have tried because they went to a doctor who told them they’re not fertile.” Further, she said, not all insurances cover in vitro fertilization for women who have had breast cancer.

The fact that financial comfort was correlated with reproductive success, Dr. Partridge said, speaks to broader issues about access. “It may not be all about insurers. It may be to have the ability, to have the time, the education and the wherewithal to do this right — and about being with doctors who talk about it.”

Dr. Sorouri and colleagues’ study was sponsored by the Breast Cancer Research Foundation and Susan G. Komen. Several co-authors disclosed receiving speaking and/or consulting fees from pharmaceutical companies, and one reported being an employee of GlaxoSmithKline. Dr. Sorouri reported no industry funding, while Dr. Partridge reported research funding from Novartis.

Meeting/Event
Publications
Topics
Sections
Meeting/Event
Meeting/Event

Most younger women diagnosed with nonmetastatic breast cancer will succeed if they attempt to become pregnant after treatment, according to new research.

The findings, presented May 23 in advance of the annual meeting of the American Society of Clinical Oncology (ASCO) represent the most comprehensive look to date at fertility outcomes following treatment for women diagnosed with breast cancer before age 40 (Abstract 1518).

Kimia Sorouri, MD, a research fellow at the Dana-Farber Cancer Center in Boston, Massachusetts, and her colleagues, looked at data from the Young Women’s Breast Cancer study, a multicenter longitudinal cohort study, for 1213 U.S. and Canadian women (74% non-Hispanic white) who were diagnosed with stages 0-III breast cancer between 2006 and 2016. None of the included patients had metastatic disease, prior hysterectomy, or prior oophorectomy at diagnosis.

During a median 11 years of follow up, 197 of the women reported attempting pregnancy. Of these, 73% reported becoming pregnant, and 65% delivered a live infant a median 4 years after cancer diagnosis. The median age at diagnosis was 32 years, and 28% opted for egg or embryo freezing to preserve fertility. Importantly, 68% received chemotherapy, which can impair fertility, with only a small percentage undergoing ovarian suppression during chemotherapy treatment.

Key predictors of pregnancy or live birth in this study were “financial comfort,” a self-reported measure defined as having money left over to spend after bills are paid (odds ratio [OR], 2.04; 95% CI 1.01-4.12; P = .047); younger age at the time of diagnosis; and undergoing fertility preservation interventions at diagnosis (OR, 2.78; 95% CI 1.29-6.00; P = .009). Chemotherapy and other treatment factors were not seen to be associated with pregnancy or birth outcomes.

“Current research that informs our understanding of the impact of breast cancer treatment on pregnancy and live birth rates is fairly limited,” Dr. Sorouri said during an online press conference announcing the findings. Quality data on fertility outcomes has been limited to studies in certain subgroups, such as women with estrogen receptor–positive breast cancers, she noted, while other studies “have short-term follow-up and critically lack prospective assessment of attempt at conception.”

The new findings show, Dr. Sorouri said, “that in this modern cohort with a heightened awareness of fertility, access to fertility preservation can help to mitigate a portion of the damage from chemotherapy and other agents. Importantly, this highlights the need for increased accessibility of fertility preservation services for women newly diagnosed with breast cancer who are interested in a future pregnancy.”

Commenting on Dr. Sorouri and colleagues’ findings, Julie Gralow, MD, a breast cancer researcher and ASCO’s chief medical officer, stressed that, while younger age at diagnosis and financial comfort were two factors outside the scope of clinical oncology practice, “we can impact fertility preservation prior to treatment.”

She called it “critical” that every patient be informed of the impact of a breast cancer diagnosis and treatment on future fertility, and that all young patients interested in future fertility be offered fertility preservation prior to beginning treatment.

Ann Partridge, MD, of Dana-Farber, said in an interview that the findings reflected a decades’ long change in approach. “Twenty years ago when we first started this cohort, people would tell women ‘you can’t get pregnant. It’s too dangerous. You won’t be able to.’ And some indeed aren’t able to, but the majority who are attempting are succeeding, especially if they preserve their eggs or embryos. So even if chemo puts you into menopause or made you subfertile, if you’ve preserved eggs or embryos, we now can mitigate that distressing effect that many cancer patients have suffered from historically. That’s the good news here.”

Nonetheless, Dr. Partridge, an oncologist and the last author of the study, noted, the results reflected success only for women actively attempting pregnancy. “Remember, we’re not including the people who didn’t attempt. There may be some who went into menopause who never banked eggs or embryos, and may never have tried because they went to a doctor who told them they’re not fertile.” Further, she said, not all insurances cover in vitro fertilization for women who have had breast cancer.

The fact that financial comfort was correlated with reproductive success, Dr. Partridge said, speaks to broader issues about access. “It may not be all about insurers. It may be to have the ability, to have the time, the education and the wherewithal to do this right — and about being with doctors who talk about it.”

Dr. Sorouri and colleagues’ study was sponsored by the Breast Cancer Research Foundation and Susan G. Komen. Several co-authors disclosed receiving speaking and/or consulting fees from pharmaceutical companies, and one reported being an employee of GlaxoSmithKline. Dr. Sorouri reported no industry funding, while Dr. Partridge reported research funding from Novartis.

Most younger women diagnosed with nonmetastatic breast cancer will succeed if they attempt to become pregnant after treatment, according to new research.

The findings, presented May 23 in advance of the annual meeting of the American Society of Clinical Oncology (ASCO) represent the most comprehensive look to date at fertility outcomes following treatment for women diagnosed with breast cancer before age 40 (Abstract 1518).

Kimia Sorouri, MD, a research fellow at the Dana-Farber Cancer Center in Boston, Massachusetts, and her colleagues, looked at data from the Young Women’s Breast Cancer study, a multicenter longitudinal cohort study, for 1213 U.S. and Canadian women (74% non-Hispanic white) who were diagnosed with stages 0-III breast cancer between 2006 and 2016. None of the included patients had metastatic disease, prior hysterectomy, or prior oophorectomy at diagnosis.

During a median 11 years of follow up, 197 of the women reported attempting pregnancy. Of these, 73% reported becoming pregnant, and 65% delivered a live infant a median 4 years after cancer diagnosis. The median age at diagnosis was 32 years, and 28% opted for egg or embryo freezing to preserve fertility. Importantly, 68% received chemotherapy, which can impair fertility, with only a small percentage undergoing ovarian suppression during chemotherapy treatment.

Key predictors of pregnancy or live birth in this study were “financial comfort,” a self-reported measure defined as having money left over to spend after bills are paid (odds ratio [OR], 2.04; 95% CI 1.01-4.12; P = .047); younger age at the time of diagnosis; and undergoing fertility preservation interventions at diagnosis (OR, 2.78; 95% CI 1.29-6.00; P = .009). Chemotherapy and other treatment factors were not seen to be associated with pregnancy or birth outcomes.

“Current research that informs our understanding of the impact of breast cancer treatment on pregnancy and live birth rates is fairly limited,” Dr. Sorouri said during an online press conference announcing the findings. Quality data on fertility outcomes has been limited to studies in certain subgroups, such as women with estrogen receptor–positive breast cancers, she noted, while other studies “have short-term follow-up and critically lack prospective assessment of attempt at conception.”

The new findings show, Dr. Sorouri said, “that in this modern cohort with a heightened awareness of fertility, access to fertility preservation can help to mitigate a portion of the damage from chemotherapy and other agents. Importantly, this highlights the need for increased accessibility of fertility preservation services for women newly diagnosed with breast cancer who are interested in a future pregnancy.”

Commenting on Dr. Sorouri and colleagues’ findings, Julie Gralow, MD, a breast cancer researcher and ASCO’s chief medical officer, stressed that, while younger age at diagnosis and financial comfort were two factors outside the scope of clinical oncology practice, “we can impact fertility preservation prior to treatment.”

She called it “critical” that every patient be informed of the impact of a breast cancer diagnosis and treatment on future fertility, and that all young patients interested in future fertility be offered fertility preservation prior to beginning treatment.

Ann Partridge, MD, of Dana-Farber, said in an interview that the findings reflected a decades’ long change in approach. “Twenty years ago when we first started this cohort, people would tell women ‘you can’t get pregnant. It’s too dangerous. You won’t be able to.’ And some indeed aren’t able to, but the majority who are attempting are succeeding, especially if they preserve their eggs or embryos. So even if chemo puts you into menopause or made you subfertile, if you’ve preserved eggs or embryos, we now can mitigate that distressing effect that many cancer patients have suffered from historically. That’s the good news here.”

Nonetheless, Dr. Partridge, an oncologist and the last author of the study, noted, the results reflected success only for women actively attempting pregnancy. “Remember, we’re not including the people who didn’t attempt. There may be some who went into menopause who never banked eggs or embryos, and may never have tried because they went to a doctor who told them they’re not fertile.” Further, she said, not all insurances cover in vitro fertilization for women who have had breast cancer.

The fact that financial comfort was correlated with reproductive success, Dr. Partridge said, speaks to broader issues about access. “It may not be all about insurers. It may be to have the ability, to have the time, the education and the wherewithal to do this right — and about being with doctors who talk about it.”

Dr. Sorouri and colleagues’ study was sponsored by the Breast Cancer Research Foundation and Susan G. Komen. Several co-authors disclosed receiving speaking and/or consulting fees from pharmaceutical companies, and one reported being an employee of GlaxoSmithKline. Dr. Sorouri reported no industry funding, while Dr. Partridge reported research funding from Novartis.

Publications
Publications
Topics
Article Type
Sections
Article Source

FROM ASCO 2024

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Is Vaginal Estrogen Safe in Breast Cancer Survivors?

Article Type
Changed
Tue, 06/04/2024 - 15:21

 

TOPLINE:

Vaginal estrogen therapy does not increase the risk for recurrence in women with hormone receptor (HR)–negative breast cancer or in those with HR–positive tumors concurrently treated with tamoxifen but should be avoided in aromatase inhibitor users, a French study suggested.

METHODOLOGY:

  • Survivors of breast cancer often experience genitourinary symptoms due to declining estrogen levels. Vaginal estrogen therapies, including estriol and promestriene (3-propyl ethyl, 17B-methyl estradiol), can prevent these symptoms, but the effect on breast cancer outcomes remains uncertain.
  • Researchers used French insurance claims data to emulate a target trial assessing the effect of initiating vaginal estrogen therapy — any molecule, promestriene, or estriol — on disease-free survival in survivors of breast cancer.
  • Patients included in the study had a median age of 54 years; 85% were HR-positive, and 15% were HR–negative. The researchers conducted subgroup analyses based on HR status and endocrine therapy regimen.

TAKEAWAY:

  • Among 134,942 unique patients, 1739 started vaginal estrogen therapy — 56%, promestriene; 34%, estriol; and 10%, both. 
  • Initiation of vaginal estrogen therapy led to a modest decrease in disease-free survival in patients with HR–positive tumors (−2.1 percentage point at 5 years), particularly in those concurrently treated with an aromatase inhibitor (−3.0 percentage points).
  • No decrease in disease-free survival was observed in patients with HR–negative tumors or in those treated with tamoxifen.
  • In aromatase inhibitor users, starting estriol led to a “more severe and premature” decrease in disease-free survival (−4.2 percentage point after 3 years) compared with initiating promestriene (1.0 percentage point difference at 3 years).

IN PRACTICE:

“This study addresses a very important survivorship issue — sexual dysfunction in cancer patients — which is associated with anxiety and depression and should be considered a crucial component of survivorship care,” said study discussant Matteo Lambertini, MD, PhD, with University of Genova, Genova, Italy.

Our results suggest that using vaginal estrogen therapy “is safe in individuals with HR-negative tumors and in those concurrently treated with tamoxifen,” said study presenter Elise Dumas, PhD, with Institut Curie, Paris, France. For breast cancer survivors treated with aromatase inhibitors, vaginal estrogen therapy should be avoided as much as possible, but promestriene is preferred over estriol in this subgroup of patients.

SOURCE:

The research (Abstract 268MO) was presented at the European Society for Medical Oncology Breast Cancer 2024 Annual Congress on May 17, 2024.

LIMITATIONS:

No limitations were discussed in the presentation.

DISCLOSURES:

Funding was provided by Monoprix and the French National Cancer Institute. Dumas declared no conflicts of interest. Lambertini has financial relationships with various pharmaceutical companies including Roche, Novartis, AstraZeneca, Lilly, Exact Sciences, Pfizer, and others.

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

 

TOPLINE:

Vaginal estrogen therapy does not increase the risk for recurrence in women with hormone receptor (HR)–negative breast cancer or in those with HR–positive tumors concurrently treated with tamoxifen but should be avoided in aromatase inhibitor users, a French study suggested.

METHODOLOGY:

  • Survivors of breast cancer often experience genitourinary symptoms due to declining estrogen levels. Vaginal estrogen therapies, including estriol and promestriene (3-propyl ethyl, 17B-methyl estradiol), can prevent these symptoms, but the effect on breast cancer outcomes remains uncertain.
  • Researchers used French insurance claims data to emulate a target trial assessing the effect of initiating vaginal estrogen therapy — any molecule, promestriene, or estriol — on disease-free survival in survivors of breast cancer.
  • Patients included in the study had a median age of 54 years; 85% were HR-positive, and 15% were HR–negative. The researchers conducted subgroup analyses based on HR status and endocrine therapy regimen.

TAKEAWAY:

  • Among 134,942 unique patients, 1739 started vaginal estrogen therapy — 56%, promestriene; 34%, estriol; and 10%, both. 
  • Initiation of vaginal estrogen therapy led to a modest decrease in disease-free survival in patients with HR–positive tumors (−2.1 percentage point at 5 years), particularly in those concurrently treated with an aromatase inhibitor (−3.0 percentage points).
  • No decrease in disease-free survival was observed in patients with HR–negative tumors or in those treated with tamoxifen.
  • In aromatase inhibitor users, starting estriol led to a “more severe and premature” decrease in disease-free survival (−4.2 percentage point after 3 years) compared with initiating promestriene (1.0 percentage point difference at 3 years).

IN PRACTICE:

“This study addresses a very important survivorship issue — sexual dysfunction in cancer patients — which is associated with anxiety and depression and should be considered a crucial component of survivorship care,” said study discussant Matteo Lambertini, MD, PhD, with University of Genova, Genova, Italy.

Our results suggest that using vaginal estrogen therapy “is safe in individuals with HR-negative tumors and in those concurrently treated with tamoxifen,” said study presenter Elise Dumas, PhD, with Institut Curie, Paris, France. For breast cancer survivors treated with aromatase inhibitors, vaginal estrogen therapy should be avoided as much as possible, but promestriene is preferred over estriol in this subgroup of patients.

SOURCE:

The research (Abstract 268MO) was presented at the European Society for Medical Oncology Breast Cancer 2024 Annual Congress on May 17, 2024.

LIMITATIONS:

No limitations were discussed in the presentation.

DISCLOSURES:

Funding was provided by Monoprix and the French National Cancer Institute. Dumas declared no conflicts of interest. Lambertini has financial relationships with various pharmaceutical companies including Roche, Novartis, AstraZeneca, Lilly, Exact Sciences, Pfizer, and others.

A version of this article first appeared on Medscape.com.

 

TOPLINE:

Vaginal estrogen therapy does not increase the risk for recurrence in women with hormone receptor (HR)–negative breast cancer or in those with HR–positive tumors concurrently treated with tamoxifen but should be avoided in aromatase inhibitor users, a French study suggested.

METHODOLOGY:

  • Survivors of breast cancer often experience genitourinary symptoms due to declining estrogen levels. Vaginal estrogen therapies, including estriol and promestriene (3-propyl ethyl, 17B-methyl estradiol), can prevent these symptoms, but the effect on breast cancer outcomes remains uncertain.
  • Researchers used French insurance claims data to emulate a target trial assessing the effect of initiating vaginal estrogen therapy — any molecule, promestriene, or estriol — on disease-free survival in survivors of breast cancer.
  • Patients included in the study had a median age of 54 years; 85% were HR-positive, and 15% were HR–negative. The researchers conducted subgroup analyses based on HR status and endocrine therapy regimen.

TAKEAWAY:

  • Among 134,942 unique patients, 1739 started vaginal estrogen therapy — 56%, promestriene; 34%, estriol; and 10%, both. 
  • Initiation of vaginal estrogen therapy led to a modest decrease in disease-free survival in patients with HR–positive tumors (−2.1 percentage point at 5 years), particularly in those concurrently treated with an aromatase inhibitor (−3.0 percentage points).
  • No decrease in disease-free survival was observed in patients with HR–negative tumors or in those treated with tamoxifen.
  • In aromatase inhibitor users, starting estriol led to a “more severe and premature” decrease in disease-free survival (−4.2 percentage point after 3 years) compared with initiating promestriene (1.0 percentage point difference at 3 years).

IN PRACTICE:

“This study addresses a very important survivorship issue — sexual dysfunction in cancer patients — which is associated with anxiety and depression and should be considered a crucial component of survivorship care,” said study discussant Matteo Lambertini, MD, PhD, with University of Genova, Genova, Italy.

Our results suggest that using vaginal estrogen therapy “is safe in individuals with HR-negative tumors and in those concurrently treated with tamoxifen,” said study presenter Elise Dumas, PhD, with Institut Curie, Paris, France. For breast cancer survivors treated with aromatase inhibitors, vaginal estrogen therapy should be avoided as much as possible, but promestriene is preferred over estriol in this subgroup of patients.

SOURCE:

The research (Abstract 268MO) was presented at the European Society for Medical Oncology Breast Cancer 2024 Annual Congress on May 17, 2024.

LIMITATIONS:

No limitations were discussed in the presentation.

DISCLOSURES:

Funding was provided by Monoprix and the French National Cancer Institute. Dumas declared no conflicts of interest. Lambertini has financial relationships with various pharmaceutical companies including Roche, Novartis, AstraZeneca, Lilly, Exact Sciences, Pfizer, and others.

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Ultraprocessed Foods May Be an Independent Risk Factor for Poor Brain Health

Article Type
Changed
Tue, 05/28/2024 - 15:00

Consuming highly processed foods may be harmful to the aging brain, independent of other risk factors for adverse neurologic outcomes and adherence to recommended dietary patterns, new research suggests.

Observations from a large cohort of adults followed for more than 10 years suggested that eating more ultraprocessed foods (UPFs) may increase the risk for cognitive decline and stroke, while eating more unprocessed or minimally processed foods may lower the risk.

“The first key takeaway is that the type of food that we eat matters for brain health, but it’s equally important to think about how it’s made and handled when thinking about brain health,” said study investigator W. Taylor Kimberly, MD, PhD, with Massachusetts General Hospital in Boston.

“The second is that it’s not just all a bad news story because while increased consumption of ultra-processed foods is associated with a higher risk of cognitive impairment and stroke, unprocessed foods appear to be protective,” Dr. Kimberly added.

The study was published online on May 22 in Neurology.
 

Food Processing Matters

UPFs are highly manipulated, low in protein and fiber, and packed with added ingredients, including sugar, fat, and salt. Examples of UPFs are soft drinks, chips, chocolate, candy, ice cream, sweetened breakfast cereals, packaged soups, chicken nuggets, hot dogs, and fries.

Unprocessed or minimally processed foods include meats such as simple cuts of beef, pork, and chicken, and vegetables and fruits.

Research has shown associations between high UPF consumption and increased risk for metabolic and neurologic disorders.

As reported previously, in the ELSA-Brasil study, higher intake of UPFs was significantly associated with a faster rate of decline in executive and global cognitive function.

Yet, it’s unclear whether the extent of food processing contributes to the risk of adverse neurologic outcomes independent of dietary patterns.

Dr. Kimberly and colleagues examined the association of food processing levels with the risk for cognitive impairment and stroke in the long-running REGARDS study, a large prospective US cohort of Black and White adults aged 45 years and older.

Food processing levels were defined by the NOVA food classification system, which ranges from unprocessed or minimally processed foods (NOVA1) to UPFs (NOVA4). Dietary patterns were characterized based on food frequency questionnaires.

In the cognitive impairment cohort, 768 of 14,175 adults without evidence of impairment at baseline who underwent follow-up testing developed cognitive impairment.
 

Diet an Opportunity to Protect Brain Health

In multivariable Cox proportional hazards models adjusting for age, sex, high blood pressure, and other factors, a 10% increase in relative intake of UPFs was associated with a 16% higher risk for cognitive impairment (hazard ratio [HR], 1.16). Conversely, a higher intake of unprocessed or minimally processed foods correlated with a 12% lower risk for cognitive impairment (HR, 0.88).

In the stroke cohort, 1108 of 20,243 adults without a history of stroke had a stroke during the follow-up.

In multivariable Cox models, greater intake of UPFs was associated with an 8% increased risk for stroke (HR, 1.08), while greater intake of unprocessed or minimally processed foods correlated with a 9% lower risk for stroke (HR, 0.91).

The effect of UPFs on stroke risk was greater among Black than among White adults (UPF-by-race interaction HR, 1.15).

The associations between UPFs and both cognitive impairment and stroke were independent of adherence to the Mediterranean diet, the Dietary Approaches to Stop Hypertension (DASH) diet, and the Mediterranean-DASH Intervention for Neurodegenerative Delay diet.

These results “highlight the possibility that we have the capacity to maintain our brain health and prevent poor brain health outcomes by focusing on unprocessed foods in the long term,” Dr. Kimberly said.

He cautioned that this was “an observational study and not an interventional study, so we can’t say with certainty that substituting ultra-processed foods with unprocessed foods will definitively improve brain health,” Dr. Kimberly said. “That’s a clinical trial question that has not been done but our results certainly are provocative.”
 

 

 

Consider UPFs in National Guidelines?

The coauthors of an accompanying editorial said the “robust” results from Kimberly and colleagues highlight the “significant role of food processing levels and their relationship with adverse neurologic outcomes, independent of conventional dietary patterns.”

Peipei Gao, MS, with Harvard T.H. Chan School of Public Health, and Zhendong Mei, PhD, with Harvard Medical School, both in Boston, noted that the mechanisms underlying the impact of UPFs on adverse neurologic outcomes “can be attributed not only to their nutritional profiles,” including poor nutrient composition and high glycemic load, “but also to the presence of additives including emulsifiers, colorants, sweeteners, and nitrates/nitrites, which have been associated with disruptions in the gut microbial ecosystem and inflammation.

“Understanding how food processing levels are associated with human health offers a fresh take on the saying ‘you are what you eat,’ ” the editorialists wrote.

This new study, they noted, adds to the evidence by highlighting the link between UPFs and brain health, independent of traditional dietary patterns and “raises questions about whether considerations of UPFs should be included in dietary guidelines, as well as national and global public health policies for improving brain health.”

The editorialists called for large prospective population studies and randomized controlled trials to better understand the link between UPF consumption and brain health. “In addition, mechanistic studies are warranted to identify specific foods, detrimental processes, and additives that play a role in UPFs and their association with neurologic disorders,” they concluded.

Funding for the study was provided by the National Institute of Neurological Disorders and Stroke, the National Institute on Aging, National Institutes of Health, and Department of Health and Human Services. The authors and editorial writers had no relevant disclosures.

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

Consuming highly processed foods may be harmful to the aging brain, independent of other risk factors for adverse neurologic outcomes and adherence to recommended dietary patterns, new research suggests.

Observations from a large cohort of adults followed for more than 10 years suggested that eating more ultraprocessed foods (UPFs) may increase the risk for cognitive decline and stroke, while eating more unprocessed or minimally processed foods may lower the risk.

“The first key takeaway is that the type of food that we eat matters for brain health, but it’s equally important to think about how it’s made and handled when thinking about brain health,” said study investigator W. Taylor Kimberly, MD, PhD, with Massachusetts General Hospital in Boston.

“The second is that it’s not just all a bad news story because while increased consumption of ultra-processed foods is associated with a higher risk of cognitive impairment and stroke, unprocessed foods appear to be protective,” Dr. Kimberly added.

The study was published online on May 22 in Neurology.
 

Food Processing Matters

UPFs are highly manipulated, low in protein and fiber, and packed with added ingredients, including sugar, fat, and salt. Examples of UPFs are soft drinks, chips, chocolate, candy, ice cream, sweetened breakfast cereals, packaged soups, chicken nuggets, hot dogs, and fries.

Unprocessed or minimally processed foods include meats such as simple cuts of beef, pork, and chicken, and vegetables and fruits.

Research has shown associations between high UPF consumption and increased risk for metabolic and neurologic disorders.

As reported previously, in the ELSA-Brasil study, higher intake of UPFs was significantly associated with a faster rate of decline in executive and global cognitive function.

Yet, it’s unclear whether the extent of food processing contributes to the risk of adverse neurologic outcomes independent of dietary patterns.

Dr. Kimberly and colleagues examined the association of food processing levels with the risk for cognitive impairment and stroke in the long-running REGARDS study, a large prospective US cohort of Black and White adults aged 45 years and older.

Food processing levels were defined by the NOVA food classification system, which ranges from unprocessed or minimally processed foods (NOVA1) to UPFs (NOVA4). Dietary patterns were characterized based on food frequency questionnaires.

In the cognitive impairment cohort, 768 of 14,175 adults without evidence of impairment at baseline who underwent follow-up testing developed cognitive impairment.
 

Diet an Opportunity to Protect Brain Health

In multivariable Cox proportional hazards models adjusting for age, sex, high blood pressure, and other factors, a 10% increase in relative intake of UPFs was associated with a 16% higher risk for cognitive impairment (hazard ratio [HR], 1.16). Conversely, a higher intake of unprocessed or minimally processed foods correlated with a 12% lower risk for cognitive impairment (HR, 0.88).

In the stroke cohort, 1108 of 20,243 adults without a history of stroke had a stroke during the follow-up.

In multivariable Cox models, greater intake of UPFs was associated with an 8% increased risk for stroke (HR, 1.08), while greater intake of unprocessed or minimally processed foods correlated with a 9% lower risk for stroke (HR, 0.91).

The effect of UPFs on stroke risk was greater among Black than among White adults (UPF-by-race interaction HR, 1.15).

The associations between UPFs and both cognitive impairment and stroke were independent of adherence to the Mediterranean diet, the Dietary Approaches to Stop Hypertension (DASH) diet, and the Mediterranean-DASH Intervention for Neurodegenerative Delay diet.

These results “highlight the possibility that we have the capacity to maintain our brain health and prevent poor brain health outcomes by focusing on unprocessed foods in the long term,” Dr. Kimberly said.

He cautioned that this was “an observational study and not an interventional study, so we can’t say with certainty that substituting ultra-processed foods with unprocessed foods will definitively improve brain health,” Dr. Kimberly said. “That’s a clinical trial question that has not been done but our results certainly are provocative.”
 

 

 

Consider UPFs in National Guidelines?

The coauthors of an accompanying editorial said the “robust” results from Kimberly and colleagues highlight the “significant role of food processing levels and their relationship with adverse neurologic outcomes, independent of conventional dietary patterns.”

Peipei Gao, MS, with Harvard T.H. Chan School of Public Health, and Zhendong Mei, PhD, with Harvard Medical School, both in Boston, noted that the mechanisms underlying the impact of UPFs on adverse neurologic outcomes “can be attributed not only to their nutritional profiles,” including poor nutrient composition and high glycemic load, “but also to the presence of additives including emulsifiers, colorants, sweeteners, and nitrates/nitrites, which have been associated with disruptions in the gut microbial ecosystem and inflammation.

“Understanding how food processing levels are associated with human health offers a fresh take on the saying ‘you are what you eat,’ ” the editorialists wrote.

This new study, they noted, adds to the evidence by highlighting the link between UPFs and brain health, independent of traditional dietary patterns and “raises questions about whether considerations of UPFs should be included in dietary guidelines, as well as national and global public health policies for improving brain health.”

The editorialists called for large prospective population studies and randomized controlled trials to better understand the link between UPF consumption and brain health. “In addition, mechanistic studies are warranted to identify specific foods, detrimental processes, and additives that play a role in UPFs and their association with neurologic disorders,” they concluded.

Funding for the study was provided by the National Institute of Neurological Disorders and Stroke, the National Institute on Aging, National Institutes of Health, and Department of Health and Human Services. The authors and editorial writers had no relevant disclosures.

A version of this article appeared on Medscape.com.

Consuming highly processed foods may be harmful to the aging brain, independent of other risk factors for adverse neurologic outcomes and adherence to recommended dietary patterns, new research suggests.

Observations from a large cohort of adults followed for more than 10 years suggested that eating more ultraprocessed foods (UPFs) may increase the risk for cognitive decline and stroke, while eating more unprocessed or minimally processed foods may lower the risk.

“The first key takeaway is that the type of food that we eat matters for brain health, but it’s equally important to think about how it’s made and handled when thinking about brain health,” said study investigator W. Taylor Kimberly, MD, PhD, with Massachusetts General Hospital in Boston.

“The second is that it’s not just all a bad news story because while increased consumption of ultra-processed foods is associated with a higher risk of cognitive impairment and stroke, unprocessed foods appear to be protective,” Dr. Kimberly added.

The study was published online on May 22 in Neurology.
 

Food Processing Matters

UPFs are highly manipulated, low in protein and fiber, and packed with added ingredients, including sugar, fat, and salt. Examples of UPFs are soft drinks, chips, chocolate, candy, ice cream, sweetened breakfast cereals, packaged soups, chicken nuggets, hot dogs, and fries.

Unprocessed or minimally processed foods include meats such as simple cuts of beef, pork, and chicken, and vegetables and fruits.

Research has shown associations between high UPF consumption and increased risk for metabolic and neurologic disorders.

As reported previously, in the ELSA-Brasil study, higher intake of UPFs was significantly associated with a faster rate of decline in executive and global cognitive function.

Yet, it’s unclear whether the extent of food processing contributes to the risk of adverse neurologic outcomes independent of dietary patterns.

Dr. Kimberly and colleagues examined the association of food processing levels with the risk for cognitive impairment and stroke in the long-running REGARDS study, a large prospective US cohort of Black and White adults aged 45 years and older.

Food processing levels were defined by the NOVA food classification system, which ranges from unprocessed or minimally processed foods (NOVA1) to UPFs (NOVA4). Dietary patterns were characterized based on food frequency questionnaires.

In the cognitive impairment cohort, 768 of 14,175 adults without evidence of impairment at baseline who underwent follow-up testing developed cognitive impairment.
 

Diet an Opportunity to Protect Brain Health

In multivariable Cox proportional hazards models adjusting for age, sex, high blood pressure, and other factors, a 10% increase in relative intake of UPFs was associated with a 16% higher risk for cognitive impairment (hazard ratio [HR], 1.16). Conversely, a higher intake of unprocessed or minimally processed foods correlated with a 12% lower risk for cognitive impairment (HR, 0.88).

In the stroke cohort, 1108 of 20,243 adults without a history of stroke had a stroke during the follow-up.

In multivariable Cox models, greater intake of UPFs was associated with an 8% increased risk for stroke (HR, 1.08), while greater intake of unprocessed or minimally processed foods correlated with a 9% lower risk for stroke (HR, 0.91).

The effect of UPFs on stroke risk was greater among Black than among White adults (UPF-by-race interaction HR, 1.15).

The associations between UPFs and both cognitive impairment and stroke were independent of adherence to the Mediterranean diet, the Dietary Approaches to Stop Hypertension (DASH) diet, and the Mediterranean-DASH Intervention for Neurodegenerative Delay diet.

These results “highlight the possibility that we have the capacity to maintain our brain health and prevent poor brain health outcomes by focusing on unprocessed foods in the long term,” Dr. Kimberly said.

He cautioned that this was “an observational study and not an interventional study, so we can’t say with certainty that substituting ultra-processed foods with unprocessed foods will definitively improve brain health,” Dr. Kimberly said. “That’s a clinical trial question that has not been done but our results certainly are provocative.”
 

 

 

Consider UPFs in National Guidelines?

The coauthors of an accompanying editorial said the “robust” results from Kimberly and colleagues highlight the “significant role of food processing levels and their relationship with adverse neurologic outcomes, independent of conventional dietary patterns.”

Peipei Gao, MS, with Harvard T.H. Chan School of Public Health, and Zhendong Mei, PhD, with Harvard Medical School, both in Boston, noted that the mechanisms underlying the impact of UPFs on adverse neurologic outcomes “can be attributed not only to their nutritional profiles,” including poor nutrient composition and high glycemic load, “but also to the presence of additives including emulsifiers, colorants, sweeteners, and nitrates/nitrites, which have been associated with disruptions in the gut microbial ecosystem and inflammation.

“Understanding how food processing levels are associated with human health offers a fresh take on the saying ‘you are what you eat,’ ” the editorialists wrote.

This new study, they noted, adds to the evidence by highlighting the link between UPFs and brain health, independent of traditional dietary patterns and “raises questions about whether considerations of UPFs should be included in dietary guidelines, as well as national and global public health policies for improving brain health.”

The editorialists called for large prospective population studies and randomized controlled trials to better understand the link between UPF consumption and brain health. “In addition, mechanistic studies are warranted to identify specific foods, detrimental processes, and additives that play a role in UPFs and their association with neurologic disorders,” they concluded.

Funding for the study was provided by the National Institute of Neurological Disorders and Stroke, the National Institute on Aging, National Institutes of Health, and Department of Health and Human Services. The authors and editorial writers had no relevant disclosures.

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Article Source

FROM NEUROLOGY

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article