-

Theme
medstat_chest
chph
Main menu
CHEST Main Menu
Explore menu
CHEST Explore Menu
Proclivity ID
18829001
Unpublish
Specialty Focus
Pulmonology
Critical Care
Sleep Medicine
Cardiology
Cardiothoracic Surgery
Hospice & Palliative Medicine
Negative Keywords Excluded Elements
header[@id='header']
div[contains(@class, 'header__large-screen')]
div[contains(@class, 'read-next-article')]
div[contains(@class, 'main-prefix')]
div[contains(@class, 'nav-primary')]
nav[contains(@class, 'nav-primary')]
section[contains(@class, 'footer-nav-section-wrapper')]
footer[@id='footer']
section[contains(@class, 'nav-hidden')]
div[contains(@class, 'ce-card-content')]
nav[contains(@class, 'nav-ce-stack')]
div[contains(@class, 'view-medstat-quiz-listing-panes')]
div[contains(@class, 'pane-article-sidebar-latest-news')]
Altmetric
Article Authors "autobrand" affiliation
MDedge News
DSM Affiliated
Display in offset block
Disqus Exclude
Best Practices
CE/CME
Education Center
Medical Education Library
Enable Disqus
Display Author and Disclosure Link
Publication Type
News
Slot System
Featured Buckets
Disable Sticky Ads
Disable Ad Block Mitigation
Featured Buckets Admin
LayerRx Clinical Edge Id
784
Non-Overridden Topics
Show Ads on this Publication's Homepage
Consolidated Pub
Show Article Page Numbers on TOC
Use larger logo size
Off
publication_blueconic_enabled
Off
Show More Destinations Menu
Disable Adhesion on Publication
On
Mobile Logo Image
Restore Menu Label on Mobile Navigation
Disable Facebook Pixel from Publication
Exclude this publication from publication selection on articles and quiz
Challenge Center
Disable Inline Native ads
Mobile Logo Media

Lung Cancer Vaccine Gets Injection of Funding for Research and Development

Article Type
Changed
Wed, 04/03/2024 - 12:01

Development of a DNA-based lung cancer vaccine in the United Kingdom received funding for 2 years of laboratory research and initial manufacture of 3000 doses, according to a press release from the University of Oxford, England.

A team of scientists from the University of Oxford, the Francis Crick Institute, and University College London (UCL) will receive funding from the Cancer Research UK and the CRIS Cancer Foundation.

The LungVax vaccine is based on technology similar to that used in the creation of the successful Oxford/AstraZeneca COVID-19 vaccine and will carry a DNA strand that trains the immune system to recognize the neoantigens that indicate abnormal lung cancer cells and then activate the immune system to kill these cells and stop the cancer, according to the statement.

Initially, scientists are working to develop a vaccine that triggers an immune response in the lab setting. If successful, the vaccine will move directly into a clinical trial. “If the subsequent early trial delivers promising results, the vaccine could then be scaled up to bigger trials for people at high risk of lung cancer,” according to the release.
 

Help for High-Risk Patients

Lung cancer is diagnosed in approximately 48,000 individuals in the United Kingdom each year, and the average 10-year survival is only 10%, Tim Elliott, MD, professor of immuno-oncology at the University of Oxford and lead researcher on the LungVax project, said in an interview. Nearly three-quarters of the 35,000 annual deaths are preventable by quitting smoking, which remains the best risk reduction strategy to date, he said. However, “an intervention such as a vaccine, given when people are healthy and are more likely to have a strong immune system, could benefit many thousands per year in the UK and 1.8 million patients worldwide,” he said.
 

Preliminary Trial Plans

The initial trial of the vaccine is a collaboration between Oxford University, UCL, and the Francis Crick Institute, Dr. Elliott said. The trial is a culmination of research into the biology and genetics of lung cancer at UCL and vaccine design research at the University of Oxford.

“We are at a very early stage of the program, which will develop over the next 6 years if all goes to plan,” said Dr. Elliott. The vaccine is designed on the basis of shared lung cancer antigens and packaged into the ChAdOx delivery system that proved successful as the Oxford-AstraZeneca COVID-19 vaccine, he said.

“We intend to vaccinate individuals who have had curative surgery for their lung cancer after being diagnosed with a very early stage of the disease,” Dr. Elliott said.

Challenges to vaccine development include knowing whether there is a clinical benefit, Dr. Elliott noted. “Our clinical trial is calculated to show up to 15% reduction in risk over 3-5 years, but only long-term follow-up will really tell us whether the immune responses we see to the vaccine within the first few weeks will have a long-term effect,” he emphasized.

In clinical practice, “these people are cancer-free and healthy after surgery,” said Dr. Elliott. However, “they are at a high risk of recurrence; 30%-70% of ex-patients will develop new cancer in their lifetime and in the majority of cases that will happen within 2 years after surgery,” he said. “We think that vaccinating them against common lung cancer antigens could reduce this risk significantly and remove some of the uncertainty that they live with after their operation.”
 

 

 

Vaccine Has Potential for Immense Impact

Lung cancer remains one of the most frequently diagnosed cancers. “In the past few decades, public health measures including tobacco cessation and lung cancer screening have contributed to the reduction of lung cancer incidence and improved survival in high-income countries, but lung cancer continues to be the leading cause of cancer-related deaths worldwide,” Saadia A. Faiz, MD, a member of the CHEST Physician editorial board, said in an interview.

“Further, new cancer diagnoses continue to increase in low-income countries where there may not be widespread public health initiatives and/or access to healthcare. Thus, development of a vaccine to prevent lung cancer could be very impactful,” she said.

Challenges to vaccine development include the heterogeneous nature of the disease, which may occur in smokers and nonsmokers, said Dr. Faiz. “Targeting the various molecular markers may be challenging,” she said. However, building on the success of other vaccine initiatives, such as the human papillomavirus vaccine for cervical cancer, and COVID-19 vaccines with collaboration and clinical research will ideally overcome these challenges, she added.

“The potential implications for a lung cancer vaccine are immense,” said Dr. Faiz.

A lung cancer vaccine could prevent a deadly disease, but continued efforts in risk factor reduction and lung cancer screening will also be important, she said.

“Depending on the results of this clinical research, longitudinal data regarding efficacy, side effects, and prevention will be vital prior to application in high-risk patients in clinical practice,” she emphasized.

The development of the lung cancer vaccine is supported in part by Cancer Research UK and the CRIS Cancer Foundation. Dr. Elliott has received support from Cancer Research UK but had no financial conflicts to disclose. Dr. Faiz had no financial conflicts to disclose.

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

Development of a DNA-based lung cancer vaccine in the United Kingdom received funding for 2 years of laboratory research and initial manufacture of 3000 doses, according to a press release from the University of Oxford, England.

A team of scientists from the University of Oxford, the Francis Crick Institute, and University College London (UCL) will receive funding from the Cancer Research UK and the CRIS Cancer Foundation.

The LungVax vaccine is based on technology similar to that used in the creation of the successful Oxford/AstraZeneca COVID-19 vaccine and will carry a DNA strand that trains the immune system to recognize the neoantigens that indicate abnormal lung cancer cells and then activate the immune system to kill these cells and stop the cancer, according to the statement.

Initially, scientists are working to develop a vaccine that triggers an immune response in the lab setting. If successful, the vaccine will move directly into a clinical trial. “If the subsequent early trial delivers promising results, the vaccine could then be scaled up to bigger trials for people at high risk of lung cancer,” according to the release.
 

Help for High-Risk Patients

Lung cancer is diagnosed in approximately 48,000 individuals in the United Kingdom each year, and the average 10-year survival is only 10%, Tim Elliott, MD, professor of immuno-oncology at the University of Oxford and lead researcher on the LungVax project, said in an interview. Nearly three-quarters of the 35,000 annual deaths are preventable by quitting smoking, which remains the best risk reduction strategy to date, he said. However, “an intervention such as a vaccine, given when people are healthy and are more likely to have a strong immune system, could benefit many thousands per year in the UK and 1.8 million patients worldwide,” he said.
 

Preliminary Trial Plans

The initial trial of the vaccine is a collaboration between Oxford University, UCL, and the Francis Crick Institute, Dr. Elliott said. The trial is a culmination of research into the biology and genetics of lung cancer at UCL and vaccine design research at the University of Oxford.

“We are at a very early stage of the program, which will develop over the next 6 years if all goes to plan,” said Dr. Elliott. The vaccine is designed on the basis of shared lung cancer antigens and packaged into the ChAdOx delivery system that proved successful as the Oxford-AstraZeneca COVID-19 vaccine, he said.

“We intend to vaccinate individuals who have had curative surgery for their lung cancer after being diagnosed with a very early stage of the disease,” Dr. Elliott said.

Challenges to vaccine development include knowing whether there is a clinical benefit, Dr. Elliott noted. “Our clinical trial is calculated to show up to 15% reduction in risk over 3-5 years, but only long-term follow-up will really tell us whether the immune responses we see to the vaccine within the first few weeks will have a long-term effect,” he emphasized.

In clinical practice, “these people are cancer-free and healthy after surgery,” said Dr. Elliott. However, “they are at a high risk of recurrence; 30%-70% of ex-patients will develop new cancer in their lifetime and in the majority of cases that will happen within 2 years after surgery,” he said. “We think that vaccinating them against common lung cancer antigens could reduce this risk significantly and remove some of the uncertainty that they live with after their operation.”
 

 

 

Vaccine Has Potential for Immense Impact

Lung cancer remains one of the most frequently diagnosed cancers. “In the past few decades, public health measures including tobacco cessation and lung cancer screening have contributed to the reduction of lung cancer incidence and improved survival in high-income countries, but lung cancer continues to be the leading cause of cancer-related deaths worldwide,” Saadia A. Faiz, MD, a member of the CHEST Physician editorial board, said in an interview.

“Further, new cancer diagnoses continue to increase in low-income countries where there may not be widespread public health initiatives and/or access to healthcare. Thus, development of a vaccine to prevent lung cancer could be very impactful,” she said.

Challenges to vaccine development include the heterogeneous nature of the disease, which may occur in smokers and nonsmokers, said Dr. Faiz. “Targeting the various molecular markers may be challenging,” she said. However, building on the success of other vaccine initiatives, such as the human papillomavirus vaccine for cervical cancer, and COVID-19 vaccines with collaboration and clinical research will ideally overcome these challenges, she added.

“The potential implications for a lung cancer vaccine are immense,” said Dr. Faiz.

A lung cancer vaccine could prevent a deadly disease, but continued efforts in risk factor reduction and lung cancer screening will also be important, she said.

“Depending on the results of this clinical research, longitudinal data regarding efficacy, side effects, and prevention will be vital prior to application in high-risk patients in clinical practice,” she emphasized.

The development of the lung cancer vaccine is supported in part by Cancer Research UK and the CRIS Cancer Foundation. Dr. Elliott has received support from Cancer Research UK but had no financial conflicts to disclose. Dr. Faiz had no financial conflicts to disclose.

A version of this article appeared on Medscape.com.

Development of a DNA-based lung cancer vaccine in the United Kingdom received funding for 2 years of laboratory research and initial manufacture of 3000 doses, according to a press release from the University of Oxford, England.

A team of scientists from the University of Oxford, the Francis Crick Institute, and University College London (UCL) will receive funding from the Cancer Research UK and the CRIS Cancer Foundation.

The LungVax vaccine is based on technology similar to that used in the creation of the successful Oxford/AstraZeneca COVID-19 vaccine and will carry a DNA strand that trains the immune system to recognize the neoantigens that indicate abnormal lung cancer cells and then activate the immune system to kill these cells and stop the cancer, according to the statement.

Initially, scientists are working to develop a vaccine that triggers an immune response in the lab setting. If successful, the vaccine will move directly into a clinical trial. “If the subsequent early trial delivers promising results, the vaccine could then be scaled up to bigger trials for people at high risk of lung cancer,” according to the release.
 

Help for High-Risk Patients

Lung cancer is diagnosed in approximately 48,000 individuals in the United Kingdom each year, and the average 10-year survival is only 10%, Tim Elliott, MD, professor of immuno-oncology at the University of Oxford and lead researcher on the LungVax project, said in an interview. Nearly three-quarters of the 35,000 annual deaths are preventable by quitting smoking, which remains the best risk reduction strategy to date, he said. However, “an intervention such as a vaccine, given when people are healthy and are more likely to have a strong immune system, could benefit many thousands per year in the UK and 1.8 million patients worldwide,” he said.
 

Preliminary Trial Plans

The initial trial of the vaccine is a collaboration between Oxford University, UCL, and the Francis Crick Institute, Dr. Elliott said. The trial is a culmination of research into the biology and genetics of lung cancer at UCL and vaccine design research at the University of Oxford.

“We are at a very early stage of the program, which will develop over the next 6 years if all goes to plan,” said Dr. Elliott. The vaccine is designed on the basis of shared lung cancer antigens and packaged into the ChAdOx delivery system that proved successful as the Oxford-AstraZeneca COVID-19 vaccine, he said.

“We intend to vaccinate individuals who have had curative surgery for their lung cancer after being diagnosed with a very early stage of the disease,” Dr. Elliott said.

Challenges to vaccine development include knowing whether there is a clinical benefit, Dr. Elliott noted. “Our clinical trial is calculated to show up to 15% reduction in risk over 3-5 years, but only long-term follow-up will really tell us whether the immune responses we see to the vaccine within the first few weeks will have a long-term effect,” he emphasized.

In clinical practice, “these people are cancer-free and healthy after surgery,” said Dr. Elliott. However, “they are at a high risk of recurrence; 30%-70% of ex-patients will develop new cancer in their lifetime and in the majority of cases that will happen within 2 years after surgery,” he said. “We think that vaccinating them against common lung cancer antigens could reduce this risk significantly and remove some of the uncertainty that they live with after their operation.”
 

 

 

Vaccine Has Potential for Immense Impact

Lung cancer remains one of the most frequently diagnosed cancers. “In the past few decades, public health measures including tobacco cessation and lung cancer screening have contributed to the reduction of lung cancer incidence and improved survival in high-income countries, but lung cancer continues to be the leading cause of cancer-related deaths worldwide,” Saadia A. Faiz, MD, a member of the CHEST Physician editorial board, said in an interview.

“Further, new cancer diagnoses continue to increase in low-income countries where there may not be widespread public health initiatives and/or access to healthcare. Thus, development of a vaccine to prevent lung cancer could be very impactful,” she said.

Challenges to vaccine development include the heterogeneous nature of the disease, which may occur in smokers and nonsmokers, said Dr. Faiz. “Targeting the various molecular markers may be challenging,” she said. However, building on the success of other vaccine initiatives, such as the human papillomavirus vaccine for cervical cancer, and COVID-19 vaccines with collaboration and clinical research will ideally overcome these challenges, she added.

“The potential implications for a lung cancer vaccine are immense,” said Dr. Faiz.

A lung cancer vaccine could prevent a deadly disease, but continued efforts in risk factor reduction and lung cancer screening will also be important, she said.

“Depending on the results of this clinical research, longitudinal data regarding efficacy, side effects, and prevention will be vital prior to application in high-risk patients in clinical practice,” she emphasized.

The development of the lung cancer vaccine is supported in part by Cancer Research UK and the CRIS Cancer Foundation. Dr. Elliott has received support from Cancer Research UK but had no financial conflicts to disclose. Dr. Faiz had no financial conflicts to disclose.

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Time Is Money: Should Physicians Be Compensated for EHR Engagement?

Article Type
Changed
Mon, 04/01/2024 - 16:44

Electronic health records (EHRs) make providing coordinated, efficient care easier and reduce medical errors and test duplications; research has also correlated EHR adoption with higher patient satisfaction and outcomes. However, for physicians, the benefits come at a cost.

Physicians spend significantly more time in healthcare portals, making notes, entering orders, reviewing clinical reports, and responding to patient messages.

“I spend at least the same amount of time in the portal that I do in scheduled clinical time with patients,” said Eve Rittenberg, MD, primary care physician at Brigham and Women’s Hospital and assistant professor at Harvard Medical School, Boston. “So, if I have a 4-hour session of seeing patients, I spend at least another 4 or more hours in the patient portal.”

The latest data showed that primary care physicians logged a median of 36.2 minutes in the healthcare portal per patient visit, spending 58.9% more time on orders, 24.4% more time reading and responding to messages, and 13% more time on chart review compared with prepandemic portal use.

“EHRs can be very powerful tools,” said Ralph DeBiasi, MD, a clinical cardiac electrophysiologist at Yale New Haven Health in Connecticut. “We’re still working on how to best harness that power to make us better doctors and better care teams and to take better care of our patients because their use can take up a lot of time.”
 

Portal Time Isn’t Paid Time

Sharp increases in the amount of time spent in the EHR responding to messages or dispensing medical advice via the portal often aren’t linked to increases in compensation; most portal time is unpaid.

“There isn’t specific time allocated to working in the portal; it’s either done in the office while a patient is sitting in an exam room or in the mornings and evenings outside of traditional working hours,” Dr. DeBiasi told this news organization. “I think it’s reasonable to consider it being reimbursed because we’re taking our time and effort and making decisions to help the patient.”

Compensation for portal time affects all physicians, but the degree of impact depends on their specialties. Primary care physicians spent significantly more daily and after-hours time in the EHR, entering notes and orders, and doing clinical reviews compared to surgical and medical specialties.

In addition to the outsized impact on primary care, physician compensation for portal time is also an equity issue.

Dr. Rittenberg researched the issue and found a higher volume of communication from both patients and staff to female physicians than male physicians. As a result, female physicians spend 41.4 minutes more on the EHR than their male counterparts, which equates to more unpaid time. It’s likely no coincidence then that burnout rates are also higher among female physicians, who also leave the clinical workforce in higher numbers, especially in primary care.

“Finding ways to fairly compensate physicians for their work also will address some of the equity issues in workload and the consequences,” Dr. Rittenberg said.
 

Addressing the Issue

Some health systems have started charging patients who seek medical advice via patient portals, equating the communication to asynchronous acute care or an additional care touch point and billing based on the length and complexity of the messages. Patient fees for seeking medical advice via portals vary widely depending on their health system and insurance.

At University of California San Francisco Health, billing patients for EHR communication led to a sharp decrease in patient messages, which eased physician workload. At Cleveland Clinic, physicians receive “productivity credits” for the time spent in the EHR that can be used to reduce their clinic hours (but have no impact on their compensation).

Changes to the Medicare Physician Fee Schedule also allow physicians to bill for “digital evaluation and management” based on the time spent in an EHR responding to patient-initiated questions and requests.

However, more efforts are needed to ease burnout and reverse the number of physicians who are seeing fewer patients or leaving medical practice altogether as a direct result of spending increasing amounts of unpaid time in the EHR. Dr. Rittenberg, who spends an estimated 50% of her working hours in the portal, had to reduce her clinical workload by 25% due to such heavy portal requirements.

“The workload has become unsustainable,” she said. “The work has undergone a dramatic change over the past decade, and the compensation system has not kept up with that change.”
 

Prioritizing Patient and Physician Experiences

The ever-expanding use of EHRs is a result of their value as a healthcare tool. Data showed that the electronic exchange of information between patients and physicians improves diagnostics, reduces medical errors, enhances communication, and leads to more patient-centered care — and physicians want their patients to use the portal to maximize their healthcare.

“[The EHR] is good for patients,” said Dr. DeBiasi. “Sometimes, patients have access issues with healthcare, whether that’s not knowing what number to call or getting the right message to the right person at the right office. If [the portal] is good for them and helps them get access to care, we should embrace that and figure out a way to work it into our day-to-day schedules.”

But maximizing the patient experience shouldn’t come at the physicians’ expense. Dr. Rittenberg advocates a model that compensates physicians for the time spent in the EHR and prioritizes a team approach to rebalance the EHR workload to ensure that physicians aren’t devoting too much time to administrative tasks and can, instead, focus their time on clinical tasks.

“The way in which we provide healthcare has fundamentally shifted, and compensation models need to reflect that new reality,” Dr. Rittenberg added.

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

Electronic health records (EHRs) make providing coordinated, efficient care easier and reduce medical errors and test duplications; research has also correlated EHR adoption with higher patient satisfaction and outcomes. However, for physicians, the benefits come at a cost.

Physicians spend significantly more time in healthcare portals, making notes, entering orders, reviewing clinical reports, and responding to patient messages.

“I spend at least the same amount of time in the portal that I do in scheduled clinical time with patients,” said Eve Rittenberg, MD, primary care physician at Brigham and Women’s Hospital and assistant professor at Harvard Medical School, Boston. “So, if I have a 4-hour session of seeing patients, I spend at least another 4 or more hours in the patient portal.”

The latest data showed that primary care physicians logged a median of 36.2 minutes in the healthcare portal per patient visit, spending 58.9% more time on orders, 24.4% more time reading and responding to messages, and 13% more time on chart review compared with prepandemic portal use.

“EHRs can be very powerful tools,” said Ralph DeBiasi, MD, a clinical cardiac electrophysiologist at Yale New Haven Health in Connecticut. “We’re still working on how to best harness that power to make us better doctors and better care teams and to take better care of our patients because their use can take up a lot of time.”
 

Portal Time Isn’t Paid Time

Sharp increases in the amount of time spent in the EHR responding to messages or dispensing medical advice via the portal often aren’t linked to increases in compensation; most portal time is unpaid.

“There isn’t specific time allocated to working in the portal; it’s either done in the office while a patient is sitting in an exam room or in the mornings and evenings outside of traditional working hours,” Dr. DeBiasi told this news organization. “I think it’s reasonable to consider it being reimbursed because we’re taking our time and effort and making decisions to help the patient.”

Compensation for portal time affects all physicians, but the degree of impact depends on their specialties. Primary care physicians spent significantly more daily and after-hours time in the EHR, entering notes and orders, and doing clinical reviews compared to surgical and medical specialties.

In addition to the outsized impact on primary care, physician compensation for portal time is also an equity issue.

Dr. Rittenberg researched the issue and found a higher volume of communication from both patients and staff to female physicians than male physicians. As a result, female physicians spend 41.4 minutes more on the EHR than their male counterparts, which equates to more unpaid time. It’s likely no coincidence then that burnout rates are also higher among female physicians, who also leave the clinical workforce in higher numbers, especially in primary care.

“Finding ways to fairly compensate physicians for their work also will address some of the equity issues in workload and the consequences,” Dr. Rittenberg said.
 

Addressing the Issue

Some health systems have started charging patients who seek medical advice via patient portals, equating the communication to asynchronous acute care or an additional care touch point and billing based on the length and complexity of the messages. Patient fees for seeking medical advice via portals vary widely depending on their health system and insurance.

At University of California San Francisco Health, billing patients for EHR communication led to a sharp decrease in patient messages, which eased physician workload. At Cleveland Clinic, physicians receive “productivity credits” for the time spent in the EHR that can be used to reduce their clinic hours (but have no impact on their compensation).

Changes to the Medicare Physician Fee Schedule also allow physicians to bill for “digital evaluation and management” based on the time spent in an EHR responding to patient-initiated questions and requests.

However, more efforts are needed to ease burnout and reverse the number of physicians who are seeing fewer patients or leaving medical practice altogether as a direct result of spending increasing amounts of unpaid time in the EHR. Dr. Rittenberg, who spends an estimated 50% of her working hours in the portal, had to reduce her clinical workload by 25% due to such heavy portal requirements.

“The workload has become unsustainable,” she said. “The work has undergone a dramatic change over the past decade, and the compensation system has not kept up with that change.”
 

Prioritizing Patient and Physician Experiences

The ever-expanding use of EHRs is a result of their value as a healthcare tool. Data showed that the electronic exchange of information between patients and physicians improves diagnostics, reduces medical errors, enhances communication, and leads to more patient-centered care — and physicians want their patients to use the portal to maximize their healthcare.

“[The EHR] is good for patients,” said Dr. DeBiasi. “Sometimes, patients have access issues with healthcare, whether that’s not knowing what number to call or getting the right message to the right person at the right office. If [the portal] is good for them and helps them get access to care, we should embrace that and figure out a way to work it into our day-to-day schedules.”

But maximizing the patient experience shouldn’t come at the physicians’ expense. Dr. Rittenberg advocates a model that compensates physicians for the time spent in the EHR and prioritizes a team approach to rebalance the EHR workload to ensure that physicians aren’t devoting too much time to administrative tasks and can, instead, focus their time on clinical tasks.

“The way in which we provide healthcare has fundamentally shifted, and compensation models need to reflect that new reality,” Dr. Rittenberg added.

A version of this article first appeared on Medscape.com.

Electronic health records (EHRs) make providing coordinated, efficient care easier and reduce medical errors and test duplications; research has also correlated EHR adoption with higher patient satisfaction and outcomes. However, for physicians, the benefits come at a cost.

Physicians spend significantly more time in healthcare portals, making notes, entering orders, reviewing clinical reports, and responding to patient messages.

“I spend at least the same amount of time in the portal that I do in scheduled clinical time with patients,” said Eve Rittenberg, MD, primary care physician at Brigham and Women’s Hospital and assistant professor at Harvard Medical School, Boston. “So, if I have a 4-hour session of seeing patients, I spend at least another 4 or more hours in the patient portal.”

The latest data showed that primary care physicians logged a median of 36.2 minutes in the healthcare portal per patient visit, spending 58.9% more time on orders, 24.4% more time reading and responding to messages, and 13% more time on chart review compared with prepandemic portal use.

“EHRs can be very powerful tools,” said Ralph DeBiasi, MD, a clinical cardiac electrophysiologist at Yale New Haven Health in Connecticut. “We’re still working on how to best harness that power to make us better doctors and better care teams and to take better care of our patients because their use can take up a lot of time.”
 

Portal Time Isn’t Paid Time

Sharp increases in the amount of time spent in the EHR responding to messages or dispensing medical advice via the portal often aren’t linked to increases in compensation; most portal time is unpaid.

“There isn’t specific time allocated to working in the portal; it’s either done in the office while a patient is sitting in an exam room or in the mornings and evenings outside of traditional working hours,” Dr. DeBiasi told this news organization. “I think it’s reasonable to consider it being reimbursed because we’re taking our time and effort and making decisions to help the patient.”

Compensation for portal time affects all physicians, but the degree of impact depends on their specialties. Primary care physicians spent significantly more daily and after-hours time in the EHR, entering notes and orders, and doing clinical reviews compared to surgical and medical specialties.

In addition to the outsized impact on primary care, physician compensation for portal time is also an equity issue.

Dr. Rittenberg researched the issue and found a higher volume of communication from both patients and staff to female physicians than male physicians. As a result, female physicians spend 41.4 minutes more on the EHR than their male counterparts, which equates to more unpaid time. It’s likely no coincidence then that burnout rates are also higher among female physicians, who also leave the clinical workforce in higher numbers, especially in primary care.

“Finding ways to fairly compensate physicians for their work also will address some of the equity issues in workload and the consequences,” Dr. Rittenberg said.
 

Addressing the Issue

Some health systems have started charging patients who seek medical advice via patient portals, equating the communication to asynchronous acute care or an additional care touch point and billing based on the length and complexity of the messages. Patient fees for seeking medical advice via portals vary widely depending on their health system and insurance.

At University of California San Francisco Health, billing patients for EHR communication led to a sharp decrease in patient messages, which eased physician workload. At Cleveland Clinic, physicians receive “productivity credits” for the time spent in the EHR that can be used to reduce their clinic hours (but have no impact on their compensation).

Changes to the Medicare Physician Fee Schedule also allow physicians to bill for “digital evaluation and management” based on the time spent in an EHR responding to patient-initiated questions and requests.

However, more efforts are needed to ease burnout and reverse the number of physicians who are seeing fewer patients or leaving medical practice altogether as a direct result of spending increasing amounts of unpaid time in the EHR. Dr. Rittenberg, who spends an estimated 50% of her working hours in the portal, had to reduce her clinical workload by 25% due to such heavy portal requirements.

“The workload has become unsustainable,” she said. “The work has undergone a dramatic change over the past decade, and the compensation system has not kept up with that change.”
 

Prioritizing Patient and Physician Experiences

The ever-expanding use of EHRs is a result of their value as a healthcare tool. Data showed that the electronic exchange of information between patients and physicians improves diagnostics, reduces medical errors, enhances communication, and leads to more patient-centered care — and physicians want their patients to use the portal to maximize their healthcare.

“[The EHR] is good for patients,” said Dr. DeBiasi. “Sometimes, patients have access issues with healthcare, whether that’s not knowing what number to call or getting the right message to the right person at the right office. If [the portal] is good for them and helps them get access to care, we should embrace that and figure out a way to work it into our day-to-day schedules.”

But maximizing the patient experience shouldn’t come at the physicians’ expense. Dr. Rittenberg advocates a model that compensates physicians for the time spent in the EHR and prioritizes a team approach to rebalance the EHR workload to ensure that physicians aren’t devoting too much time to administrative tasks and can, instead, focus their time on clinical tasks.

“The way in which we provide healthcare has fundamentally shifted, and compensation models need to reflect that new reality,” Dr. Rittenberg added.

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Heat Exposure Tied to Acute Immune Changes

Article Type
Changed
Mon, 04/01/2024 - 10:52

 

Short-term exposure to high outdoor temperatures is associated with an increased inflammatory response and reduction in infection-fighting cells, new research showed.

In this study, blood work from volunteers was examined for immune biomarkers, and the findings mapped against environmental data.

“With rising global temperatures, the association between heat exposure and a temporarily weakened response from the immune system is a concern because temperature and humidity are known to be important environmental drivers of infectious, airborne disease transmission,” lead author Daniel W. Riggs, PhD, with the Christina Lee Brown Envirome Institute, University of Louisville in Louisville, Kentucky, said in a news release.

“In this study, even exposure to relatively modest increases in temperature were associated with acute changes in immune system functioning indexed by low-grade inflammation known to be linked to cardiovascular disorders, as well as potential secondary effects on the ability to optimally protect against infection,” said Rosalind J. Wright, MD, MPH, who wasn’t involved in the study.

“Further elucidation of the effects of both acute and more prolonged heat exposures (heat waves) on immune signaling will be important given potential broad health implications beyond the heart,” said Dr. Wright, dean of public health and professor and chair, Department of Public Health, Mount Sinai Health System.

The study was presented at the American Heart Association (AHA) Epidemiology and Prevention | Lifestyle and Cardiometabolic Scientific Sessions 2024.

High Temps Hard on Multiple Organs

Extreme-heat events have been shown to increase mortality, and excessive deaths due to heat waves are overwhelmingly cardiovascular in origin. Many prior studies only considered ambient temperature, which fails to capture the actual heat stress experienced by individuals, Dr. Riggs and colleagues wrote.

They designed their study to gauge how short-term heat exposures are related to markers of inflammation and the immune response.

They recruited 624 adults (mean age 49 years, 59% women) from a neighborhood in Louisville during the summer months, when median temperatures over 24 hours were 24.5 °C (76 °F).

They obtained blood samples to measure circulating cytokines and immune cells during clinic visits. Heat metrics, collected on the same day as blood draws, included 24-hour averages of temperature, net effective temperature, and the Universal Thermal Climate Index (UTCI), a metric that incorporates temperature, humidity, wind speed, and ultraviolet radiation, to determine the physiological comfort of the human body under specific weather conditions.

The results were adjusted for multiple factors, including sex, age, race, education, body mass index, smoking status, anti-inflammatory medication use, and daily air pollution (PM 2.5).

In adjusted analyses, for every five-degree increase in UTCI, there was an increase in levels of several inflammatory markers, including monocytes (4.2%), eosinophils (9.5%), natural killer T cells (9.9%), and tumor necrosis factor-alpha (7.0%) and a decrease in infection-fighting B cells (−6.8%).

Study Raises Important Questions

“We’re finding that heat is associated with health effects across a wide range of organ systems and outcomes, but this study helps start to get at the ‘how,’” said Perry E. Sheffield, MD, MPH, with the Departments of Pediatrics and Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai in New York City, who wasn’t involved in the study.

 

 

Dr. Sheffield said the study raises “important questions like, Does the timing of heat exposure matter (going in and out of air-conditioned spaces for example)? and Could some people be more vulnerable than others based on things like what they eat, whether they exercise, or their genetics?”

The study comes on the heels of a report released earlier this month from the World Meteorological Organization noting that climate change indicators reached record levels in 2023.

“The most critical challenges facing medicine are occurring at the intersection of climate and health, underscoring the urgent need to understand how climate-related factors, such as exposure to more extreme temperatures, shift key regulatory systems in our bodies to contribute to disease,” Dr. Wright told this news organization.

The study was supported by grants from the National Institute of Environmental Health Sciences. Dr. Riggs, Dr. Wright, and Sheffield had no relevant disclosures.

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

 

Short-term exposure to high outdoor temperatures is associated with an increased inflammatory response and reduction in infection-fighting cells, new research showed.

In this study, blood work from volunteers was examined for immune biomarkers, and the findings mapped against environmental data.

“With rising global temperatures, the association between heat exposure and a temporarily weakened response from the immune system is a concern because temperature and humidity are known to be important environmental drivers of infectious, airborne disease transmission,” lead author Daniel W. Riggs, PhD, with the Christina Lee Brown Envirome Institute, University of Louisville in Louisville, Kentucky, said in a news release.

“In this study, even exposure to relatively modest increases in temperature were associated with acute changes in immune system functioning indexed by low-grade inflammation known to be linked to cardiovascular disorders, as well as potential secondary effects on the ability to optimally protect against infection,” said Rosalind J. Wright, MD, MPH, who wasn’t involved in the study.

“Further elucidation of the effects of both acute and more prolonged heat exposures (heat waves) on immune signaling will be important given potential broad health implications beyond the heart,” said Dr. Wright, dean of public health and professor and chair, Department of Public Health, Mount Sinai Health System.

The study was presented at the American Heart Association (AHA) Epidemiology and Prevention | Lifestyle and Cardiometabolic Scientific Sessions 2024.

High Temps Hard on Multiple Organs

Extreme-heat events have been shown to increase mortality, and excessive deaths due to heat waves are overwhelmingly cardiovascular in origin. Many prior studies only considered ambient temperature, which fails to capture the actual heat stress experienced by individuals, Dr. Riggs and colleagues wrote.

They designed their study to gauge how short-term heat exposures are related to markers of inflammation and the immune response.

They recruited 624 adults (mean age 49 years, 59% women) from a neighborhood in Louisville during the summer months, when median temperatures over 24 hours were 24.5 °C (76 °F).

They obtained blood samples to measure circulating cytokines and immune cells during clinic visits. Heat metrics, collected on the same day as blood draws, included 24-hour averages of temperature, net effective temperature, and the Universal Thermal Climate Index (UTCI), a metric that incorporates temperature, humidity, wind speed, and ultraviolet radiation, to determine the physiological comfort of the human body under specific weather conditions.

The results were adjusted for multiple factors, including sex, age, race, education, body mass index, smoking status, anti-inflammatory medication use, and daily air pollution (PM 2.5).

In adjusted analyses, for every five-degree increase in UTCI, there was an increase in levels of several inflammatory markers, including monocytes (4.2%), eosinophils (9.5%), natural killer T cells (9.9%), and tumor necrosis factor-alpha (7.0%) and a decrease in infection-fighting B cells (−6.8%).

Study Raises Important Questions

“We’re finding that heat is associated with health effects across a wide range of organ systems and outcomes, but this study helps start to get at the ‘how,’” said Perry E. Sheffield, MD, MPH, with the Departments of Pediatrics and Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai in New York City, who wasn’t involved in the study.

 

 

Dr. Sheffield said the study raises “important questions like, Does the timing of heat exposure matter (going in and out of air-conditioned spaces for example)? and Could some people be more vulnerable than others based on things like what they eat, whether they exercise, or their genetics?”

The study comes on the heels of a report released earlier this month from the World Meteorological Organization noting that climate change indicators reached record levels in 2023.

“The most critical challenges facing medicine are occurring at the intersection of climate and health, underscoring the urgent need to understand how climate-related factors, such as exposure to more extreme temperatures, shift key regulatory systems in our bodies to contribute to disease,” Dr. Wright told this news organization.

The study was supported by grants from the National Institute of Environmental Health Sciences. Dr. Riggs, Dr. Wright, and Sheffield had no relevant disclosures.

A version of this article appeared on Medscape.com.

 

Short-term exposure to high outdoor temperatures is associated with an increased inflammatory response and reduction in infection-fighting cells, new research showed.

In this study, blood work from volunteers was examined for immune biomarkers, and the findings mapped against environmental data.

“With rising global temperatures, the association between heat exposure and a temporarily weakened response from the immune system is a concern because temperature and humidity are known to be important environmental drivers of infectious, airborne disease transmission,” lead author Daniel W. Riggs, PhD, with the Christina Lee Brown Envirome Institute, University of Louisville in Louisville, Kentucky, said in a news release.

“In this study, even exposure to relatively modest increases in temperature were associated with acute changes in immune system functioning indexed by low-grade inflammation known to be linked to cardiovascular disorders, as well as potential secondary effects on the ability to optimally protect against infection,” said Rosalind J. Wright, MD, MPH, who wasn’t involved in the study.

“Further elucidation of the effects of both acute and more prolonged heat exposures (heat waves) on immune signaling will be important given potential broad health implications beyond the heart,” said Dr. Wright, dean of public health and professor and chair, Department of Public Health, Mount Sinai Health System.

The study was presented at the American Heart Association (AHA) Epidemiology and Prevention | Lifestyle and Cardiometabolic Scientific Sessions 2024.

High Temps Hard on Multiple Organs

Extreme-heat events have been shown to increase mortality, and excessive deaths due to heat waves are overwhelmingly cardiovascular in origin. Many prior studies only considered ambient temperature, which fails to capture the actual heat stress experienced by individuals, Dr. Riggs and colleagues wrote.

They designed their study to gauge how short-term heat exposures are related to markers of inflammation and the immune response.

They recruited 624 adults (mean age 49 years, 59% women) from a neighborhood in Louisville during the summer months, when median temperatures over 24 hours were 24.5 °C (76 °F).

They obtained blood samples to measure circulating cytokines and immune cells during clinic visits. Heat metrics, collected on the same day as blood draws, included 24-hour averages of temperature, net effective temperature, and the Universal Thermal Climate Index (UTCI), a metric that incorporates temperature, humidity, wind speed, and ultraviolet radiation, to determine the physiological comfort of the human body under specific weather conditions.

The results were adjusted for multiple factors, including sex, age, race, education, body mass index, smoking status, anti-inflammatory medication use, and daily air pollution (PM 2.5).

In adjusted analyses, for every five-degree increase in UTCI, there was an increase in levels of several inflammatory markers, including monocytes (4.2%), eosinophils (9.5%), natural killer T cells (9.9%), and tumor necrosis factor-alpha (7.0%) and a decrease in infection-fighting B cells (−6.8%).

Study Raises Important Questions

“We’re finding that heat is associated with health effects across a wide range of organ systems and outcomes, but this study helps start to get at the ‘how,’” said Perry E. Sheffield, MD, MPH, with the Departments of Pediatrics and Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai in New York City, who wasn’t involved in the study.

 

 

Dr. Sheffield said the study raises “important questions like, Does the timing of heat exposure matter (going in and out of air-conditioned spaces for example)? and Could some people be more vulnerable than others based on things like what they eat, whether they exercise, or their genetics?”

The study comes on the heels of a report released earlier this month from the World Meteorological Organization noting that climate change indicators reached record levels in 2023.

“The most critical challenges facing medicine are occurring at the intersection of climate and health, underscoring the urgent need to understand how climate-related factors, such as exposure to more extreme temperatures, shift key regulatory systems in our bodies to contribute to disease,” Dr. Wright told this news organization.

The study was supported by grants from the National Institute of Environmental Health Sciences. Dr. Riggs, Dr. Wright, and Sheffield had no relevant disclosures.

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

New Data: Long COVID Cases Surge

Article Type
Changed
Mon, 04/01/2024 - 17:18

 

Experts worry a recent rise in long COVID cases — fueled by a spike in winter holiday infections and a decline in masking and other measures — could continue into this year.

A sudden rise in long COVID in January has persisted into a second month. About 17.6% of those surveyed by the Census Bureau in January said they have experienced long COVID. The number for February was 17.4.

Compare these new numbers to October 2023 and earlier, when long COVID numbers hovered between 14% and 15% of the US adult population as far back as June 2022.

The Census Bureau and the Centers for Disease Control and Prevention (CDC) regularly query about 70,000 people as part of its ongoing Pulse Survey.

It’s Not Just the Federal Numbers

Independently, advocates, researchers, and clinicians also reported seeing an increase in the number of people who have developed long COVID after a second or third infection.

John Baratta, MD, who runs the COVID Recovery Clinic at the University of North Carolina, said the increase is related to a higher rate of acute cases in the fall and winter of 2023.

In January, the percentage of North Carolinians reporting ever having had long COVD jumped from 12.5% to 20.2% in January and fell to 16.8% in February.

At the same time, many cases are either undetected or unreported by people who tested positive for COVID-19 at home or are not aware they have had it.

Hannah Davis, a member of the Patient-Led Research Collaborative, also linked the increase in long COVID to the wave of new infections at the end of 2023 and the start of 2024.

“It’s absolutely real,” she said via email. “There have been many new cases in the past few months, and we see those new folks in our communities as well.”

Wastewater Remains the Best Indicator

“This results in many cases of COVID flying under the radar,” Dr. Baratta said. “However, we do know from the wastewater monitoring that there was a pretty substantial rise.”

Testing wastewater for COVID levels is becoming one of the most reliable measures of estimating infection, he said. Nationally, viral measure of wastewater followed a similar path: The viral rate started creeping up in October and peaked on December 30, according to CDC measures.

RNA extracted from concentrated wastewater samples offer a good measure of SARS-CoV-2 in the community. In North Carolina and elsewhere, the state measures the virus by calculating gene copies in wastewater per capita — how many for each resident. For most of 2023, North Carolina reported fewer than 10 million viral gene copies per state resident. In late July, that number shot up to 25 million and reached 71 million per capita in March 2023 before starting to go down.

Repeat Infections, Vaccine Apathy Driving Numbers

Dr. Baratta said COVID remains a problem in rural areas. In Maine, wastewater virus counts have been much higher than the national average. There, the percentage of people who reported currently experiencing long COVID rose from 5.7% in October to 9.2% in January. The percentage reporting ever experiencing long COVID rose from 13.8% to 21% in that period.

 

 

Other factors play a role. Dr. Baratta said he is seeing patients with long COVID who have refused the vaccine or developed long COVID after a second or third infection.

He said he thinks that attitudes toward the pandemic have resulted in relaxed protection and prevention efforts.

“There is low booster vaccination rate and additional masking is utilized less that before,” he said. About 20% of the population has received the latest vaccine booster, according to the Kaiser Family Foundation.

The increase in long COVID has many causes including “infection, reinfection (eg, people getting COVID after a second, third, or fourth infection), low vaccination rates, waning immunity, and decline in the use of antivirals (such as Paxlovid),” said Ziyad Al-Aly, MD, chief of research at Veterans Affairs St. Louis Health Care and clinical epidemiologist at Washington University in St. Louis, St. Louis, Missouri.

“All of these could contribute to the rise in burden of long COVID,” he said.

Not all states reported an increase. Massachusetts and Hawaii saw long COVD rates drop slightly, according to the CDC.

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

 

Experts worry a recent rise in long COVID cases — fueled by a spike in winter holiday infections and a decline in masking and other measures — could continue into this year.

A sudden rise in long COVID in January has persisted into a second month. About 17.6% of those surveyed by the Census Bureau in January said they have experienced long COVID. The number for February was 17.4.

Compare these new numbers to October 2023 and earlier, when long COVID numbers hovered between 14% and 15% of the US adult population as far back as June 2022.

The Census Bureau and the Centers for Disease Control and Prevention (CDC) regularly query about 70,000 people as part of its ongoing Pulse Survey.

It’s Not Just the Federal Numbers

Independently, advocates, researchers, and clinicians also reported seeing an increase in the number of people who have developed long COVID after a second or third infection.

John Baratta, MD, who runs the COVID Recovery Clinic at the University of North Carolina, said the increase is related to a higher rate of acute cases in the fall and winter of 2023.

In January, the percentage of North Carolinians reporting ever having had long COVD jumped from 12.5% to 20.2% in January and fell to 16.8% in February.

At the same time, many cases are either undetected or unreported by people who tested positive for COVID-19 at home or are not aware they have had it.

Hannah Davis, a member of the Patient-Led Research Collaborative, also linked the increase in long COVID to the wave of new infections at the end of 2023 and the start of 2024.

“It’s absolutely real,” she said via email. “There have been many new cases in the past few months, and we see those new folks in our communities as well.”

Wastewater Remains the Best Indicator

“This results in many cases of COVID flying under the radar,” Dr. Baratta said. “However, we do know from the wastewater monitoring that there was a pretty substantial rise.”

Testing wastewater for COVID levels is becoming one of the most reliable measures of estimating infection, he said. Nationally, viral measure of wastewater followed a similar path: The viral rate started creeping up in October and peaked on December 30, according to CDC measures.

RNA extracted from concentrated wastewater samples offer a good measure of SARS-CoV-2 in the community. In North Carolina and elsewhere, the state measures the virus by calculating gene copies in wastewater per capita — how many for each resident. For most of 2023, North Carolina reported fewer than 10 million viral gene copies per state resident. In late July, that number shot up to 25 million and reached 71 million per capita in March 2023 before starting to go down.

Repeat Infections, Vaccine Apathy Driving Numbers

Dr. Baratta said COVID remains a problem in rural areas. In Maine, wastewater virus counts have been much higher than the national average. There, the percentage of people who reported currently experiencing long COVID rose from 5.7% in October to 9.2% in January. The percentage reporting ever experiencing long COVID rose from 13.8% to 21% in that period.

 

 

Other factors play a role. Dr. Baratta said he is seeing patients with long COVID who have refused the vaccine or developed long COVID after a second or third infection.

He said he thinks that attitudes toward the pandemic have resulted in relaxed protection and prevention efforts.

“There is low booster vaccination rate and additional masking is utilized less that before,” he said. About 20% of the population has received the latest vaccine booster, according to the Kaiser Family Foundation.

The increase in long COVID has many causes including “infection, reinfection (eg, people getting COVID after a second, third, or fourth infection), low vaccination rates, waning immunity, and decline in the use of antivirals (such as Paxlovid),” said Ziyad Al-Aly, MD, chief of research at Veterans Affairs St. Louis Health Care and clinical epidemiologist at Washington University in St. Louis, St. Louis, Missouri.

“All of these could contribute to the rise in burden of long COVID,” he said.

Not all states reported an increase. Massachusetts and Hawaii saw long COVD rates drop slightly, according to the CDC.

A version of this article appeared on Medscape.com.

 

Experts worry a recent rise in long COVID cases — fueled by a spike in winter holiday infections and a decline in masking and other measures — could continue into this year.

A sudden rise in long COVID in January has persisted into a second month. About 17.6% of those surveyed by the Census Bureau in January said they have experienced long COVID. The number for February was 17.4.

Compare these new numbers to October 2023 and earlier, when long COVID numbers hovered between 14% and 15% of the US adult population as far back as June 2022.

The Census Bureau and the Centers for Disease Control and Prevention (CDC) regularly query about 70,000 people as part of its ongoing Pulse Survey.

It’s Not Just the Federal Numbers

Independently, advocates, researchers, and clinicians also reported seeing an increase in the number of people who have developed long COVID after a second or third infection.

John Baratta, MD, who runs the COVID Recovery Clinic at the University of North Carolina, said the increase is related to a higher rate of acute cases in the fall and winter of 2023.

In January, the percentage of North Carolinians reporting ever having had long COVD jumped from 12.5% to 20.2% in January and fell to 16.8% in February.

At the same time, many cases are either undetected or unreported by people who tested positive for COVID-19 at home or are not aware they have had it.

Hannah Davis, a member of the Patient-Led Research Collaborative, also linked the increase in long COVID to the wave of new infections at the end of 2023 and the start of 2024.

“It’s absolutely real,” she said via email. “There have been many new cases in the past few months, and we see those new folks in our communities as well.”

Wastewater Remains the Best Indicator

“This results in many cases of COVID flying under the radar,” Dr. Baratta said. “However, we do know from the wastewater monitoring that there was a pretty substantial rise.”

Testing wastewater for COVID levels is becoming one of the most reliable measures of estimating infection, he said. Nationally, viral measure of wastewater followed a similar path: The viral rate started creeping up in October and peaked on December 30, according to CDC measures.

RNA extracted from concentrated wastewater samples offer a good measure of SARS-CoV-2 in the community. In North Carolina and elsewhere, the state measures the virus by calculating gene copies in wastewater per capita — how many for each resident. For most of 2023, North Carolina reported fewer than 10 million viral gene copies per state resident. In late July, that number shot up to 25 million and reached 71 million per capita in March 2023 before starting to go down.

Repeat Infections, Vaccine Apathy Driving Numbers

Dr. Baratta said COVID remains a problem in rural areas. In Maine, wastewater virus counts have been much higher than the national average. There, the percentage of people who reported currently experiencing long COVID rose from 5.7% in October to 9.2% in January. The percentage reporting ever experiencing long COVID rose from 13.8% to 21% in that period.

 

 

Other factors play a role. Dr. Baratta said he is seeing patients with long COVID who have refused the vaccine or developed long COVID after a second or third infection.

He said he thinks that attitudes toward the pandemic have resulted in relaxed protection and prevention efforts.

“There is low booster vaccination rate and additional masking is utilized less that before,” he said. About 20% of the population has received the latest vaccine booster, according to the Kaiser Family Foundation.

The increase in long COVID has many causes including “infection, reinfection (eg, people getting COVID after a second, third, or fourth infection), low vaccination rates, waning immunity, and decline in the use of antivirals (such as Paxlovid),” said Ziyad Al-Aly, MD, chief of research at Veterans Affairs St. Louis Health Care and clinical epidemiologist at Washington University in St. Louis, St. Louis, Missouri.

“All of these could contribute to the rise in burden of long COVID,” he said.

Not all states reported an increase. Massachusetts and Hawaii saw long COVD rates drop slightly, according to the CDC.

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Digital Nudges Found to Be Duds in Flu Vax Trial

Article Type
Changed
Fri, 03/29/2024 - 14:26

 

TOPLINE:

A study involving more than 260,000 patients found that neither text messages nor reminders in patient portals significantly increased rates of influenza vaccination.

METHODOLOGY:

  • The study was conducted from September 2022 to April 2023 in the University of California, Los Angeles (UCLA) health system, involving 262,085 patients across 79 primary care practices.
  • Patients were randomly assigned to one of three groups: A control group that received usual care, a group that received reminders through the patient portal, and a group that received reminders via text message.
  • The primary outcome was the influenza vaccination rate by April 30, 2023, including vaccinations from pharmacies and other sources.

TAKEAWAY:

  • Neither intervention significantly improved influenza vaccination rates, which remained around 47% for all the groups.
  • Preappointment text reminders appeared to have a slight effect on unvaccinated patients who had scheduled appointments, suggesting potential for targeted use in this population, according to the researchers.

IN PRACTICE:

“Health systems should consider the potential opportunity costs of sending reminders for influenza vaccination and may decide on other, more intensive interventions, such as improving access to vaccinations (eg, Saturday or after-hour clinics) or communication training for clinicians to address vaccine hesitancy,” the authors of the study wrote.

SOURCE:

The study was led by Peter G. Szilagyi, MD, MPH, with the Department of Pediatrics at UCLA Mattel Children’s Hospital, University of California, Los Angeles. It was published online in JAMA Internal Medicine.

LIMITATIONS:

The study was confined to a single health system and did not assess patients’ reasons for not getting vaccinated.

DISCLOSURES:

The study was supported by grants from the National Institutes of Health. Coauthors disclosed financial ties to pharmacy and pharmaceutical companies and the Pediatric Infectious Disease Society.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication.

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

 

TOPLINE:

A study involving more than 260,000 patients found that neither text messages nor reminders in patient portals significantly increased rates of influenza vaccination.

METHODOLOGY:

  • The study was conducted from September 2022 to April 2023 in the University of California, Los Angeles (UCLA) health system, involving 262,085 patients across 79 primary care practices.
  • Patients were randomly assigned to one of three groups: A control group that received usual care, a group that received reminders through the patient portal, and a group that received reminders via text message.
  • The primary outcome was the influenza vaccination rate by April 30, 2023, including vaccinations from pharmacies and other sources.

TAKEAWAY:

  • Neither intervention significantly improved influenza vaccination rates, which remained around 47% for all the groups.
  • Preappointment text reminders appeared to have a slight effect on unvaccinated patients who had scheduled appointments, suggesting potential for targeted use in this population, according to the researchers.

IN PRACTICE:

“Health systems should consider the potential opportunity costs of sending reminders for influenza vaccination and may decide on other, more intensive interventions, such as improving access to vaccinations (eg, Saturday or after-hour clinics) or communication training for clinicians to address vaccine hesitancy,” the authors of the study wrote.

SOURCE:

The study was led by Peter G. Szilagyi, MD, MPH, with the Department of Pediatrics at UCLA Mattel Children’s Hospital, University of California, Los Angeles. It was published online in JAMA Internal Medicine.

LIMITATIONS:

The study was confined to a single health system and did not assess patients’ reasons for not getting vaccinated.

DISCLOSURES:

The study was supported by grants from the National Institutes of Health. Coauthors disclosed financial ties to pharmacy and pharmaceutical companies and the Pediatric Infectious Disease Society.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication.

A version of this article appeared on Medscape.com.

 

TOPLINE:

A study involving more than 260,000 patients found that neither text messages nor reminders in patient portals significantly increased rates of influenza vaccination.

METHODOLOGY:

  • The study was conducted from September 2022 to April 2023 in the University of California, Los Angeles (UCLA) health system, involving 262,085 patients across 79 primary care practices.
  • Patients were randomly assigned to one of three groups: A control group that received usual care, a group that received reminders through the patient portal, and a group that received reminders via text message.
  • The primary outcome was the influenza vaccination rate by April 30, 2023, including vaccinations from pharmacies and other sources.

TAKEAWAY:

  • Neither intervention significantly improved influenza vaccination rates, which remained around 47% for all the groups.
  • Preappointment text reminders appeared to have a slight effect on unvaccinated patients who had scheduled appointments, suggesting potential for targeted use in this population, according to the researchers.

IN PRACTICE:

“Health systems should consider the potential opportunity costs of sending reminders for influenza vaccination and may decide on other, more intensive interventions, such as improving access to vaccinations (eg, Saturday or after-hour clinics) or communication training for clinicians to address vaccine hesitancy,” the authors of the study wrote.

SOURCE:

The study was led by Peter G. Szilagyi, MD, MPH, with the Department of Pediatrics at UCLA Mattel Children’s Hospital, University of California, Los Angeles. It was published online in JAMA Internal Medicine.

LIMITATIONS:

The study was confined to a single health system and did not assess patients’ reasons for not getting vaccinated.

DISCLOSURES:

The study was supported by grants from the National Institutes of Health. Coauthors disclosed financial ties to pharmacy and pharmaceutical companies and the Pediatric Infectious Disease Society.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication.

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

It Takes a Village: Treating Patients for NSCLC Brain Metastases

Article Type
Changed
Wed, 04/03/2024 - 12:03

Treatment decisions about the care of patients with non–small cell lung cancer (NSCLC) that has metastasized to the brain should always be made by a multidisciplinary team, according to a lung cancer research specialist.

The care of these patients can be quite complex, and the brain is still largely terra incognita, said Lizza Hendriks, MD, PhD, during a case-based session at the European Lung Cancer Congress (ELCC) 2024 in Prague, Czech Republic.

The approach to patients with NSCLC metastatic to the brain and central nervous system was the subject of the session presented by Dr. Hendriks of Maastricht University Medical Center in Maastricht, the Netherlands. During this session, she outlined what is known, what is believed to be true, and what is still unknown about the treatment of patients with NSCLC that has spread to the CNS.

“Immunotherapy has moderate efficacy in the brain, but it can result in long-term disease control,” she said. She added that the best treatment strategy using these agents, whether immunotherapy alone or combined with chemotherapy, is still unknown, even when patients have high levels of programmed death protein 1 (PD-1) in their tumors.

“Also, we don’t know the best sequence of treatments, and we really need more preclinical research regarding the tumor microenvironment in the CNS,” she said.

Next-generation tyrosine kinase inhibitors (TKIs) generally have good intracranial efficacy, except for KRAS G12C inhibitors, which need to be tweaked for better effectiveness in the brain. The optimal sequence for TKIs also still needs to be determined, she continued.
 

Decision Points

Dr. Hendriks summarized decision points for the case of a 60-year-old female patient, a smoker, who in February of 2021 was evaluated for multiple asymptomatic brain metastases. The patient, who had good performance status, had a diagnosis of stage IVB NSCLC of adenocarcinoma histology, with a tumor positive for a KRAS G12C mutation and with 50% of tumor cells expressing PD-1.

The patient was treated with whole-brain radiation therapy and single-agent immunotherapy, and, 8 months later, in October 2021, was diagnosed with extracranial progressive disease and was then started on the KRAS G12c inhibitor sotorasib (Lumakras).

In May 2023 the patient was diagnosed with CNS oligoprogressive disease (that is, isolated progressing lesions) and underwent stereotactic radiotherapy. In June 2023 the patient was found to have progressive disease and was then started on platinum-based chemotherapy, with disease progression again noted in December of that year. The patient was still alive at the time of the presentation.

The first decision point in this case, Dr. Hendriks said, was whether to treat the patient at the time of diagnosis of brain metastases with upfront systemic or local therapy for the metastases.

At the time of extracranial progressive disease, should the treatment be another immumotherapy, chemotherapy, or a targeted agent?

“And the last decision is what should we do [in the event of] CNS oligoprogression?,” she said.
 

First Decision

For cases such as that described by Dr. Hendriks the question is whether upfront local therapy is needed if the patient is initially asymptomatic. Other considerations concerning early local therapy include the risks for late toxicities and whether there is also extracranial disease that needs to be controlled.

If systemic therapy is considered at this point, clinicians need to consider intracranial response rates to specific agents, time to onset of response, risk of pseudoprogression, and the risk of toxicity if radiotherapy is delayed until later in the disease course.

“I think all of these patients with brain metastases really deserve multidisciplinary team decisions in order to maintain or to [move] to new treatments, improve the quality of life, and improve survival,” she said.

In the case described here, the patient had small but numerous metastases that indicated the need for extracranial control, she said.

European Society of Medical Oncology (ESMO) guidelines recommend that asymptomatic patients or those with oligosymptomatic NSCLC brain metastases with an oncogenic driver receive a brain-penetrating TKI. Those with no oncogenic drive but high PD-1 expression should receive upfront immunotherapy alone, while those with PD-1 ligand 1 (PD-L1) expression below 50% receive chemoimmunotherapy.

The joint American Society of Clinical Oncology (ASCO), Society for Neuro-Oncology (SNO), and American Society for Radiation Oncology (ASTRO) guideline for treatment of brain metastases recommends a CNS-penetrating TKI for patients with asymptomatic NSCLC brain metastases bearing EGFR or ALK alterations. If there is no oncogenic driver, the guideline recommends the option of pembrolizumab (Keytruda) with or without chemotherapy.

Both the US and European guidelines recommend initiating local treatment for patients with symptomatic metastases. The level of evidence for these recommendations is low, however.

Clinicians still need better evidence about the potential for upfront immunotherapy for these patients, more information about the NSCLC brain metastases immune environment and tumor microenvironment, data on the best treatment sequence, and new strategies for improving CNS penetration of systemic therapy, Dr. Hendriks said.
 

Second Decision

At the time of CNS progression, the question becomes whether patients would benefit from targeted therapy or chemotherapy.

“We quite often say that chemotherapy doesn’t work in the brain, but that’s not entirely true,” Dr. Hendriks said, noting that, depending on the regimen range, brain response rates range from 23% to as high as 50% in patients with previously untreated asymptomatic brain metastases, although the median survival times are fairly low, on the order of 4 to almost 13 months.

There is also preclinical evidence that chemotherapy uptake is higher for larger brain metastases, compared with normal tissue and cerebrospinal fluid, “so the blood-brain barrier opens if you have the larger brain metastases,” she said.

KRAS-positive NSCLC is associated with a high risk for brain metastases, and these metastases share the same mutation as the primary cancer, suggesting potential efficacy of KRAS G12c inhibitors. There is preclinical evidence that adagrasib (Krazati) has CNS penetration, and there was evidence for intracranial efficacy of the drug in the KRYSTAL-1b trial, Dr. Hendriks noted.

There are fewer data for the other Food and Drug Administration (FDA)–approved inhibitor, sotorasib, but there is evidence to suggest that its brain activity is restricted by ABCB1, a gene encoding for a transporter protein that shuttles substances out of cells.
 

Third Decision

For patients with CNS oligoprogression, the question is whether to adapt systemic therapy or use local therapy.

There is some evidence to support dose escalation for patients with oligoprogression of tumors with EGFR or ALK alterations, but no data to support such a strategy for those with KRAS alterations, she said.

In these situations, data support dose escalation of osimertinib (Tagrisso), especially for patients with leptomeningeal disease, and brigatinib (Alunbrig), but there is very little evidence to support dose escalation for any other drugs that might be tried, she said.

In the question-and-answer part of the session, Antonin Levy, MD, from Gustave Roussy in Villejuif, France, who also presented during the session, asked Dr. Hendriks what she would recommend for a patient with a long-term response to chemoimmunotherapy for whom treatment cessation may be recommended, but who still has oligopersistent brain metastases.

“The difficulty is that with immunotherapy patients can have persistent lesions without any tumor activity, and in the brain I think there is no reliable technique to evaluate this type of thing,” she said.

Dr. Hendriks added that she would continue to follow the patient, but also closely evaluate disease progression by reviewing all scans over the course of therapy to determine whether the tumor is truly stable, follow the patient with brain imaging, and then “don’t do anything.”

Dr. Hendriks disclosed grants/research support and financial relationships with multiple companies. Dr. Levy disclosed research grants from Beigene, AstraZeneca, PharmaMar, and Roche.

Publications
Topics
Sections

Treatment decisions about the care of patients with non–small cell lung cancer (NSCLC) that has metastasized to the brain should always be made by a multidisciplinary team, according to a lung cancer research specialist.

The care of these patients can be quite complex, and the brain is still largely terra incognita, said Lizza Hendriks, MD, PhD, during a case-based session at the European Lung Cancer Congress (ELCC) 2024 in Prague, Czech Republic.

The approach to patients with NSCLC metastatic to the brain and central nervous system was the subject of the session presented by Dr. Hendriks of Maastricht University Medical Center in Maastricht, the Netherlands. During this session, she outlined what is known, what is believed to be true, and what is still unknown about the treatment of patients with NSCLC that has spread to the CNS.

“Immunotherapy has moderate efficacy in the brain, but it can result in long-term disease control,” she said. She added that the best treatment strategy using these agents, whether immunotherapy alone or combined with chemotherapy, is still unknown, even when patients have high levels of programmed death protein 1 (PD-1) in their tumors.

“Also, we don’t know the best sequence of treatments, and we really need more preclinical research regarding the tumor microenvironment in the CNS,” she said.

Next-generation tyrosine kinase inhibitors (TKIs) generally have good intracranial efficacy, except for KRAS G12C inhibitors, which need to be tweaked for better effectiveness in the brain. The optimal sequence for TKIs also still needs to be determined, she continued.
 

Decision Points

Dr. Hendriks summarized decision points for the case of a 60-year-old female patient, a smoker, who in February of 2021 was evaluated for multiple asymptomatic brain metastases. The patient, who had good performance status, had a diagnosis of stage IVB NSCLC of adenocarcinoma histology, with a tumor positive for a KRAS G12C mutation and with 50% of tumor cells expressing PD-1.

The patient was treated with whole-brain radiation therapy and single-agent immunotherapy, and, 8 months later, in October 2021, was diagnosed with extracranial progressive disease and was then started on the KRAS G12c inhibitor sotorasib (Lumakras).

In May 2023 the patient was diagnosed with CNS oligoprogressive disease (that is, isolated progressing lesions) and underwent stereotactic radiotherapy. In June 2023 the patient was found to have progressive disease and was then started on platinum-based chemotherapy, with disease progression again noted in December of that year. The patient was still alive at the time of the presentation.

The first decision point in this case, Dr. Hendriks said, was whether to treat the patient at the time of diagnosis of brain metastases with upfront systemic or local therapy for the metastases.

At the time of extracranial progressive disease, should the treatment be another immumotherapy, chemotherapy, or a targeted agent?

“And the last decision is what should we do [in the event of] CNS oligoprogression?,” she said.
 

First Decision

For cases such as that described by Dr. Hendriks the question is whether upfront local therapy is needed if the patient is initially asymptomatic. Other considerations concerning early local therapy include the risks for late toxicities and whether there is also extracranial disease that needs to be controlled.

If systemic therapy is considered at this point, clinicians need to consider intracranial response rates to specific agents, time to onset of response, risk of pseudoprogression, and the risk of toxicity if radiotherapy is delayed until later in the disease course.

“I think all of these patients with brain metastases really deserve multidisciplinary team decisions in order to maintain or to [move] to new treatments, improve the quality of life, and improve survival,” she said.

In the case described here, the patient had small but numerous metastases that indicated the need for extracranial control, she said.

European Society of Medical Oncology (ESMO) guidelines recommend that asymptomatic patients or those with oligosymptomatic NSCLC brain metastases with an oncogenic driver receive a brain-penetrating TKI. Those with no oncogenic drive but high PD-1 expression should receive upfront immunotherapy alone, while those with PD-1 ligand 1 (PD-L1) expression below 50% receive chemoimmunotherapy.

The joint American Society of Clinical Oncology (ASCO), Society for Neuro-Oncology (SNO), and American Society for Radiation Oncology (ASTRO) guideline for treatment of brain metastases recommends a CNS-penetrating TKI for patients with asymptomatic NSCLC brain metastases bearing EGFR or ALK alterations. If there is no oncogenic driver, the guideline recommends the option of pembrolizumab (Keytruda) with or without chemotherapy.

Both the US and European guidelines recommend initiating local treatment for patients with symptomatic metastases. The level of evidence for these recommendations is low, however.

Clinicians still need better evidence about the potential for upfront immunotherapy for these patients, more information about the NSCLC brain metastases immune environment and tumor microenvironment, data on the best treatment sequence, and new strategies for improving CNS penetration of systemic therapy, Dr. Hendriks said.
 

Second Decision

At the time of CNS progression, the question becomes whether patients would benefit from targeted therapy or chemotherapy.

“We quite often say that chemotherapy doesn’t work in the brain, but that’s not entirely true,” Dr. Hendriks said, noting that, depending on the regimen range, brain response rates range from 23% to as high as 50% in patients with previously untreated asymptomatic brain metastases, although the median survival times are fairly low, on the order of 4 to almost 13 months.

There is also preclinical evidence that chemotherapy uptake is higher for larger brain metastases, compared with normal tissue and cerebrospinal fluid, “so the blood-brain barrier opens if you have the larger brain metastases,” she said.

KRAS-positive NSCLC is associated with a high risk for brain metastases, and these metastases share the same mutation as the primary cancer, suggesting potential efficacy of KRAS G12c inhibitors. There is preclinical evidence that adagrasib (Krazati) has CNS penetration, and there was evidence for intracranial efficacy of the drug in the KRYSTAL-1b trial, Dr. Hendriks noted.

There are fewer data for the other Food and Drug Administration (FDA)–approved inhibitor, sotorasib, but there is evidence to suggest that its brain activity is restricted by ABCB1, a gene encoding for a transporter protein that shuttles substances out of cells.
 

Third Decision

For patients with CNS oligoprogression, the question is whether to adapt systemic therapy or use local therapy.

There is some evidence to support dose escalation for patients with oligoprogression of tumors with EGFR or ALK alterations, but no data to support such a strategy for those with KRAS alterations, she said.

In these situations, data support dose escalation of osimertinib (Tagrisso), especially for patients with leptomeningeal disease, and brigatinib (Alunbrig), but there is very little evidence to support dose escalation for any other drugs that might be tried, she said.

In the question-and-answer part of the session, Antonin Levy, MD, from Gustave Roussy in Villejuif, France, who also presented during the session, asked Dr. Hendriks what she would recommend for a patient with a long-term response to chemoimmunotherapy for whom treatment cessation may be recommended, but who still has oligopersistent brain metastases.

“The difficulty is that with immunotherapy patients can have persistent lesions without any tumor activity, and in the brain I think there is no reliable technique to evaluate this type of thing,” she said.

Dr. Hendriks added that she would continue to follow the patient, but also closely evaluate disease progression by reviewing all scans over the course of therapy to determine whether the tumor is truly stable, follow the patient with brain imaging, and then “don’t do anything.”

Dr. Hendriks disclosed grants/research support and financial relationships with multiple companies. Dr. Levy disclosed research grants from Beigene, AstraZeneca, PharmaMar, and Roche.

Treatment decisions about the care of patients with non–small cell lung cancer (NSCLC) that has metastasized to the brain should always be made by a multidisciplinary team, according to a lung cancer research specialist.

The care of these patients can be quite complex, and the brain is still largely terra incognita, said Lizza Hendriks, MD, PhD, during a case-based session at the European Lung Cancer Congress (ELCC) 2024 in Prague, Czech Republic.

The approach to patients with NSCLC metastatic to the brain and central nervous system was the subject of the session presented by Dr. Hendriks of Maastricht University Medical Center in Maastricht, the Netherlands. During this session, she outlined what is known, what is believed to be true, and what is still unknown about the treatment of patients with NSCLC that has spread to the CNS.

“Immunotherapy has moderate efficacy in the brain, but it can result in long-term disease control,” she said. She added that the best treatment strategy using these agents, whether immunotherapy alone or combined with chemotherapy, is still unknown, even when patients have high levels of programmed death protein 1 (PD-1) in their tumors.

“Also, we don’t know the best sequence of treatments, and we really need more preclinical research regarding the tumor microenvironment in the CNS,” she said.

Next-generation tyrosine kinase inhibitors (TKIs) generally have good intracranial efficacy, except for KRAS G12C inhibitors, which need to be tweaked for better effectiveness in the brain. The optimal sequence for TKIs also still needs to be determined, she continued.
 

Decision Points

Dr. Hendriks summarized decision points for the case of a 60-year-old female patient, a smoker, who in February of 2021 was evaluated for multiple asymptomatic brain metastases. The patient, who had good performance status, had a diagnosis of stage IVB NSCLC of adenocarcinoma histology, with a tumor positive for a KRAS G12C mutation and with 50% of tumor cells expressing PD-1.

The patient was treated with whole-brain radiation therapy and single-agent immunotherapy, and, 8 months later, in October 2021, was diagnosed with extracranial progressive disease and was then started on the KRAS G12c inhibitor sotorasib (Lumakras).

In May 2023 the patient was diagnosed with CNS oligoprogressive disease (that is, isolated progressing lesions) and underwent stereotactic radiotherapy. In June 2023 the patient was found to have progressive disease and was then started on platinum-based chemotherapy, with disease progression again noted in December of that year. The patient was still alive at the time of the presentation.

The first decision point in this case, Dr. Hendriks said, was whether to treat the patient at the time of diagnosis of brain metastases with upfront systemic or local therapy for the metastases.

At the time of extracranial progressive disease, should the treatment be another immumotherapy, chemotherapy, or a targeted agent?

“And the last decision is what should we do [in the event of] CNS oligoprogression?,” she said.
 

First Decision

For cases such as that described by Dr. Hendriks the question is whether upfront local therapy is needed if the patient is initially asymptomatic. Other considerations concerning early local therapy include the risks for late toxicities and whether there is also extracranial disease that needs to be controlled.

If systemic therapy is considered at this point, clinicians need to consider intracranial response rates to specific agents, time to onset of response, risk of pseudoprogression, and the risk of toxicity if radiotherapy is delayed until later in the disease course.

“I think all of these patients with brain metastases really deserve multidisciplinary team decisions in order to maintain or to [move] to new treatments, improve the quality of life, and improve survival,” she said.

In the case described here, the patient had small but numerous metastases that indicated the need for extracranial control, she said.

European Society of Medical Oncology (ESMO) guidelines recommend that asymptomatic patients or those with oligosymptomatic NSCLC brain metastases with an oncogenic driver receive a brain-penetrating TKI. Those with no oncogenic drive but high PD-1 expression should receive upfront immunotherapy alone, while those with PD-1 ligand 1 (PD-L1) expression below 50% receive chemoimmunotherapy.

The joint American Society of Clinical Oncology (ASCO), Society for Neuro-Oncology (SNO), and American Society for Radiation Oncology (ASTRO) guideline for treatment of brain metastases recommends a CNS-penetrating TKI for patients with asymptomatic NSCLC brain metastases bearing EGFR or ALK alterations. If there is no oncogenic driver, the guideline recommends the option of pembrolizumab (Keytruda) with or without chemotherapy.

Both the US and European guidelines recommend initiating local treatment for patients with symptomatic metastases. The level of evidence for these recommendations is low, however.

Clinicians still need better evidence about the potential for upfront immunotherapy for these patients, more information about the NSCLC brain metastases immune environment and tumor microenvironment, data on the best treatment sequence, and new strategies for improving CNS penetration of systemic therapy, Dr. Hendriks said.
 

Second Decision

At the time of CNS progression, the question becomes whether patients would benefit from targeted therapy or chemotherapy.

“We quite often say that chemotherapy doesn’t work in the brain, but that’s not entirely true,” Dr. Hendriks said, noting that, depending on the regimen range, brain response rates range from 23% to as high as 50% in patients with previously untreated asymptomatic brain metastases, although the median survival times are fairly low, on the order of 4 to almost 13 months.

There is also preclinical evidence that chemotherapy uptake is higher for larger brain metastases, compared with normal tissue and cerebrospinal fluid, “so the blood-brain barrier opens if you have the larger brain metastases,” she said.

KRAS-positive NSCLC is associated with a high risk for brain metastases, and these metastases share the same mutation as the primary cancer, suggesting potential efficacy of KRAS G12c inhibitors. There is preclinical evidence that adagrasib (Krazati) has CNS penetration, and there was evidence for intracranial efficacy of the drug in the KRYSTAL-1b trial, Dr. Hendriks noted.

There are fewer data for the other Food and Drug Administration (FDA)–approved inhibitor, sotorasib, but there is evidence to suggest that its brain activity is restricted by ABCB1, a gene encoding for a transporter protein that shuttles substances out of cells.
 

Third Decision

For patients with CNS oligoprogression, the question is whether to adapt systemic therapy or use local therapy.

There is some evidence to support dose escalation for patients with oligoprogression of tumors with EGFR or ALK alterations, but no data to support such a strategy for those with KRAS alterations, she said.

In these situations, data support dose escalation of osimertinib (Tagrisso), especially for patients with leptomeningeal disease, and brigatinib (Alunbrig), but there is very little evidence to support dose escalation for any other drugs that might be tried, she said.

In the question-and-answer part of the session, Antonin Levy, MD, from Gustave Roussy in Villejuif, France, who also presented during the session, asked Dr. Hendriks what she would recommend for a patient with a long-term response to chemoimmunotherapy for whom treatment cessation may be recommended, but who still has oligopersistent brain metastases.

“The difficulty is that with immunotherapy patients can have persistent lesions without any tumor activity, and in the brain I think there is no reliable technique to evaluate this type of thing,” she said.

Dr. Hendriks added that she would continue to follow the patient, but also closely evaluate disease progression by reviewing all scans over the course of therapy to determine whether the tumor is truly stable, follow the patient with brain imaging, and then “don’t do anything.”

Dr. Hendriks disclosed grants/research support and financial relationships with multiple companies. Dr. Levy disclosed research grants from Beigene, AstraZeneca, PharmaMar, and Roche.

Publications
Publications
Topics
Article Type
Sections
Article Source

FROM ELCC 2024

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Magnesium Spray for Better Sleep? Experts Weigh In

Article Type
Changed
Thu, 04/11/2024 - 16:00

As your patient’s scheduled bedtime is approaching, they begin to worry another restless night is looming. Could magnesium oil spray actually help them sleep? Some — even doctors — are sharing testimonials about how this simple tactic transformed their sleep quality. Experts suggest some sleep improvement is possible, though it does not negate the need for treatment, and should not be used in patients with cardiovascular disease.

Take Daniel Barrett, MD, a board-certified plastic surgeon and owner of Barrett Plastic Surgery in Beverly Hills, as an example. He decided to test whether magnesium oil could indeed give him a sleepy sensation and shared his experience. Dr. Barrett sprayed magnesium oil on his feet — until they felt “slippery and wet,” he said — and put his socks back on. (He said magnesium is absorbed more easily through the skin. Putting it on the skin helps this mineral get into the lymphatics and circulatory system, offering a way to get a higher concentration of magnesium in the bloodstream. The pores on the feet are also said to be the largest on the body, making them an ideal place for absorption.) 

“My central nervous system had calmed down a bit — it’s similar to what I feel when I take oral magnesium as well. It took about 15 minutes to feel the effect,” Dr. Barrett said.

Research shows that magnesium blocks N-methyl-D-aspartate (a receptor that can hinder sleep) and stimulates gamma-aminobutyric acid (a receptor that can promote good sleep), said Dennis Auckley, MD, director of MetroHealth’s Center for Sleep Medicine. And studies looking at the effects of oral magnesium have shown that taking it may be linked to better self-reported sleep quality and less daytime sleepiness, he said. But traditional magnesium supplements taken orally can sometimes come with side effects in your gut, so putting magnesium on the skin could help to avoid this. 

Magnesium oil on the feet could also help with certain sleep disturbances, such as nocturnal leg cramps and restless legs syndrome, said Sam Kashani, MD, a sleep medicine specialist and assistant clinical professor at UCLA Medical School. (Nocturnal leg cramps – one of the most common secondary factors of insomnia and sleep disturbances in older adults – includes sudden, painful contractions in the lower leg muscles while sleeping. Restless legs syndrome, on the other hand, is like nocturnal leg cramps, but minus the painful contractions, said Dr. Kashani.) 

Magnesium is a mineral that does have some benefit with regard to reducing the muscle tightness and promoting a little bit more of relaxation of the muscles,” Dr. Kashani said. “This [magnesium oil on your soles] could be beneficial for these types of sleep problems.” 

Still, sleep medicine experts stressed that putting magnesium oil on your feet should not be viewed a cure-all for sleep troubles. 

“High-quality scientific evidence supporting magnesium as a sleep remedy is severely limited,” said Emerson Wickwire, PhD, an American Academy of Sleep Medicine spokesperson and section head of sleep medicine at the University of Maryland Medical School. “Certainly, magnesium is not supported as a treatment for sleep disorders.” 

If your patients plan to use magnesium oil on their feet to help them sleep, make sure they carefully follow the directions to make sure they are taking the proper dosage. Most importantly, patients with a history of cardiovascular complications, or issues with the heart and blood vessels should consult their doctor. 

“Magnesium is an electrolyte that has multiple roles and functions in the body, including within our cardiovascular system,” Dr. Kashani said. “So, if you are somebody who has heart troubles, you definitely want to talk to your primary doctor about any kind of supplements that you are taking, including magnesium.”
 

A version of this article appeared on WebMD.com.

Publications
Topics
Sections

As your patient’s scheduled bedtime is approaching, they begin to worry another restless night is looming. Could magnesium oil spray actually help them sleep? Some — even doctors — are sharing testimonials about how this simple tactic transformed their sleep quality. Experts suggest some sleep improvement is possible, though it does not negate the need for treatment, and should not be used in patients with cardiovascular disease.

Take Daniel Barrett, MD, a board-certified plastic surgeon and owner of Barrett Plastic Surgery in Beverly Hills, as an example. He decided to test whether magnesium oil could indeed give him a sleepy sensation and shared his experience. Dr. Barrett sprayed magnesium oil on his feet — until they felt “slippery and wet,” he said — and put his socks back on. (He said magnesium is absorbed more easily through the skin. Putting it on the skin helps this mineral get into the lymphatics and circulatory system, offering a way to get a higher concentration of magnesium in the bloodstream. The pores on the feet are also said to be the largest on the body, making them an ideal place for absorption.) 

“My central nervous system had calmed down a bit — it’s similar to what I feel when I take oral magnesium as well. It took about 15 minutes to feel the effect,” Dr. Barrett said.

Research shows that magnesium blocks N-methyl-D-aspartate (a receptor that can hinder sleep) and stimulates gamma-aminobutyric acid (a receptor that can promote good sleep), said Dennis Auckley, MD, director of MetroHealth’s Center for Sleep Medicine. And studies looking at the effects of oral magnesium have shown that taking it may be linked to better self-reported sleep quality and less daytime sleepiness, he said. But traditional magnesium supplements taken orally can sometimes come with side effects in your gut, so putting magnesium on the skin could help to avoid this. 

Magnesium oil on the feet could also help with certain sleep disturbances, such as nocturnal leg cramps and restless legs syndrome, said Sam Kashani, MD, a sleep medicine specialist and assistant clinical professor at UCLA Medical School. (Nocturnal leg cramps – one of the most common secondary factors of insomnia and sleep disturbances in older adults – includes sudden, painful contractions in the lower leg muscles while sleeping. Restless legs syndrome, on the other hand, is like nocturnal leg cramps, but minus the painful contractions, said Dr. Kashani.) 

Magnesium is a mineral that does have some benefit with regard to reducing the muscle tightness and promoting a little bit more of relaxation of the muscles,” Dr. Kashani said. “This [magnesium oil on your soles] could be beneficial for these types of sleep problems.” 

Still, sleep medicine experts stressed that putting magnesium oil on your feet should not be viewed a cure-all for sleep troubles. 

“High-quality scientific evidence supporting magnesium as a sleep remedy is severely limited,” said Emerson Wickwire, PhD, an American Academy of Sleep Medicine spokesperson and section head of sleep medicine at the University of Maryland Medical School. “Certainly, magnesium is not supported as a treatment for sleep disorders.” 

If your patients plan to use magnesium oil on their feet to help them sleep, make sure they carefully follow the directions to make sure they are taking the proper dosage. Most importantly, patients with a history of cardiovascular complications, or issues with the heart and blood vessels should consult their doctor. 

“Magnesium is an electrolyte that has multiple roles and functions in the body, including within our cardiovascular system,” Dr. Kashani said. “So, if you are somebody who has heart troubles, you definitely want to talk to your primary doctor about any kind of supplements that you are taking, including magnesium.”
 

A version of this article appeared on WebMD.com.

As your patient’s scheduled bedtime is approaching, they begin to worry another restless night is looming. Could magnesium oil spray actually help them sleep? Some — even doctors — are sharing testimonials about how this simple tactic transformed their sleep quality. Experts suggest some sleep improvement is possible, though it does not negate the need for treatment, and should not be used in patients with cardiovascular disease.

Take Daniel Barrett, MD, a board-certified plastic surgeon and owner of Barrett Plastic Surgery in Beverly Hills, as an example. He decided to test whether magnesium oil could indeed give him a sleepy sensation and shared his experience. Dr. Barrett sprayed magnesium oil on his feet — until they felt “slippery and wet,” he said — and put his socks back on. (He said magnesium is absorbed more easily through the skin. Putting it on the skin helps this mineral get into the lymphatics and circulatory system, offering a way to get a higher concentration of magnesium in the bloodstream. The pores on the feet are also said to be the largest on the body, making them an ideal place for absorption.) 

“My central nervous system had calmed down a bit — it’s similar to what I feel when I take oral magnesium as well. It took about 15 minutes to feel the effect,” Dr. Barrett said.

Research shows that magnesium blocks N-methyl-D-aspartate (a receptor that can hinder sleep) and stimulates gamma-aminobutyric acid (a receptor that can promote good sleep), said Dennis Auckley, MD, director of MetroHealth’s Center for Sleep Medicine. And studies looking at the effects of oral magnesium have shown that taking it may be linked to better self-reported sleep quality and less daytime sleepiness, he said. But traditional magnesium supplements taken orally can sometimes come with side effects in your gut, so putting magnesium on the skin could help to avoid this. 

Magnesium oil on the feet could also help with certain sleep disturbances, such as nocturnal leg cramps and restless legs syndrome, said Sam Kashani, MD, a sleep medicine specialist and assistant clinical professor at UCLA Medical School. (Nocturnal leg cramps – one of the most common secondary factors of insomnia and sleep disturbances in older adults – includes sudden, painful contractions in the lower leg muscles while sleeping. Restless legs syndrome, on the other hand, is like nocturnal leg cramps, but minus the painful contractions, said Dr. Kashani.) 

Magnesium is a mineral that does have some benefit with regard to reducing the muscle tightness and promoting a little bit more of relaxation of the muscles,” Dr. Kashani said. “This [magnesium oil on your soles] could be beneficial for these types of sleep problems.” 

Still, sleep medicine experts stressed that putting magnesium oil on your feet should not be viewed a cure-all for sleep troubles. 

“High-quality scientific evidence supporting magnesium as a sleep remedy is severely limited,” said Emerson Wickwire, PhD, an American Academy of Sleep Medicine spokesperson and section head of sleep medicine at the University of Maryland Medical School. “Certainly, magnesium is not supported as a treatment for sleep disorders.” 

If your patients plan to use magnesium oil on their feet to help them sleep, make sure they carefully follow the directions to make sure they are taking the proper dosage. Most importantly, patients with a history of cardiovascular complications, or issues with the heart and blood vessels should consult their doctor. 

“Magnesium is an electrolyte that has multiple roles and functions in the body, including within our cardiovascular system,” Dr. Kashani said. “So, if you are somebody who has heart troubles, you definitely want to talk to your primary doctor about any kind of supplements that you are taking, including magnesium.”
 

A version of this article appeared on WebMD.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

ASCO Releases Vaccination Guidelines for Adults With Cancer

Article Type
Changed
Wed, 04/03/2024 - 12:13

 

TOPLINE: 

“Optimizing vaccination status should be considered a key element in the care of patients with cancer,” according to the authors of newly released American of Clinical Oncology (ASCO) guidelines. Optimizing vaccination status includes ensuring patients and household members receive recommended vaccines and adjusting this strategy depending on patients’ underlying immune status and their anticancer therapy.

METHODOLOGY: 

  • “Infections are the second most common cause of noncancer-related mortality within the first year after a cancer diagnosis,” highlighting the need for oncologists to help ensure patients are up to date on key vaccines, an ASCO panel of experts wrote. 
  • The expert panel reviewed the existing evidence and made recommendations to guide vaccination of adults with solid tumors or hematologic malignancies, including those who received hematopoietic stem-cell transplantation (HSCT), chimeric antigen T-cell (CAR T-cell) therapy and B-cell-depleting therapy, as well as guide vaccination of their household contacts. 
  • The panel reviewed 102 publications, including 24 systematic reviews, 14 randomized controlled trials, and 64 nonrandomized studies. 
  • Vaccines evaluated included those for COVID-19, influenza, hepatitis A and B, respiratory syncytial virus, Tdap, human papillomavirus, inactivated polio, and rabies. 
  • The authors noted that patients’ underlying immune status and their cancer therapy could affect vaccination and revaccination strategies compared with recommendations for a general adult population without cancer. 

TAKEAWAY:

  • The first step is to determine patients’ vaccination status and ensure adults newly diagnosed with cancer (as well as their household contacts) are up to date on seasonal and age or risk-based vaccines before starting their cancer treatment. If there are gaps, patients would ideally receive their vaccinations 2-4 weeks before their cancer treatment begins; however, non-live vaccines can be given during or after treatment. 
  • The authors recommended complete revaccination of patients 6-12 months following HSCT to restore vaccine-induced immunity. The caveats: COVID-19, influenza, and pneumococcal vaccines can be given as early as 3 months after transplant, and patients should receive live and live attenuated vaccines only in the absence of active GVHD or immunosuppression and only ≥ 2 years following HSCT. 
  • After CAR T-cell therapy directed against B-cell antigens (CD19/BCMA), patients should not receive influenza and COVID-19 vaccines sooner than 3 months after completing therapy and nonlive vaccines should not be given before 6 months. 
  • After B-cell depleting therapy, revaccinate patients for COVID-19 only and no sooner than 6 months after completing treatment. Long-term survivors of hematologic cancer with or without active disease or those with long-standing B-cell dysfunction or hypogammaglobulinemia from therapy or B-cell lineage malignancies should receive the recommended nonlive vaccines. 
  • Adults with solid and hematologic cancers traveling to an area of risk should follow the CDC standard recommendations for the destination. Hepatitis A, intramuscular typhoid vaccine, inactivated polio, hepatitis B, rabies, meningococcal, and nonlive Japanese encephalitis vaccines are safe. 

IN PRACTICE:

“Enhancing vaccine uptake against preventable illnesses will help the community and improve the quality of care for patients with cancer,” the authors said. “Clinicians play a critical role in helping the patient and caregiver to understand the potential benefits and risks of recommended vaccination[s]. In addition, clinicians should provide authoritative resources, such as fact-based vaccine informational handouts and Internet sites, to help patients and caregivers learn more about the topic.”

SOURCE:

Mini Kamboj, MD, with Memorial Sloan Kettering Cancer Center, New York City, and Elise Kohn, MD, with the National Cancer Institute, Rockville, Maryland, served as cochairs for the expert panel. The guideline was published March 18 in the Journal of Clinical Oncology.

LIMITATIONS:

The evidence for some vaccines in cancer patients continues to evolve, particularly for new vaccines like COVID-19 vaccines.

DISCLOSURES:

This research had no commercial funding. Disclosures for the guideline panel are available with the original article.

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

 

TOPLINE: 

“Optimizing vaccination status should be considered a key element in the care of patients with cancer,” according to the authors of newly released American of Clinical Oncology (ASCO) guidelines. Optimizing vaccination status includes ensuring patients and household members receive recommended vaccines and adjusting this strategy depending on patients’ underlying immune status and their anticancer therapy.

METHODOLOGY: 

  • “Infections are the second most common cause of noncancer-related mortality within the first year after a cancer diagnosis,” highlighting the need for oncologists to help ensure patients are up to date on key vaccines, an ASCO panel of experts wrote. 
  • The expert panel reviewed the existing evidence and made recommendations to guide vaccination of adults with solid tumors or hematologic malignancies, including those who received hematopoietic stem-cell transplantation (HSCT), chimeric antigen T-cell (CAR T-cell) therapy and B-cell-depleting therapy, as well as guide vaccination of their household contacts. 
  • The panel reviewed 102 publications, including 24 systematic reviews, 14 randomized controlled trials, and 64 nonrandomized studies. 
  • Vaccines evaluated included those for COVID-19, influenza, hepatitis A and B, respiratory syncytial virus, Tdap, human papillomavirus, inactivated polio, and rabies. 
  • The authors noted that patients’ underlying immune status and their cancer therapy could affect vaccination and revaccination strategies compared with recommendations for a general adult population without cancer. 

TAKEAWAY:

  • The first step is to determine patients’ vaccination status and ensure adults newly diagnosed with cancer (as well as their household contacts) are up to date on seasonal and age or risk-based vaccines before starting their cancer treatment. If there are gaps, patients would ideally receive their vaccinations 2-4 weeks before their cancer treatment begins; however, non-live vaccines can be given during or after treatment. 
  • The authors recommended complete revaccination of patients 6-12 months following HSCT to restore vaccine-induced immunity. The caveats: COVID-19, influenza, and pneumococcal vaccines can be given as early as 3 months after transplant, and patients should receive live and live attenuated vaccines only in the absence of active GVHD or immunosuppression and only ≥ 2 years following HSCT. 
  • After CAR T-cell therapy directed against B-cell antigens (CD19/BCMA), patients should not receive influenza and COVID-19 vaccines sooner than 3 months after completing therapy and nonlive vaccines should not be given before 6 months. 
  • After B-cell depleting therapy, revaccinate patients for COVID-19 only and no sooner than 6 months after completing treatment. Long-term survivors of hematologic cancer with or without active disease or those with long-standing B-cell dysfunction or hypogammaglobulinemia from therapy or B-cell lineage malignancies should receive the recommended nonlive vaccines. 
  • Adults with solid and hematologic cancers traveling to an area of risk should follow the CDC standard recommendations for the destination. Hepatitis A, intramuscular typhoid vaccine, inactivated polio, hepatitis B, rabies, meningococcal, and nonlive Japanese encephalitis vaccines are safe. 

IN PRACTICE:

“Enhancing vaccine uptake against preventable illnesses will help the community and improve the quality of care for patients with cancer,” the authors said. “Clinicians play a critical role in helping the patient and caregiver to understand the potential benefits and risks of recommended vaccination[s]. In addition, clinicians should provide authoritative resources, such as fact-based vaccine informational handouts and Internet sites, to help patients and caregivers learn more about the topic.”

SOURCE:

Mini Kamboj, MD, with Memorial Sloan Kettering Cancer Center, New York City, and Elise Kohn, MD, with the National Cancer Institute, Rockville, Maryland, served as cochairs for the expert panel. The guideline was published March 18 in the Journal of Clinical Oncology.

LIMITATIONS:

The evidence for some vaccines in cancer patients continues to evolve, particularly for new vaccines like COVID-19 vaccines.

DISCLOSURES:

This research had no commercial funding. Disclosures for the guideline panel are available with the original article.

A version of this article appeared on Medscape.com.

 

TOPLINE: 

“Optimizing vaccination status should be considered a key element in the care of patients with cancer,” according to the authors of newly released American of Clinical Oncology (ASCO) guidelines. Optimizing vaccination status includes ensuring patients and household members receive recommended vaccines and adjusting this strategy depending on patients’ underlying immune status and their anticancer therapy.

METHODOLOGY: 

  • “Infections are the second most common cause of noncancer-related mortality within the first year after a cancer diagnosis,” highlighting the need for oncologists to help ensure patients are up to date on key vaccines, an ASCO panel of experts wrote. 
  • The expert panel reviewed the existing evidence and made recommendations to guide vaccination of adults with solid tumors or hematologic malignancies, including those who received hematopoietic stem-cell transplantation (HSCT), chimeric antigen T-cell (CAR T-cell) therapy and B-cell-depleting therapy, as well as guide vaccination of their household contacts. 
  • The panel reviewed 102 publications, including 24 systematic reviews, 14 randomized controlled trials, and 64 nonrandomized studies. 
  • Vaccines evaluated included those for COVID-19, influenza, hepatitis A and B, respiratory syncytial virus, Tdap, human papillomavirus, inactivated polio, and rabies. 
  • The authors noted that patients’ underlying immune status and their cancer therapy could affect vaccination and revaccination strategies compared with recommendations for a general adult population without cancer. 

TAKEAWAY:

  • The first step is to determine patients’ vaccination status and ensure adults newly diagnosed with cancer (as well as their household contacts) are up to date on seasonal and age or risk-based vaccines before starting their cancer treatment. If there are gaps, patients would ideally receive their vaccinations 2-4 weeks before their cancer treatment begins; however, non-live vaccines can be given during or after treatment. 
  • The authors recommended complete revaccination of patients 6-12 months following HSCT to restore vaccine-induced immunity. The caveats: COVID-19, influenza, and pneumococcal vaccines can be given as early as 3 months after transplant, and patients should receive live and live attenuated vaccines only in the absence of active GVHD or immunosuppression and only ≥ 2 years following HSCT. 
  • After CAR T-cell therapy directed against B-cell antigens (CD19/BCMA), patients should not receive influenza and COVID-19 vaccines sooner than 3 months after completing therapy and nonlive vaccines should not be given before 6 months. 
  • After B-cell depleting therapy, revaccinate patients for COVID-19 only and no sooner than 6 months after completing treatment. Long-term survivors of hematologic cancer with or without active disease or those with long-standing B-cell dysfunction or hypogammaglobulinemia from therapy or B-cell lineage malignancies should receive the recommended nonlive vaccines. 
  • Adults with solid and hematologic cancers traveling to an area of risk should follow the CDC standard recommendations for the destination. Hepatitis A, intramuscular typhoid vaccine, inactivated polio, hepatitis B, rabies, meningococcal, and nonlive Japanese encephalitis vaccines are safe. 

IN PRACTICE:

“Enhancing vaccine uptake against preventable illnesses will help the community and improve the quality of care for patients with cancer,” the authors said. “Clinicians play a critical role in helping the patient and caregiver to understand the potential benefits and risks of recommended vaccination[s]. In addition, clinicians should provide authoritative resources, such as fact-based vaccine informational handouts and Internet sites, to help patients and caregivers learn more about the topic.”

SOURCE:

Mini Kamboj, MD, with Memorial Sloan Kettering Cancer Center, New York City, and Elise Kohn, MD, with the National Cancer Institute, Rockville, Maryland, served as cochairs for the expert panel. The guideline was published March 18 in the Journal of Clinical Oncology.

LIMITATIONS:

The evidence for some vaccines in cancer patients continues to evolve, particularly for new vaccines like COVID-19 vaccines.

DISCLOSURES:

This research had no commercial funding. Disclosures for the guideline panel are available with the original article.

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

No Increased Stroke Risk After COVID-19 Bivalent Vaccine

Article Type
Changed
Thu, 04/11/2024 - 16:00

 

TOPLINE:

Receipt of the bivalent COVID-19 vaccine was not associated with an increased stroke risk in the first 6 weeks after vaccination with either the Pfizer or Moderna vaccines, a new study of Medicare beneficiaries showed.

METHODOLOGY:

  • The analysis included 5.4 million people age ≥ 65 years who received either the Pfizer-BioNTech COVID-19 bivalent vaccine or the Moderna bivalent vaccine, or the Pfizer vaccine and a high-dose or adjuvanted concomitant influenza vaccine (ie, administered on the same day).
  • A total of 11,001 of the cohort experienced a stroke in the first 90 days after vaccination.
  • The main outcome was stroke risk (nonhemorrhagic stroke, transient ischemic attack [TIA], or hemorrhagic stroke) during the 1- to 21-day or 22- to 42-day window after vaccination vs the 43- to 90-day control window.
  • The mean age of participants was 74 years, and 56% were female.

TAKEAWAY:

  • There was no statistically significant association with either brand of the COVID-19 bivalent vaccine or any of the stroke outcomes during the 1- to 21-day or 22- to 42-day risk window compared with the 43- to 90-day control window (incidence rate ratio [IRR] range, 0.72-1.12).
  • Vaccination with COVID-19 bivalent vaccine plus a high-dose or adjuvanted influenza vaccine (n = 4596) was associated with a significantly greater risk for nonhemorrhagic stroke 22-42 days after vaccination with Pfizer-BioNTech (IRR, 1.20; risk difference/100,000 doses, 3.13) and an increase in TIA risk 1-21 days after vaccination with Moderna (IRR, 1.35; risk difference/100,000 doses, 3.33).
  • There was a significant association between vaccination with a high-dose or adjuvanted influenza vaccine (n = 21,345) and nonhemorrhagic stroke 22-42 days after vaccination (IRR, 1.09; risk difference/100,000 doses, 1.65).

IN PRACTICE:

“The clinical significance of the risk of stroke after vaccination must be carefully considered together with the significant benefits of receiving an influenza vaccination,” the authors wrote. “Because the framework of the current self-controlled case series study does not compare the populations who were vaccinated vs those who were unvaccinated, it does not account for the reduced rate of severe influenza after vaccination. More studies are needed to better understand the association between high-dose or adjuvanted influenza vaccination and stroke.”

SOURCE:

Yun Lu, PhD, of the Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, was the lead and corresponding author of the study. It was published online on March 19 in JAMA.

LIMITATIONS:

Some stroke cases may have been missed or misclassified. The study included only vaccinated individuals — a population considered to have health-seeking behaviors — which may limit the generalizability of the findings. The study was conducted using COVID-19 bivalent vaccines, which are no longer available.

DISCLOSURES:

This work was funded by the US Food and Drug Administration through an interagency agreement with the Centers for Medicare & Medicaid Services. Dr. Lu reported no relevant financial relationships. The other authors’ disclosures are listed in the original paper.

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

 

TOPLINE:

Receipt of the bivalent COVID-19 vaccine was not associated with an increased stroke risk in the first 6 weeks after vaccination with either the Pfizer or Moderna vaccines, a new study of Medicare beneficiaries showed.

METHODOLOGY:

  • The analysis included 5.4 million people age ≥ 65 years who received either the Pfizer-BioNTech COVID-19 bivalent vaccine or the Moderna bivalent vaccine, or the Pfizer vaccine and a high-dose or adjuvanted concomitant influenza vaccine (ie, administered on the same day).
  • A total of 11,001 of the cohort experienced a stroke in the first 90 days after vaccination.
  • The main outcome was stroke risk (nonhemorrhagic stroke, transient ischemic attack [TIA], or hemorrhagic stroke) during the 1- to 21-day or 22- to 42-day window after vaccination vs the 43- to 90-day control window.
  • The mean age of participants was 74 years, and 56% were female.

TAKEAWAY:

  • There was no statistically significant association with either brand of the COVID-19 bivalent vaccine or any of the stroke outcomes during the 1- to 21-day or 22- to 42-day risk window compared with the 43- to 90-day control window (incidence rate ratio [IRR] range, 0.72-1.12).
  • Vaccination with COVID-19 bivalent vaccine plus a high-dose or adjuvanted influenza vaccine (n = 4596) was associated with a significantly greater risk for nonhemorrhagic stroke 22-42 days after vaccination with Pfizer-BioNTech (IRR, 1.20; risk difference/100,000 doses, 3.13) and an increase in TIA risk 1-21 days after vaccination with Moderna (IRR, 1.35; risk difference/100,000 doses, 3.33).
  • There was a significant association between vaccination with a high-dose or adjuvanted influenza vaccine (n = 21,345) and nonhemorrhagic stroke 22-42 days after vaccination (IRR, 1.09; risk difference/100,000 doses, 1.65).

IN PRACTICE:

“The clinical significance of the risk of stroke after vaccination must be carefully considered together with the significant benefits of receiving an influenza vaccination,” the authors wrote. “Because the framework of the current self-controlled case series study does not compare the populations who were vaccinated vs those who were unvaccinated, it does not account for the reduced rate of severe influenza after vaccination. More studies are needed to better understand the association between high-dose or adjuvanted influenza vaccination and stroke.”

SOURCE:

Yun Lu, PhD, of the Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, was the lead and corresponding author of the study. It was published online on March 19 in JAMA.

LIMITATIONS:

Some stroke cases may have been missed or misclassified. The study included only vaccinated individuals — a population considered to have health-seeking behaviors — which may limit the generalizability of the findings. The study was conducted using COVID-19 bivalent vaccines, which are no longer available.

DISCLOSURES:

This work was funded by the US Food and Drug Administration through an interagency agreement with the Centers for Medicare & Medicaid Services. Dr. Lu reported no relevant financial relationships. The other authors’ disclosures are listed in the original paper.

A version of this article appeared on Medscape.com.

 

TOPLINE:

Receipt of the bivalent COVID-19 vaccine was not associated with an increased stroke risk in the first 6 weeks after vaccination with either the Pfizer or Moderna vaccines, a new study of Medicare beneficiaries showed.

METHODOLOGY:

  • The analysis included 5.4 million people age ≥ 65 years who received either the Pfizer-BioNTech COVID-19 bivalent vaccine or the Moderna bivalent vaccine, or the Pfizer vaccine and a high-dose or adjuvanted concomitant influenza vaccine (ie, administered on the same day).
  • A total of 11,001 of the cohort experienced a stroke in the first 90 days after vaccination.
  • The main outcome was stroke risk (nonhemorrhagic stroke, transient ischemic attack [TIA], or hemorrhagic stroke) during the 1- to 21-day or 22- to 42-day window after vaccination vs the 43- to 90-day control window.
  • The mean age of participants was 74 years, and 56% were female.

TAKEAWAY:

  • There was no statistically significant association with either brand of the COVID-19 bivalent vaccine or any of the stroke outcomes during the 1- to 21-day or 22- to 42-day risk window compared with the 43- to 90-day control window (incidence rate ratio [IRR] range, 0.72-1.12).
  • Vaccination with COVID-19 bivalent vaccine plus a high-dose or adjuvanted influenza vaccine (n = 4596) was associated with a significantly greater risk for nonhemorrhagic stroke 22-42 days after vaccination with Pfizer-BioNTech (IRR, 1.20; risk difference/100,000 doses, 3.13) and an increase in TIA risk 1-21 days after vaccination with Moderna (IRR, 1.35; risk difference/100,000 doses, 3.33).
  • There was a significant association between vaccination with a high-dose or adjuvanted influenza vaccine (n = 21,345) and nonhemorrhagic stroke 22-42 days after vaccination (IRR, 1.09; risk difference/100,000 doses, 1.65).

IN PRACTICE:

“The clinical significance of the risk of stroke after vaccination must be carefully considered together with the significant benefits of receiving an influenza vaccination,” the authors wrote. “Because the framework of the current self-controlled case series study does not compare the populations who were vaccinated vs those who were unvaccinated, it does not account for the reduced rate of severe influenza after vaccination. More studies are needed to better understand the association between high-dose or adjuvanted influenza vaccination and stroke.”

SOURCE:

Yun Lu, PhD, of the Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, was the lead and corresponding author of the study. It was published online on March 19 in JAMA.

LIMITATIONS:

Some stroke cases may have been missed or misclassified. The study included only vaccinated individuals — a population considered to have health-seeking behaviors — which may limit the generalizability of the findings. The study was conducted using COVID-19 bivalent vaccines, which are no longer available.

DISCLOSURES:

This work was funded by the US Food and Drug Administration through an interagency agreement with the Centers for Medicare & Medicaid Services. Dr. Lu reported no relevant financial relationships. The other authors’ disclosures are listed in the original paper.

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Could Regular, Daytime Naps Increase Glucose Levels?

Article Type
Changed
Thu, 03/28/2024 - 13:11

 

TOPLINE:

Long naps of an hour or more, naps in the morning, or regular siestas may increase blood glucose levels in older people with type 2 diabetes (T2D).

METHODOLOGY:

  • Napping is common in China and other cultures and may play a role in cardiometabolic health, but previous studies on the relationship between napping and glycemic control in T2D have reported conflicting results.
  • In a cross-sectional study, the researchers assessed 226 individuals with T2D (median age, 67 years; about half women; mostly retired) from two community healthcare centers in China between May 2023 and July 2023.
  • Using questionnaires, the participants were evaluated for A1c levels, as well as frequency, duration (shorter or longer than 1 hour), timing, and type of napping behavior (restorative for lack of sleep vs appetitive by habit or for enjoyment).
  • Multivariate analysis controlled for age, sex, body mass index, T2D treatment regimen, diabetes duration, cognitive impairment, depression, night sleep duration, and insomnia symptoms.

TAKEAWAY:

  • Among 180 participants who reported napping, 61 (33.9%) took long naps of 60 minutes and more, 162 (90%) reported afternoon napping, and 131 (72.8%) displayed appetitive napping.
  • Restorative napping was linked to lower A1c levels than appetitive napping (β, −0.176; P = 0.028).
  • Napping frequency was not associated with A1c levels.

IN PRACTICE:

“In clinical practice, healthcare professionals may offer tips about napping, eg, taking a nap less than an hour, taking a nap in the afternoon instead of in the morning, avoiding appetitive napping,” the authors concluded.

SOURCE:

The study, from corresponding author Bingqian Zhu, PhD, of the Shanghai Jiao Tong University School of Nursing, Shanghai, was published in Frontiers in Endocrinology.

LIMITATIONS:

The participants were older individuals, mostly retired, who may have had less need for restorative napping and more time for appetitive napping, limiting generalizability. The sample size may have been too small to find a link to napping frequency. Self-reported data could introduce recall bias. Only A1c levels were used as a measure of glycemic control.

DISCLOSURES:

The study was supported by the National Natural Science Foundation of China and other sources. The authors declared no potential conflict of interest.

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

 

TOPLINE:

Long naps of an hour or more, naps in the morning, or regular siestas may increase blood glucose levels in older people with type 2 diabetes (T2D).

METHODOLOGY:

  • Napping is common in China and other cultures and may play a role in cardiometabolic health, but previous studies on the relationship between napping and glycemic control in T2D have reported conflicting results.
  • In a cross-sectional study, the researchers assessed 226 individuals with T2D (median age, 67 years; about half women; mostly retired) from two community healthcare centers in China between May 2023 and July 2023.
  • Using questionnaires, the participants were evaluated for A1c levels, as well as frequency, duration (shorter or longer than 1 hour), timing, and type of napping behavior (restorative for lack of sleep vs appetitive by habit or for enjoyment).
  • Multivariate analysis controlled for age, sex, body mass index, T2D treatment regimen, diabetes duration, cognitive impairment, depression, night sleep duration, and insomnia symptoms.

TAKEAWAY:

  • Among 180 participants who reported napping, 61 (33.9%) took long naps of 60 minutes and more, 162 (90%) reported afternoon napping, and 131 (72.8%) displayed appetitive napping.
  • Restorative napping was linked to lower A1c levels than appetitive napping (β, −0.176; P = 0.028).
  • Napping frequency was not associated with A1c levels.

IN PRACTICE:

“In clinical practice, healthcare professionals may offer tips about napping, eg, taking a nap less than an hour, taking a nap in the afternoon instead of in the morning, avoiding appetitive napping,” the authors concluded.

SOURCE:

The study, from corresponding author Bingqian Zhu, PhD, of the Shanghai Jiao Tong University School of Nursing, Shanghai, was published in Frontiers in Endocrinology.

LIMITATIONS:

The participants were older individuals, mostly retired, who may have had less need for restorative napping and more time for appetitive napping, limiting generalizability. The sample size may have been too small to find a link to napping frequency. Self-reported data could introduce recall bias. Only A1c levels were used as a measure of glycemic control.

DISCLOSURES:

The study was supported by the National Natural Science Foundation of China and other sources. The authors declared no potential conflict of interest.

A version of this article appeared on Medscape.com.

 

TOPLINE:

Long naps of an hour or more, naps in the morning, or regular siestas may increase blood glucose levels in older people with type 2 diabetes (T2D).

METHODOLOGY:

  • Napping is common in China and other cultures and may play a role in cardiometabolic health, but previous studies on the relationship between napping and glycemic control in T2D have reported conflicting results.
  • In a cross-sectional study, the researchers assessed 226 individuals with T2D (median age, 67 years; about half women; mostly retired) from two community healthcare centers in China between May 2023 and July 2023.
  • Using questionnaires, the participants were evaluated for A1c levels, as well as frequency, duration (shorter or longer than 1 hour), timing, and type of napping behavior (restorative for lack of sleep vs appetitive by habit or for enjoyment).
  • Multivariate analysis controlled for age, sex, body mass index, T2D treatment regimen, diabetes duration, cognitive impairment, depression, night sleep duration, and insomnia symptoms.

TAKEAWAY:

  • Among 180 participants who reported napping, 61 (33.9%) took long naps of 60 minutes and more, 162 (90%) reported afternoon napping, and 131 (72.8%) displayed appetitive napping.
  • Restorative napping was linked to lower A1c levels than appetitive napping (β, −0.176; P = 0.028).
  • Napping frequency was not associated with A1c levels.

IN PRACTICE:

“In clinical practice, healthcare professionals may offer tips about napping, eg, taking a nap less than an hour, taking a nap in the afternoon instead of in the morning, avoiding appetitive napping,” the authors concluded.

SOURCE:

The study, from corresponding author Bingqian Zhu, PhD, of the Shanghai Jiao Tong University School of Nursing, Shanghai, was published in Frontiers in Endocrinology.

LIMITATIONS:

The participants were older individuals, mostly retired, who may have had less need for restorative napping and more time for appetitive napping, limiting generalizability. The sample size may have been too small to find a link to napping frequency. Self-reported data could introduce recall bias. Only A1c levels were used as a measure of glycemic control.

DISCLOSURES:

The study was supported by the National Natural Science Foundation of China and other sources. The authors declared no potential conflict of interest.

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article