Is CGM the New CBT?

Article Type
Changed

Lauren is a 45-year-old corporate lawyer who managed to excel in every aspect of her life, including parenting her three children while working full-time as a corporate lawyer. A math major at Harvard, she loves data.

Suffice it to say, given that I was treating her for a thyroid condition rather than diabetes, I was a little surprised when she requested I prescribe her a FreeStyle Libre (Abbott) monitor. She explained she was struggling to lose 10 pounds, and she thought continuous glucose monitoring (CGM) would help her determine which foods were impeding her weight loss journey. 

While I didn’t see much downside to acquiescing, I felt she had probably been spending too much time on Reddit. What information could CGM give someone without diabetes that couldn’t be gleaned from a food label? Nevertheless, Lauren filled the prescription and began her foray into this relatively uncharted world. When she returned for a follow-up visit several months later, I was shocked to see that she had lost her intended weight. With my tail between my legs, I decided to review the theories and science behind the use of CGM in patients without insulin resistance

Although it’s not rocket science, CGM can help patients through a “carrot and stick” approach to dieting. Lean proteins, nonstarchy vegetables, and monounsaturated fats such as nuts and avocado all support weight loss and tend to keep blood glucose levels stable. In contrast, foods known to cause weight gain (eg, sugary foods, refined starches, and processed foods) cause sugar spikes in real time. Similarly, large portion sizes are more likely to result in sugar spikes, and pairing proteins with carbohydrates minimizes blood glucose excursions. 

Though all of this is basic common sense, the constant feedback from a CGM device holds patients accountable for their food choices and helps with behavioral change. And because blood glucose is influenced by myriad factors including stress, genetics and metabolism, CGM can also potentially help create personal guidance for food choices. 

In addition, CGM can reveal the effect of poor sleep and stress on blood glucose levels, thereby encouraging healthier lifestyle choices. The data collected also may provide information on how different modalities of physical activity affect blood glucose levels. A recent study compared the effect of high-intensity interval training (HIIT) and continuous moderate-intensity exercise on postmeal blood glucose in overweight individuals without diabetes. CGM revealed that HIIT is more advantageous for preventing postmeal spikes. 

Although CGM appears to be a sophisticated form of cognitive-behavioral therapy, I do worry that the incessant stream of information can lead to worsening anxiety, obsessive compulsive behaviors, or restrictive eating tendencies. Still, thanks to Lauren, I now believe that real-time CGM may lead to behavior modification in food selection and physical activity. 
 

Dr. Messer, Clinical Assistant Professor, Mount Sinai School of Medicine; Associate Professor, Hofstra School of Medicine, New York, NY, has disclosed no relevant financial relationships.

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

Lauren is a 45-year-old corporate lawyer who managed to excel in every aspect of her life, including parenting her three children while working full-time as a corporate lawyer. A math major at Harvard, she loves data.

Suffice it to say, given that I was treating her for a thyroid condition rather than diabetes, I was a little surprised when she requested I prescribe her a FreeStyle Libre (Abbott) monitor. She explained she was struggling to lose 10 pounds, and she thought continuous glucose monitoring (CGM) would help her determine which foods were impeding her weight loss journey. 

While I didn’t see much downside to acquiescing, I felt she had probably been spending too much time on Reddit. What information could CGM give someone without diabetes that couldn’t be gleaned from a food label? Nevertheless, Lauren filled the prescription and began her foray into this relatively uncharted world. When she returned for a follow-up visit several months later, I was shocked to see that she had lost her intended weight. With my tail between my legs, I decided to review the theories and science behind the use of CGM in patients without insulin resistance

Although it’s not rocket science, CGM can help patients through a “carrot and stick” approach to dieting. Lean proteins, nonstarchy vegetables, and monounsaturated fats such as nuts and avocado all support weight loss and tend to keep blood glucose levels stable. In contrast, foods known to cause weight gain (eg, sugary foods, refined starches, and processed foods) cause sugar spikes in real time. Similarly, large portion sizes are more likely to result in sugar spikes, and pairing proteins with carbohydrates minimizes blood glucose excursions. 

Though all of this is basic common sense, the constant feedback from a CGM device holds patients accountable for their food choices and helps with behavioral change. And because blood glucose is influenced by myriad factors including stress, genetics and metabolism, CGM can also potentially help create personal guidance for food choices. 

In addition, CGM can reveal the effect of poor sleep and stress on blood glucose levels, thereby encouraging healthier lifestyle choices. The data collected also may provide information on how different modalities of physical activity affect blood glucose levels. A recent study compared the effect of high-intensity interval training (HIIT) and continuous moderate-intensity exercise on postmeal blood glucose in overweight individuals without diabetes. CGM revealed that HIIT is more advantageous for preventing postmeal spikes. 

Although CGM appears to be a sophisticated form of cognitive-behavioral therapy, I do worry that the incessant stream of information can lead to worsening anxiety, obsessive compulsive behaviors, or restrictive eating tendencies. Still, thanks to Lauren, I now believe that real-time CGM may lead to behavior modification in food selection and physical activity. 
 

Dr. Messer, Clinical Assistant Professor, Mount Sinai School of Medicine; Associate Professor, Hofstra School of Medicine, New York, NY, has disclosed no relevant financial relationships.

A version of this article appeared on Medscape.com.

Lauren is a 45-year-old corporate lawyer who managed to excel in every aspect of her life, including parenting her three children while working full-time as a corporate lawyer. A math major at Harvard, she loves data.

Suffice it to say, given that I was treating her for a thyroid condition rather than diabetes, I was a little surprised when she requested I prescribe her a FreeStyle Libre (Abbott) monitor. She explained she was struggling to lose 10 pounds, and she thought continuous glucose monitoring (CGM) would help her determine which foods were impeding her weight loss journey. 

While I didn’t see much downside to acquiescing, I felt she had probably been spending too much time on Reddit. What information could CGM give someone without diabetes that couldn’t be gleaned from a food label? Nevertheless, Lauren filled the prescription and began her foray into this relatively uncharted world. When she returned for a follow-up visit several months later, I was shocked to see that she had lost her intended weight. With my tail between my legs, I decided to review the theories and science behind the use of CGM in patients without insulin resistance

Although it’s not rocket science, CGM can help patients through a “carrot and stick” approach to dieting. Lean proteins, nonstarchy vegetables, and monounsaturated fats such as nuts and avocado all support weight loss and tend to keep blood glucose levels stable. In contrast, foods known to cause weight gain (eg, sugary foods, refined starches, and processed foods) cause sugar spikes in real time. Similarly, large portion sizes are more likely to result in sugar spikes, and pairing proteins with carbohydrates minimizes blood glucose excursions. 

Though all of this is basic common sense, the constant feedback from a CGM device holds patients accountable for their food choices and helps with behavioral change. And because blood glucose is influenced by myriad factors including stress, genetics and metabolism, CGM can also potentially help create personal guidance for food choices. 

In addition, CGM can reveal the effect of poor sleep and stress on blood glucose levels, thereby encouraging healthier lifestyle choices. The data collected also may provide information on how different modalities of physical activity affect blood glucose levels. A recent study compared the effect of high-intensity interval training (HIIT) and continuous moderate-intensity exercise on postmeal blood glucose in overweight individuals without diabetes. CGM revealed that HIIT is more advantageous for preventing postmeal spikes. 

Although CGM appears to be a sophisticated form of cognitive-behavioral therapy, I do worry that the incessant stream of information can lead to worsening anxiety, obsessive compulsive behaviors, or restrictive eating tendencies. Still, thanks to Lauren, I now believe that real-time CGM may lead to behavior modification in food selection and physical activity. 
 

Dr. Messer, Clinical Assistant Professor, Mount Sinai School of Medicine; Associate Professor, Hofstra School of Medicine, New York, NY, has disclosed no relevant financial relationships.

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

How Are Doctors Using Tirzepatide vs Semaglutide? A Q&A

Article Type
Changed

When prescribing glucagon-like peptide 1 (GLP-1) medications, many physicians prefer tirzepatide over the more well-known semaglutide due to its superior efficacy in weight loss and A1c reduction. Studies indicated that tirzepatide can lead to greater weight loss than semaglutide.

Factors like insurance coverage, drug availability, and side effects also influence physicians’ choices, with some patients benefiting from the broader dosing options that tirzepatide offers.

In this Q&A, Medscape Medical News explored how physicians can make the best decisions with their patients when choosing between GLP-1 medications tirzepatide and semaglutide for the treatment for type 2 diabetes and obesity.

We spoke to physicians who specialize in medical weight loss on things to consider when choosing between these two medications, such as patient profiles, drug access and availability, and financial considerations. We also discussed the side effect profiles of the medications based on current data in the literature.
 

Medscape Medical News: How are you deciding which of the two drugs to prescribe?

Caroline Messer, MD, endocrinologist at Lenox Hill Hospital, Northwell, New York City: To some degree, it’s based on insurance. But in general, I’m pushing most patients toward tirzepatide just because the data show that there’s more weight loss and more A1c reduction on tirzepatide. But the research shows that there are more side effects. But I think every practicing clinician who uses these medications knows that there are actually fewer side effects despite what the trial showed.

Sue Decotiis, MD, weight loss doctor, New York City: I think that many doctors that are prescribing these drugs are not really weight loss specialists. It’s just like one of many drugs that they prescribe. And semaglutide (Ozempic) is more well known. I think it’s because they don’t really know that it’s not as good as the other drugs. There are still massive shortages of these drugs. So that’s another reason why a doctor may choose one drug over another. Also, if a patient’s reliant on insurance to cover it, they may go with whatever the insurance company is willing to cover.

Kathleen Dungan, MD, professor of internal medicine, Division of Endocrinology, Diabetes and Metabolism, The Ohio State University Wexner Medical Center and College of Medicine: Some patients may have preferences with the delivery device. In the past year, in particular, availability of these drugs was limited and varied from time to time and geographically, and therefore, patients needed to substitute one drug for another in order to maintain treatment.

Maria Teresa Anton, MD, endocrinologist and educator, Pritikin Longevity Center, Miami: While I do not prescribe these medications, I do focus on integrating them into a comprehensive lifestyle program that empowers patients to make sustainable changes. By fostering an environment of education and support, we enhance their well-being and promote long-term health outcomes. In my practice, I’ve found that the most successful outcomes occur when these medications are combined with a comprehensive approach, including dietary changes, physical activity, and behavioral support.
 

Medscape Medical News: How do you make the decision of tirzepatide vs semaglutide?

Messer: There’s no guideline per se. Sometimes when I don’t want a patient to lose too much weight, I might consider Ozempic or Wegovy if you know they only have 5 lb to lose. If diabetes, then I might go for the Ozempic instead, just because the weight loss is so drastic with tirzepatide with any kind of appetite.

Decotiis: If somebody has a lot of weight to lose and they’re highly insulin resistant, as most people are when they start these drugs, I really prefer tirzepatide ... because I think patients are going to lose more weight, they’re going to lose more fat. I also see that patients have less side effects because before tirzepatide came out, I was prescribing mostly semaglutide, and there were a lot of side effects. But semaglutide is fine. I mean, it’s a good drug. Maybe it’s better for people that don’t have as much weight to lose. So I don’t have to worry about them hitting that wall after a certain period of time. But it’s a good drug. I mean, I certainly still use it.
 

Medscape Medical News: What of the data and the literature on the differences in the outcomes and the side effect profile?

Messer: In terms of outcomes, the weight loss is almost double [with tirzepatide]. It depends what trial you’re looking at, but we tend to see like about 15% of your body weight you lose with the semaglutide and 25%-30% with the tirzepatide. The big difference, I suppose…is semaglutide now has a cardiovascular indication and the tirzepatide doesn’t, but I’m very confident that tirzepatide is going to get the same indication.

Decotiis: When that first Lilly study came out in June of 2022, it really blew everybody away. I mean, some patients lost up to 25% of their weight on tirzepatide, whereas on Ozempic, it was really like 15%. Now, in my practice, I really monitor everyone with a body composition scale. I’m not just looking at somebody’s weight or body mass index, I am looking at how much body fat they have, how much muscle mass they have, how much water they have, and how much bone they have.

The golden rule here is make sure the patient loses fat, and you want to make sure they’re not losing muscle or too much water. The patient really needs to be adequately hydrated. So what I’m saying is a lot of people who have lost weight have not reached the promised land because they haven’t lost enough body fat to get them into that healthy zone. But once they reduce the body fat to a certain percentage, let’s say for a woman about 20%, or a man in the low teens, they’re less likely to regain that weight because they haven’t really lost fat. And that’s how we gain health.
 

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

When prescribing glucagon-like peptide 1 (GLP-1) medications, many physicians prefer tirzepatide over the more well-known semaglutide due to its superior efficacy in weight loss and A1c reduction. Studies indicated that tirzepatide can lead to greater weight loss than semaglutide.

Factors like insurance coverage, drug availability, and side effects also influence physicians’ choices, with some patients benefiting from the broader dosing options that tirzepatide offers.

In this Q&A, Medscape Medical News explored how physicians can make the best decisions with their patients when choosing between GLP-1 medications tirzepatide and semaglutide for the treatment for type 2 diabetes and obesity.

We spoke to physicians who specialize in medical weight loss on things to consider when choosing between these two medications, such as patient profiles, drug access and availability, and financial considerations. We also discussed the side effect profiles of the medications based on current data in the literature.
 

Medscape Medical News: How are you deciding which of the two drugs to prescribe?

Caroline Messer, MD, endocrinologist at Lenox Hill Hospital, Northwell, New York City: To some degree, it’s based on insurance. But in general, I’m pushing most patients toward tirzepatide just because the data show that there’s more weight loss and more A1c reduction on tirzepatide. But the research shows that there are more side effects. But I think every practicing clinician who uses these medications knows that there are actually fewer side effects despite what the trial showed.

Sue Decotiis, MD, weight loss doctor, New York City: I think that many doctors that are prescribing these drugs are not really weight loss specialists. It’s just like one of many drugs that they prescribe. And semaglutide (Ozempic) is more well known. I think it’s because they don’t really know that it’s not as good as the other drugs. There are still massive shortages of these drugs. So that’s another reason why a doctor may choose one drug over another. Also, if a patient’s reliant on insurance to cover it, they may go with whatever the insurance company is willing to cover.

Kathleen Dungan, MD, professor of internal medicine, Division of Endocrinology, Diabetes and Metabolism, The Ohio State University Wexner Medical Center and College of Medicine: Some patients may have preferences with the delivery device. In the past year, in particular, availability of these drugs was limited and varied from time to time and geographically, and therefore, patients needed to substitute one drug for another in order to maintain treatment.

Maria Teresa Anton, MD, endocrinologist and educator, Pritikin Longevity Center, Miami: While I do not prescribe these medications, I do focus on integrating them into a comprehensive lifestyle program that empowers patients to make sustainable changes. By fostering an environment of education and support, we enhance their well-being and promote long-term health outcomes. In my practice, I’ve found that the most successful outcomes occur when these medications are combined with a comprehensive approach, including dietary changes, physical activity, and behavioral support.
 

Medscape Medical News: How do you make the decision of tirzepatide vs semaglutide?

Messer: There’s no guideline per se. Sometimes when I don’t want a patient to lose too much weight, I might consider Ozempic or Wegovy if you know they only have 5 lb to lose. If diabetes, then I might go for the Ozempic instead, just because the weight loss is so drastic with tirzepatide with any kind of appetite.

Decotiis: If somebody has a lot of weight to lose and they’re highly insulin resistant, as most people are when they start these drugs, I really prefer tirzepatide ... because I think patients are going to lose more weight, they’re going to lose more fat. I also see that patients have less side effects because before tirzepatide came out, I was prescribing mostly semaglutide, and there were a lot of side effects. But semaglutide is fine. I mean, it’s a good drug. Maybe it’s better for people that don’t have as much weight to lose. So I don’t have to worry about them hitting that wall after a certain period of time. But it’s a good drug. I mean, I certainly still use it.
 

Medscape Medical News: What of the data and the literature on the differences in the outcomes and the side effect profile?

Messer: In terms of outcomes, the weight loss is almost double [with tirzepatide]. It depends what trial you’re looking at, but we tend to see like about 15% of your body weight you lose with the semaglutide and 25%-30% with the tirzepatide. The big difference, I suppose…is semaglutide now has a cardiovascular indication and the tirzepatide doesn’t, but I’m very confident that tirzepatide is going to get the same indication.

Decotiis: When that first Lilly study came out in June of 2022, it really blew everybody away. I mean, some patients lost up to 25% of their weight on tirzepatide, whereas on Ozempic, it was really like 15%. Now, in my practice, I really monitor everyone with a body composition scale. I’m not just looking at somebody’s weight or body mass index, I am looking at how much body fat they have, how much muscle mass they have, how much water they have, and how much bone they have.

The golden rule here is make sure the patient loses fat, and you want to make sure they’re not losing muscle or too much water. The patient really needs to be adequately hydrated. So what I’m saying is a lot of people who have lost weight have not reached the promised land because they haven’t lost enough body fat to get them into that healthy zone. But once they reduce the body fat to a certain percentage, let’s say for a woman about 20%, or a man in the low teens, they’re less likely to regain that weight because they haven’t really lost fat. And that’s how we gain health.
 

A version of this article first appeared on Medscape.com.

When prescribing glucagon-like peptide 1 (GLP-1) medications, many physicians prefer tirzepatide over the more well-known semaglutide due to its superior efficacy in weight loss and A1c reduction. Studies indicated that tirzepatide can lead to greater weight loss than semaglutide.

Factors like insurance coverage, drug availability, and side effects also influence physicians’ choices, with some patients benefiting from the broader dosing options that tirzepatide offers.

In this Q&A, Medscape Medical News explored how physicians can make the best decisions with their patients when choosing between GLP-1 medications tirzepatide and semaglutide for the treatment for type 2 diabetes and obesity.

We spoke to physicians who specialize in medical weight loss on things to consider when choosing between these two medications, such as patient profiles, drug access and availability, and financial considerations. We also discussed the side effect profiles of the medications based on current data in the literature.
 

Medscape Medical News: How are you deciding which of the two drugs to prescribe?

Caroline Messer, MD, endocrinologist at Lenox Hill Hospital, Northwell, New York City: To some degree, it’s based on insurance. But in general, I’m pushing most patients toward tirzepatide just because the data show that there’s more weight loss and more A1c reduction on tirzepatide. But the research shows that there are more side effects. But I think every practicing clinician who uses these medications knows that there are actually fewer side effects despite what the trial showed.

Sue Decotiis, MD, weight loss doctor, New York City: I think that many doctors that are prescribing these drugs are not really weight loss specialists. It’s just like one of many drugs that they prescribe. And semaglutide (Ozempic) is more well known. I think it’s because they don’t really know that it’s not as good as the other drugs. There are still massive shortages of these drugs. So that’s another reason why a doctor may choose one drug over another. Also, if a patient’s reliant on insurance to cover it, they may go with whatever the insurance company is willing to cover.

Kathleen Dungan, MD, professor of internal medicine, Division of Endocrinology, Diabetes and Metabolism, The Ohio State University Wexner Medical Center and College of Medicine: Some patients may have preferences with the delivery device. In the past year, in particular, availability of these drugs was limited and varied from time to time and geographically, and therefore, patients needed to substitute one drug for another in order to maintain treatment.

Maria Teresa Anton, MD, endocrinologist and educator, Pritikin Longevity Center, Miami: While I do not prescribe these medications, I do focus on integrating them into a comprehensive lifestyle program that empowers patients to make sustainable changes. By fostering an environment of education and support, we enhance their well-being and promote long-term health outcomes. In my practice, I’ve found that the most successful outcomes occur when these medications are combined with a comprehensive approach, including dietary changes, physical activity, and behavioral support.
 

Medscape Medical News: How do you make the decision of tirzepatide vs semaglutide?

Messer: There’s no guideline per se. Sometimes when I don’t want a patient to lose too much weight, I might consider Ozempic or Wegovy if you know they only have 5 lb to lose. If diabetes, then I might go for the Ozempic instead, just because the weight loss is so drastic with tirzepatide with any kind of appetite.

Decotiis: If somebody has a lot of weight to lose and they’re highly insulin resistant, as most people are when they start these drugs, I really prefer tirzepatide ... because I think patients are going to lose more weight, they’re going to lose more fat. I also see that patients have less side effects because before tirzepatide came out, I was prescribing mostly semaglutide, and there were a lot of side effects. But semaglutide is fine. I mean, it’s a good drug. Maybe it’s better for people that don’t have as much weight to lose. So I don’t have to worry about them hitting that wall after a certain period of time. But it’s a good drug. I mean, I certainly still use it.
 

Medscape Medical News: What of the data and the literature on the differences in the outcomes and the side effect profile?

Messer: In terms of outcomes, the weight loss is almost double [with tirzepatide]. It depends what trial you’re looking at, but we tend to see like about 15% of your body weight you lose with the semaglutide and 25%-30% with the tirzepatide. The big difference, I suppose…is semaglutide now has a cardiovascular indication and the tirzepatide doesn’t, but I’m very confident that tirzepatide is going to get the same indication.

Decotiis: When that first Lilly study came out in June of 2022, it really blew everybody away. I mean, some patients lost up to 25% of their weight on tirzepatide, whereas on Ozempic, it was really like 15%. Now, in my practice, I really monitor everyone with a body composition scale. I’m not just looking at somebody’s weight or body mass index, I am looking at how much body fat they have, how much muscle mass they have, how much water they have, and how much bone they have.

The golden rule here is make sure the patient loses fat, and you want to make sure they’re not losing muscle or too much water. The patient really needs to be adequately hydrated. So what I’m saying is a lot of people who have lost weight have not reached the promised land because they haven’t lost enough body fat to get them into that healthy zone. But once they reduce the body fat to a certain percentage, let’s say for a woman about 20%, or a man in the low teens, they’re less likely to regain that weight because they haven’t really lost fat. And that’s how we gain health.
 

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

The Genitals Are a Window Into Health: Sex as a Vital Sign

Article Type
Changed

 

This transcript has been edited for clarity.

Rachel S. Rubin, MD: I’m Dr. Rachel Rubin, a urologist and sexual medicine specialist in the Washington, DC, area. And I am so thrilled because my co-fellow, the brilliant and famous Dr. Ashley Winter, a board-certified urologist and a certified menopause practitioner, who sees patients in our practice from Los Angeles, is joining us today to talk about sex as a vital sign.

Ashley Winter, MD: To have the best sexual function, you need many different systems to work. You need your hormones to be in the right place. You need your blood vessels to dilate when you want them to. You need your nerves to connect to your genitalia to make them responsive. The way people say, “The eyes are the window into the soul” — well, the genitals are the window into the cardiovascular system, the peripheral nervous system, and the hormonal system. It’s so dynamic. Patients can understand how this reflects their health. We just need healthcare providers to hammer home how those things connect.

Rubin: If you’re a primary care doctor seeing a patient and you want to educate them on diabetes or high blood pressure, how can you “ ‘sell it with ‘sex”? How can you use sex to educate them about these important medical conditions?

Winter: I hate using it as a fear tactic, but sometimes you have to. Time and again, I’ve seen men with severe profound erectile dysfunction at a young age, with chronically uncontrolled diabetes.

Diabetes can impair the peripheral nerves, resulting in peripheral neuropathy. The same way that it can affect the fingers and toes, diabetes can affect the penis, even before those other areas. Diabetes can also lead to other conditions such as low testosterone, which also affects the function of the penis.

I’m being brutally honest when I tell patients that diabetes control is critical to having a wonderful sexspan — the duration of your life where you’re able to be sexually active and have great sex and do it in the way that you want.

Chronic conditions such as high cholesterol or hypertension can affect your ability to become erect or aroused whether you have a penis or a vulva, and even your ability to have an orgasm.

Rubin: None of my doctors has ever asked me about these issues. But we have to bring them up with patients because they›re not going to bring them up to us. I always say in the review of systems, we shouldn›t just ask, “Do you have any sexual problems?” (which nobody ever does) and move past the question about men, women or both. We should be asking, “Do you have any issues with libido? Do you want to talk about it? Any issues with erection, arousal, orgasm, or sexual pain?”

When you can talk about those things, you can treat the patient from a whole physiologic perspective. For example, how does their sciatica affect their sexual pain? How does their antidepressant cause a delayed orgasm? How does their low testosterone level affect their energy level, their libido, and their desire? 

We see so much shame and guilt in sexual health, to the extent that patients feel broken. We can help them understand the anatomy and physiology and explain that they aren’t broken. Instead, it’s “You need this medicine for your crippling anxiety, and that’s why your orgasm is delayed, and so can we augment it or add or subtract something to help you with it.”

Winter: In a primary care setting, where we are considering the patient›s overall health, we strive for medication compliance, but a huge part of medication noncompliance is sexual side effects, whether it›s antidepressants, beta-blockers, birth control, or this new world of GLP-1 agonists.

Rubin: I would add breast cancer treatments. Many patients go off their anastrozole or their tamoxifen because of the sexual side effects. 

Winter: This is where we get to the crux of this discussion about sex being a vital sign — something you need to check routinely. We need to become comfortable with it, because then we are unlocking the ability to treat every patient like a whole person, give them better outcomes, improve their compliance, and have a really powerful tool for education.

Rubin: We have a growing toolbox for all genders when it comes to sexual health. We have FDA- approved medications for low libido in women. We use testosterone in men in an evidence-based way to safely improve libido. We use medications to help with the genitourinary syndrome of menopause. Orgasm is a challenging one, but we have devices that can help with those reflexes. And working with people who specialize in sexual pain can be extremely helpful for patients.

Dr. Winter, having practiced in different settings, what would you tell the primary care doctors who don’t want to talk about libido or who minimize sexual complaints because they don’t know how to navigate them?

Winter: I do not envy the challenge of being a primary care provider in the healthcare world we are living in. I think it is the hardest job. The ultimate takeaway is to just normalize the conversation and be able to validate what is happening. Have a few basic tools, and then have referrals. It›s not that you have to have all the time in the world or you have to treat every condition, but you have to start the conversation, be comfortable with it, and then get patients hooked up with the right resources.

Rubin: Every doctor of every kind can connect with patients and try to understand what they care about. What are their goals? What do they want for their families, for their relationships, for their quality of life? And how can we work collaboratively as a team to help them with those things? 

Sex is a huge part of people’s lives. If we don’t ask about it; if we don’t look into it; and if we don’t admit that our physiology, our medications, and our surgeries can affect sexual health and functioning, how can we improve people’s lives? We can do so much as a team when we consider sex as a true vital sign.
 

Dr. Rubin, Assistant Clinical Professor, Department of Urology, Georgetown University, Washington, DC, has disclosed ties with Maternal Medical, Absorption Pharmaceuticals, GlaxoSmithKline, and Endo.

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

 

This transcript has been edited for clarity.

Rachel S. Rubin, MD: I’m Dr. Rachel Rubin, a urologist and sexual medicine specialist in the Washington, DC, area. And I am so thrilled because my co-fellow, the brilliant and famous Dr. Ashley Winter, a board-certified urologist and a certified menopause practitioner, who sees patients in our practice from Los Angeles, is joining us today to talk about sex as a vital sign.

Ashley Winter, MD: To have the best sexual function, you need many different systems to work. You need your hormones to be in the right place. You need your blood vessels to dilate when you want them to. You need your nerves to connect to your genitalia to make them responsive. The way people say, “The eyes are the window into the soul” — well, the genitals are the window into the cardiovascular system, the peripheral nervous system, and the hormonal system. It’s so dynamic. Patients can understand how this reflects their health. We just need healthcare providers to hammer home how those things connect.

Rubin: If you’re a primary care doctor seeing a patient and you want to educate them on diabetes or high blood pressure, how can you “ ‘sell it with ‘sex”? How can you use sex to educate them about these important medical conditions?

Winter: I hate using it as a fear tactic, but sometimes you have to. Time and again, I’ve seen men with severe profound erectile dysfunction at a young age, with chronically uncontrolled diabetes.

Diabetes can impair the peripheral nerves, resulting in peripheral neuropathy. The same way that it can affect the fingers and toes, diabetes can affect the penis, even before those other areas. Diabetes can also lead to other conditions such as low testosterone, which also affects the function of the penis.

I’m being brutally honest when I tell patients that diabetes control is critical to having a wonderful sexspan — the duration of your life where you’re able to be sexually active and have great sex and do it in the way that you want.

Chronic conditions such as high cholesterol or hypertension can affect your ability to become erect or aroused whether you have a penis or a vulva, and even your ability to have an orgasm.

Rubin: None of my doctors has ever asked me about these issues. But we have to bring them up with patients because they›re not going to bring them up to us. I always say in the review of systems, we shouldn›t just ask, “Do you have any sexual problems?” (which nobody ever does) and move past the question about men, women or both. We should be asking, “Do you have any issues with libido? Do you want to talk about it? Any issues with erection, arousal, orgasm, or sexual pain?”

When you can talk about those things, you can treat the patient from a whole physiologic perspective. For example, how does their sciatica affect their sexual pain? How does their antidepressant cause a delayed orgasm? How does their low testosterone level affect their energy level, their libido, and their desire? 

We see so much shame and guilt in sexual health, to the extent that patients feel broken. We can help them understand the anatomy and physiology and explain that they aren’t broken. Instead, it’s “You need this medicine for your crippling anxiety, and that’s why your orgasm is delayed, and so can we augment it or add or subtract something to help you with it.”

Winter: In a primary care setting, where we are considering the patient›s overall health, we strive for medication compliance, but a huge part of medication noncompliance is sexual side effects, whether it›s antidepressants, beta-blockers, birth control, or this new world of GLP-1 agonists.

Rubin: I would add breast cancer treatments. Many patients go off their anastrozole or their tamoxifen because of the sexual side effects. 

Winter: This is where we get to the crux of this discussion about sex being a vital sign — something you need to check routinely. We need to become comfortable with it, because then we are unlocking the ability to treat every patient like a whole person, give them better outcomes, improve their compliance, and have a really powerful tool for education.

Rubin: We have a growing toolbox for all genders when it comes to sexual health. We have FDA- approved medications for low libido in women. We use testosterone in men in an evidence-based way to safely improve libido. We use medications to help with the genitourinary syndrome of menopause. Orgasm is a challenging one, but we have devices that can help with those reflexes. And working with people who specialize in sexual pain can be extremely helpful for patients.

Dr. Winter, having practiced in different settings, what would you tell the primary care doctors who don’t want to talk about libido or who minimize sexual complaints because they don’t know how to navigate them?

Winter: I do not envy the challenge of being a primary care provider in the healthcare world we are living in. I think it is the hardest job. The ultimate takeaway is to just normalize the conversation and be able to validate what is happening. Have a few basic tools, and then have referrals. It›s not that you have to have all the time in the world or you have to treat every condition, but you have to start the conversation, be comfortable with it, and then get patients hooked up with the right resources.

Rubin: Every doctor of every kind can connect with patients and try to understand what they care about. What are their goals? What do they want for their families, for their relationships, for their quality of life? And how can we work collaboratively as a team to help them with those things? 

Sex is a huge part of people’s lives. If we don’t ask about it; if we don’t look into it; and if we don’t admit that our physiology, our medications, and our surgeries can affect sexual health and functioning, how can we improve people’s lives? We can do so much as a team when we consider sex as a true vital sign.
 

Dr. Rubin, Assistant Clinical Professor, Department of Urology, Georgetown University, Washington, DC, has disclosed ties with Maternal Medical, Absorption Pharmaceuticals, GlaxoSmithKline, and Endo.

A version of this article first appeared on Medscape.com.

 

This transcript has been edited for clarity.

Rachel S. Rubin, MD: I’m Dr. Rachel Rubin, a urologist and sexual medicine specialist in the Washington, DC, area. And I am so thrilled because my co-fellow, the brilliant and famous Dr. Ashley Winter, a board-certified urologist and a certified menopause practitioner, who sees patients in our practice from Los Angeles, is joining us today to talk about sex as a vital sign.

Ashley Winter, MD: To have the best sexual function, you need many different systems to work. You need your hormones to be in the right place. You need your blood vessels to dilate when you want them to. You need your nerves to connect to your genitalia to make them responsive. The way people say, “The eyes are the window into the soul” — well, the genitals are the window into the cardiovascular system, the peripheral nervous system, and the hormonal system. It’s so dynamic. Patients can understand how this reflects their health. We just need healthcare providers to hammer home how those things connect.

Rubin: If you’re a primary care doctor seeing a patient and you want to educate them on diabetes or high blood pressure, how can you “ ‘sell it with ‘sex”? How can you use sex to educate them about these important medical conditions?

Winter: I hate using it as a fear tactic, but sometimes you have to. Time and again, I’ve seen men with severe profound erectile dysfunction at a young age, with chronically uncontrolled diabetes.

Diabetes can impair the peripheral nerves, resulting in peripheral neuropathy. The same way that it can affect the fingers and toes, diabetes can affect the penis, even before those other areas. Diabetes can also lead to other conditions such as low testosterone, which also affects the function of the penis.

I’m being brutally honest when I tell patients that diabetes control is critical to having a wonderful sexspan — the duration of your life where you’re able to be sexually active and have great sex and do it in the way that you want.

Chronic conditions such as high cholesterol or hypertension can affect your ability to become erect or aroused whether you have a penis or a vulva, and even your ability to have an orgasm.

Rubin: None of my doctors has ever asked me about these issues. But we have to bring them up with patients because they›re not going to bring them up to us. I always say in the review of systems, we shouldn›t just ask, “Do you have any sexual problems?” (which nobody ever does) and move past the question about men, women or both. We should be asking, “Do you have any issues with libido? Do you want to talk about it? Any issues with erection, arousal, orgasm, or sexual pain?”

When you can talk about those things, you can treat the patient from a whole physiologic perspective. For example, how does their sciatica affect their sexual pain? How does their antidepressant cause a delayed orgasm? How does their low testosterone level affect their energy level, their libido, and their desire? 

We see so much shame and guilt in sexual health, to the extent that patients feel broken. We can help them understand the anatomy and physiology and explain that they aren’t broken. Instead, it’s “You need this medicine for your crippling anxiety, and that’s why your orgasm is delayed, and so can we augment it or add or subtract something to help you with it.”

Winter: In a primary care setting, where we are considering the patient›s overall health, we strive for medication compliance, but a huge part of medication noncompliance is sexual side effects, whether it›s antidepressants, beta-blockers, birth control, or this new world of GLP-1 agonists.

Rubin: I would add breast cancer treatments. Many patients go off their anastrozole or their tamoxifen because of the sexual side effects. 

Winter: This is where we get to the crux of this discussion about sex being a vital sign — something you need to check routinely. We need to become comfortable with it, because then we are unlocking the ability to treat every patient like a whole person, give them better outcomes, improve their compliance, and have a really powerful tool for education.

Rubin: We have a growing toolbox for all genders when it comes to sexual health. We have FDA- approved medications for low libido in women. We use testosterone in men in an evidence-based way to safely improve libido. We use medications to help with the genitourinary syndrome of menopause. Orgasm is a challenging one, but we have devices that can help with those reflexes. And working with people who specialize in sexual pain can be extremely helpful for patients.

Dr. Winter, having practiced in different settings, what would you tell the primary care doctors who don’t want to talk about libido or who minimize sexual complaints because they don’t know how to navigate them?

Winter: I do not envy the challenge of being a primary care provider in the healthcare world we are living in. I think it is the hardest job. The ultimate takeaway is to just normalize the conversation and be able to validate what is happening. Have a few basic tools, and then have referrals. It›s not that you have to have all the time in the world or you have to treat every condition, but you have to start the conversation, be comfortable with it, and then get patients hooked up with the right resources.

Rubin: Every doctor of every kind can connect with patients and try to understand what they care about. What are their goals? What do they want for their families, for their relationships, for their quality of life? And how can we work collaboratively as a team to help them with those things? 

Sex is a huge part of people’s lives. If we don’t ask about it; if we don’t look into it; and if we don’t admit that our physiology, our medications, and our surgeries can affect sexual health and functioning, how can we improve people’s lives? We can do so much as a team when we consider sex as a true vital sign.
 

Dr. Rubin, Assistant Clinical Professor, Department of Urology, Georgetown University, Washington, DC, has disclosed ties with Maternal Medical, Absorption Pharmaceuticals, GlaxoSmithKline, and Endo.

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

A Single Jog Can Improve Glucose Metabolism in Young Adults

Article Type
Changed

 

TOPLINE:

In healthy young adults, a single 30-minute bout of outdoor aerobic exercise significantly reduces fasting and 1-hour glucose levels during an oral glucose tolerance test (OGTT) the next day and improves insulin sensitivity.

METHODOLOGY:

  • Recent studies have identified 1-hour post-load glucose concentration during an OGTT as a specific and early predictor of diabetes, and exercise has long been known for its metabolic benefits in people with and without diabetes.
  • The researchers investigated the effect of a single bout of aerobic exercise on 1-hour post-load glucose levels during an OGTT in 32 young, healthy, normal-weight or marginally overweight individuals (mean age, 35 years; 14 women and 18 men) with a sedentary or moderately active lifestyle.
  • The participants underwent an initial OGTT after at least 4 days of physical inactivity, followed by a second OGTT the day after a single 30-minute bout of aerobic exercise.
  • The exercise session consisted of a light jog for 30 minutes, monitored using a metabolic holter to quantify energy expenditure and exercise intensity. The participants did not undertake any exercise outside the lab sessions.
  • Blood glucose levels were measured, and insulin sensitivity and secretion were estimated using surrogate indices derived from OGTT glucose and insulin assays, including the Matsuda index, oral glucose insulin sensitivity (OGIS) index, and quantitative insulin sensitivity check index, as well as the homeostasis model assessment (HOMA) of insulin resistance and of beta-cell function (HOMA-B).

TAKEAWAY:

  •  
  • Postexercise insulin levels also were significantly lower 1 hour after glucose load, decreasing from 57.4 IU/mL at baseline to 43.5 IU/mL the day after exercise (P = .01).
  • Insulin sensitivity improved significantly after exercise, as indicated by increases in the Matsuda index (P = .02) and OGIS index (P = .04), along with a reduction in insulin resistance (P = .04).
  • The study found a trend toward increased beta-cell function the day after an exercise bout, as indicated by a nonsignificant increase in HOMA-B from 144.7 at baseline to 167.1 after exercise.

IN PRACTICE:

“Improvement in 1-hour post-load plasma glucose following a single session of aerobic physical activity suggests that exercise could have a direct effect on T2D [type 2 diabetes] risk and cardiovascular risk,” the authors wrote.

SOURCE:

The study was led by Simona Moffa, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, and Gian Pio Sorice, Università Degli Studi di Bari “Aldo Moro,” Bari, Italy. It was published online in the Journal of Endocrinological Investigation.

LIMITATIONS:

The study had a limited sample size, which may affect the generalizability of the findings. C-peptide levels, which could have provided additional insights into insulin secretion, were not assessed in the study.

DISCLOSURES:

The study was supported by grants from Università Cattolica del Sacro Cuore. The authors declared no conflicts of interest.
 

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.

Publications
Topics
Sections

 

TOPLINE:

In healthy young adults, a single 30-minute bout of outdoor aerobic exercise significantly reduces fasting and 1-hour glucose levels during an oral glucose tolerance test (OGTT) the next day and improves insulin sensitivity.

METHODOLOGY:

  • Recent studies have identified 1-hour post-load glucose concentration during an OGTT as a specific and early predictor of diabetes, and exercise has long been known for its metabolic benefits in people with and without diabetes.
  • The researchers investigated the effect of a single bout of aerobic exercise on 1-hour post-load glucose levels during an OGTT in 32 young, healthy, normal-weight or marginally overweight individuals (mean age, 35 years; 14 women and 18 men) with a sedentary or moderately active lifestyle.
  • The participants underwent an initial OGTT after at least 4 days of physical inactivity, followed by a second OGTT the day after a single 30-minute bout of aerobic exercise.
  • The exercise session consisted of a light jog for 30 minutes, monitored using a metabolic holter to quantify energy expenditure and exercise intensity. The participants did not undertake any exercise outside the lab sessions.
  • Blood glucose levels were measured, and insulin sensitivity and secretion were estimated using surrogate indices derived from OGTT glucose and insulin assays, including the Matsuda index, oral glucose insulin sensitivity (OGIS) index, and quantitative insulin sensitivity check index, as well as the homeostasis model assessment (HOMA) of insulin resistance and of beta-cell function (HOMA-B).

TAKEAWAY:

  •  
  • Postexercise insulin levels also were significantly lower 1 hour after glucose load, decreasing from 57.4 IU/mL at baseline to 43.5 IU/mL the day after exercise (P = .01).
  • Insulin sensitivity improved significantly after exercise, as indicated by increases in the Matsuda index (P = .02) and OGIS index (P = .04), along with a reduction in insulin resistance (P = .04).
  • The study found a trend toward increased beta-cell function the day after an exercise bout, as indicated by a nonsignificant increase in HOMA-B from 144.7 at baseline to 167.1 after exercise.

IN PRACTICE:

“Improvement in 1-hour post-load plasma glucose following a single session of aerobic physical activity suggests that exercise could have a direct effect on T2D [type 2 diabetes] risk and cardiovascular risk,” the authors wrote.

SOURCE:

The study was led by Simona Moffa, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, and Gian Pio Sorice, Università Degli Studi di Bari “Aldo Moro,” Bari, Italy. It was published online in the Journal of Endocrinological Investigation.

LIMITATIONS:

The study had a limited sample size, which may affect the generalizability of the findings. C-peptide levels, which could have provided additional insights into insulin secretion, were not assessed in the study.

DISCLOSURES:

The study was supported by grants from Università Cattolica del Sacro Cuore. The authors declared no conflicts of interest.
 

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.

 

TOPLINE:

In healthy young adults, a single 30-minute bout of outdoor aerobic exercise significantly reduces fasting and 1-hour glucose levels during an oral glucose tolerance test (OGTT) the next day and improves insulin sensitivity.

METHODOLOGY:

  • Recent studies have identified 1-hour post-load glucose concentration during an OGTT as a specific and early predictor of diabetes, and exercise has long been known for its metabolic benefits in people with and without diabetes.
  • The researchers investigated the effect of a single bout of aerobic exercise on 1-hour post-load glucose levels during an OGTT in 32 young, healthy, normal-weight or marginally overweight individuals (mean age, 35 years; 14 women and 18 men) with a sedentary or moderately active lifestyle.
  • The participants underwent an initial OGTT after at least 4 days of physical inactivity, followed by a second OGTT the day after a single 30-minute bout of aerobic exercise.
  • The exercise session consisted of a light jog for 30 minutes, monitored using a metabolic holter to quantify energy expenditure and exercise intensity. The participants did not undertake any exercise outside the lab sessions.
  • Blood glucose levels were measured, and insulin sensitivity and secretion were estimated using surrogate indices derived from OGTT glucose and insulin assays, including the Matsuda index, oral glucose insulin sensitivity (OGIS) index, and quantitative insulin sensitivity check index, as well as the homeostasis model assessment (HOMA) of insulin resistance and of beta-cell function (HOMA-B).

TAKEAWAY:

  •  
  • Postexercise insulin levels also were significantly lower 1 hour after glucose load, decreasing from 57.4 IU/mL at baseline to 43.5 IU/mL the day after exercise (P = .01).
  • Insulin sensitivity improved significantly after exercise, as indicated by increases in the Matsuda index (P = .02) and OGIS index (P = .04), along with a reduction in insulin resistance (P = .04).
  • The study found a trend toward increased beta-cell function the day after an exercise bout, as indicated by a nonsignificant increase in HOMA-B from 144.7 at baseline to 167.1 after exercise.

IN PRACTICE:

“Improvement in 1-hour post-load plasma glucose following a single session of aerobic physical activity suggests that exercise could have a direct effect on T2D [type 2 diabetes] risk and cardiovascular risk,” the authors wrote.

SOURCE:

The study was led by Simona Moffa, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, and Gian Pio Sorice, Università Degli Studi di Bari “Aldo Moro,” Bari, Italy. It was published online in the Journal of Endocrinological Investigation.

LIMITATIONS:

The study had a limited sample size, which may affect the generalizability of the findings. C-peptide levels, which could have provided additional insights into insulin secretion, were not assessed in the study.

DISCLOSURES:

The study was supported by grants from Università Cattolica del Sacro Cuore. The authors declared no conflicts of interest.
 

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Metformin After Bariatric Surgery: Necessary or Not?

Article Type
Changed

 

TOPLINE:

Patients who achieved an A1c level < 6.5% after metabolic bariatric surgery (MBS) maintained this target in the short and long terms, regardless of whether they continued or discontinued metformin after the procedure.

METHODOLOGY:

  • MBS is effective in individuals with type 2 diabetes (T2D) and obesity, but the recommendations for managing patients who achieve diabetes remission after bariatric surgery are not clear.
  • Researchers conducted a retrospective cohort study using electronic health records from Clalit Health Services in Israel to assess the association between metformin continuation after MBS and the short- and long-term relapse of diabetes (2 and 5 years after surgery, respectively).
  • They included 366 patients (aged ≥ 24 years; body mass index [BMI], ≥ 30) with obesity and T2D who received metformin and achieved A1c levels < 6.5% for up to 6 months after MBS.
  • Patients who continued metformin (n = 122; ≥ 3 filled prescriptions; mean follow-up, 5.3 years) were matched and compared with those who discontinued it (n = 244; 0 prescriptions; mean follow-up, 5.8 years) after MBS.
  • The primary outcome was the long-term relapse of diabetes, defined by an A1c level ≥ 6.5% during the follow-up period, and the secondary outcomes were short- and long-term A1c levels, changes in BMI, and all-cause mortality.

TAKEAWAY:

  • After adjustment for patient variables, no significant association was found between metformin continuation after MBS and risk for relapse of diabetes (adjusted hazard ratio, 1.65).
  • Patients in both groups maintained mean A1c levels < 6.5% during the short- and long-term follow-up periods, showing that discontinuing metformin did not impede glycemic control.
  • No significant differences were noted between patients who continued or discontinued metformin in terms of weight loss.
  • The mortality rate was low in both the groups, with no substantial difference noted between the groups that continued metformin (4.1%) or discontinued metformin (2.5%).

IN PRACTICE:

“The lack of a significant association of metformin continuation with A1c level observed in the current study supports the notion that metformin may not have an additional benefit after MBS,” the authors wrote.

SOURCE:

This study was led by Dror Dicker, MD, Internal Medicine Department D and Obesity Clinic, Hasharon Hospital, Rabin Medical Center, Petah Tikva, Israel, and published online in Diabetes, Obesity and Metabolism.

LIMITATIONS: 

The observational nature of the study and the lack of randomization may have introduced residual confounding. The small number of patients remaining in the final study population limited the generalizability of the findings. The follow-up period of approximately 5 years may not have been sufficient to observe the long-term effects of metformin continuation.

DISCLOSURES:

The study received funding from Ariel University. Two authors disclosed receiving grants, personal fees, or nonfinancial support from various sources unrelated to this study.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

 

TOPLINE:

Patients who achieved an A1c level < 6.5% after metabolic bariatric surgery (MBS) maintained this target in the short and long terms, regardless of whether they continued or discontinued metformin after the procedure.

METHODOLOGY:

  • MBS is effective in individuals with type 2 diabetes (T2D) and obesity, but the recommendations for managing patients who achieve diabetes remission after bariatric surgery are not clear.
  • Researchers conducted a retrospective cohort study using electronic health records from Clalit Health Services in Israel to assess the association between metformin continuation after MBS and the short- and long-term relapse of diabetes (2 and 5 years after surgery, respectively).
  • They included 366 patients (aged ≥ 24 years; body mass index [BMI], ≥ 30) with obesity and T2D who received metformin and achieved A1c levels < 6.5% for up to 6 months after MBS.
  • Patients who continued metformin (n = 122; ≥ 3 filled prescriptions; mean follow-up, 5.3 years) were matched and compared with those who discontinued it (n = 244; 0 prescriptions; mean follow-up, 5.8 years) after MBS.
  • The primary outcome was the long-term relapse of diabetes, defined by an A1c level ≥ 6.5% during the follow-up period, and the secondary outcomes were short- and long-term A1c levels, changes in BMI, and all-cause mortality.

TAKEAWAY:

  • After adjustment for patient variables, no significant association was found between metformin continuation after MBS and risk for relapse of diabetes (adjusted hazard ratio, 1.65).
  • Patients in both groups maintained mean A1c levels < 6.5% during the short- and long-term follow-up periods, showing that discontinuing metformin did not impede glycemic control.
  • No significant differences were noted between patients who continued or discontinued metformin in terms of weight loss.
  • The mortality rate was low in both the groups, with no substantial difference noted between the groups that continued metformin (4.1%) or discontinued metformin (2.5%).

IN PRACTICE:

“The lack of a significant association of metformin continuation with A1c level observed in the current study supports the notion that metformin may not have an additional benefit after MBS,” the authors wrote.

SOURCE:

This study was led by Dror Dicker, MD, Internal Medicine Department D and Obesity Clinic, Hasharon Hospital, Rabin Medical Center, Petah Tikva, Israel, and published online in Diabetes, Obesity and Metabolism.

LIMITATIONS: 

The observational nature of the study and the lack of randomization may have introduced residual confounding. The small number of patients remaining in the final study population limited the generalizability of the findings. The follow-up period of approximately 5 years may not have been sufficient to observe the long-term effects of metformin continuation.

DISCLOSURES:

The study received funding from Ariel University. Two authors disclosed receiving grants, personal fees, or nonfinancial support from various sources unrelated to this study.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.

 

TOPLINE:

Patients who achieved an A1c level < 6.5% after metabolic bariatric surgery (MBS) maintained this target in the short and long terms, regardless of whether they continued or discontinued metformin after the procedure.

METHODOLOGY:

  • MBS is effective in individuals with type 2 diabetes (T2D) and obesity, but the recommendations for managing patients who achieve diabetes remission after bariatric surgery are not clear.
  • Researchers conducted a retrospective cohort study using electronic health records from Clalit Health Services in Israel to assess the association between metformin continuation after MBS and the short- and long-term relapse of diabetes (2 and 5 years after surgery, respectively).
  • They included 366 patients (aged ≥ 24 years; body mass index [BMI], ≥ 30) with obesity and T2D who received metformin and achieved A1c levels < 6.5% for up to 6 months after MBS.
  • Patients who continued metformin (n = 122; ≥ 3 filled prescriptions; mean follow-up, 5.3 years) were matched and compared with those who discontinued it (n = 244; 0 prescriptions; mean follow-up, 5.8 years) after MBS.
  • The primary outcome was the long-term relapse of diabetes, defined by an A1c level ≥ 6.5% during the follow-up period, and the secondary outcomes were short- and long-term A1c levels, changes in BMI, and all-cause mortality.

TAKEAWAY:

  • After adjustment for patient variables, no significant association was found between metformin continuation after MBS and risk for relapse of diabetes (adjusted hazard ratio, 1.65).
  • Patients in both groups maintained mean A1c levels < 6.5% during the short- and long-term follow-up periods, showing that discontinuing metformin did not impede glycemic control.
  • No significant differences were noted between patients who continued or discontinued metformin in terms of weight loss.
  • The mortality rate was low in both the groups, with no substantial difference noted between the groups that continued metformin (4.1%) or discontinued metformin (2.5%).

IN PRACTICE:

“The lack of a significant association of metformin continuation with A1c level observed in the current study supports the notion that metformin may not have an additional benefit after MBS,” the authors wrote.

SOURCE:

This study was led by Dror Dicker, MD, Internal Medicine Department D and Obesity Clinic, Hasharon Hospital, Rabin Medical Center, Petah Tikva, Israel, and published online in Diabetes, Obesity and Metabolism.

LIMITATIONS: 

The observational nature of the study and the lack of randomization may have introduced residual confounding. The small number of patients remaining in the final study population limited the generalizability of the findings. The follow-up period of approximately 5 years may not have been sufficient to observe the long-term effects of metformin continuation.

DISCLOSURES:

The study received funding from Ariel University. Two authors disclosed receiving grants, personal fees, or nonfinancial support from various sources unrelated to this study.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Insulin Pump Glitches: A Call to End Daylight Saving Time?

Article Type
Changed

Katie Sullivan, DNP, FNP-C, is publicizing her own challenge with updating an insulin pump as part of an effort to bring an end to the biannual seasonal clock changes in the United States.

On March 10, 2024, Sullivan, who works in the Endocrinology Clinic, Michigan State University, East Lansing, Michigan, mistakenly reversed the AM and PM settings while adjusting her own insulin pump. Sullivan, who has type 1 diabetes, noticed several hours later that her blood glucose levels had become higher than usual and was surprised to see her pump showed sleep mode during the day.

She was able to address this glitch before going to sleep and thus “escaped a potential occurrence of nocturnal hypoglycemia,” Sullivan and her colleague, Saleh Aldasouqi, MD, wrote in a September commentary in the journal Clinical Diabetes.

The risk of daylight saving time (DST) changes for people with insulin pumps is well known. Aldasouqi himself raised it in a 2014 article in the Journal of Diabetes Science and Technology.

Medtronic Inc., the leading maker of insulin pumps, told this news organization in an email that it intends for future devices to automate DST changes. The company did not provide any further details on when such changes would happen.

For now, Medtronic and other makers of insulin pumps join in twice-a-year efforts to remind people they need to update their devices to adjust for DST changes. They will need to gear up these outreach campaigns, which include social media posts, again ahead of the end of DST on November 3, when clocks shift back an hour. Diabetes clinics and hospitals also send notes to patients.

Even so, people will fail to make this change or to do it correctly.

“Despite our efforts to educate our patients about DST glitches, we have detected incorrect time settings in some of our patients’ insulin pumps after the DST changes in the fall and spring and occasional cases of incorrect insulin dosing, resulting in hyperglycemia or hypoglycemia,” Sullivan and Aldasouqi wrote in their article.

The US Food and Drug Administration (FDA) database of injuries and mishaps with devices contains many reports about patients not adjusting their insulin pumps for DST.

Known as Manufacturer and User Facility Device Experience (MAUDE), this database does not provide identifying details about the patients. Instead, the reports contain only a few lines describing what happened. In many cases, people were able to easily resolve their temporary glycemic issues and then set their devices to the correct time.

But some of the MAUDE reports tell of more severe consequences, with people ending up in emergency rooms because they did not adjust their insulin pumps for DST.

Among these is a report about a November 2022 incident, where a patient suffered due to what appeared to be inaccurate continuous glucose monitor readings, combined with the effects of an insulin pump that had not been updated for a DST change.

Although that patient’s mother was available to assist and the patient consumed three dextrose candies, the patient still reportedly lost consciousness and experienced tremors. That led to hospitalization, where the patient was treated with intravenous saline, intravenous insulin, saline fluids, and insulin fluids. The patient left the hospital with “the issue resolved and no permanent damage” but then switched to another method of insulin therapy, the MAUDE report said.

It’s unclear how often DST changes lead to problems with insulin pumps, reflecting difficulties in tracking flaws and glitches in medical devices, Madris Kinard, the chief executive officer and founder of Device Events, told this news organization.

The FDA relies heavily on passive surveillance, gathering MAUDE reports submitted by companies, clinicians, and patients. That means many cases likely are missed, said Kinard who earlier worked as an analyst at the FDA, updating processes and systems to help identify risky devices.

For example, Sullivan told this news organization she had not filed a report for her incident with the insulin pump.
 

 

 

Permanent Standard Time?

Many clinicians, including Aldasouqi and Sullivan, argue a better solution to these challenges would be to end DST.

In their Clinical Diabetes article, they also cited other health risks associated with clock changes such as fatigue, headache, and loss of attention and alertness that can result in injuries.

But a permanent time change is a “politically charged issue, and it continues to be debated nationally and at the state level,” they wrote.

At least 30 states also considered measures this year related to DST, according to the National Conference of State Legislatures. A pending Senate bill intended to make DST permanent has the support of 8 Democrats and 11 Republicans, including Sen. Tommy Tuberville (R-Ala).

“It’s amazing how many phone calls we get over this one topic. People across America agree that changing our clocks back and forth twice a year really makes no sense,” Tuberville said last year on the Senate floor. “People call and say they’re just sick of it.”

These federal and state efforts have stalled to date on the key question of whether to make either standard time or DST permanent, the National Conference of State Legislatures noted. A shift to permanent DST might have benefits for some agricultural and recreational industries, but many physicians say it would be bad for people’s health.

The American Academy of Sleep Medicine (AASM) argues strongly for moving to permanent standard time. In a position statement published in the Journal of Clinical Sleep Medicine, the group said the acute transitions from standard time to DST pose harms, citing research indicating increased risks for adverse cardiovascular events, mood disorders, and motor vehicle crashes.

The solution is to end shifts in time and opt for standard time, which best aligns with the human biological clock, AASM said.

AASM noted that there already was a failed experiment in the United States with a shift to permanent DST. Congress established this in response to the 1973 OPEC oil embargo, expecting that allowing more evening hours with light would lead to energy savings. That didn’t pay off in the expected reduction in energy and the policy was highly unpopular, especially in rural areas, AASM said.

“After a single winter, the policy was reversed by an overwhelming congressional majority,” wrote Muhammad Adeel Rishi, MD, and other authors of the statement. “The unpopularity of the act was likely because despite greater evening light, the policy resulted in a greater proportion of days that required waking up on dark mornings, particularly in the winter.”

Karin G. Johnson, MD, professor of neurology at the UMass Chan School of Medicine, Worcester, Massachusetts, told this news organization that a shift to permanent DST would rob many people of the signals their bodies need for sleep.

“Sunrises and sunsets are later and that creates a desire for our body to stay up later and have more trouble getting up in the morning,” Johnson said. “You’re all but making it impossible for certain segments of the population to get enough sleep” with permanent DST.

Johnson, Sullivan, and Aldasouqi had no relevant financial disclosures.

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

Katie Sullivan, DNP, FNP-C, is publicizing her own challenge with updating an insulin pump as part of an effort to bring an end to the biannual seasonal clock changes in the United States.

On March 10, 2024, Sullivan, who works in the Endocrinology Clinic, Michigan State University, East Lansing, Michigan, mistakenly reversed the AM and PM settings while adjusting her own insulin pump. Sullivan, who has type 1 diabetes, noticed several hours later that her blood glucose levels had become higher than usual and was surprised to see her pump showed sleep mode during the day.

She was able to address this glitch before going to sleep and thus “escaped a potential occurrence of nocturnal hypoglycemia,” Sullivan and her colleague, Saleh Aldasouqi, MD, wrote in a September commentary in the journal Clinical Diabetes.

The risk of daylight saving time (DST) changes for people with insulin pumps is well known. Aldasouqi himself raised it in a 2014 article in the Journal of Diabetes Science and Technology.

Medtronic Inc., the leading maker of insulin pumps, told this news organization in an email that it intends for future devices to automate DST changes. The company did not provide any further details on when such changes would happen.

For now, Medtronic and other makers of insulin pumps join in twice-a-year efforts to remind people they need to update their devices to adjust for DST changes. They will need to gear up these outreach campaigns, which include social media posts, again ahead of the end of DST on November 3, when clocks shift back an hour. Diabetes clinics and hospitals also send notes to patients.

Even so, people will fail to make this change or to do it correctly.

“Despite our efforts to educate our patients about DST glitches, we have detected incorrect time settings in some of our patients’ insulin pumps after the DST changes in the fall and spring and occasional cases of incorrect insulin dosing, resulting in hyperglycemia or hypoglycemia,” Sullivan and Aldasouqi wrote in their article.

The US Food and Drug Administration (FDA) database of injuries and mishaps with devices contains many reports about patients not adjusting their insulin pumps for DST.

Known as Manufacturer and User Facility Device Experience (MAUDE), this database does not provide identifying details about the patients. Instead, the reports contain only a few lines describing what happened. In many cases, people were able to easily resolve their temporary glycemic issues and then set their devices to the correct time.

But some of the MAUDE reports tell of more severe consequences, with people ending up in emergency rooms because they did not adjust their insulin pumps for DST.

Among these is a report about a November 2022 incident, where a patient suffered due to what appeared to be inaccurate continuous glucose monitor readings, combined with the effects of an insulin pump that had not been updated for a DST change.

Although that patient’s mother was available to assist and the patient consumed three dextrose candies, the patient still reportedly lost consciousness and experienced tremors. That led to hospitalization, where the patient was treated with intravenous saline, intravenous insulin, saline fluids, and insulin fluids. The patient left the hospital with “the issue resolved and no permanent damage” but then switched to another method of insulin therapy, the MAUDE report said.

It’s unclear how often DST changes lead to problems with insulin pumps, reflecting difficulties in tracking flaws and glitches in medical devices, Madris Kinard, the chief executive officer and founder of Device Events, told this news organization.

The FDA relies heavily on passive surveillance, gathering MAUDE reports submitted by companies, clinicians, and patients. That means many cases likely are missed, said Kinard who earlier worked as an analyst at the FDA, updating processes and systems to help identify risky devices.

For example, Sullivan told this news organization she had not filed a report for her incident with the insulin pump.
 

 

 

Permanent Standard Time?

Many clinicians, including Aldasouqi and Sullivan, argue a better solution to these challenges would be to end DST.

In their Clinical Diabetes article, they also cited other health risks associated with clock changes such as fatigue, headache, and loss of attention and alertness that can result in injuries.

But a permanent time change is a “politically charged issue, and it continues to be debated nationally and at the state level,” they wrote.

At least 30 states also considered measures this year related to DST, according to the National Conference of State Legislatures. A pending Senate bill intended to make DST permanent has the support of 8 Democrats and 11 Republicans, including Sen. Tommy Tuberville (R-Ala).

“It’s amazing how many phone calls we get over this one topic. People across America agree that changing our clocks back and forth twice a year really makes no sense,” Tuberville said last year on the Senate floor. “People call and say they’re just sick of it.”

These federal and state efforts have stalled to date on the key question of whether to make either standard time or DST permanent, the National Conference of State Legislatures noted. A shift to permanent DST might have benefits for some agricultural and recreational industries, but many physicians say it would be bad for people’s health.

The American Academy of Sleep Medicine (AASM) argues strongly for moving to permanent standard time. In a position statement published in the Journal of Clinical Sleep Medicine, the group said the acute transitions from standard time to DST pose harms, citing research indicating increased risks for adverse cardiovascular events, mood disorders, and motor vehicle crashes.

The solution is to end shifts in time and opt for standard time, which best aligns with the human biological clock, AASM said.

AASM noted that there already was a failed experiment in the United States with a shift to permanent DST. Congress established this in response to the 1973 OPEC oil embargo, expecting that allowing more evening hours with light would lead to energy savings. That didn’t pay off in the expected reduction in energy and the policy was highly unpopular, especially in rural areas, AASM said.

“After a single winter, the policy was reversed by an overwhelming congressional majority,” wrote Muhammad Adeel Rishi, MD, and other authors of the statement. “The unpopularity of the act was likely because despite greater evening light, the policy resulted in a greater proportion of days that required waking up on dark mornings, particularly in the winter.”

Karin G. Johnson, MD, professor of neurology at the UMass Chan School of Medicine, Worcester, Massachusetts, told this news organization that a shift to permanent DST would rob many people of the signals their bodies need for sleep.

“Sunrises and sunsets are later and that creates a desire for our body to stay up later and have more trouble getting up in the morning,” Johnson said. “You’re all but making it impossible for certain segments of the population to get enough sleep” with permanent DST.

Johnson, Sullivan, and Aldasouqi had no relevant financial disclosures.

A version of this article first appeared on Medscape.com.

Katie Sullivan, DNP, FNP-C, is publicizing her own challenge with updating an insulin pump as part of an effort to bring an end to the biannual seasonal clock changes in the United States.

On March 10, 2024, Sullivan, who works in the Endocrinology Clinic, Michigan State University, East Lansing, Michigan, mistakenly reversed the AM and PM settings while adjusting her own insulin pump. Sullivan, who has type 1 diabetes, noticed several hours later that her blood glucose levels had become higher than usual and was surprised to see her pump showed sleep mode during the day.

She was able to address this glitch before going to sleep and thus “escaped a potential occurrence of nocturnal hypoglycemia,” Sullivan and her colleague, Saleh Aldasouqi, MD, wrote in a September commentary in the journal Clinical Diabetes.

The risk of daylight saving time (DST) changes for people with insulin pumps is well known. Aldasouqi himself raised it in a 2014 article in the Journal of Diabetes Science and Technology.

Medtronic Inc., the leading maker of insulin pumps, told this news organization in an email that it intends for future devices to automate DST changes. The company did not provide any further details on when such changes would happen.

For now, Medtronic and other makers of insulin pumps join in twice-a-year efforts to remind people they need to update their devices to adjust for DST changes. They will need to gear up these outreach campaigns, which include social media posts, again ahead of the end of DST on November 3, when clocks shift back an hour. Diabetes clinics and hospitals also send notes to patients.

Even so, people will fail to make this change or to do it correctly.

“Despite our efforts to educate our patients about DST glitches, we have detected incorrect time settings in some of our patients’ insulin pumps after the DST changes in the fall and spring and occasional cases of incorrect insulin dosing, resulting in hyperglycemia or hypoglycemia,” Sullivan and Aldasouqi wrote in their article.

The US Food and Drug Administration (FDA) database of injuries and mishaps with devices contains many reports about patients not adjusting their insulin pumps for DST.

Known as Manufacturer and User Facility Device Experience (MAUDE), this database does not provide identifying details about the patients. Instead, the reports contain only a few lines describing what happened. In many cases, people were able to easily resolve their temporary glycemic issues and then set their devices to the correct time.

But some of the MAUDE reports tell of more severe consequences, with people ending up in emergency rooms because they did not adjust their insulin pumps for DST.

Among these is a report about a November 2022 incident, where a patient suffered due to what appeared to be inaccurate continuous glucose monitor readings, combined with the effects of an insulin pump that had not been updated for a DST change.

Although that patient’s mother was available to assist and the patient consumed three dextrose candies, the patient still reportedly lost consciousness and experienced tremors. That led to hospitalization, where the patient was treated with intravenous saline, intravenous insulin, saline fluids, and insulin fluids. The patient left the hospital with “the issue resolved and no permanent damage” but then switched to another method of insulin therapy, the MAUDE report said.

It’s unclear how often DST changes lead to problems with insulin pumps, reflecting difficulties in tracking flaws and glitches in medical devices, Madris Kinard, the chief executive officer and founder of Device Events, told this news organization.

The FDA relies heavily on passive surveillance, gathering MAUDE reports submitted by companies, clinicians, and patients. That means many cases likely are missed, said Kinard who earlier worked as an analyst at the FDA, updating processes and systems to help identify risky devices.

For example, Sullivan told this news organization she had not filed a report for her incident with the insulin pump.
 

 

 

Permanent Standard Time?

Many clinicians, including Aldasouqi and Sullivan, argue a better solution to these challenges would be to end DST.

In their Clinical Diabetes article, they also cited other health risks associated with clock changes such as fatigue, headache, and loss of attention and alertness that can result in injuries.

But a permanent time change is a “politically charged issue, and it continues to be debated nationally and at the state level,” they wrote.

At least 30 states also considered measures this year related to DST, according to the National Conference of State Legislatures. A pending Senate bill intended to make DST permanent has the support of 8 Democrats and 11 Republicans, including Sen. Tommy Tuberville (R-Ala).

“It’s amazing how many phone calls we get over this one topic. People across America agree that changing our clocks back and forth twice a year really makes no sense,” Tuberville said last year on the Senate floor. “People call and say they’re just sick of it.”

These federal and state efforts have stalled to date on the key question of whether to make either standard time or DST permanent, the National Conference of State Legislatures noted. A shift to permanent DST might have benefits for some agricultural and recreational industries, but many physicians say it would be bad for people’s health.

The American Academy of Sleep Medicine (AASM) argues strongly for moving to permanent standard time. In a position statement published in the Journal of Clinical Sleep Medicine, the group said the acute transitions from standard time to DST pose harms, citing research indicating increased risks for adverse cardiovascular events, mood disorders, and motor vehicle crashes.

The solution is to end shifts in time and opt for standard time, which best aligns with the human biological clock, AASM said.

AASM noted that there already was a failed experiment in the United States with a shift to permanent DST. Congress established this in response to the 1973 OPEC oil embargo, expecting that allowing more evening hours with light would lead to energy savings. That didn’t pay off in the expected reduction in energy and the policy was highly unpopular, especially in rural areas, AASM said.

“After a single winter, the policy was reversed by an overwhelming congressional majority,” wrote Muhammad Adeel Rishi, MD, and other authors of the statement. “The unpopularity of the act was likely because despite greater evening light, the policy resulted in a greater proportion of days that required waking up on dark mornings, particularly in the winter.”

Karin G. Johnson, MD, professor of neurology at the UMass Chan School of Medicine, Worcester, Massachusetts, told this news organization that a shift to permanent DST would rob many people of the signals their bodies need for sleep.

“Sunrises and sunsets are later and that creates a desire for our body to stay up later and have more trouble getting up in the morning,” Johnson said. “You’re all but making it impossible for certain segments of the population to get enough sleep” with permanent DST.

Johnson, Sullivan, and Aldasouqi had no relevant financial disclosures.

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Type 2 Diabetes More Prevalent Than Type 1 Among Adolescents in Some Areas

Article Type
Changed

In several countries, including China, Mexico, and the United States, the incidence of type 2 diabetes now exceeds that of type 1 diabetes among patients younger than 20 years.

“This is an emerging epidemic,” said Orit Pinhas-Hamiel, MD, director of the Pediatric Endocrinology and Diabetes Unit at Sheba Medical Center in Ramat Gan, Israel, at the annual meeting of the European Association for the Study of Diabetes, noting that these young patients, most with obesity, exhibit a significantly higher incidence of complications than adults with type 2 diabetes or young people with type 1 diabetes.

In 2017-2018, the incidence of type 2 diabetes among patients aged 15-19 years (19.7 per 100,000) surpassed that of type 1 diabetes (14.6 per 100,000), according to data from the United States.

“This is the first time that the incidence of type 2 diabetes has exceeded that of type 1 among youth,” said Pinhas-Hamiel. A review of 2021 published a few months ago highlighted this surge, with countries like China, India, the United States, Brazil, and Mexico leading the way.
 

SEARCH and TODAY

The SEARCH for Diabetes in Youth study, which was launched in 2000, is a multicenter observational study in the United States aimed at estimating the prevalence, incidence, and complications of types 1 and 2 diabetes among young patients. The Treatment Options for Type 2 Diabetes in Adolescents and Youth (TODAY) study is an interventional study focusing on adolescents with type 2 diabetes to evaluate the effectiveness of various treatment options.

“Diabesity” — the dual global epidemic of obesity and type 2 diabetes — has visible consequences from the moment of diagnosis, including hypertension. In the TODAY study, 11.6% adolescents had hypertension at diagnosis. A study conducted in Hong Kong involving 391 children younger than 18 years revealed that 22.5% had hypertension. In SEARCH, 27% young patients diagnosed with type 2 diabetes for 1.5 years had hypertension.

In addition, the SEARCH study found that 27% young individuals had low levels of high-density lipoprotein cholesterol, while 25% had high triglyceride levels, at 1.5 years after diagnosis.

Overall, the cumulative incidence of long-term diabetic complications was assessed in 500 adolescents participating in TODAY (mean age, 26.4 ± 2.8 years; mean time since diagnosis, 13.3 ± 1.8 years). The initial prevalence was 19.2%, while the cumulative incidence rose to 67.5% after 15 years of follow-up.

For dyslipidemia, the initial prevalence was 20.8%, with a cumulative incidence of 51.6%. The incidence of diabetic nephropathy was 54.8% and neuropathies was 32.4%. The prevalence of retinopathy was 13.7% for the period 2010-2011 and 51% for 2017-2018.

At least one complication was observed in 60.1% participants and at least two in 28.4%. As expected, risk factors for developing complications included belonging to a racial or ethnic minority, hyperglycemia, hypertension, and dyslipidemia.

“Among those who developed type 2 diabetes in adolescence, the risk for complications, including microvascular complications, has continuously increased and affected most participants in young adulthood,” said Pinhas-Hamiel.

At the same time, the rate of treatment with lipid-lowering and antihypertensive medications remains low among young people with type 2 diabetes. The management of dyslipidemia is suboptimal, with only 5% young patients with diabetes and dyslipidemia receiving appropriate medications. Furthermore, treatment adherence is lacking. In the TODAY cohort, for example, only one third of participants with high levels of low-density lipoprotein cholesterol were on lipid-lowering medications, and only half of the young patients with hypertension were taking antihypertensives.
 

 

 

Focus on Diabetic Nephropathy

Diabetic kidney disease is the leading microvascular complication of type 2 diabetes in adolescents. It is associated with rapid progression and poor prognosis. The natural history begins with hyperfiltration: A consequence of obesity and impaired glucose tolerance. Structural renal changes can be detected as early as 1.5 years after diagnosis.

The second stage is characterized by a reduction in the glomerular filtration rate. At this stage, “the structural changes in the kidney are typical but often present,” said Pinhas-Hamiel, making this period critical for reducing risk factors.

In TODAY, the cumulative incidence of diabetic nephropathy was 54.8%. The prevalence at inclusion was 8%. In SEARCH, after 8 years, the prevalence of diabetic kidney disease was 19.9% among adolescents with type 2 diabetes vs 5.8% among those with type 1 diabetes. A pre-analysis revealed that the overall prevalence of macroalbuminuria among 730 children and adolescents with type 2 diabetes was 3.8%. The ages at diagnosis of type 2 diabetes ranged from 6.5 to 21 years, and the duration of the disease varied from diagnosis to 15 years after.

Diabetic retinopathy was present in 50% participants in the TODAY study at age 25 years (ie, after 12 years of disease). In SEARCH, 56% young patients had diabetic retinopathy after 12.5 years of diabetes. In addition, in the same study, the prevalence of peripheral neuropathy, assessed after 8 years, was 22% among adolescents with type 2 diabetes vs 7% among those with type 1 diabetes.
 

Cardiovascular Autonomic Neuropathy

A decrease in heart rate variability was observed in 47% young patients with type 2 diabetes after an average disease duration of only 1.7 years. In SEARCH, the prevalence of cardiovascular autonomic neuropathy, assessed after 8 years of disease, was 17% in adolescents with type 2 diabetes versus 12% in those with type 1 diabetes.

Overall, 7.1% participants had three complications: nephropathy, retinopathy, and neuropathy. The cumulative incidence of microvascular complications was 80%.

Moreover, A1c levels deteriorated progressively throughout the follow-up period. Approximately 45% participants had an A1c of at least 10%, and 20% were between 8% and 10%. Body mass index consistently remained between 35 and 37.5.

Young patients with type 2 diabetes exhibit endothelial dysfunction, increased carotid intima-media thickness, elevated arterial stiffness, left ventricular hypertrophy, diastolic dysfunction, and reduced maximal exercise capacity. All these factors predict cardiovascular morbidity and mortality.

In TODAY, 17 serious cardiovascular events were recorded, including four myocardial infarctions, six cases of congestive heart failure, three coronary events, and four strokes.

In an analysis of the TODAY and SEARCH studies, although the average duration of diabetes was similar, complications were more frequent among young patients with type 2 diabetes than among those with type 1 diabetes. Microvascular complications were 2.5 times more frequent, and macrovascular complications were four times more frequent.

In SEARCH, excessive mortality was observed among young adults for each type of diabetes. Differences in risk were associated with diabetes type, age, race/ethnicity, and sex. Mortality ratios were 1.5 and 2.3 for types 1 and 2 diabetes, respectively.

Women had higher mortality rates than men. Diabetes was the underlying cause of death in 9.1% cases, which was comparable to cardiovascular diseases or cancer (10.9%). According to a life expectancy model, young patients with type 2 diabetes lose about 15 years of life.
 

 

 

Eating Disorders and Depression

Beyond these complications, other issues are often present among adolescents with type 2 diabetes. Approximately 50% have eating disorders (compared with 21% among those with type 1 diabetes), 19.3% report depressive symptoms, and 18.9% have expressed thoughts of self-harm. In addition, 19.6% have polycystic ovary syndrome. Z-scores for bone mineral density at the femoral neck and lumbar spine were significantly lower in adolescents with type 2 diabetes than in healthy peers. The presence of metabolic dysfunction–associated fatty liver disease is also more pronounced.

“The recent approvals of new pharmacological interventions for weight loss and improved glycemic control in adolescents offer hope. We hope that, over the next decade, the prevalence of complications among these young patients with type 2 diabetes will decline. In the meantime, a proactive approach is essential to prevent complications related to type 2 diabetes in these youth,” Pinhas-Hamiel concluded.

For more information, see ISPAD Clinical Practice Consensus Guidelines 2022: Type 2 Diabetes in Children and Adolescents.

Pinhas-Hamiel reported no relevant financial relationships.

This story was translated from the Medscape French edition using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.

Publications
Topics
Sections

In several countries, including China, Mexico, and the United States, the incidence of type 2 diabetes now exceeds that of type 1 diabetes among patients younger than 20 years.

“This is an emerging epidemic,” said Orit Pinhas-Hamiel, MD, director of the Pediatric Endocrinology and Diabetes Unit at Sheba Medical Center in Ramat Gan, Israel, at the annual meeting of the European Association for the Study of Diabetes, noting that these young patients, most with obesity, exhibit a significantly higher incidence of complications than adults with type 2 diabetes or young people with type 1 diabetes.

In 2017-2018, the incidence of type 2 diabetes among patients aged 15-19 years (19.7 per 100,000) surpassed that of type 1 diabetes (14.6 per 100,000), according to data from the United States.

“This is the first time that the incidence of type 2 diabetes has exceeded that of type 1 among youth,” said Pinhas-Hamiel. A review of 2021 published a few months ago highlighted this surge, with countries like China, India, the United States, Brazil, and Mexico leading the way.
 

SEARCH and TODAY

The SEARCH for Diabetes in Youth study, which was launched in 2000, is a multicenter observational study in the United States aimed at estimating the prevalence, incidence, and complications of types 1 and 2 diabetes among young patients. The Treatment Options for Type 2 Diabetes in Adolescents and Youth (TODAY) study is an interventional study focusing on adolescents with type 2 diabetes to evaluate the effectiveness of various treatment options.

“Diabesity” — the dual global epidemic of obesity and type 2 diabetes — has visible consequences from the moment of diagnosis, including hypertension. In the TODAY study, 11.6% adolescents had hypertension at diagnosis. A study conducted in Hong Kong involving 391 children younger than 18 years revealed that 22.5% had hypertension. In SEARCH, 27% young patients diagnosed with type 2 diabetes for 1.5 years had hypertension.

In addition, the SEARCH study found that 27% young individuals had low levels of high-density lipoprotein cholesterol, while 25% had high triglyceride levels, at 1.5 years after diagnosis.

Overall, the cumulative incidence of long-term diabetic complications was assessed in 500 adolescents participating in TODAY (mean age, 26.4 ± 2.8 years; mean time since diagnosis, 13.3 ± 1.8 years). The initial prevalence was 19.2%, while the cumulative incidence rose to 67.5% after 15 years of follow-up.

For dyslipidemia, the initial prevalence was 20.8%, with a cumulative incidence of 51.6%. The incidence of diabetic nephropathy was 54.8% and neuropathies was 32.4%. The prevalence of retinopathy was 13.7% for the period 2010-2011 and 51% for 2017-2018.

At least one complication was observed in 60.1% participants and at least two in 28.4%. As expected, risk factors for developing complications included belonging to a racial or ethnic minority, hyperglycemia, hypertension, and dyslipidemia.

“Among those who developed type 2 diabetes in adolescence, the risk for complications, including microvascular complications, has continuously increased and affected most participants in young adulthood,” said Pinhas-Hamiel.

At the same time, the rate of treatment with lipid-lowering and antihypertensive medications remains low among young people with type 2 diabetes. The management of dyslipidemia is suboptimal, with only 5% young patients with diabetes and dyslipidemia receiving appropriate medications. Furthermore, treatment adherence is lacking. In the TODAY cohort, for example, only one third of participants with high levels of low-density lipoprotein cholesterol were on lipid-lowering medications, and only half of the young patients with hypertension were taking antihypertensives.
 

 

 

Focus on Diabetic Nephropathy

Diabetic kidney disease is the leading microvascular complication of type 2 diabetes in adolescents. It is associated with rapid progression and poor prognosis. The natural history begins with hyperfiltration: A consequence of obesity and impaired glucose tolerance. Structural renal changes can be detected as early as 1.5 years after diagnosis.

The second stage is characterized by a reduction in the glomerular filtration rate. At this stage, “the structural changes in the kidney are typical but often present,” said Pinhas-Hamiel, making this period critical for reducing risk factors.

In TODAY, the cumulative incidence of diabetic nephropathy was 54.8%. The prevalence at inclusion was 8%. In SEARCH, after 8 years, the prevalence of diabetic kidney disease was 19.9% among adolescents with type 2 diabetes vs 5.8% among those with type 1 diabetes. A pre-analysis revealed that the overall prevalence of macroalbuminuria among 730 children and adolescents with type 2 diabetes was 3.8%. The ages at diagnosis of type 2 diabetes ranged from 6.5 to 21 years, and the duration of the disease varied from diagnosis to 15 years after.

Diabetic retinopathy was present in 50% participants in the TODAY study at age 25 years (ie, after 12 years of disease). In SEARCH, 56% young patients had diabetic retinopathy after 12.5 years of diabetes. In addition, in the same study, the prevalence of peripheral neuropathy, assessed after 8 years, was 22% among adolescents with type 2 diabetes vs 7% among those with type 1 diabetes.
 

Cardiovascular Autonomic Neuropathy

A decrease in heart rate variability was observed in 47% young patients with type 2 diabetes after an average disease duration of only 1.7 years. In SEARCH, the prevalence of cardiovascular autonomic neuropathy, assessed after 8 years of disease, was 17% in adolescents with type 2 diabetes versus 12% in those with type 1 diabetes.

Overall, 7.1% participants had three complications: nephropathy, retinopathy, and neuropathy. The cumulative incidence of microvascular complications was 80%.

Moreover, A1c levels deteriorated progressively throughout the follow-up period. Approximately 45% participants had an A1c of at least 10%, and 20% were between 8% and 10%. Body mass index consistently remained between 35 and 37.5.

Young patients with type 2 diabetes exhibit endothelial dysfunction, increased carotid intima-media thickness, elevated arterial stiffness, left ventricular hypertrophy, diastolic dysfunction, and reduced maximal exercise capacity. All these factors predict cardiovascular morbidity and mortality.

In TODAY, 17 serious cardiovascular events were recorded, including four myocardial infarctions, six cases of congestive heart failure, three coronary events, and four strokes.

In an analysis of the TODAY and SEARCH studies, although the average duration of diabetes was similar, complications were more frequent among young patients with type 2 diabetes than among those with type 1 diabetes. Microvascular complications were 2.5 times more frequent, and macrovascular complications were four times more frequent.

In SEARCH, excessive mortality was observed among young adults for each type of diabetes. Differences in risk were associated with diabetes type, age, race/ethnicity, and sex. Mortality ratios were 1.5 and 2.3 for types 1 and 2 diabetes, respectively.

Women had higher mortality rates than men. Diabetes was the underlying cause of death in 9.1% cases, which was comparable to cardiovascular diseases or cancer (10.9%). According to a life expectancy model, young patients with type 2 diabetes lose about 15 years of life.
 

 

 

Eating Disorders and Depression

Beyond these complications, other issues are often present among adolescents with type 2 diabetes. Approximately 50% have eating disorders (compared with 21% among those with type 1 diabetes), 19.3% report depressive symptoms, and 18.9% have expressed thoughts of self-harm. In addition, 19.6% have polycystic ovary syndrome. Z-scores for bone mineral density at the femoral neck and lumbar spine were significantly lower in adolescents with type 2 diabetes than in healthy peers. The presence of metabolic dysfunction–associated fatty liver disease is also more pronounced.

“The recent approvals of new pharmacological interventions for weight loss and improved glycemic control in adolescents offer hope. We hope that, over the next decade, the prevalence of complications among these young patients with type 2 diabetes will decline. In the meantime, a proactive approach is essential to prevent complications related to type 2 diabetes in these youth,” Pinhas-Hamiel concluded.

For more information, see ISPAD Clinical Practice Consensus Guidelines 2022: Type 2 Diabetes in Children and Adolescents.

Pinhas-Hamiel reported no relevant financial relationships.

This story was translated from the Medscape French edition using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.

In several countries, including China, Mexico, and the United States, the incidence of type 2 diabetes now exceeds that of type 1 diabetes among patients younger than 20 years.

“This is an emerging epidemic,” said Orit Pinhas-Hamiel, MD, director of the Pediatric Endocrinology and Diabetes Unit at Sheba Medical Center in Ramat Gan, Israel, at the annual meeting of the European Association for the Study of Diabetes, noting that these young patients, most with obesity, exhibit a significantly higher incidence of complications than adults with type 2 diabetes or young people with type 1 diabetes.

In 2017-2018, the incidence of type 2 diabetes among patients aged 15-19 years (19.7 per 100,000) surpassed that of type 1 diabetes (14.6 per 100,000), according to data from the United States.

“This is the first time that the incidence of type 2 diabetes has exceeded that of type 1 among youth,” said Pinhas-Hamiel. A review of 2021 published a few months ago highlighted this surge, with countries like China, India, the United States, Brazil, and Mexico leading the way.
 

SEARCH and TODAY

The SEARCH for Diabetes in Youth study, which was launched in 2000, is a multicenter observational study in the United States aimed at estimating the prevalence, incidence, and complications of types 1 and 2 diabetes among young patients. The Treatment Options for Type 2 Diabetes in Adolescents and Youth (TODAY) study is an interventional study focusing on adolescents with type 2 diabetes to evaluate the effectiveness of various treatment options.

“Diabesity” — the dual global epidemic of obesity and type 2 diabetes — has visible consequences from the moment of diagnosis, including hypertension. In the TODAY study, 11.6% adolescents had hypertension at diagnosis. A study conducted in Hong Kong involving 391 children younger than 18 years revealed that 22.5% had hypertension. In SEARCH, 27% young patients diagnosed with type 2 diabetes for 1.5 years had hypertension.

In addition, the SEARCH study found that 27% young individuals had low levels of high-density lipoprotein cholesterol, while 25% had high triglyceride levels, at 1.5 years after diagnosis.

Overall, the cumulative incidence of long-term diabetic complications was assessed in 500 adolescents participating in TODAY (mean age, 26.4 ± 2.8 years; mean time since diagnosis, 13.3 ± 1.8 years). The initial prevalence was 19.2%, while the cumulative incidence rose to 67.5% after 15 years of follow-up.

For dyslipidemia, the initial prevalence was 20.8%, with a cumulative incidence of 51.6%. The incidence of diabetic nephropathy was 54.8% and neuropathies was 32.4%. The prevalence of retinopathy was 13.7% for the period 2010-2011 and 51% for 2017-2018.

At least one complication was observed in 60.1% participants and at least two in 28.4%. As expected, risk factors for developing complications included belonging to a racial or ethnic minority, hyperglycemia, hypertension, and dyslipidemia.

“Among those who developed type 2 diabetes in adolescence, the risk for complications, including microvascular complications, has continuously increased and affected most participants in young adulthood,” said Pinhas-Hamiel.

At the same time, the rate of treatment with lipid-lowering and antihypertensive medications remains low among young people with type 2 diabetes. The management of dyslipidemia is suboptimal, with only 5% young patients with diabetes and dyslipidemia receiving appropriate medications. Furthermore, treatment adherence is lacking. In the TODAY cohort, for example, only one third of participants with high levels of low-density lipoprotein cholesterol were on lipid-lowering medications, and only half of the young patients with hypertension were taking antihypertensives.
 

 

 

Focus on Diabetic Nephropathy

Diabetic kidney disease is the leading microvascular complication of type 2 diabetes in adolescents. It is associated with rapid progression and poor prognosis. The natural history begins with hyperfiltration: A consequence of obesity and impaired glucose tolerance. Structural renal changes can be detected as early as 1.5 years after diagnosis.

The second stage is characterized by a reduction in the glomerular filtration rate. At this stage, “the structural changes in the kidney are typical but often present,” said Pinhas-Hamiel, making this period critical for reducing risk factors.

In TODAY, the cumulative incidence of diabetic nephropathy was 54.8%. The prevalence at inclusion was 8%. In SEARCH, after 8 years, the prevalence of diabetic kidney disease was 19.9% among adolescents with type 2 diabetes vs 5.8% among those with type 1 diabetes. A pre-analysis revealed that the overall prevalence of macroalbuminuria among 730 children and adolescents with type 2 diabetes was 3.8%. The ages at diagnosis of type 2 diabetes ranged from 6.5 to 21 years, and the duration of the disease varied from diagnosis to 15 years after.

Diabetic retinopathy was present in 50% participants in the TODAY study at age 25 years (ie, after 12 years of disease). In SEARCH, 56% young patients had diabetic retinopathy after 12.5 years of diabetes. In addition, in the same study, the prevalence of peripheral neuropathy, assessed after 8 years, was 22% among adolescents with type 2 diabetes vs 7% among those with type 1 diabetes.
 

Cardiovascular Autonomic Neuropathy

A decrease in heart rate variability was observed in 47% young patients with type 2 diabetes after an average disease duration of only 1.7 years. In SEARCH, the prevalence of cardiovascular autonomic neuropathy, assessed after 8 years of disease, was 17% in adolescents with type 2 diabetes versus 12% in those with type 1 diabetes.

Overall, 7.1% participants had three complications: nephropathy, retinopathy, and neuropathy. The cumulative incidence of microvascular complications was 80%.

Moreover, A1c levels deteriorated progressively throughout the follow-up period. Approximately 45% participants had an A1c of at least 10%, and 20% were between 8% and 10%. Body mass index consistently remained between 35 and 37.5.

Young patients with type 2 diabetes exhibit endothelial dysfunction, increased carotid intima-media thickness, elevated arterial stiffness, left ventricular hypertrophy, diastolic dysfunction, and reduced maximal exercise capacity. All these factors predict cardiovascular morbidity and mortality.

In TODAY, 17 serious cardiovascular events were recorded, including four myocardial infarctions, six cases of congestive heart failure, three coronary events, and four strokes.

In an analysis of the TODAY and SEARCH studies, although the average duration of diabetes was similar, complications were more frequent among young patients with type 2 diabetes than among those with type 1 diabetes. Microvascular complications were 2.5 times more frequent, and macrovascular complications were four times more frequent.

In SEARCH, excessive mortality was observed among young adults for each type of diabetes. Differences in risk were associated with diabetes type, age, race/ethnicity, and sex. Mortality ratios were 1.5 and 2.3 for types 1 and 2 diabetes, respectively.

Women had higher mortality rates than men. Diabetes was the underlying cause of death in 9.1% cases, which was comparable to cardiovascular diseases or cancer (10.9%). According to a life expectancy model, young patients with type 2 diabetes lose about 15 years of life.
 

 

 

Eating Disorders and Depression

Beyond these complications, other issues are often present among adolescents with type 2 diabetes. Approximately 50% have eating disorders (compared with 21% among those with type 1 diabetes), 19.3% report depressive symptoms, and 18.9% have expressed thoughts of self-harm. In addition, 19.6% have polycystic ovary syndrome. Z-scores for bone mineral density at the femoral neck and lumbar spine were significantly lower in adolescents with type 2 diabetes than in healthy peers. The presence of metabolic dysfunction–associated fatty liver disease is also more pronounced.

“The recent approvals of new pharmacological interventions for weight loss and improved glycemic control in adolescents offer hope. We hope that, over the next decade, the prevalence of complications among these young patients with type 2 diabetes will decline. In the meantime, a proactive approach is essential to prevent complications related to type 2 diabetes in these youth,” Pinhas-Hamiel concluded.

For more information, see ISPAD Clinical Practice Consensus Guidelines 2022: Type 2 Diabetes in Children and Adolescents.

Pinhas-Hamiel reported no relevant financial relationships.

This story was translated from the Medscape French edition using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Article Source

From EASD 2024

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Automated Insulin Delivery Systems Reduce Burden in Diabetes

Article Type
Changed

 

TOPLINE:

Automated insulin delivery (AID) systems reduce diabetes distress and fear of hypoglycemia, improve quality of life, and increase awareness about hypoglycemia in adults, children, and adolescents with diabetes.

METHODOLOGY:

  • Despite the known benefits of AID systems for glycemic control, conclusive evidence on the impact of these devices on person-reported outcomes (PROs) has been limited.
  • A systematic review and meta-analysis of 62 studies that reported the findings of 45 different quantitative questionnaires analyzed the effects of AID systems on various PROs in patients with diabetes.
  • Studies were included if they reported the results of at least one PRO assessed via a validated questionnaire; no restrictions on populations were applied, such that studies could include individuals of all ages with type 1 diabetes or adults with type 2 diabetes.
  • Intervention groups in the original studies involved an AID system comprising an insulin pump, a continuous glucose monitoring (CGM) system, and an algorithm controlling insulin delivery on the basis of CGM data. The control group, if included, involved non-AID systems such as multiple daily injections of insulin, standalone insulin pump therapy, or others.
  • The main outcomes studied were diabetes distress, fear of hypoglycemia, and quality of life.

TAKEAWAY:

  • Meta-analysis of 13 randomized controlled trials (RCTs) found a significant reduction in diabetes distress with the use of AID systems vs non-AID systems (standardized mean difference [SMD], −0.159; P = .0322).
  • Fear of hypoglycemia, as assessed by the Hypoglycemia Fear Survey-II in up to 16 RCTs, was significantly reduced in participants using AID systems (SMD, −0.339; P = .0005); AID systems also improved awareness about hypoglycemia, as determined from analysis of four RCTs (SMD, −0.231; P = .0193).
  • Quality of life and pediatric quality of life scores at follow-up, as assessed in three and five RCTs, respectively, were higher for patients using AID systems than for those in the control group.
  • The promising effects of AID systems on alleviating disease burden and improving quality of life outcomes were also evident from the observational studies included in this meta-analysis.

IN PRACTICE:

“These findings can be used by health technology assessment bodies and policy makers to inform reimbursement decisions for AID therapy and can also help to widen access to this diabetes technology,” the authors wrote.

SOURCE:

The study was led by Timm Roos, Research Institute of the Diabetes Academy Mergentheim, Bad Mergentheim, Germany. It was published online in eClinicalMedicine.

LIMITATIONS:

A large number of different questionnaires were used to assess PROs, leading to complexity in the analysis. The limited number of studies that could be pooled for some PROs suggests the need for more research with a uniform assessment of PROs. Finally, the inclusion of different generations of AID systems may have introduced bias in the observed effects on PROs.

DISCLOSURES:

This study did not receive any funding. Some authors reported receiving honoraria, consulting fees, travel support, and advisory board member fees as well as other ties with many pharmaceutical companies.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version this article first appeared on Medscape.com.

Publications
Topics
Sections

 

TOPLINE:

Automated insulin delivery (AID) systems reduce diabetes distress and fear of hypoglycemia, improve quality of life, and increase awareness about hypoglycemia in adults, children, and adolescents with diabetes.

METHODOLOGY:

  • Despite the known benefits of AID systems for glycemic control, conclusive evidence on the impact of these devices on person-reported outcomes (PROs) has been limited.
  • A systematic review and meta-analysis of 62 studies that reported the findings of 45 different quantitative questionnaires analyzed the effects of AID systems on various PROs in patients with diabetes.
  • Studies were included if they reported the results of at least one PRO assessed via a validated questionnaire; no restrictions on populations were applied, such that studies could include individuals of all ages with type 1 diabetes or adults with type 2 diabetes.
  • Intervention groups in the original studies involved an AID system comprising an insulin pump, a continuous glucose monitoring (CGM) system, and an algorithm controlling insulin delivery on the basis of CGM data. The control group, if included, involved non-AID systems such as multiple daily injections of insulin, standalone insulin pump therapy, or others.
  • The main outcomes studied were diabetes distress, fear of hypoglycemia, and quality of life.

TAKEAWAY:

  • Meta-analysis of 13 randomized controlled trials (RCTs) found a significant reduction in diabetes distress with the use of AID systems vs non-AID systems (standardized mean difference [SMD], −0.159; P = .0322).
  • Fear of hypoglycemia, as assessed by the Hypoglycemia Fear Survey-II in up to 16 RCTs, was significantly reduced in participants using AID systems (SMD, −0.339; P = .0005); AID systems also improved awareness about hypoglycemia, as determined from analysis of four RCTs (SMD, −0.231; P = .0193).
  • Quality of life and pediatric quality of life scores at follow-up, as assessed in three and five RCTs, respectively, were higher for patients using AID systems than for those in the control group.
  • The promising effects of AID systems on alleviating disease burden and improving quality of life outcomes were also evident from the observational studies included in this meta-analysis.

IN PRACTICE:

“These findings can be used by health technology assessment bodies and policy makers to inform reimbursement decisions for AID therapy and can also help to widen access to this diabetes technology,” the authors wrote.

SOURCE:

The study was led by Timm Roos, Research Institute of the Diabetes Academy Mergentheim, Bad Mergentheim, Germany. It was published online in eClinicalMedicine.

LIMITATIONS:

A large number of different questionnaires were used to assess PROs, leading to complexity in the analysis. The limited number of studies that could be pooled for some PROs suggests the need for more research with a uniform assessment of PROs. Finally, the inclusion of different generations of AID systems may have introduced bias in the observed effects on PROs.

DISCLOSURES:

This study did not receive any funding. Some authors reported receiving honoraria, consulting fees, travel support, and advisory board member fees as well as other ties with many pharmaceutical companies.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version this article first appeared on Medscape.com.

 

TOPLINE:

Automated insulin delivery (AID) systems reduce diabetes distress and fear of hypoglycemia, improve quality of life, and increase awareness about hypoglycemia in adults, children, and adolescents with diabetes.

METHODOLOGY:

  • Despite the known benefits of AID systems for glycemic control, conclusive evidence on the impact of these devices on person-reported outcomes (PROs) has been limited.
  • A systematic review and meta-analysis of 62 studies that reported the findings of 45 different quantitative questionnaires analyzed the effects of AID systems on various PROs in patients with diabetes.
  • Studies were included if they reported the results of at least one PRO assessed via a validated questionnaire; no restrictions on populations were applied, such that studies could include individuals of all ages with type 1 diabetes or adults with type 2 diabetes.
  • Intervention groups in the original studies involved an AID system comprising an insulin pump, a continuous glucose monitoring (CGM) system, and an algorithm controlling insulin delivery on the basis of CGM data. The control group, if included, involved non-AID systems such as multiple daily injections of insulin, standalone insulin pump therapy, or others.
  • The main outcomes studied were diabetes distress, fear of hypoglycemia, and quality of life.

TAKEAWAY:

  • Meta-analysis of 13 randomized controlled trials (RCTs) found a significant reduction in diabetes distress with the use of AID systems vs non-AID systems (standardized mean difference [SMD], −0.159; P = .0322).
  • Fear of hypoglycemia, as assessed by the Hypoglycemia Fear Survey-II in up to 16 RCTs, was significantly reduced in participants using AID systems (SMD, −0.339; P = .0005); AID systems also improved awareness about hypoglycemia, as determined from analysis of four RCTs (SMD, −0.231; P = .0193).
  • Quality of life and pediatric quality of life scores at follow-up, as assessed in three and five RCTs, respectively, were higher for patients using AID systems than for those in the control group.
  • The promising effects of AID systems on alleviating disease burden and improving quality of life outcomes were also evident from the observational studies included in this meta-analysis.

IN PRACTICE:

“These findings can be used by health technology assessment bodies and policy makers to inform reimbursement decisions for AID therapy and can also help to widen access to this diabetes technology,” the authors wrote.

SOURCE:

The study was led by Timm Roos, Research Institute of the Diabetes Academy Mergentheim, Bad Mergentheim, Germany. It was published online in eClinicalMedicine.

LIMITATIONS:

A large number of different questionnaires were used to assess PROs, leading to complexity in the analysis. The limited number of studies that could be pooled for some PROs suggests the need for more research with a uniform assessment of PROs. Finally, the inclusion of different generations of AID systems may have introduced bias in the observed effects on PROs.

DISCLOSURES:

This study did not receive any funding. Some authors reported receiving honoraria, consulting fees, travel support, and advisory board member fees as well as other ties with many pharmaceutical companies.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Unseen Cost of Weight Loss and Aging: Tackling Sarcopenia

Article Type
Changed

Losses of muscle and strength are inescapable effects of the aging process. Left unchecked, these progressive losses will start to impair physical function. 

Once a certain level of impairment occurs, an individual can be diagnosed with sarcopenia, which comes from the Greek words “sarco” (flesh) and “penia” (poverty). Individuals with sarcopenia have a significant increase in the risk for falls and death, as well as diminished quality of life.

Muscle mass losses generally occur with weight loss, and the increasing use of glucagon-like peptide 1 (GLP-1) medications may lead to greater incidence and prevalence of sarcopenia in the years to come.

A recent meta-analysis of 56 studies (mean participant age, 50 years) found a twofold greater risk for mortality in those with sarcopenia vs those without. Despite its health consequences, sarcopenia tends to be underdiagnosed and, consequently, undertreated at a population and individual level. Part of the reason probably stems from the lack of health insurance reimbursement for individual clinicians and hospital systems to perform sarcopenia screening assessments. 

In aging and obesity, it appears justified to include and emphasize a recommendation for sarcopenia screening in medical society guidelines; however, individual patients and clinicians do not need to wait for updated guidelines to implement sarcopenia screening, treatment, and prevention strategies in their own lives and/or clinical practice. 
 

Simple Prevention and Treatment Strategy

Much can be done to help prevent sarcopenia. The primary strategy, unsurprisingly, is engaging in frequent strength training. But that doesn’t mean hours in the gym every week. 

With just one session per week over 10 weeks, lean body mass (LBM), a common proxy for muscle mass, increased by 0.33 kg, according to a study which evaluated LBM improvements across different strength training frequencies. Adding a second weekly session was significantly better. In the twice-weekly group, LBM increased by 1.4 kg over 10 weeks, resulting in an increase in LBM more than four times greater than the once-a-week group. (There was no greater improvement in LBM by adding a third weekly session vs two weekly sessions.) 

Although that particular study didn’t identify greater benefit at three times a week, compared with twice a week, the specific training routines and lack of a protein consumption assessment may have played a role in that finding. 

Underlying the diminishing benefits, a different study found a marginally greater benefit in favor of performing ≥ five sets per major muscle group per week, compared with < five sets per week for increasing muscle in the legs, arms, back, chest, and shoulders. 

Expensive gym memberships and fancy equipment are not necessary. While the use of strength training machines and free weights have been viewed by many as the optimal approach, a recent systematic review and meta-analysis found that comparable improvements to strength can be achieved with workouts using resistance bands. For those who struggle to find the time to go to a gym, or for whom gym fees are not financially affordable, resistance bands are a cheaper and more convenient alternative. 

Lucas, Assistant Professor of Clinical Medicine, Comprehensive Weight Control Center, Weill Cornell Medicine, New York City, disclosed ties with Measured (Better Health Labs).

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

Losses of muscle and strength are inescapable effects of the aging process. Left unchecked, these progressive losses will start to impair physical function. 

Once a certain level of impairment occurs, an individual can be diagnosed with sarcopenia, which comes from the Greek words “sarco” (flesh) and “penia” (poverty). Individuals with sarcopenia have a significant increase in the risk for falls and death, as well as diminished quality of life.

Muscle mass losses generally occur with weight loss, and the increasing use of glucagon-like peptide 1 (GLP-1) medications may lead to greater incidence and prevalence of sarcopenia in the years to come.

A recent meta-analysis of 56 studies (mean participant age, 50 years) found a twofold greater risk for mortality in those with sarcopenia vs those without. Despite its health consequences, sarcopenia tends to be underdiagnosed and, consequently, undertreated at a population and individual level. Part of the reason probably stems from the lack of health insurance reimbursement for individual clinicians and hospital systems to perform sarcopenia screening assessments. 

In aging and obesity, it appears justified to include and emphasize a recommendation for sarcopenia screening in medical society guidelines; however, individual patients and clinicians do not need to wait for updated guidelines to implement sarcopenia screening, treatment, and prevention strategies in their own lives and/or clinical practice. 
 

Simple Prevention and Treatment Strategy

Much can be done to help prevent sarcopenia. The primary strategy, unsurprisingly, is engaging in frequent strength training. But that doesn’t mean hours in the gym every week. 

With just one session per week over 10 weeks, lean body mass (LBM), a common proxy for muscle mass, increased by 0.33 kg, according to a study which evaluated LBM improvements across different strength training frequencies. Adding a second weekly session was significantly better. In the twice-weekly group, LBM increased by 1.4 kg over 10 weeks, resulting in an increase in LBM more than four times greater than the once-a-week group. (There was no greater improvement in LBM by adding a third weekly session vs two weekly sessions.) 

Although that particular study didn’t identify greater benefit at three times a week, compared with twice a week, the specific training routines and lack of a protein consumption assessment may have played a role in that finding. 

Underlying the diminishing benefits, a different study found a marginally greater benefit in favor of performing ≥ five sets per major muscle group per week, compared with < five sets per week for increasing muscle in the legs, arms, back, chest, and shoulders. 

Expensive gym memberships and fancy equipment are not necessary. While the use of strength training machines and free weights have been viewed by many as the optimal approach, a recent systematic review and meta-analysis found that comparable improvements to strength can be achieved with workouts using resistance bands. For those who struggle to find the time to go to a gym, or for whom gym fees are not financially affordable, resistance bands are a cheaper and more convenient alternative. 

Lucas, Assistant Professor of Clinical Medicine, Comprehensive Weight Control Center, Weill Cornell Medicine, New York City, disclosed ties with Measured (Better Health Labs).

A version of this article appeared on Medscape.com.

Losses of muscle and strength are inescapable effects of the aging process. Left unchecked, these progressive losses will start to impair physical function. 

Once a certain level of impairment occurs, an individual can be diagnosed with sarcopenia, which comes from the Greek words “sarco” (flesh) and “penia” (poverty). Individuals with sarcopenia have a significant increase in the risk for falls and death, as well as diminished quality of life.

Muscle mass losses generally occur with weight loss, and the increasing use of glucagon-like peptide 1 (GLP-1) medications may lead to greater incidence and prevalence of sarcopenia in the years to come.

A recent meta-analysis of 56 studies (mean participant age, 50 years) found a twofold greater risk for mortality in those with sarcopenia vs those without. Despite its health consequences, sarcopenia tends to be underdiagnosed and, consequently, undertreated at a population and individual level. Part of the reason probably stems from the lack of health insurance reimbursement for individual clinicians and hospital systems to perform sarcopenia screening assessments. 

In aging and obesity, it appears justified to include and emphasize a recommendation for sarcopenia screening in medical society guidelines; however, individual patients and clinicians do not need to wait for updated guidelines to implement sarcopenia screening, treatment, and prevention strategies in their own lives and/or clinical practice. 
 

Simple Prevention and Treatment Strategy

Much can be done to help prevent sarcopenia. The primary strategy, unsurprisingly, is engaging in frequent strength training. But that doesn’t mean hours in the gym every week. 

With just one session per week over 10 weeks, lean body mass (LBM), a common proxy for muscle mass, increased by 0.33 kg, according to a study which evaluated LBM improvements across different strength training frequencies. Adding a second weekly session was significantly better. In the twice-weekly group, LBM increased by 1.4 kg over 10 weeks, resulting in an increase in LBM more than four times greater than the once-a-week group. (There was no greater improvement in LBM by adding a third weekly session vs two weekly sessions.) 

Although that particular study didn’t identify greater benefit at three times a week, compared with twice a week, the specific training routines and lack of a protein consumption assessment may have played a role in that finding. 

Underlying the diminishing benefits, a different study found a marginally greater benefit in favor of performing ≥ five sets per major muscle group per week, compared with < five sets per week for increasing muscle in the legs, arms, back, chest, and shoulders. 

Expensive gym memberships and fancy equipment are not necessary. While the use of strength training machines and free weights have been viewed by many as the optimal approach, a recent systematic review and meta-analysis found that comparable improvements to strength can be achieved with workouts using resistance bands. For those who struggle to find the time to go to a gym, or for whom gym fees are not financially affordable, resistance bands are a cheaper and more convenient alternative. 

Lucas, Assistant Professor of Clinical Medicine, Comprehensive Weight Control Center, Weill Cornell Medicine, New York City, disclosed ties with Measured (Better Health Labs).

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Obesity Therapies: What Will the Future Bring?

Article Type
Changed

“Obesity only recently caught the public’s attention as a disease,” Matthias Blüher, MD, professor of medicine at the Leipzig University and director of the Helmholtz Institute for Metabolism, Obesity and Vascular Research, Leipzig, Germany, told attendees in a thought-provoking presentation at the European Association for the Study of Diabetes (EASD) 2024 Annual Meeting.

Even though the attitudes around how obesity is perceived may be relatively new, Blüher believes they are nonetheless significant. As a sign of how the cultural headwinds have shifted, he noted the 2022 film The Whale, which focuses on a character struggling with obesity. As Blüher pointed out, not only did the film’s star, Brendan Fraser, receive an Academy Award for his portrayal but he also theorized that the majority of celebrities in the audience were likely taking new weight loss medications.

“I strongly believe that in the future, obesity treatment will carry less stigma. It will be considered not as a cosmetic problem, but as a progressive disease.”

He sees several changes in the management of obesity likely to occur on the near horizon, beginning with when interventions directed at treating it will begin.

Obesity treatment should start at a young age, he said, because if you have overweight at ages 3-6 years, the likelihood of becoming an adult with obesity is approximately 90%. “Looking ahead, shouldn’t we put more emphasis on this age group?”

Furthermore, he hopes that clinical trials will move beyond body weight and body mass index (BMI) as their main outcome parameters. Instead, “we should talk about fat distribution, fat or adipose tissue function, muscle loss, body composition, and severity of disease.”

Blüher pointed to the recently published framework for the diagnosis, staging, and management of obesity in adults put forward by the European Association for the Study of Obesity. It states that obesity should be staged not based on BMI or body weight alone but also on an individual›s medical, functional, and psychological (eg, mental health and eating behavior) status.

“The causes of obesity are too complex to be individually targeted,” he continued, unlike examples such as hypercholesterolemia or smoking cessation, where clinicians may have one target to address.

“But overeating, slow metabolism, and low physical activity involve socio-cultural factors, global food marketing, and many other factors. Therefore, clinicians should be setting health targets, such as improving sleep apnea and improving physical functioning, rather than a kilogram number.”
 

Three Pillars of Treatment

Right now, clinicians have three pillars of treatments available, Blüher said. The first is behavioral intervention, including strategies such as counseling, diet, exercise, self-monitoring, stress management, and sleep management.

“We know that these behavioral aspects typically lack adherence and effect size, but they’re important, and for a certain group of people, they may be the best and safest treatment.”

The second pillar is pharmacotherapy, and the third is surgery.

Each pillar poses questions for future research, he explained.

“First, do we really need more evidence that behavioral interventions typically fail in the long run and are prone to rebound of body weight and health issues? No. Or which diet is best? We have hundreds of diet interventions, all of which basically show very similar outcomes. They lead to an average weight loss of 3% to 5% and do improve health conditions associated with obesity.”

When it comes to pharmacotherapies, Blüher does believe clinicians need more options.

Depending on affordability and access, glucagon-like peptide 1 (GLP-1) semaglutide will likely become the first-line therapy for most people living with obesity who want to take medications, he suggested. The dual glucose-dependent insulinotropic polypeptide (GIP)/GLP-1 tirzepatide will be reserved for those with more severe conditions.

“But this is not the end of the story,” he said. “The pipelines for obesity pharmacotherapies are full, and they have different categories. We are optimistic that we will have more therapies not only for type 2 diabetes (T2D) but also for obesity. Combinations such as CagriSema (cagrilintide + semaglutide, currently indicated for T2D) may outperform the monotherapies. We have to see if they’re as safe, and we have to wait for phase 3 trials and long-term outcomes.”

“The field is open for many combinations, ideas and interactions among the incretin-based signaling systems, but personally, I think that the triple agonists have a very bright future,” Blüher said.

For example, retatrutide, an agonist of the GIP, GLP-1, and glucagon receptors, showed promise in a phase 2 trial. Although that was not a comparative study, “the average changes in body weight suggest that in a dose-dependent manner, you can expect even more weight loss than with tirzepatide.”
 

 

 

Treating the Causes

The future of obesity therapy might also be directed at the originating factors that cause it, Blüher suggested, adding that “treating the causes is a dream of mine.”

One example of treating the cause is leptin therapy, as shown in a 1999 study of recombinant leptin in a child with congenital leptin deficiency. A more recent example is setmelanotide treatment for proopiomelanocortin deficiency.

“We are at the beginning for these causative treatments of obesity, and I hope that the future will hold much more of these insights and targets, as in cancer therapy.”

“Finally,” he said, “We eat with our brain. And so in the future, we also will be better able to use our knowledge about the complex neural circuits that are obesogenic, and how to target them. In doing so, we can learn from surgeons because obesity surgery is very effective in changing the anatomy, and we also observe hormonal changes. We see that ghrelin, GLP-1, peptide YY, and many others are affected when the anatomy changes. Why can’t we use that knowledge to design drugs that resemble or mimic the effect size of bariatric surgery?”

And that goes to the third pillar of treatment and the question of whether the new weight loss drugs may replace surgery, which also was the topic of another EASD session.

Blüher doesn’t see that happening for at least a decade, given that there is still an effect-size gap between tirzepatide and surgery, especially for individuals with T2D. In addition, he noted, there will still be nonresponders to drugs, and clinicians are not treating to target yet. Looking ahead, he foresees a combination of surgery and multi-receptor agonists.

“I believe that obesity won’t be cured in the future, but we will have increasingly better lifelong management with a multidisciplinary approach, although behavioral interventions still will not be as successful as pharmacotherapy and bariatric surgery,” he concluded.
 

Q&A

During the question-and-answer session following his lecture, several attendees asked Blüher for his thoughts around other emerging areas in this field. One wanted to know whether microbiome changes might be a future target for obesity treatment.

“So far, we don’t really understand which bacteria, which composition, at which age, and at which part of the intestine need to be targeted,” Blüher responded. “Before we know that mechanistically, I think it would be difficult, but it could be an avenue to go for, though I’m a little less optimistic about it compared to other approaches.”

Given that obesity is not one disease, are there cluster subtypes, as for T2D — eg, the hungry brain, the hungry gut, low metabolism — that might benefit from individualized treatment, another attendee asked.

“We do try to subcluster people living with obesity,” Blüher said. “We did that based on adipose tissue expression signatures, and indeed there is large heterogeneity. But we are far from addressing the root causes and all subtypes of the disease, and that would be a requirement before we could personalize treatment in that way.”

Next, an attendee asked what is responsible for the differential weight loss in people with diabetes and people without? Blüher responded that although he doesn’t have the answer, he does have hypotheses.

“One could be that the disease process — eg, deterioration of beta cell function, of the balance of hormones such as insulin and leptin, of inflammatory parameters, of insulin resistance — is much more advanced in diseases such as T2D and sleep apnea. Maybe it then takes more to address comorbid conditions such as inflammation and insulin resistance. Therefore, combining current therapies with insulin sensitizers, for example, could produce better results.”

What about using continuous glucose monitoring to help people stick to their diet?

“That’s an important question that speaks to personalized treatment,” he said. “It applies not only to continuous glucose monitoring but also to nutrition and other modes of self-monitoring, which seem to be among the most successful tools for long-term weight maintenance.”

Blüher finished by saying, “As we look into the future, I hope that there will be better approaches for all aspects of personalized medicine, whether it is nutrition, exercise, pharmacotherapy, or even surgical procedures.”

Blüher received honoraria for lectures and/or served as a consultant to Amgen, AstraZeneca, Bayer, Boehringer Ingelheim, Daiichi Sankyo, Eli Lilly, Novo Nordisk, Novartis, Pfizer, and Sanofi.
 

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

“Obesity only recently caught the public’s attention as a disease,” Matthias Blüher, MD, professor of medicine at the Leipzig University and director of the Helmholtz Institute for Metabolism, Obesity and Vascular Research, Leipzig, Germany, told attendees in a thought-provoking presentation at the European Association for the Study of Diabetes (EASD) 2024 Annual Meeting.

Even though the attitudes around how obesity is perceived may be relatively new, Blüher believes they are nonetheless significant. As a sign of how the cultural headwinds have shifted, he noted the 2022 film The Whale, which focuses on a character struggling with obesity. As Blüher pointed out, not only did the film’s star, Brendan Fraser, receive an Academy Award for his portrayal but he also theorized that the majority of celebrities in the audience were likely taking new weight loss medications.

“I strongly believe that in the future, obesity treatment will carry less stigma. It will be considered not as a cosmetic problem, but as a progressive disease.”

He sees several changes in the management of obesity likely to occur on the near horizon, beginning with when interventions directed at treating it will begin.

Obesity treatment should start at a young age, he said, because if you have overweight at ages 3-6 years, the likelihood of becoming an adult with obesity is approximately 90%. “Looking ahead, shouldn’t we put more emphasis on this age group?”

Furthermore, he hopes that clinical trials will move beyond body weight and body mass index (BMI) as their main outcome parameters. Instead, “we should talk about fat distribution, fat or adipose tissue function, muscle loss, body composition, and severity of disease.”

Blüher pointed to the recently published framework for the diagnosis, staging, and management of obesity in adults put forward by the European Association for the Study of Obesity. It states that obesity should be staged not based on BMI or body weight alone but also on an individual›s medical, functional, and psychological (eg, mental health and eating behavior) status.

“The causes of obesity are too complex to be individually targeted,” he continued, unlike examples such as hypercholesterolemia or smoking cessation, where clinicians may have one target to address.

“But overeating, slow metabolism, and low physical activity involve socio-cultural factors, global food marketing, and many other factors. Therefore, clinicians should be setting health targets, such as improving sleep apnea and improving physical functioning, rather than a kilogram number.”
 

Three Pillars of Treatment

Right now, clinicians have three pillars of treatments available, Blüher said. The first is behavioral intervention, including strategies such as counseling, diet, exercise, self-monitoring, stress management, and sleep management.

“We know that these behavioral aspects typically lack adherence and effect size, but they’re important, and for a certain group of people, they may be the best and safest treatment.”

The second pillar is pharmacotherapy, and the third is surgery.

Each pillar poses questions for future research, he explained.

“First, do we really need more evidence that behavioral interventions typically fail in the long run and are prone to rebound of body weight and health issues? No. Or which diet is best? We have hundreds of diet interventions, all of which basically show very similar outcomes. They lead to an average weight loss of 3% to 5% and do improve health conditions associated with obesity.”

When it comes to pharmacotherapies, Blüher does believe clinicians need more options.

Depending on affordability and access, glucagon-like peptide 1 (GLP-1) semaglutide will likely become the first-line therapy for most people living with obesity who want to take medications, he suggested. The dual glucose-dependent insulinotropic polypeptide (GIP)/GLP-1 tirzepatide will be reserved for those with more severe conditions.

“But this is not the end of the story,” he said. “The pipelines for obesity pharmacotherapies are full, and they have different categories. We are optimistic that we will have more therapies not only for type 2 diabetes (T2D) but also for obesity. Combinations such as CagriSema (cagrilintide + semaglutide, currently indicated for T2D) may outperform the monotherapies. We have to see if they’re as safe, and we have to wait for phase 3 trials and long-term outcomes.”

“The field is open for many combinations, ideas and interactions among the incretin-based signaling systems, but personally, I think that the triple agonists have a very bright future,” Blüher said.

For example, retatrutide, an agonist of the GIP, GLP-1, and glucagon receptors, showed promise in a phase 2 trial. Although that was not a comparative study, “the average changes in body weight suggest that in a dose-dependent manner, you can expect even more weight loss than with tirzepatide.”
 

 

 

Treating the Causes

The future of obesity therapy might also be directed at the originating factors that cause it, Blüher suggested, adding that “treating the causes is a dream of mine.”

One example of treating the cause is leptin therapy, as shown in a 1999 study of recombinant leptin in a child with congenital leptin deficiency. A more recent example is setmelanotide treatment for proopiomelanocortin deficiency.

“We are at the beginning for these causative treatments of obesity, and I hope that the future will hold much more of these insights and targets, as in cancer therapy.”

“Finally,” he said, “We eat with our brain. And so in the future, we also will be better able to use our knowledge about the complex neural circuits that are obesogenic, and how to target them. In doing so, we can learn from surgeons because obesity surgery is very effective in changing the anatomy, and we also observe hormonal changes. We see that ghrelin, GLP-1, peptide YY, and many others are affected when the anatomy changes. Why can’t we use that knowledge to design drugs that resemble or mimic the effect size of bariatric surgery?”

And that goes to the third pillar of treatment and the question of whether the new weight loss drugs may replace surgery, which also was the topic of another EASD session.

Blüher doesn’t see that happening for at least a decade, given that there is still an effect-size gap between tirzepatide and surgery, especially for individuals with T2D. In addition, he noted, there will still be nonresponders to drugs, and clinicians are not treating to target yet. Looking ahead, he foresees a combination of surgery and multi-receptor agonists.

“I believe that obesity won’t be cured in the future, but we will have increasingly better lifelong management with a multidisciplinary approach, although behavioral interventions still will not be as successful as pharmacotherapy and bariatric surgery,” he concluded.
 

Q&A

During the question-and-answer session following his lecture, several attendees asked Blüher for his thoughts around other emerging areas in this field. One wanted to know whether microbiome changes might be a future target for obesity treatment.

“So far, we don’t really understand which bacteria, which composition, at which age, and at which part of the intestine need to be targeted,” Blüher responded. “Before we know that mechanistically, I think it would be difficult, but it could be an avenue to go for, though I’m a little less optimistic about it compared to other approaches.”

Given that obesity is not one disease, are there cluster subtypes, as for T2D — eg, the hungry brain, the hungry gut, low metabolism — that might benefit from individualized treatment, another attendee asked.

“We do try to subcluster people living with obesity,” Blüher said. “We did that based on adipose tissue expression signatures, and indeed there is large heterogeneity. But we are far from addressing the root causes and all subtypes of the disease, and that would be a requirement before we could personalize treatment in that way.”

Next, an attendee asked what is responsible for the differential weight loss in people with diabetes and people without? Blüher responded that although he doesn’t have the answer, he does have hypotheses.

“One could be that the disease process — eg, deterioration of beta cell function, of the balance of hormones such as insulin and leptin, of inflammatory parameters, of insulin resistance — is much more advanced in diseases such as T2D and sleep apnea. Maybe it then takes more to address comorbid conditions such as inflammation and insulin resistance. Therefore, combining current therapies with insulin sensitizers, for example, could produce better results.”

What about using continuous glucose monitoring to help people stick to their diet?

“That’s an important question that speaks to personalized treatment,” he said. “It applies not only to continuous glucose monitoring but also to nutrition and other modes of self-monitoring, which seem to be among the most successful tools for long-term weight maintenance.”

Blüher finished by saying, “As we look into the future, I hope that there will be better approaches for all aspects of personalized medicine, whether it is nutrition, exercise, pharmacotherapy, or even surgical procedures.”

Blüher received honoraria for lectures and/or served as a consultant to Amgen, AstraZeneca, Bayer, Boehringer Ingelheim, Daiichi Sankyo, Eli Lilly, Novo Nordisk, Novartis, Pfizer, and Sanofi.
 

A version of this article first appeared on Medscape.com.

“Obesity only recently caught the public’s attention as a disease,” Matthias Blüher, MD, professor of medicine at the Leipzig University and director of the Helmholtz Institute for Metabolism, Obesity and Vascular Research, Leipzig, Germany, told attendees in a thought-provoking presentation at the European Association for the Study of Diabetes (EASD) 2024 Annual Meeting.

Even though the attitudes around how obesity is perceived may be relatively new, Blüher believes they are nonetheless significant. As a sign of how the cultural headwinds have shifted, he noted the 2022 film The Whale, which focuses on a character struggling with obesity. As Blüher pointed out, not only did the film’s star, Brendan Fraser, receive an Academy Award for his portrayal but he also theorized that the majority of celebrities in the audience were likely taking new weight loss medications.

“I strongly believe that in the future, obesity treatment will carry less stigma. It will be considered not as a cosmetic problem, but as a progressive disease.”

He sees several changes in the management of obesity likely to occur on the near horizon, beginning with when interventions directed at treating it will begin.

Obesity treatment should start at a young age, he said, because if you have overweight at ages 3-6 years, the likelihood of becoming an adult with obesity is approximately 90%. “Looking ahead, shouldn’t we put more emphasis on this age group?”

Furthermore, he hopes that clinical trials will move beyond body weight and body mass index (BMI) as their main outcome parameters. Instead, “we should talk about fat distribution, fat or adipose tissue function, muscle loss, body composition, and severity of disease.”

Blüher pointed to the recently published framework for the diagnosis, staging, and management of obesity in adults put forward by the European Association for the Study of Obesity. It states that obesity should be staged not based on BMI or body weight alone but also on an individual›s medical, functional, and psychological (eg, mental health and eating behavior) status.

“The causes of obesity are too complex to be individually targeted,” he continued, unlike examples such as hypercholesterolemia or smoking cessation, where clinicians may have one target to address.

“But overeating, slow metabolism, and low physical activity involve socio-cultural factors, global food marketing, and many other factors. Therefore, clinicians should be setting health targets, such as improving sleep apnea and improving physical functioning, rather than a kilogram number.”
 

Three Pillars of Treatment

Right now, clinicians have three pillars of treatments available, Blüher said. The first is behavioral intervention, including strategies such as counseling, diet, exercise, self-monitoring, stress management, and sleep management.

“We know that these behavioral aspects typically lack adherence and effect size, but they’re important, and for a certain group of people, they may be the best and safest treatment.”

The second pillar is pharmacotherapy, and the third is surgery.

Each pillar poses questions for future research, he explained.

“First, do we really need more evidence that behavioral interventions typically fail in the long run and are prone to rebound of body weight and health issues? No. Or which diet is best? We have hundreds of diet interventions, all of which basically show very similar outcomes. They lead to an average weight loss of 3% to 5% and do improve health conditions associated with obesity.”

When it comes to pharmacotherapies, Blüher does believe clinicians need more options.

Depending on affordability and access, glucagon-like peptide 1 (GLP-1) semaglutide will likely become the first-line therapy for most people living with obesity who want to take medications, he suggested. The dual glucose-dependent insulinotropic polypeptide (GIP)/GLP-1 tirzepatide will be reserved for those with more severe conditions.

“But this is not the end of the story,” he said. “The pipelines for obesity pharmacotherapies are full, and they have different categories. We are optimistic that we will have more therapies not only for type 2 diabetes (T2D) but also for obesity. Combinations such as CagriSema (cagrilintide + semaglutide, currently indicated for T2D) may outperform the monotherapies. We have to see if they’re as safe, and we have to wait for phase 3 trials and long-term outcomes.”

“The field is open for many combinations, ideas and interactions among the incretin-based signaling systems, but personally, I think that the triple agonists have a very bright future,” Blüher said.

For example, retatrutide, an agonist of the GIP, GLP-1, and glucagon receptors, showed promise in a phase 2 trial. Although that was not a comparative study, “the average changes in body weight suggest that in a dose-dependent manner, you can expect even more weight loss than with tirzepatide.”
 

 

 

Treating the Causes

The future of obesity therapy might also be directed at the originating factors that cause it, Blüher suggested, adding that “treating the causes is a dream of mine.”

One example of treating the cause is leptin therapy, as shown in a 1999 study of recombinant leptin in a child with congenital leptin deficiency. A more recent example is setmelanotide treatment for proopiomelanocortin deficiency.

“We are at the beginning for these causative treatments of obesity, and I hope that the future will hold much more of these insights and targets, as in cancer therapy.”

“Finally,” he said, “We eat with our brain. And so in the future, we also will be better able to use our knowledge about the complex neural circuits that are obesogenic, and how to target them. In doing so, we can learn from surgeons because obesity surgery is very effective in changing the anatomy, and we also observe hormonal changes. We see that ghrelin, GLP-1, peptide YY, and many others are affected when the anatomy changes. Why can’t we use that knowledge to design drugs that resemble or mimic the effect size of bariatric surgery?”

And that goes to the third pillar of treatment and the question of whether the new weight loss drugs may replace surgery, which also was the topic of another EASD session.

Blüher doesn’t see that happening for at least a decade, given that there is still an effect-size gap between tirzepatide and surgery, especially for individuals with T2D. In addition, he noted, there will still be nonresponders to drugs, and clinicians are not treating to target yet. Looking ahead, he foresees a combination of surgery and multi-receptor agonists.

“I believe that obesity won’t be cured in the future, but we will have increasingly better lifelong management with a multidisciplinary approach, although behavioral interventions still will not be as successful as pharmacotherapy and bariatric surgery,” he concluded.
 

Q&A

During the question-and-answer session following his lecture, several attendees asked Blüher for his thoughts around other emerging areas in this field. One wanted to know whether microbiome changes might be a future target for obesity treatment.

“So far, we don’t really understand which bacteria, which composition, at which age, and at which part of the intestine need to be targeted,” Blüher responded. “Before we know that mechanistically, I think it would be difficult, but it could be an avenue to go for, though I’m a little less optimistic about it compared to other approaches.”

Given that obesity is not one disease, are there cluster subtypes, as for T2D — eg, the hungry brain, the hungry gut, low metabolism — that might benefit from individualized treatment, another attendee asked.

“We do try to subcluster people living with obesity,” Blüher said. “We did that based on adipose tissue expression signatures, and indeed there is large heterogeneity. But we are far from addressing the root causes and all subtypes of the disease, and that would be a requirement before we could personalize treatment in that way.”

Next, an attendee asked what is responsible for the differential weight loss in people with diabetes and people without? Blüher responded that although he doesn’t have the answer, he does have hypotheses.

“One could be that the disease process — eg, deterioration of beta cell function, of the balance of hormones such as insulin and leptin, of inflammatory parameters, of insulin resistance — is much more advanced in diseases such as T2D and sleep apnea. Maybe it then takes more to address comorbid conditions such as inflammation and insulin resistance. Therefore, combining current therapies with insulin sensitizers, for example, could produce better results.”

What about using continuous glucose monitoring to help people stick to their diet?

“That’s an important question that speaks to personalized treatment,” he said. “It applies not only to continuous glucose monitoring but also to nutrition and other modes of self-monitoring, which seem to be among the most successful tools for long-term weight maintenance.”

Blüher finished by saying, “As we look into the future, I hope that there will be better approaches for all aspects of personalized medicine, whether it is nutrition, exercise, pharmacotherapy, or even surgical procedures.”

Blüher received honoraria for lectures and/or served as a consultant to Amgen, AstraZeneca, Bayer, Boehringer Ingelheim, Daiichi Sankyo, Eli Lilly, Novo Nordisk, Novartis, Pfizer, and Sanofi.
 

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Article Source

FROM EASD 2024

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article