User login
News and Views that Matter to Rheumatologists
gambling
compulsive behaviors
ammunition
assault rifle
black jack
Boko Haram
bondage
child abuse
cocaine
Daech
drug paraphernalia
explosion
gun
human trafficking
ISIL
ISIS
Islamic caliphate
Islamic state
mixed martial arts
MMA
molestation
national rifle association
NRA
nsfw
pedophile
pedophilia
poker
porn
pornography
psychedelic drug
recreational drug
sex slave rings
slot machine
terrorism
terrorist
Texas hold 'em
UFC
substance abuse
abuseed
abuseer
abusees
abuseing
abusely
abuses
aeolus
aeolused
aeoluser
aeoluses
aeolusing
aeolusly
aeoluss
ahole
aholeed
aholeer
aholees
aholeing
aholely
aholes
alcohol
alcoholed
alcoholer
alcoholes
alcoholing
alcoholly
alcohols
allman
allmaned
allmaner
allmanes
allmaning
allmanly
allmans
alted
altes
alting
altly
alts
analed
analer
anales
analing
anally
analprobe
analprobeed
analprobeer
analprobees
analprobeing
analprobely
analprobes
anals
anilingus
anilingused
anilinguser
anilinguses
anilingusing
anilingusly
anilinguss
anus
anused
anuser
anuses
anusing
anusly
anuss
areola
areolaed
areolaer
areolaes
areolaing
areolaly
areolas
areole
areoleed
areoleer
areolees
areoleing
areolely
areoles
arian
arianed
arianer
arianes
arianing
arianly
arians
aryan
aryaned
aryaner
aryanes
aryaning
aryanly
aryans
asiaed
asiaer
asiaes
asiaing
asialy
asias
ass
ass hole
ass lick
ass licked
ass licker
ass lickes
ass licking
ass lickly
ass licks
assbang
assbanged
assbangeded
assbangeder
assbangedes
assbangeding
assbangedly
assbangeds
assbanger
assbanges
assbanging
assbangly
assbangs
assbangsed
assbangser
assbangses
assbangsing
assbangsly
assbangss
assed
asser
asses
assesed
asseser
asseses
assesing
assesly
assess
assfuck
assfucked
assfucker
assfuckered
assfuckerer
assfuckeres
assfuckering
assfuckerly
assfuckers
assfuckes
assfucking
assfuckly
assfucks
asshat
asshated
asshater
asshates
asshating
asshatly
asshats
assholeed
assholeer
assholees
assholeing
assholely
assholes
assholesed
assholeser
assholeses
assholesing
assholesly
assholess
assing
assly
assmaster
assmastered
assmasterer
assmasteres
assmastering
assmasterly
assmasters
assmunch
assmunched
assmuncher
assmunches
assmunching
assmunchly
assmunchs
asss
asswipe
asswipeed
asswipeer
asswipees
asswipeing
asswipely
asswipes
asswipesed
asswipeser
asswipeses
asswipesing
asswipesly
asswipess
azz
azzed
azzer
azzes
azzing
azzly
azzs
babeed
babeer
babees
babeing
babely
babes
babesed
babeser
babeses
babesing
babesly
babess
ballsac
ballsaced
ballsacer
ballsaces
ballsacing
ballsack
ballsacked
ballsacker
ballsackes
ballsacking
ballsackly
ballsacks
ballsacly
ballsacs
ballsed
ballser
ballses
ballsing
ballsly
ballss
barf
barfed
barfer
barfes
barfing
barfly
barfs
bastard
bastarded
bastarder
bastardes
bastarding
bastardly
bastards
bastardsed
bastardser
bastardses
bastardsing
bastardsly
bastardss
bawdy
bawdyed
bawdyer
bawdyes
bawdying
bawdyly
bawdys
beaner
beanered
beanerer
beaneres
beanering
beanerly
beaners
beardedclam
beardedclamed
beardedclamer
beardedclames
beardedclaming
beardedclamly
beardedclams
beastiality
beastialityed
beastialityer
beastialityes
beastialitying
beastialityly
beastialitys
beatch
beatched
beatcher
beatches
beatching
beatchly
beatchs
beater
beatered
beaterer
beateres
beatering
beaterly
beaters
beered
beerer
beeres
beering
beerly
beeyotch
beeyotched
beeyotcher
beeyotches
beeyotching
beeyotchly
beeyotchs
beotch
beotched
beotcher
beotches
beotching
beotchly
beotchs
biatch
biatched
biatcher
biatches
biatching
biatchly
biatchs
big tits
big titsed
big titser
big titses
big titsing
big titsly
big titss
bigtits
bigtitsed
bigtitser
bigtitses
bigtitsing
bigtitsly
bigtitss
bimbo
bimboed
bimboer
bimboes
bimboing
bimboly
bimbos
bisexualed
bisexualer
bisexuales
bisexualing
bisexually
bisexuals
bitch
bitched
bitcheded
bitcheder
bitchedes
bitcheding
bitchedly
bitcheds
bitcher
bitches
bitchesed
bitcheser
bitcheses
bitchesing
bitchesly
bitchess
bitching
bitchly
bitchs
bitchy
bitchyed
bitchyer
bitchyes
bitchying
bitchyly
bitchys
bleached
bleacher
bleaches
bleaching
bleachly
bleachs
blow job
blow jobed
blow jober
blow jobes
blow jobing
blow jobly
blow jobs
blowed
blower
blowes
blowing
blowjob
blowjobed
blowjober
blowjobes
blowjobing
blowjobly
blowjobs
blowjobsed
blowjobser
blowjobses
blowjobsing
blowjobsly
blowjobss
blowly
blows
boink
boinked
boinker
boinkes
boinking
boinkly
boinks
bollock
bollocked
bollocker
bollockes
bollocking
bollockly
bollocks
bollocksed
bollockser
bollockses
bollocksing
bollocksly
bollockss
bollok
bolloked
bolloker
bollokes
bolloking
bollokly
bolloks
boner
bonered
bonerer
boneres
bonering
bonerly
boners
bonersed
bonerser
bonerses
bonersing
bonersly
bonerss
bong
bonged
bonger
bonges
bonging
bongly
bongs
boob
boobed
boober
boobes
boobies
boobiesed
boobieser
boobieses
boobiesing
boobiesly
boobiess
boobing
boobly
boobs
boobsed
boobser
boobses
boobsing
boobsly
boobss
booby
boobyed
boobyer
boobyes
boobying
boobyly
boobys
booger
boogered
boogerer
boogeres
boogering
boogerly
boogers
bookie
bookieed
bookieer
bookiees
bookieing
bookiely
bookies
bootee
booteeed
booteeer
booteees
booteeing
booteely
bootees
bootie
bootieed
bootieer
bootiees
bootieing
bootiely
booties
booty
bootyed
bootyer
bootyes
bootying
bootyly
bootys
boozeed
boozeer
boozees
boozeing
boozely
boozer
boozered
boozerer
boozeres
boozering
boozerly
boozers
boozes
boozy
boozyed
boozyer
boozyes
boozying
boozyly
boozys
bosomed
bosomer
bosomes
bosoming
bosomly
bosoms
bosomy
bosomyed
bosomyer
bosomyes
bosomying
bosomyly
bosomys
bugger
buggered
buggerer
buggeres
buggering
buggerly
buggers
bukkake
bukkakeed
bukkakeer
bukkakees
bukkakeing
bukkakely
bukkakes
bull shit
bull shited
bull shiter
bull shites
bull shiting
bull shitly
bull shits
bullshit
bullshited
bullshiter
bullshites
bullshiting
bullshitly
bullshits
bullshitsed
bullshitser
bullshitses
bullshitsing
bullshitsly
bullshitss
bullshitted
bullshitteded
bullshitteder
bullshittedes
bullshitteding
bullshittedly
bullshitteds
bullturds
bullturdsed
bullturdser
bullturdses
bullturdsing
bullturdsly
bullturdss
bung
bunged
bunger
bunges
bunging
bungly
bungs
busty
bustyed
bustyer
bustyes
bustying
bustyly
bustys
butt
butt fuck
butt fucked
butt fucker
butt fuckes
butt fucking
butt fuckly
butt fucks
butted
buttes
buttfuck
buttfucked
buttfucker
buttfuckered
buttfuckerer
buttfuckeres
buttfuckering
buttfuckerly
buttfuckers
buttfuckes
buttfucking
buttfuckly
buttfucks
butting
buttly
buttplug
buttpluged
buttpluger
buttpluges
buttpluging
buttplugly
buttplugs
butts
caca
cacaed
cacaer
cacaes
cacaing
cacaly
cacas
cahone
cahoneed
cahoneer
cahonees
cahoneing
cahonely
cahones
cameltoe
cameltoeed
cameltoeer
cameltoees
cameltoeing
cameltoely
cameltoes
carpetmuncher
carpetmunchered
carpetmuncherer
carpetmuncheres
carpetmunchering
carpetmuncherly
carpetmunchers
cawk
cawked
cawker
cawkes
cawking
cawkly
cawks
chinc
chinced
chincer
chinces
chincing
chincly
chincs
chincsed
chincser
chincses
chincsing
chincsly
chincss
chink
chinked
chinker
chinkes
chinking
chinkly
chinks
chode
chodeed
chodeer
chodees
chodeing
chodely
chodes
chodesed
chodeser
chodeses
chodesing
chodesly
chodess
clit
clited
cliter
clites
cliting
clitly
clitoris
clitorised
clitoriser
clitorises
clitorising
clitorisly
clitoriss
clitorus
clitorused
clitoruser
clitoruses
clitorusing
clitorusly
clitoruss
clits
clitsed
clitser
clitses
clitsing
clitsly
clitss
clitty
clittyed
clittyer
clittyes
clittying
clittyly
clittys
cocain
cocaine
cocained
cocaineed
cocaineer
cocainees
cocaineing
cocainely
cocainer
cocaines
cocaining
cocainly
cocains
cock
cock sucker
cock suckered
cock suckerer
cock suckeres
cock suckering
cock suckerly
cock suckers
cockblock
cockblocked
cockblocker
cockblockes
cockblocking
cockblockly
cockblocks
cocked
cocker
cockes
cockholster
cockholstered
cockholsterer
cockholsteres
cockholstering
cockholsterly
cockholsters
cocking
cockknocker
cockknockered
cockknockerer
cockknockeres
cockknockering
cockknockerly
cockknockers
cockly
cocks
cocksed
cockser
cockses
cocksing
cocksly
cocksmoker
cocksmokered
cocksmokerer
cocksmokeres
cocksmokering
cocksmokerly
cocksmokers
cockss
cocksucker
cocksuckered
cocksuckerer
cocksuckeres
cocksuckering
cocksuckerly
cocksuckers
coital
coitaled
coitaler
coitales
coitaling
coitally
coitals
commie
commieed
commieer
commiees
commieing
commiely
commies
condomed
condomer
condomes
condoming
condomly
condoms
coon
cooned
cooner
coones
cooning
coonly
coons
coonsed
coonser
coonses
coonsing
coonsly
coonss
corksucker
corksuckered
corksuckerer
corksuckeres
corksuckering
corksuckerly
corksuckers
cracked
crackwhore
crackwhoreed
crackwhoreer
crackwhorees
crackwhoreing
crackwhorely
crackwhores
crap
craped
craper
crapes
craping
craply
crappy
crappyed
crappyer
crappyes
crappying
crappyly
crappys
cum
cumed
cumer
cumes
cuming
cumly
cummin
cummined
cumminer
cummines
cumming
cumminged
cumminger
cumminges
cumminging
cummingly
cummings
cummining
cumminly
cummins
cums
cumshot
cumshoted
cumshoter
cumshotes
cumshoting
cumshotly
cumshots
cumshotsed
cumshotser
cumshotses
cumshotsing
cumshotsly
cumshotss
cumslut
cumsluted
cumsluter
cumslutes
cumsluting
cumslutly
cumsluts
cumstain
cumstained
cumstainer
cumstaines
cumstaining
cumstainly
cumstains
cunilingus
cunilingused
cunilinguser
cunilinguses
cunilingusing
cunilingusly
cunilinguss
cunnilingus
cunnilingused
cunnilinguser
cunnilinguses
cunnilingusing
cunnilingusly
cunnilinguss
cunny
cunnyed
cunnyer
cunnyes
cunnying
cunnyly
cunnys
cunt
cunted
cunter
cuntes
cuntface
cuntfaceed
cuntfaceer
cuntfacees
cuntfaceing
cuntfacely
cuntfaces
cunthunter
cunthuntered
cunthunterer
cunthunteres
cunthuntering
cunthunterly
cunthunters
cunting
cuntlick
cuntlicked
cuntlicker
cuntlickered
cuntlickerer
cuntlickeres
cuntlickering
cuntlickerly
cuntlickers
cuntlickes
cuntlicking
cuntlickly
cuntlicks
cuntly
cunts
cuntsed
cuntser
cuntses
cuntsing
cuntsly
cuntss
dago
dagoed
dagoer
dagoes
dagoing
dagoly
dagos
dagosed
dagoser
dagoses
dagosing
dagosly
dagoss
dammit
dammited
dammiter
dammites
dammiting
dammitly
dammits
damn
damned
damneded
damneder
damnedes
damneding
damnedly
damneds
damner
damnes
damning
damnit
damnited
damniter
damnites
damniting
damnitly
damnits
damnly
damns
dick
dickbag
dickbaged
dickbager
dickbages
dickbaging
dickbagly
dickbags
dickdipper
dickdippered
dickdipperer
dickdipperes
dickdippering
dickdipperly
dickdippers
dicked
dicker
dickes
dickface
dickfaceed
dickfaceer
dickfacees
dickfaceing
dickfacely
dickfaces
dickflipper
dickflippered
dickflipperer
dickflipperes
dickflippering
dickflipperly
dickflippers
dickhead
dickheaded
dickheader
dickheades
dickheading
dickheadly
dickheads
dickheadsed
dickheadser
dickheadses
dickheadsing
dickheadsly
dickheadss
dicking
dickish
dickished
dickisher
dickishes
dickishing
dickishly
dickishs
dickly
dickripper
dickrippered
dickripperer
dickripperes
dickrippering
dickripperly
dickrippers
dicks
dicksipper
dicksippered
dicksipperer
dicksipperes
dicksippering
dicksipperly
dicksippers
dickweed
dickweeded
dickweeder
dickweedes
dickweeding
dickweedly
dickweeds
dickwhipper
dickwhippered
dickwhipperer
dickwhipperes
dickwhippering
dickwhipperly
dickwhippers
dickzipper
dickzippered
dickzipperer
dickzipperes
dickzippering
dickzipperly
dickzippers
diddle
diddleed
diddleer
diddlees
diddleing
diddlely
diddles
dike
dikeed
dikeer
dikees
dikeing
dikely
dikes
dildo
dildoed
dildoer
dildoes
dildoing
dildoly
dildos
dildosed
dildoser
dildoses
dildosing
dildosly
dildoss
diligaf
diligafed
diligafer
diligafes
diligafing
diligafly
diligafs
dillweed
dillweeded
dillweeder
dillweedes
dillweeding
dillweedly
dillweeds
dimwit
dimwited
dimwiter
dimwites
dimwiting
dimwitly
dimwits
dingle
dingleed
dingleer
dinglees
dingleing
dinglely
dingles
dipship
dipshiped
dipshiper
dipshipes
dipshiping
dipshiply
dipships
dizzyed
dizzyer
dizzyes
dizzying
dizzyly
dizzys
doggiestyleed
doggiestyleer
doggiestylees
doggiestyleing
doggiestylely
doggiestyles
doggystyleed
doggystyleer
doggystylees
doggystyleing
doggystylely
doggystyles
dong
donged
donger
donges
donging
dongly
dongs
doofus
doofused
doofuser
doofuses
doofusing
doofusly
doofuss
doosh
dooshed
doosher
dooshes
dooshing
dooshly
dooshs
dopeyed
dopeyer
dopeyes
dopeying
dopeyly
dopeys
douchebag
douchebaged
douchebager
douchebages
douchebaging
douchebagly
douchebags
douchebagsed
douchebagser
douchebagses
douchebagsing
douchebagsly
douchebagss
doucheed
doucheer
douchees
doucheing
douchely
douches
douchey
doucheyed
doucheyer
doucheyes
doucheying
doucheyly
doucheys
drunk
drunked
drunker
drunkes
drunking
drunkly
drunks
dumass
dumassed
dumasser
dumasses
dumassing
dumassly
dumasss
dumbass
dumbassed
dumbasser
dumbasses
dumbassesed
dumbasseser
dumbasseses
dumbassesing
dumbassesly
dumbassess
dumbassing
dumbassly
dumbasss
dummy
dummyed
dummyer
dummyes
dummying
dummyly
dummys
dyke
dykeed
dykeer
dykees
dykeing
dykely
dykes
dykesed
dykeser
dykeses
dykesing
dykesly
dykess
erotic
eroticed
eroticer
erotices
eroticing
eroticly
erotics
extacy
extacyed
extacyer
extacyes
extacying
extacyly
extacys
extasy
extasyed
extasyer
extasyes
extasying
extasyly
extasys
fack
facked
facker
fackes
facking
fackly
facks
fag
faged
fager
fages
fagg
fagged
faggeded
faggeder
faggedes
faggeding
faggedly
faggeds
fagger
fagges
fagging
faggit
faggited
faggiter
faggites
faggiting
faggitly
faggits
faggly
faggot
faggoted
faggoter
faggotes
faggoting
faggotly
faggots
faggs
faging
fagly
fagot
fagoted
fagoter
fagotes
fagoting
fagotly
fagots
fags
fagsed
fagser
fagses
fagsing
fagsly
fagss
faig
faiged
faiger
faiges
faiging
faigly
faigs
faigt
faigted
faigter
faigtes
faigting
faigtly
faigts
fannybandit
fannybandited
fannybanditer
fannybandites
fannybanditing
fannybanditly
fannybandits
farted
farter
fartes
farting
fartknocker
fartknockered
fartknockerer
fartknockeres
fartknockering
fartknockerly
fartknockers
fartly
farts
felch
felched
felcher
felchered
felcherer
felcheres
felchering
felcherly
felchers
felches
felching
felchinged
felchinger
felchinges
felchinging
felchingly
felchings
felchly
felchs
fellate
fellateed
fellateer
fellatees
fellateing
fellately
fellates
fellatio
fellatioed
fellatioer
fellatioes
fellatioing
fellatioly
fellatios
feltch
feltched
feltcher
feltchered
feltcherer
feltcheres
feltchering
feltcherly
feltchers
feltches
feltching
feltchly
feltchs
feom
feomed
feomer
feomes
feoming
feomly
feoms
fisted
fisteded
fisteder
fistedes
fisteding
fistedly
fisteds
fisting
fistinged
fistinger
fistinges
fistinging
fistingly
fistings
fisty
fistyed
fistyer
fistyes
fistying
fistyly
fistys
floozy
floozyed
floozyer
floozyes
floozying
floozyly
floozys
foad
foaded
foader
foades
foading
foadly
foads
fondleed
fondleer
fondlees
fondleing
fondlely
fondles
foobar
foobared
foobarer
foobares
foobaring
foobarly
foobars
freex
freexed
freexer
freexes
freexing
freexly
freexs
frigg
frigga
friggaed
friggaer
friggaes
friggaing
friggaly
friggas
frigged
frigger
frigges
frigging
friggly
friggs
fubar
fubared
fubarer
fubares
fubaring
fubarly
fubars
fuck
fuckass
fuckassed
fuckasser
fuckasses
fuckassing
fuckassly
fuckasss
fucked
fuckeded
fuckeder
fuckedes
fuckeding
fuckedly
fuckeds
fucker
fuckered
fuckerer
fuckeres
fuckering
fuckerly
fuckers
fuckes
fuckface
fuckfaceed
fuckfaceer
fuckfacees
fuckfaceing
fuckfacely
fuckfaces
fuckin
fuckined
fuckiner
fuckines
fucking
fuckinged
fuckinger
fuckinges
fuckinging
fuckingly
fuckings
fuckining
fuckinly
fuckins
fuckly
fucknugget
fucknuggeted
fucknuggeter
fucknuggetes
fucknuggeting
fucknuggetly
fucknuggets
fucknut
fucknuted
fucknuter
fucknutes
fucknuting
fucknutly
fucknuts
fuckoff
fuckoffed
fuckoffer
fuckoffes
fuckoffing
fuckoffly
fuckoffs
fucks
fucksed
fuckser
fuckses
fucksing
fucksly
fuckss
fucktard
fucktarded
fucktarder
fucktardes
fucktarding
fucktardly
fucktards
fuckup
fuckuped
fuckuper
fuckupes
fuckuping
fuckuply
fuckups
fuckwad
fuckwaded
fuckwader
fuckwades
fuckwading
fuckwadly
fuckwads
fuckwit
fuckwited
fuckwiter
fuckwites
fuckwiting
fuckwitly
fuckwits
fudgepacker
fudgepackered
fudgepackerer
fudgepackeres
fudgepackering
fudgepackerly
fudgepackers
fuk
fuked
fuker
fukes
fuking
fukly
fuks
fvck
fvcked
fvcker
fvckes
fvcking
fvckly
fvcks
fxck
fxcked
fxcker
fxckes
fxcking
fxckly
fxcks
gae
gaeed
gaeer
gaees
gaeing
gaely
gaes
gai
gaied
gaier
gaies
gaiing
gaily
gais
ganja
ganjaed
ganjaer
ganjaes
ganjaing
ganjaly
ganjas
gayed
gayer
gayes
gaying
gayly
gays
gaysed
gayser
gayses
gaysing
gaysly
gayss
gey
geyed
geyer
geyes
geying
geyly
geys
gfc
gfced
gfcer
gfces
gfcing
gfcly
gfcs
gfy
gfyed
gfyer
gfyes
gfying
gfyly
gfys
ghay
ghayed
ghayer
ghayes
ghaying
ghayly
ghays
ghey
gheyed
gheyer
gheyes
gheying
gheyly
gheys
gigolo
gigoloed
gigoloer
gigoloes
gigoloing
gigololy
gigolos
goatse
goatseed
goatseer
goatsees
goatseing
goatsely
goatses
godamn
godamned
godamner
godamnes
godamning
godamnit
godamnited
godamniter
godamnites
godamniting
godamnitly
godamnits
godamnly
godamns
goddam
goddamed
goddamer
goddames
goddaming
goddamly
goddammit
goddammited
goddammiter
goddammites
goddammiting
goddammitly
goddammits
goddamn
goddamned
goddamner
goddamnes
goddamning
goddamnly
goddamns
goddams
goldenshower
goldenshowered
goldenshowerer
goldenshoweres
goldenshowering
goldenshowerly
goldenshowers
gonad
gonaded
gonader
gonades
gonading
gonadly
gonads
gonadsed
gonadser
gonadses
gonadsing
gonadsly
gonadss
gook
gooked
gooker
gookes
gooking
gookly
gooks
gooksed
gookser
gookses
gooksing
gooksly
gookss
gringo
gringoed
gringoer
gringoes
gringoing
gringoly
gringos
gspot
gspoted
gspoter
gspotes
gspoting
gspotly
gspots
gtfo
gtfoed
gtfoer
gtfoes
gtfoing
gtfoly
gtfos
guido
guidoed
guidoer
guidoes
guidoing
guidoly
guidos
handjob
handjobed
handjober
handjobes
handjobing
handjobly
handjobs
hard on
hard oned
hard oner
hard ones
hard oning
hard only
hard ons
hardknight
hardknighted
hardknighter
hardknightes
hardknighting
hardknightly
hardknights
hebe
hebeed
hebeer
hebees
hebeing
hebely
hebes
heeb
heebed
heeber
heebes
heebing
heebly
heebs
hell
helled
heller
helles
helling
hellly
hells
hemp
hemped
hemper
hempes
hemping
hemply
hemps
heroined
heroiner
heroines
heroining
heroinly
heroins
herp
herped
herper
herpes
herpesed
herpeser
herpeses
herpesing
herpesly
herpess
herping
herply
herps
herpy
herpyed
herpyer
herpyes
herpying
herpyly
herpys
hitler
hitlered
hitlerer
hitleres
hitlering
hitlerly
hitlers
hived
hiver
hives
hiving
hivly
hivs
hobag
hobaged
hobager
hobages
hobaging
hobagly
hobags
homey
homeyed
homeyer
homeyes
homeying
homeyly
homeys
homo
homoed
homoer
homoes
homoey
homoeyed
homoeyer
homoeyes
homoeying
homoeyly
homoeys
homoing
homoly
homos
honky
honkyed
honkyer
honkyes
honkying
honkyly
honkys
hooch
hooched
hoocher
hooches
hooching
hoochly
hoochs
hookah
hookahed
hookaher
hookahes
hookahing
hookahly
hookahs
hooker
hookered
hookerer
hookeres
hookering
hookerly
hookers
hoor
hoored
hoorer
hoores
hooring
hoorly
hoors
hootch
hootched
hootcher
hootches
hootching
hootchly
hootchs
hooter
hootered
hooterer
hooteres
hootering
hooterly
hooters
hootersed
hooterser
hooterses
hootersing
hootersly
hooterss
horny
hornyed
hornyer
hornyes
hornying
hornyly
hornys
houstoned
houstoner
houstones
houstoning
houstonly
houstons
hump
humped
humpeded
humpeder
humpedes
humpeding
humpedly
humpeds
humper
humpes
humping
humpinged
humpinger
humpinges
humpinging
humpingly
humpings
humply
humps
husbanded
husbander
husbandes
husbanding
husbandly
husbands
hussy
hussyed
hussyer
hussyes
hussying
hussyly
hussys
hymened
hymener
hymenes
hymening
hymenly
hymens
inbred
inbreded
inbreder
inbredes
inbreding
inbredly
inbreds
incest
incested
incester
incestes
incesting
incestly
incests
injun
injuned
injuner
injunes
injuning
injunly
injuns
jackass
jackassed
jackasser
jackasses
jackassing
jackassly
jackasss
jackhole
jackholeed
jackholeer
jackholees
jackholeing
jackholely
jackholes
jackoff
jackoffed
jackoffer
jackoffes
jackoffing
jackoffly
jackoffs
jap
japed
japer
japes
japing
japly
japs
japsed
japser
japses
japsing
japsly
japss
jerkoff
jerkoffed
jerkoffer
jerkoffes
jerkoffing
jerkoffly
jerkoffs
jerks
jism
jismed
jismer
jismes
jisming
jismly
jisms
jiz
jized
jizer
jizes
jizing
jizly
jizm
jizmed
jizmer
jizmes
jizming
jizmly
jizms
jizs
jizz
jizzed
jizzeded
jizzeder
jizzedes
jizzeding
jizzedly
jizzeds
jizzer
jizzes
jizzing
jizzly
jizzs
junkie
junkieed
junkieer
junkiees
junkieing
junkiely
junkies
junky
junkyed
junkyer
junkyes
junkying
junkyly
junkys
kike
kikeed
kikeer
kikees
kikeing
kikely
kikes
kikesed
kikeser
kikeses
kikesing
kikesly
kikess
killed
killer
killes
killing
killly
kills
kinky
kinkyed
kinkyer
kinkyes
kinkying
kinkyly
kinkys
kkk
kkked
kkker
kkkes
kkking
kkkly
kkks
klan
klaned
klaner
klanes
klaning
klanly
klans
knobend
knobended
knobender
knobendes
knobending
knobendly
knobends
kooch
kooched
koocher
kooches
koochesed
koocheser
koocheses
koochesing
koochesly
koochess
kooching
koochly
koochs
kootch
kootched
kootcher
kootches
kootching
kootchly
kootchs
kraut
krauted
krauter
krautes
krauting
krautly
krauts
kyke
kykeed
kykeer
kykees
kykeing
kykely
kykes
lech
leched
lecher
leches
leching
lechly
lechs
leper
lepered
leperer
leperes
lepering
leperly
lepers
lesbiansed
lesbianser
lesbianses
lesbiansing
lesbiansly
lesbianss
lesbo
lesboed
lesboer
lesboes
lesboing
lesboly
lesbos
lesbosed
lesboser
lesboses
lesbosing
lesbosly
lesboss
lez
lezbianed
lezbianer
lezbianes
lezbianing
lezbianly
lezbians
lezbiansed
lezbianser
lezbianses
lezbiansing
lezbiansly
lezbianss
lezbo
lezboed
lezboer
lezboes
lezboing
lezboly
lezbos
lezbosed
lezboser
lezboses
lezbosing
lezbosly
lezboss
lezed
lezer
lezes
lezing
lezly
lezs
lezzie
lezzieed
lezzieer
lezziees
lezzieing
lezziely
lezzies
lezziesed
lezzieser
lezzieses
lezziesing
lezziesly
lezziess
lezzy
lezzyed
lezzyer
lezzyes
lezzying
lezzyly
lezzys
lmaoed
lmaoer
lmaoes
lmaoing
lmaoly
lmaos
lmfao
lmfaoed
lmfaoer
lmfaoes
lmfaoing
lmfaoly
lmfaos
loined
loiner
loines
loining
loinly
loins
loinsed
loinser
loinses
loinsing
loinsly
loinss
lubeed
lubeer
lubees
lubeing
lubely
lubes
lusty
lustyed
lustyer
lustyes
lustying
lustyly
lustys
massa
massaed
massaer
massaes
massaing
massaly
massas
masterbate
masterbateed
masterbateer
masterbatees
masterbateing
masterbately
masterbates
masterbating
masterbatinged
masterbatinger
masterbatinges
masterbatinging
masterbatingly
masterbatings
masterbation
masterbationed
masterbationer
masterbationes
masterbationing
masterbationly
masterbations
masturbate
masturbateed
masturbateer
masturbatees
masturbateing
masturbately
masturbates
masturbating
masturbatinged
masturbatinger
masturbatinges
masturbatinging
masturbatingly
masturbatings
masturbation
masturbationed
masturbationer
masturbationes
masturbationing
masturbationly
masturbations
methed
mether
methes
mething
methly
meths
militaryed
militaryer
militaryes
militarying
militaryly
militarys
mofo
mofoed
mofoer
mofoes
mofoing
mofoly
mofos
molest
molested
molester
molestes
molesting
molestly
molests
moolie
moolieed
moolieer
mooliees
moolieing
mooliely
moolies
moron
moroned
moroner
morones
moroning
moronly
morons
motherfucka
motherfuckaed
motherfuckaer
motherfuckaes
motherfuckaing
motherfuckaly
motherfuckas
motherfucker
motherfuckered
motherfuckerer
motherfuckeres
motherfuckering
motherfuckerly
motherfuckers
motherfucking
motherfuckinged
motherfuckinger
motherfuckinges
motherfuckinging
motherfuckingly
motherfuckings
mtherfucker
mtherfuckered
mtherfuckerer
mtherfuckeres
mtherfuckering
mtherfuckerly
mtherfuckers
mthrfucker
mthrfuckered
mthrfuckerer
mthrfuckeres
mthrfuckering
mthrfuckerly
mthrfuckers
mthrfucking
mthrfuckinged
mthrfuckinger
mthrfuckinges
mthrfuckinging
mthrfuckingly
mthrfuckings
muff
muffdiver
muffdivered
muffdiverer
muffdiveres
muffdivering
muffdiverly
muffdivers
muffed
muffer
muffes
muffing
muffly
muffs
murdered
murderer
murderes
murdering
murderly
murders
muthafuckaz
muthafuckazed
muthafuckazer
muthafuckazes
muthafuckazing
muthafuckazly
muthafuckazs
muthafucker
muthafuckered
muthafuckerer
muthafuckeres
muthafuckering
muthafuckerly
muthafuckers
mutherfucker
mutherfuckered
mutherfuckerer
mutherfuckeres
mutherfuckering
mutherfuckerly
mutherfuckers
mutherfucking
mutherfuckinged
mutherfuckinger
mutherfuckinges
mutherfuckinging
mutherfuckingly
mutherfuckings
muthrfucking
muthrfuckinged
muthrfuckinger
muthrfuckinges
muthrfuckinging
muthrfuckingly
muthrfuckings
nad
naded
nader
nades
nading
nadly
nads
nadsed
nadser
nadses
nadsing
nadsly
nadss
nakeded
nakeder
nakedes
nakeding
nakedly
nakeds
napalm
napalmed
napalmer
napalmes
napalming
napalmly
napalms
nappy
nappyed
nappyer
nappyes
nappying
nappyly
nappys
nazi
nazied
nazier
nazies
naziing
nazily
nazis
nazism
nazismed
nazismer
nazismes
nazisming
nazismly
nazisms
negro
negroed
negroer
negroes
negroing
negroly
negros
nigga
niggaed
niggaer
niggaes
niggah
niggahed
niggaher
niggahes
niggahing
niggahly
niggahs
niggaing
niggaly
niggas
niggased
niggaser
niggases
niggasing
niggasly
niggass
niggaz
niggazed
niggazer
niggazes
niggazing
niggazly
niggazs
nigger
niggered
niggerer
niggeres
niggering
niggerly
niggers
niggersed
niggerser
niggerses
niggersing
niggersly
niggerss
niggle
niggleed
niggleer
nigglees
niggleing
nigglely
niggles
niglet
nigleted
nigleter
nigletes
nigleting
nigletly
niglets
nimrod
nimroded
nimroder
nimrodes
nimroding
nimrodly
nimrods
ninny
ninnyed
ninnyer
ninnyes
ninnying
ninnyly
ninnys
nooky
nookyed
nookyer
nookyes
nookying
nookyly
nookys
nuccitelli
nuccitellied
nuccitellier
nuccitellies
nuccitelliing
nuccitellily
nuccitellis
nympho
nymphoed
nymphoer
nymphoes
nymphoing
nympholy
nymphos
opium
opiumed
opiumer
opiumes
opiuming
opiumly
opiums
orgies
orgiesed
orgieser
orgieses
orgiesing
orgiesly
orgiess
orgy
orgyed
orgyer
orgyes
orgying
orgyly
orgys
paddy
paddyed
paddyer
paddyes
paddying
paddyly
paddys
paki
pakied
pakier
pakies
pakiing
pakily
pakis
pantie
pantieed
pantieer
pantiees
pantieing
pantiely
panties
pantiesed
pantieser
pantieses
pantiesing
pantiesly
pantiess
panty
pantyed
pantyer
pantyes
pantying
pantyly
pantys
pastie
pastieed
pastieer
pastiees
pastieing
pastiely
pasties
pasty
pastyed
pastyer
pastyes
pastying
pastyly
pastys
pecker
peckered
peckerer
peckeres
peckering
peckerly
peckers
pedo
pedoed
pedoer
pedoes
pedoing
pedoly
pedophile
pedophileed
pedophileer
pedophilees
pedophileing
pedophilely
pedophiles
pedophilia
pedophiliac
pedophiliaced
pedophiliacer
pedophiliaces
pedophiliacing
pedophiliacly
pedophiliacs
pedophiliaed
pedophiliaer
pedophiliaes
pedophiliaing
pedophilialy
pedophilias
pedos
penial
penialed
penialer
peniales
penialing
penially
penials
penile
penileed
penileer
penilees
penileing
penilely
peniles
penis
penised
peniser
penises
penising
penisly
peniss
perversion
perversioned
perversioner
perversiones
perversioning
perversionly
perversions
peyote
peyoteed
peyoteer
peyotees
peyoteing
peyotely
peyotes
phuck
phucked
phucker
phuckes
phucking
phuckly
phucks
pillowbiter
pillowbitered
pillowbiterer
pillowbiteres
pillowbitering
pillowbiterly
pillowbiters
pimp
pimped
pimper
pimpes
pimping
pimply
pimps
pinko
pinkoed
pinkoer
pinkoes
pinkoing
pinkoly
pinkos
pissed
pisseded
pisseder
pissedes
pisseding
pissedly
pisseds
pisser
pisses
pissing
pissly
pissoff
pissoffed
pissoffer
pissoffes
pissoffing
pissoffly
pissoffs
pisss
polack
polacked
polacker
polackes
polacking
polackly
polacks
pollock
pollocked
pollocker
pollockes
pollocking
pollockly
pollocks
poon
pooned
pooner
poones
pooning
poonly
poons
poontang
poontanged
poontanger
poontanges
poontanging
poontangly
poontangs
porn
porned
porner
pornes
porning
pornly
porno
pornoed
pornoer
pornoes
pornography
pornographyed
pornographyer
pornographyes
pornographying
pornographyly
pornographys
pornoing
pornoly
pornos
porns
prick
pricked
pricker
prickes
pricking
prickly
pricks
prig
priged
priger
priges
priging
prigly
prigs
prostitute
prostituteed
prostituteer
prostitutees
prostituteing
prostitutely
prostitutes
prude
prudeed
prudeer
prudees
prudeing
prudely
prudes
punkass
punkassed
punkasser
punkasses
punkassing
punkassly
punkasss
punky
punkyed
punkyer
punkyes
punkying
punkyly
punkys
puss
pussed
pusser
pusses
pussies
pussiesed
pussieser
pussieses
pussiesing
pussiesly
pussiess
pussing
pussly
pusss
pussy
pussyed
pussyer
pussyes
pussying
pussyly
pussypounder
pussypoundered
pussypounderer
pussypounderes
pussypoundering
pussypounderly
pussypounders
pussys
puto
putoed
putoer
putoes
putoing
putoly
putos
queaf
queafed
queafer
queafes
queafing
queafly
queafs
queef
queefed
queefer
queefes
queefing
queefly
queefs
queer
queered
queerer
queeres
queering
queerly
queero
queeroed
queeroer
queeroes
queeroing
queeroly
queeros
queers
queersed
queerser
queerses
queersing
queersly
queerss
quicky
quickyed
quickyer
quickyes
quickying
quickyly
quickys
quim
quimed
quimer
quimes
quiming
quimly
quims
racy
racyed
racyer
racyes
racying
racyly
racys
rape
raped
rapeded
rapeder
rapedes
rapeding
rapedly
rapeds
rapeed
rapeer
rapees
rapeing
rapely
raper
rapered
raperer
raperes
rapering
raperly
rapers
rapes
rapist
rapisted
rapister
rapistes
rapisting
rapistly
rapists
raunch
raunched
rauncher
raunches
raunching
raunchly
raunchs
rectus
rectused
rectuser
rectuses
rectusing
rectusly
rectuss
reefer
reefered
reeferer
reeferes
reefering
reeferly
reefers
reetard
reetarded
reetarder
reetardes
reetarding
reetardly
reetards
reich
reiched
reicher
reiches
reiching
reichly
reichs
retard
retarded
retardeded
retardeder
retardedes
retardeding
retardedly
retardeds
retarder
retardes
retarding
retardly
retards
rimjob
rimjobed
rimjober
rimjobes
rimjobing
rimjobly
rimjobs
ritard
ritarded
ritarder
ritardes
ritarding
ritardly
ritards
rtard
rtarded
rtarder
rtardes
rtarding
rtardly
rtards
rum
rumed
rumer
rumes
ruming
rumly
rump
rumped
rumper
rumpes
rumping
rumply
rumprammer
rumprammered
rumprammerer
rumprammeres
rumprammering
rumprammerly
rumprammers
rumps
rums
ruski
ruskied
ruskier
ruskies
ruskiing
ruskily
ruskis
sadism
sadismed
sadismer
sadismes
sadisming
sadismly
sadisms
sadist
sadisted
sadister
sadistes
sadisting
sadistly
sadists
scag
scaged
scager
scages
scaging
scagly
scags
scantily
scantilyed
scantilyer
scantilyes
scantilying
scantilyly
scantilys
schlong
schlonged
schlonger
schlonges
schlonging
schlongly
schlongs
scrog
scroged
scroger
scroges
scroging
scrogly
scrogs
scrot
scrote
scroted
scroteed
scroteer
scrotees
scroteing
scrotely
scroter
scrotes
scroting
scrotly
scrots
scrotum
scrotumed
scrotumer
scrotumes
scrotuming
scrotumly
scrotums
scrud
scruded
scruder
scrudes
scruding
scrudly
scruds
scum
scumed
scumer
scumes
scuming
scumly
scums
seaman
seamaned
seamaner
seamanes
seamaning
seamanly
seamans
seamen
seamened
seamener
seamenes
seamening
seamenly
seamens
seduceed
seduceer
seducees
seduceing
seducely
seduces
semen
semened
semener
semenes
semening
semenly
semens
shamedame
shamedameed
shamedameer
shamedamees
shamedameing
shamedamely
shamedames
shit
shite
shiteater
shiteatered
shiteaterer
shiteateres
shiteatering
shiteaterly
shiteaters
shited
shiteed
shiteer
shitees
shiteing
shitely
shiter
shites
shitface
shitfaceed
shitfaceer
shitfacees
shitfaceing
shitfacely
shitfaces
shithead
shitheaded
shitheader
shitheades
shitheading
shitheadly
shitheads
shithole
shitholeed
shitholeer
shitholees
shitholeing
shitholely
shitholes
shithouse
shithouseed
shithouseer
shithousees
shithouseing
shithousely
shithouses
shiting
shitly
shits
shitsed
shitser
shitses
shitsing
shitsly
shitss
shitt
shitted
shitteded
shitteder
shittedes
shitteding
shittedly
shitteds
shitter
shittered
shitterer
shitteres
shittering
shitterly
shitters
shittes
shitting
shittly
shitts
shitty
shittyed
shittyer
shittyes
shittying
shittyly
shittys
shiz
shized
shizer
shizes
shizing
shizly
shizs
shooted
shooter
shootes
shooting
shootly
shoots
sissy
sissyed
sissyer
sissyes
sissying
sissyly
sissys
skag
skaged
skager
skages
skaging
skagly
skags
skank
skanked
skanker
skankes
skanking
skankly
skanks
slave
slaveed
slaveer
slavees
slaveing
slavely
slaves
sleaze
sleazeed
sleazeer
sleazees
sleazeing
sleazely
sleazes
sleazy
sleazyed
sleazyer
sleazyes
sleazying
sleazyly
sleazys
slut
slutdumper
slutdumpered
slutdumperer
slutdumperes
slutdumpering
slutdumperly
slutdumpers
sluted
sluter
slutes
sluting
slutkiss
slutkissed
slutkisser
slutkisses
slutkissing
slutkissly
slutkisss
slutly
sluts
slutsed
slutser
slutses
slutsing
slutsly
slutss
smegma
smegmaed
smegmaer
smegmaes
smegmaing
smegmaly
smegmas
smut
smuted
smuter
smutes
smuting
smutly
smuts
smutty
smuttyed
smuttyer
smuttyes
smuttying
smuttyly
smuttys
snatch
snatched
snatcher
snatches
snatching
snatchly
snatchs
sniper
snipered
sniperer
sniperes
snipering
sniperly
snipers
snort
snorted
snorter
snortes
snorting
snortly
snorts
snuff
snuffed
snuffer
snuffes
snuffing
snuffly
snuffs
sodom
sodomed
sodomer
sodomes
sodoming
sodomly
sodoms
spic
spiced
spicer
spices
spicing
spick
spicked
spicker
spickes
spicking
spickly
spicks
spicly
spics
spik
spoof
spoofed
spoofer
spoofes
spoofing
spoofly
spoofs
spooge
spoogeed
spoogeer
spoogees
spoogeing
spoogely
spooges
spunk
spunked
spunker
spunkes
spunking
spunkly
spunks
steamyed
steamyer
steamyes
steamying
steamyly
steamys
stfu
stfued
stfuer
stfues
stfuing
stfuly
stfus
stiffy
stiffyed
stiffyer
stiffyes
stiffying
stiffyly
stiffys
stoneded
stoneder
stonedes
stoneding
stonedly
stoneds
stupided
stupider
stupides
stupiding
stupidly
stupids
suckeded
suckeder
suckedes
suckeding
suckedly
suckeds
sucker
suckes
sucking
suckinged
suckinger
suckinges
suckinging
suckingly
suckings
suckly
sucks
sumofabiatch
sumofabiatched
sumofabiatcher
sumofabiatches
sumofabiatching
sumofabiatchly
sumofabiatchs
tard
tarded
tarder
tardes
tarding
tardly
tards
tawdry
tawdryed
tawdryer
tawdryes
tawdrying
tawdryly
tawdrys
teabagging
teabagginged
teabagginger
teabagginges
teabagginging
teabaggingly
teabaggings
terd
terded
terder
terdes
terding
terdly
terds
teste
testee
testeed
testeeed
testeeer
testeees
testeeing
testeely
testeer
testees
testeing
testely
testes
testesed
testeser
testeses
testesing
testesly
testess
testicle
testicleed
testicleer
testiclees
testicleing
testiclely
testicles
testis
testised
testiser
testises
testising
testisly
testiss
thrusted
thruster
thrustes
thrusting
thrustly
thrusts
thug
thuged
thuger
thuges
thuging
thugly
thugs
tinkle
tinkleed
tinkleer
tinklees
tinkleing
tinklely
tinkles
tit
tited
titer
tites
titfuck
titfucked
titfucker
titfuckes
titfucking
titfuckly
titfucks
titi
titied
titier
tities
titiing
titily
titing
titis
titly
tits
titsed
titser
titses
titsing
titsly
titss
tittiefucker
tittiefuckered
tittiefuckerer
tittiefuckeres
tittiefuckering
tittiefuckerly
tittiefuckers
titties
tittiesed
tittieser
tittieses
tittiesing
tittiesly
tittiess
titty
tittyed
tittyer
tittyes
tittyfuck
tittyfucked
tittyfucker
tittyfuckered
tittyfuckerer
tittyfuckeres
tittyfuckering
tittyfuckerly
tittyfuckers
tittyfuckes
tittyfucking
tittyfuckly
tittyfucks
tittying
tittyly
tittys
toke
tokeed
tokeer
tokees
tokeing
tokely
tokes
toots
tootsed
tootser
tootses
tootsing
tootsly
tootss
tramp
tramped
tramper
trampes
tramping
tramply
tramps
transsexualed
transsexualer
transsexuales
transsexualing
transsexually
transsexuals
trashy
trashyed
trashyer
trashyes
trashying
trashyly
trashys
tubgirl
tubgirled
tubgirler
tubgirles
tubgirling
tubgirlly
tubgirls
turd
turded
turder
turdes
turding
turdly
turds
tush
tushed
tusher
tushes
tushing
tushly
tushs
twat
twated
twater
twates
twating
twatly
twats
twatsed
twatser
twatses
twatsing
twatsly
twatss
undies
undiesed
undieser
undieses
undiesing
undiesly
undiess
unweded
unweder
unwedes
unweding
unwedly
unweds
uzi
uzied
uzier
uzies
uziing
uzily
uzis
vag
vaged
vager
vages
vaging
vagly
vags
valium
valiumed
valiumer
valiumes
valiuming
valiumly
valiums
venous
virgined
virginer
virgines
virgining
virginly
virgins
vixen
vixened
vixener
vixenes
vixening
vixenly
vixens
vodkaed
vodkaer
vodkaes
vodkaing
vodkaly
vodkas
voyeur
voyeured
voyeurer
voyeures
voyeuring
voyeurly
voyeurs
vulgar
vulgared
vulgarer
vulgares
vulgaring
vulgarly
vulgars
wang
wanged
wanger
wanges
wanging
wangly
wangs
wank
wanked
wanker
wankered
wankerer
wankeres
wankering
wankerly
wankers
wankes
wanking
wankly
wanks
wazoo
wazooed
wazooer
wazooes
wazooing
wazooly
wazoos
wedgie
wedgieed
wedgieer
wedgiees
wedgieing
wedgiely
wedgies
weeded
weeder
weedes
weeding
weedly
weeds
weenie
weenieed
weenieer
weeniees
weenieing
weeniely
weenies
weewee
weeweeed
weeweeer
weeweees
weeweeing
weeweely
weewees
weiner
weinered
weinerer
weineres
weinering
weinerly
weiners
weirdo
weirdoed
weirdoer
weirdoes
weirdoing
weirdoly
weirdos
wench
wenched
wencher
wenches
wenching
wenchly
wenchs
wetback
wetbacked
wetbacker
wetbackes
wetbacking
wetbackly
wetbacks
whitey
whiteyed
whiteyer
whiteyes
whiteying
whiteyly
whiteys
whiz
whized
whizer
whizes
whizing
whizly
whizs
whoralicious
whoralicioused
whoraliciouser
whoraliciouses
whoraliciousing
whoraliciously
whoraliciouss
whore
whorealicious
whorealicioused
whorealiciouser
whorealiciouses
whorealiciousing
whorealiciously
whorealiciouss
whored
whoreded
whoreder
whoredes
whoreding
whoredly
whoreds
whoreed
whoreer
whorees
whoreface
whorefaceed
whorefaceer
whorefacees
whorefaceing
whorefacely
whorefaces
whorehopper
whorehoppered
whorehopperer
whorehopperes
whorehoppering
whorehopperly
whorehoppers
whorehouse
whorehouseed
whorehouseer
whorehousees
whorehouseing
whorehousely
whorehouses
whoreing
whorely
whores
whoresed
whoreser
whoreses
whoresing
whoresly
whoress
whoring
whoringed
whoringer
whoringes
whoringing
whoringly
whorings
wigger
wiggered
wiggerer
wiggeres
wiggering
wiggerly
wiggers
woody
woodyed
woodyer
woodyes
woodying
woodyly
woodys
wop
woped
woper
wopes
woping
woply
wops
wtf
wtfed
wtfer
wtfes
wtfing
wtfly
wtfs
xxx
xxxed
xxxer
xxxes
xxxing
xxxly
xxxs
yeasty
yeastyed
yeastyer
yeastyes
yeastying
yeastyly
yeastys
yobbo
yobboed
yobboer
yobboes
yobboing
yobboly
yobbos
zoophile
zoophileed
zoophileer
zoophilees
zoophileing
zoophilely
zoophiles
anal
ass
ass lick
balls
ballsac
bisexual
bleach
causas
cheap
cost of miracles
cunt
display network stats
fart
fda and death
fda AND warn
fda AND warning
fda AND warns
feom
fuck
gfc
humira AND expensive
illegal
madvocate
masturbation
nuccitelli
overdose
porn
shit
snort
texarkana
section[contains(@class, 'nav-hidden')]
footer[@id='footer']
The leading independent newspaper covering rheumatology news and commentary.
How to get paid if your patient passes on
The death of a patient comes with many challenges for physicians, including a range of emotional and professional issues. Beyond those concerns,
“When a patient passes away, obviously there is, unfortunately, a lot of paperwork and stress for families, and it’s a very difficult situation,” says Shikha Jain, MD, an oncologist and associate professor of medicine at the University of Illinois at Chicago. “Talking about finances in that moment can be difficult and uncomfortable, and one thing I’d recommend is that the physicians themselves not get involved.”
Instead, Dr. Jain said, someone in the billing department in the practice or the hospital should take a lead on dealing with any outstanding debts.
“That doctor-patient relationship is a very precious relationship, so you don’t want to mix that financial aspect of providing care with the doctor-patient relationship,” Dr. Jain said. “That’s one thing that’s really important.”
The best approach in such situations is for practices to have a standing policy in place that dictates how to handle bills once a patient has died.
In most cases, the executor of the patient’s will must inform all creditors, including doctors, that the decedent has died, but sometimes there’s a delay.
Hoping the doctor’s office writes it off
“Even though the person in charge of the estate is supposed to contact the doctor’s office and let them know when a patient has passed, that doesn’t always happen,” says Hope Wen, head of billing at practice management platform Soundry Health. “It can be very challenging to track down that information, and sometimes they’re just crossing their fingers hoping that the doctor’s office will just write off the balance, which they often do.”
Some offices use a service that compares accounts receivable lists to Social Security death files and state records to identify deaths more quickly. Some physicians might also use a debt collection agency or an attorney who has experience collecting decedent debts and dealing with executors and probate courts.
Once the practice becomes aware that a patient has died, it can no longer send communications to the name and address on file, although it can continue to go through the billing process with the insurer for any bills incurred up to the date of the death.
At that point, the estate becomes responsible for the debt, and all communication must go to the executor of the estate (in some states, this might be called a personal representative). The office can reach out to any contacts on file to see if they are able to identify the executor.
“You want to do that in a compassionate way,” says Jack Brown III, JD, MBA, president of Gulf Coast Collection Bureau. “You’ll tell them you’re sorry for their loss, but you’re wondering who is responsible for the estate. Once you’ve identified that person and gotten their letter of administration from the probate court or a power of attorney, then you can speak with that person as if they were the patient.”
The names of executors are also public record and are available through the probate court (sometimes called the surrogate court) in the county where the decedent lived.
“Even if there’s no will or no executive named, the court will appoint an administrator for the estate, which is usually a family member,” said Robert Bernstein, an estate lawyer in Parsippany, N.J. “Their information will be on file in the court.”
Insurance coverage
Typically, insurance will pay for treatment (after deductibles and copays) up until the date of the patient’s death. But, of course, it can take months for some insurance companies to make their final payments, allowing physicians to know exactly how much they’re owed by that estate. In such cases, it’s important for physicians to know the rules in the decedent’s state for how long they have to file a claim.
Most states require that claims occur within 6-9 months of the person’s death. However, in some states, claimants can continue to file for much longer if the estate has not yet paid out all of its assets.
“Sometimes there is real estate to sell or a business to wind down, and it can take years for the estate to distribute all of the assets,” Mr. Bernstein says. “If it’s a year later and they still haven’t distributed the assets, the physician can still file the claim and should be paid.”
In some cases, especially if the decedent received compassionate, quality care, their family will want to make good on any outstanding debts to the health care providers who took care of their loved ones in their final days. In other cases, especially when a family member has had a long illness, their assets have been depleted over time or were transferred to other family members so that there is little left in the estate itself when the patient dies.
Regardless of other circumstances, the estate alone is responsible for such payments, and family members, including spouses and children, typically have no liability. (Though rarely enforced, some states do have filial responsibility laws that could hold children responsible for their parents’ debts, including unpaid medical bills. In addition, states with community property laws might require a surviving spouse to cover their partner’s debt, even after death.)
The probate process varies from state to state, but in general, the probate system and the executor will gather all existing assets and then notify all creditors about how to submit a claim. Typically, the claim will need to include information about how much is owed and documentation, such as bills and an explanation of benefits to back up the claim. It should be borne in mind that even those who’ve passed away have privacy protections under the Health Insurance Portability and Accountability Act, so practices must be careful as to how much information they’re sharing through their claim.
Once the estate has received all the claims, the executor will follow a priority of claims, starting with secured creditors. Typically, medical bills, especially those incurred in the last 90 days of the decedent’s life, have priority in the probate process, Mr. Brown says.
How to minimize losses
In that case, the practice would write off the unpaid debt as a business loss. If there are not enough assets in the estate to pay all claims, the executor will follow a state schedule that apportions those assets that are available.
There are some steps that practices can take to protect themselves from incurring such losses. For example, before beginning treatment, practices might consider asking patients to name a guarantor, who will essentially promise to cover any outstanding debts that the patient incurs.
To be binding, the office will need a signature from both the patient and the guarantor. Some offices may also keep a patient credit card number on file with written authorization that they can use to pay bills that are past due, although this payment method would no longer be valid after a patient dies.
While it’s important for all physicians to document and verify the financial information for their patients, oncologists often must consider an additional layer of fiduciary responsibility when it comes to their patients. Ms. Wen suggests that oncology offices check in with insurance companies to determine whether a patient has exhausted their benefits.
“That can happen with cancer patients, depending on how long they’ve been receiving treatment and what type of treatment they’ve been getting,” she said. “Some of the clinical trials, insurance will pay for them, but they’re really expensive and can get toward that max. So knowing where they are with their insurance coverage is big.”
When time is of the essence, some patients will choose to go forward with a treatment before receiving insurance approval. In those cases, the office must have an additional conversation in which the costs of the treatment are discussed. The office should obtain written confirmation of who will pay if the insurer does not, Ms. Wen said. While it’s the patient’s responsibility to keep track of their insurance benefits, oncology practices and hospitals must also exercise due diligence in monitoring the benefits that are available.
“That’s part of their contract with insurance companies if they’re in network, helping patients understand their benefits,” Ms. Wen saids.
It’s also important for practices to keep clear, consistent records to make it easier to identify outstanding bills and the correct contact information for them. If bills had gone unpaid prior to a patient’s death and the office started legal action and received a judgment, that claim would typically go ahead of other creditors’ claims.
Dr. Jain says that some practices might also consider keeping a financial adviser or social worker on staff who can assist patients and their families with understanding their out-of-pocket costs for treatment.
“Financial toxicity in oncology and medical care is a very real problem,” she says. “At the beginning of the relationship, I recommend that my patients get set up with a financial specialist that can help them navigate that aspect, not only when a patient passes away but during the process of receiving treatment, so they’re not shocked by the bills.”
A version of this article first appeared on Medscape.com.
The death of a patient comes with many challenges for physicians, including a range of emotional and professional issues. Beyond those concerns,
“When a patient passes away, obviously there is, unfortunately, a lot of paperwork and stress for families, and it’s a very difficult situation,” says Shikha Jain, MD, an oncologist and associate professor of medicine at the University of Illinois at Chicago. “Talking about finances in that moment can be difficult and uncomfortable, and one thing I’d recommend is that the physicians themselves not get involved.”
Instead, Dr. Jain said, someone in the billing department in the practice or the hospital should take a lead on dealing with any outstanding debts.
“That doctor-patient relationship is a very precious relationship, so you don’t want to mix that financial aspect of providing care with the doctor-patient relationship,” Dr. Jain said. “That’s one thing that’s really important.”
The best approach in such situations is for practices to have a standing policy in place that dictates how to handle bills once a patient has died.
In most cases, the executor of the patient’s will must inform all creditors, including doctors, that the decedent has died, but sometimes there’s a delay.
Hoping the doctor’s office writes it off
“Even though the person in charge of the estate is supposed to contact the doctor’s office and let them know when a patient has passed, that doesn’t always happen,” says Hope Wen, head of billing at practice management platform Soundry Health. “It can be very challenging to track down that information, and sometimes they’re just crossing their fingers hoping that the doctor’s office will just write off the balance, which they often do.”
Some offices use a service that compares accounts receivable lists to Social Security death files and state records to identify deaths more quickly. Some physicians might also use a debt collection agency or an attorney who has experience collecting decedent debts and dealing with executors and probate courts.
Once the practice becomes aware that a patient has died, it can no longer send communications to the name and address on file, although it can continue to go through the billing process with the insurer for any bills incurred up to the date of the death.
At that point, the estate becomes responsible for the debt, and all communication must go to the executor of the estate (in some states, this might be called a personal representative). The office can reach out to any contacts on file to see if they are able to identify the executor.
“You want to do that in a compassionate way,” says Jack Brown III, JD, MBA, president of Gulf Coast Collection Bureau. “You’ll tell them you’re sorry for their loss, but you’re wondering who is responsible for the estate. Once you’ve identified that person and gotten their letter of administration from the probate court or a power of attorney, then you can speak with that person as if they were the patient.”
The names of executors are also public record and are available through the probate court (sometimes called the surrogate court) in the county where the decedent lived.
“Even if there’s no will or no executive named, the court will appoint an administrator for the estate, which is usually a family member,” said Robert Bernstein, an estate lawyer in Parsippany, N.J. “Their information will be on file in the court.”
Insurance coverage
Typically, insurance will pay for treatment (after deductibles and copays) up until the date of the patient’s death. But, of course, it can take months for some insurance companies to make their final payments, allowing physicians to know exactly how much they’re owed by that estate. In such cases, it’s important for physicians to know the rules in the decedent’s state for how long they have to file a claim.
Most states require that claims occur within 6-9 months of the person’s death. However, in some states, claimants can continue to file for much longer if the estate has not yet paid out all of its assets.
“Sometimes there is real estate to sell or a business to wind down, and it can take years for the estate to distribute all of the assets,” Mr. Bernstein says. “If it’s a year later and they still haven’t distributed the assets, the physician can still file the claim and should be paid.”
In some cases, especially if the decedent received compassionate, quality care, their family will want to make good on any outstanding debts to the health care providers who took care of their loved ones in their final days. In other cases, especially when a family member has had a long illness, their assets have been depleted over time or were transferred to other family members so that there is little left in the estate itself when the patient dies.
Regardless of other circumstances, the estate alone is responsible for such payments, and family members, including spouses and children, typically have no liability. (Though rarely enforced, some states do have filial responsibility laws that could hold children responsible for their parents’ debts, including unpaid medical bills. In addition, states with community property laws might require a surviving spouse to cover their partner’s debt, even after death.)
The probate process varies from state to state, but in general, the probate system and the executor will gather all existing assets and then notify all creditors about how to submit a claim. Typically, the claim will need to include information about how much is owed and documentation, such as bills and an explanation of benefits to back up the claim. It should be borne in mind that even those who’ve passed away have privacy protections under the Health Insurance Portability and Accountability Act, so practices must be careful as to how much information they’re sharing through their claim.
Once the estate has received all the claims, the executor will follow a priority of claims, starting with secured creditors. Typically, medical bills, especially those incurred in the last 90 days of the decedent’s life, have priority in the probate process, Mr. Brown says.
How to minimize losses
In that case, the practice would write off the unpaid debt as a business loss. If there are not enough assets in the estate to pay all claims, the executor will follow a state schedule that apportions those assets that are available.
There are some steps that practices can take to protect themselves from incurring such losses. For example, before beginning treatment, practices might consider asking patients to name a guarantor, who will essentially promise to cover any outstanding debts that the patient incurs.
To be binding, the office will need a signature from both the patient and the guarantor. Some offices may also keep a patient credit card number on file with written authorization that they can use to pay bills that are past due, although this payment method would no longer be valid after a patient dies.
While it’s important for all physicians to document and verify the financial information for their patients, oncologists often must consider an additional layer of fiduciary responsibility when it comes to their patients. Ms. Wen suggests that oncology offices check in with insurance companies to determine whether a patient has exhausted their benefits.
“That can happen with cancer patients, depending on how long they’ve been receiving treatment and what type of treatment they’ve been getting,” she said. “Some of the clinical trials, insurance will pay for them, but they’re really expensive and can get toward that max. So knowing where they are with their insurance coverage is big.”
When time is of the essence, some patients will choose to go forward with a treatment before receiving insurance approval. In those cases, the office must have an additional conversation in which the costs of the treatment are discussed. The office should obtain written confirmation of who will pay if the insurer does not, Ms. Wen said. While it’s the patient’s responsibility to keep track of their insurance benefits, oncology practices and hospitals must also exercise due diligence in monitoring the benefits that are available.
“That’s part of their contract with insurance companies if they’re in network, helping patients understand their benefits,” Ms. Wen saids.
It’s also important for practices to keep clear, consistent records to make it easier to identify outstanding bills and the correct contact information for them. If bills had gone unpaid prior to a patient’s death and the office started legal action and received a judgment, that claim would typically go ahead of other creditors’ claims.
Dr. Jain says that some practices might also consider keeping a financial adviser or social worker on staff who can assist patients and their families with understanding their out-of-pocket costs for treatment.
“Financial toxicity in oncology and medical care is a very real problem,” she says. “At the beginning of the relationship, I recommend that my patients get set up with a financial specialist that can help them navigate that aspect, not only when a patient passes away but during the process of receiving treatment, so they’re not shocked by the bills.”
A version of this article first appeared on Medscape.com.
The death of a patient comes with many challenges for physicians, including a range of emotional and professional issues. Beyond those concerns,
“When a patient passes away, obviously there is, unfortunately, a lot of paperwork and stress for families, and it’s a very difficult situation,” says Shikha Jain, MD, an oncologist and associate professor of medicine at the University of Illinois at Chicago. “Talking about finances in that moment can be difficult and uncomfortable, and one thing I’d recommend is that the physicians themselves not get involved.”
Instead, Dr. Jain said, someone in the billing department in the practice or the hospital should take a lead on dealing with any outstanding debts.
“That doctor-patient relationship is a very precious relationship, so you don’t want to mix that financial aspect of providing care with the doctor-patient relationship,” Dr. Jain said. “That’s one thing that’s really important.”
The best approach in such situations is for practices to have a standing policy in place that dictates how to handle bills once a patient has died.
In most cases, the executor of the patient’s will must inform all creditors, including doctors, that the decedent has died, but sometimes there’s a delay.
Hoping the doctor’s office writes it off
“Even though the person in charge of the estate is supposed to contact the doctor’s office and let them know when a patient has passed, that doesn’t always happen,” says Hope Wen, head of billing at practice management platform Soundry Health. “It can be very challenging to track down that information, and sometimes they’re just crossing their fingers hoping that the doctor’s office will just write off the balance, which they often do.”
Some offices use a service that compares accounts receivable lists to Social Security death files and state records to identify deaths more quickly. Some physicians might also use a debt collection agency or an attorney who has experience collecting decedent debts and dealing with executors and probate courts.
Once the practice becomes aware that a patient has died, it can no longer send communications to the name and address on file, although it can continue to go through the billing process with the insurer for any bills incurred up to the date of the death.
At that point, the estate becomes responsible for the debt, and all communication must go to the executor of the estate (in some states, this might be called a personal representative). The office can reach out to any contacts on file to see if they are able to identify the executor.
“You want to do that in a compassionate way,” says Jack Brown III, JD, MBA, president of Gulf Coast Collection Bureau. “You’ll tell them you’re sorry for their loss, but you’re wondering who is responsible for the estate. Once you’ve identified that person and gotten their letter of administration from the probate court or a power of attorney, then you can speak with that person as if they were the patient.”
The names of executors are also public record and are available through the probate court (sometimes called the surrogate court) in the county where the decedent lived.
“Even if there’s no will or no executive named, the court will appoint an administrator for the estate, which is usually a family member,” said Robert Bernstein, an estate lawyer in Parsippany, N.J. “Their information will be on file in the court.”
Insurance coverage
Typically, insurance will pay for treatment (after deductibles and copays) up until the date of the patient’s death. But, of course, it can take months for some insurance companies to make their final payments, allowing physicians to know exactly how much they’re owed by that estate. In such cases, it’s important for physicians to know the rules in the decedent’s state for how long they have to file a claim.
Most states require that claims occur within 6-9 months of the person’s death. However, in some states, claimants can continue to file for much longer if the estate has not yet paid out all of its assets.
“Sometimes there is real estate to sell or a business to wind down, and it can take years for the estate to distribute all of the assets,” Mr. Bernstein says. “If it’s a year later and they still haven’t distributed the assets, the physician can still file the claim and should be paid.”
In some cases, especially if the decedent received compassionate, quality care, their family will want to make good on any outstanding debts to the health care providers who took care of their loved ones in their final days. In other cases, especially when a family member has had a long illness, their assets have been depleted over time or were transferred to other family members so that there is little left in the estate itself when the patient dies.
Regardless of other circumstances, the estate alone is responsible for such payments, and family members, including spouses and children, typically have no liability. (Though rarely enforced, some states do have filial responsibility laws that could hold children responsible for their parents’ debts, including unpaid medical bills. In addition, states with community property laws might require a surviving spouse to cover their partner’s debt, even after death.)
The probate process varies from state to state, but in general, the probate system and the executor will gather all existing assets and then notify all creditors about how to submit a claim. Typically, the claim will need to include information about how much is owed and documentation, such as bills and an explanation of benefits to back up the claim. It should be borne in mind that even those who’ve passed away have privacy protections under the Health Insurance Portability and Accountability Act, so practices must be careful as to how much information they’re sharing through their claim.
Once the estate has received all the claims, the executor will follow a priority of claims, starting with secured creditors. Typically, medical bills, especially those incurred in the last 90 days of the decedent’s life, have priority in the probate process, Mr. Brown says.
How to minimize losses
In that case, the practice would write off the unpaid debt as a business loss. If there are not enough assets in the estate to pay all claims, the executor will follow a state schedule that apportions those assets that are available.
There are some steps that practices can take to protect themselves from incurring such losses. For example, before beginning treatment, practices might consider asking patients to name a guarantor, who will essentially promise to cover any outstanding debts that the patient incurs.
To be binding, the office will need a signature from both the patient and the guarantor. Some offices may also keep a patient credit card number on file with written authorization that they can use to pay bills that are past due, although this payment method would no longer be valid after a patient dies.
While it’s important for all physicians to document and verify the financial information for their patients, oncologists often must consider an additional layer of fiduciary responsibility when it comes to their patients. Ms. Wen suggests that oncology offices check in with insurance companies to determine whether a patient has exhausted their benefits.
“That can happen with cancer patients, depending on how long they’ve been receiving treatment and what type of treatment they’ve been getting,” she said. “Some of the clinical trials, insurance will pay for them, but they’re really expensive and can get toward that max. So knowing where they are with their insurance coverage is big.”
When time is of the essence, some patients will choose to go forward with a treatment before receiving insurance approval. In those cases, the office must have an additional conversation in which the costs of the treatment are discussed. The office should obtain written confirmation of who will pay if the insurer does not, Ms. Wen said. While it’s the patient’s responsibility to keep track of their insurance benefits, oncology practices and hospitals must also exercise due diligence in monitoring the benefits that are available.
“That’s part of their contract with insurance companies if they’re in network, helping patients understand their benefits,” Ms. Wen saids.
It’s also important for practices to keep clear, consistent records to make it easier to identify outstanding bills and the correct contact information for them. If bills had gone unpaid prior to a patient’s death and the office started legal action and received a judgment, that claim would typically go ahead of other creditors’ claims.
Dr. Jain says that some practices might also consider keeping a financial adviser or social worker on staff who can assist patients and their families with understanding their out-of-pocket costs for treatment.
“Financial toxicity in oncology and medical care is a very real problem,” she says. “At the beginning of the relationship, I recommend that my patients get set up with a financial specialist that can help them navigate that aspect, not only when a patient passes away but during the process of receiving treatment, so they’re not shocked by the bills.”
A version of this article first appeared on Medscape.com.
People with long COVID have specific blood biomarkers, study says
The findings may be a step toward creating blood tests to positively identify people with long COVID so specialized treatments can be employed, researchers said.
“This is a decisive step forward in the development of valid and reliable blood testing protocols for long COVID,” said David Putrino, PhD., lead author and professor of rehabilitation and human performance and director of the Abilities Research Center at Icahn Mount Sinai Health System, New York.
Researchers from the Icahn School of Medicine at Mount Sinai and Yale School of Medicine looked at blood samples from about 270 people between January 2021 and June 2022. The people had never been infected with COVID, had fully recovered from an infection, or still showed symptoms at least four months after infection.
Using machine learning, the research teams were able to differentiate between people with and without long COVID with 96% accuracy based on distinctive features in the blood samples, according to a news release from Mount Sinai.
People with long COVID had abnormal T-cell activity and low levels of the hormone cortisol. Cortisol helps people feel alert and awake, which would explain why people with long COVID often report fatigue, NBC News said in a report on the study.
“It was one of the findings that most definitively separated the folks with long Covid from the people without long Covid,” Dr. Putrino told NBC News.
The study also found that long COVID appears to reactivate latent viruses including Epstein-Barr and mononucleosis, the study said.
The blood tests could allow doctors to come up with specialized treatments in people who report a wide variety of long COVID symptoms, Dr. Putrino said.
“There is no ‘silver bullet’ for treating long COVID, because it is an illness that infiltrates complex systems such as the immune and hormonal regulation,” he said.
The Centers for Disease Control and Prevention says about one in five Americans who had COVID still have long COVID. Symptoms include fatigue, brain fog, dizziness, digestive problems, and loss of smell and taste.
A version of this article appeared on WebMD.com.
The findings may be a step toward creating blood tests to positively identify people with long COVID so specialized treatments can be employed, researchers said.
“This is a decisive step forward in the development of valid and reliable blood testing protocols for long COVID,” said David Putrino, PhD., lead author and professor of rehabilitation and human performance and director of the Abilities Research Center at Icahn Mount Sinai Health System, New York.
Researchers from the Icahn School of Medicine at Mount Sinai and Yale School of Medicine looked at blood samples from about 270 people between January 2021 and June 2022. The people had never been infected with COVID, had fully recovered from an infection, or still showed symptoms at least four months after infection.
Using machine learning, the research teams were able to differentiate between people with and without long COVID with 96% accuracy based on distinctive features in the blood samples, according to a news release from Mount Sinai.
People with long COVID had abnormal T-cell activity and low levels of the hormone cortisol. Cortisol helps people feel alert and awake, which would explain why people with long COVID often report fatigue, NBC News said in a report on the study.
“It was one of the findings that most definitively separated the folks with long Covid from the people without long Covid,” Dr. Putrino told NBC News.
The study also found that long COVID appears to reactivate latent viruses including Epstein-Barr and mononucleosis, the study said.
The blood tests could allow doctors to come up with specialized treatments in people who report a wide variety of long COVID symptoms, Dr. Putrino said.
“There is no ‘silver bullet’ for treating long COVID, because it is an illness that infiltrates complex systems such as the immune and hormonal regulation,” he said.
The Centers for Disease Control and Prevention says about one in five Americans who had COVID still have long COVID. Symptoms include fatigue, brain fog, dizziness, digestive problems, and loss of smell and taste.
A version of this article appeared on WebMD.com.
The findings may be a step toward creating blood tests to positively identify people with long COVID so specialized treatments can be employed, researchers said.
“This is a decisive step forward in the development of valid and reliable blood testing protocols for long COVID,” said David Putrino, PhD., lead author and professor of rehabilitation and human performance and director of the Abilities Research Center at Icahn Mount Sinai Health System, New York.
Researchers from the Icahn School of Medicine at Mount Sinai and Yale School of Medicine looked at blood samples from about 270 people between January 2021 and June 2022. The people had never been infected with COVID, had fully recovered from an infection, or still showed symptoms at least four months after infection.
Using machine learning, the research teams were able to differentiate between people with and without long COVID with 96% accuracy based on distinctive features in the blood samples, according to a news release from Mount Sinai.
People with long COVID had abnormal T-cell activity and low levels of the hormone cortisol. Cortisol helps people feel alert and awake, which would explain why people with long COVID often report fatigue, NBC News said in a report on the study.
“It was one of the findings that most definitively separated the folks with long Covid from the people without long Covid,” Dr. Putrino told NBC News.
The study also found that long COVID appears to reactivate latent viruses including Epstein-Barr and mononucleosis, the study said.
The blood tests could allow doctors to come up with specialized treatments in people who report a wide variety of long COVID symptoms, Dr. Putrino said.
“There is no ‘silver bullet’ for treating long COVID, because it is an illness that infiltrates complex systems such as the immune and hormonal regulation,” he said.
The Centers for Disease Control and Prevention says about one in five Americans who had COVID still have long COVID. Symptoms include fatigue, brain fog, dizziness, digestive problems, and loss of smell and taste.
A version of this article appeared on WebMD.com.
Are vitamin D levels key to canagliflozin’s fracture risk?
Sodium-glucose cotransporter 2 (SGLT2) inhibitors are beneficial for treating type 2 diabetes and reducing cardiovascular and kidney disease risk. However, some, but not all, trial data have linked the SLGT2 inhibitor canagliflozin to increased fracture risk. That particular agent has been reported to accelerate loss of bone mineral density, which could contribute to fracture risk. Other drugs in the class have also been implicated in worsening markers of bone health.
The new findings, from a small study of Amish adults with vitamin D deficiency (≤ 20 ng/mL) but without diabetes or osteoporosis, suggest that physicians consider screening for vitamin D deficiency prior to prescribing SGLT2 inhibitor. Alternatively, these patients can simply be prescribed safe, inexpensive, OTC vitamin D supplements without being screening, Zhinous Shahidzadeh Yazdi, MD, of the division of endocrinology, diabetes, and nutrition at the University of Maryland, Baltimore, and colleagues wrote.
“Something as simple as OTC vitamin D might protect against bone fractures caused by chronic multiyear treatment with a drug,” study lead author Simeon I. Taylor, MD, PhD, professor of medicine at the University of Maryland, said in an interview.
In the study, published in the Journal of Clinical Endocrinology and Metabolism, 11 adults with vitamin D deficiency underwent two canagliflozin challenge protocols of 300 mg/d for 5 days, once before and once after vitamin D3 supplementation (either 50,000 IU per week or twice weekly for body mass index < 30 kg/m2 or ≥ 30 kg/m2, respectively), to achieve 25(OH)D of at least 30 ng/mL.
When the participants were vitamin D deficient, canagliflozin significantly decreased 1,25(OH)2D levels by 31.3%, from 43.8 pg/mL on day 1 to 29.1 pg/mL on day 3 (P = .0003). In contrast, after receiving the vitamin D3 supplements, canagliflozin reduced mean 1,25(OH)2D levels by a nonsignificant 9.3%, from 45 pg/mL on day 1 to 41 pg/mL on day 3 (P = .3).
“Thus, [vitamin D3] supplementation provided statistically significant protection from the adverse effect of canagliflozin to decrease mean plasma levels of 1,25(OH)2D (P = .04),” Yazdi and colleagues wrote.
Similarly, when the participants were vitamin D deficient, canagliflozin was associated with a significant 36.2% increase in mean parathyroid hormone (PTH) levels, from 47.5 pg/mL on day 1 to 58.5 pg/mL on day 6 (P = .0009). In contrast, after vitamin D3 supplementation, the increase in PTH was far less, from 48.4 pg/mL on day 1 to 53.3 pg/mL on day 6 (P = .02).
Therefore, the supplementation “significantly decreased the magnitude of the canagliflozin-induced increase in mean levels of PTH (P = .005),” they wrote.
Also, in the vitamin D deficient state, canagliflozin significantly increased mean serum phosphorous on day 3 in comparison with day 1 (P = .007), while after supplementation, that change was also insignificant (P = .8).
“We are saying that SGLT2 inhibitors, when superimposed on vitamin D deficiency, is bad for bone health. This group of people have two important risk factors – vitamin D deficiency and SGLT2 inhibitors – and are distinct from the general population of people who are not vitamin D deficient,” Dr. Taylor noted.
The findings “raise interesting questions about how to proceed,” he said in an interview, since “the gold standard study – in this case, a fracture prevention study – will never be done because it would cost more than $100 million. Vitamin D costs only $10-$20 per year, and at appropriate doses, is extremely safe. At worst, vitamin D supplements are unnecessary. At best, vitamin D supplements can protect some patients against a serious drug toxicity, bone fracture.”
The study was funded by the National Institutes of Health. Dr. Taylor serves as a consultant for Ionis Pharmaceuticals and receives an inventor’s share of royalties from the National Institute of Diabetes, Digestive, and Kidney Diseases for metreleptin as a treatment for generalized lipodystrophy. Dr. Yazdi disclosed no relevant financial relationships.
A version of this article first appeared on Medscape.com.
Sodium-glucose cotransporter 2 (SGLT2) inhibitors are beneficial for treating type 2 diabetes and reducing cardiovascular and kidney disease risk. However, some, but not all, trial data have linked the SLGT2 inhibitor canagliflozin to increased fracture risk. That particular agent has been reported to accelerate loss of bone mineral density, which could contribute to fracture risk. Other drugs in the class have also been implicated in worsening markers of bone health.
The new findings, from a small study of Amish adults with vitamin D deficiency (≤ 20 ng/mL) but without diabetes or osteoporosis, suggest that physicians consider screening for vitamin D deficiency prior to prescribing SGLT2 inhibitor. Alternatively, these patients can simply be prescribed safe, inexpensive, OTC vitamin D supplements without being screening, Zhinous Shahidzadeh Yazdi, MD, of the division of endocrinology, diabetes, and nutrition at the University of Maryland, Baltimore, and colleagues wrote.
“Something as simple as OTC vitamin D might protect against bone fractures caused by chronic multiyear treatment with a drug,” study lead author Simeon I. Taylor, MD, PhD, professor of medicine at the University of Maryland, said in an interview.
In the study, published in the Journal of Clinical Endocrinology and Metabolism, 11 adults with vitamin D deficiency underwent two canagliflozin challenge protocols of 300 mg/d for 5 days, once before and once after vitamin D3 supplementation (either 50,000 IU per week or twice weekly for body mass index < 30 kg/m2 or ≥ 30 kg/m2, respectively), to achieve 25(OH)D of at least 30 ng/mL.
When the participants were vitamin D deficient, canagliflozin significantly decreased 1,25(OH)2D levels by 31.3%, from 43.8 pg/mL on day 1 to 29.1 pg/mL on day 3 (P = .0003). In contrast, after receiving the vitamin D3 supplements, canagliflozin reduced mean 1,25(OH)2D levels by a nonsignificant 9.3%, from 45 pg/mL on day 1 to 41 pg/mL on day 3 (P = .3).
“Thus, [vitamin D3] supplementation provided statistically significant protection from the adverse effect of canagliflozin to decrease mean plasma levels of 1,25(OH)2D (P = .04),” Yazdi and colleagues wrote.
Similarly, when the participants were vitamin D deficient, canagliflozin was associated with a significant 36.2% increase in mean parathyroid hormone (PTH) levels, from 47.5 pg/mL on day 1 to 58.5 pg/mL on day 6 (P = .0009). In contrast, after vitamin D3 supplementation, the increase in PTH was far less, from 48.4 pg/mL on day 1 to 53.3 pg/mL on day 6 (P = .02).
Therefore, the supplementation “significantly decreased the magnitude of the canagliflozin-induced increase in mean levels of PTH (P = .005),” they wrote.
Also, in the vitamin D deficient state, canagliflozin significantly increased mean serum phosphorous on day 3 in comparison with day 1 (P = .007), while after supplementation, that change was also insignificant (P = .8).
“We are saying that SGLT2 inhibitors, when superimposed on vitamin D deficiency, is bad for bone health. This group of people have two important risk factors – vitamin D deficiency and SGLT2 inhibitors – and are distinct from the general population of people who are not vitamin D deficient,” Dr. Taylor noted.
The findings “raise interesting questions about how to proceed,” he said in an interview, since “the gold standard study – in this case, a fracture prevention study – will never be done because it would cost more than $100 million. Vitamin D costs only $10-$20 per year, and at appropriate doses, is extremely safe. At worst, vitamin D supplements are unnecessary. At best, vitamin D supplements can protect some patients against a serious drug toxicity, bone fracture.”
The study was funded by the National Institutes of Health. Dr. Taylor serves as a consultant for Ionis Pharmaceuticals and receives an inventor’s share of royalties from the National Institute of Diabetes, Digestive, and Kidney Diseases for metreleptin as a treatment for generalized lipodystrophy. Dr. Yazdi disclosed no relevant financial relationships.
A version of this article first appeared on Medscape.com.
Sodium-glucose cotransporter 2 (SGLT2) inhibitors are beneficial for treating type 2 diabetes and reducing cardiovascular and kidney disease risk. However, some, but not all, trial data have linked the SLGT2 inhibitor canagliflozin to increased fracture risk. That particular agent has been reported to accelerate loss of bone mineral density, which could contribute to fracture risk. Other drugs in the class have also been implicated in worsening markers of bone health.
The new findings, from a small study of Amish adults with vitamin D deficiency (≤ 20 ng/mL) but without diabetes or osteoporosis, suggest that physicians consider screening for vitamin D deficiency prior to prescribing SGLT2 inhibitor. Alternatively, these patients can simply be prescribed safe, inexpensive, OTC vitamin D supplements without being screening, Zhinous Shahidzadeh Yazdi, MD, of the division of endocrinology, diabetes, and nutrition at the University of Maryland, Baltimore, and colleagues wrote.
“Something as simple as OTC vitamin D might protect against bone fractures caused by chronic multiyear treatment with a drug,” study lead author Simeon I. Taylor, MD, PhD, professor of medicine at the University of Maryland, said in an interview.
In the study, published in the Journal of Clinical Endocrinology and Metabolism, 11 adults with vitamin D deficiency underwent two canagliflozin challenge protocols of 300 mg/d for 5 days, once before and once after vitamin D3 supplementation (either 50,000 IU per week or twice weekly for body mass index < 30 kg/m2 or ≥ 30 kg/m2, respectively), to achieve 25(OH)D of at least 30 ng/mL.
When the participants were vitamin D deficient, canagliflozin significantly decreased 1,25(OH)2D levels by 31.3%, from 43.8 pg/mL on day 1 to 29.1 pg/mL on day 3 (P = .0003). In contrast, after receiving the vitamin D3 supplements, canagliflozin reduced mean 1,25(OH)2D levels by a nonsignificant 9.3%, from 45 pg/mL on day 1 to 41 pg/mL on day 3 (P = .3).
“Thus, [vitamin D3] supplementation provided statistically significant protection from the adverse effect of canagliflozin to decrease mean plasma levels of 1,25(OH)2D (P = .04),” Yazdi and colleagues wrote.
Similarly, when the participants were vitamin D deficient, canagliflozin was associated with a significant 36.2% increase in mean parathyroid hormone (PTH) levels, from 47.5 pg/mL on day 1 to 58.5 pg/mL on day 6 (P = .0009). In contrast, after vitamin D3 supplementation, the increase in PTH was far less, from 48.4 pg/mL on day 1 to 53.3 pg/mL on day 6 (P = .02).
Therefore, the supplementation “significantly decreased the magnitude of the canagliflozin-induced increase in mean levels of PTH (P = .005),” they wrote.
Also, in the vitamin D deficient state, canagliflozin significantly increased mean serum phosphorous on day 3 in comparison with day 1 (P = .007), while after supplementation, that change was also insignificant (P = .8).
“We are saying that SGLT2 inhibitors, when superimposed on vitamin D deficiency, is bad for bone health. This group of people have two important risk factors – vitamin D deficiency and SGLT2 inhibitors – and are distinct from the general population of people who are not vitamin D deficient,” Dr. Taylor noted.
The findings “raise interesting questions about how to proceed,” he said in an interview, since “the gold standard study – in this case, a fracture prevention study – will never be done because it would cost more than $100 million. Vitamin D costs only $10-$20 per year, and at appropriate doses, is extremely safe. At worst, vitamin D supplements are unnecessary. At best, vitamin D supplements can protect some patients against a serious drug toxicity, bone fracture.”
The study was funded by the National Institutes of Health. Dr. Taylor serves as a consultant for Ionis Pharmaceuticals and receives an inventor’s share of royalties from the National Institute of Diabetes, Digestive, and Kidney Diseases for metreleptin as a treatment for generalized lipodystrophy. Dr. Yazdi disclosed no relevant financial relationships.
A version of this article first appeared on Medscape.com.
FROM THE JOURNAL OF CLINICAL ENDOCRINOLOGY AND METABOLISM
Patients with rheumatism have premature immune system aging
LEIPZIG, GERMANY – With age comes illness: Cancer, cardiovascular and neurodegenerative diseases, increased infections, and autoimmune diseases such as rheumatism become more common. This is because the immune system also ages. In the case of autoimmune diseases, this aging happens particularly quickly.
“There is this phenomenon of premature aging of the immune system,” said Cornelia Weyand, PhD, director of Stanford (Calif.) University’s Center for Translational Medicine at the German Rheumatology Congress 2023. In healthy people, the immune system begins to age at age 20. From that point on, the thymus gland, which reaches peak function at 14-15 years old, plays an increasingly minor role. “At age 50 years, the aging process of the immune system gains momentum.”
“What’s good about this is that the T and B cells age together, but all a little differently, each system by itself,” said Thomas Dörner, MD, PhD, head of consultation hours for clinical hemostaseology at the Charité University Hospitals in Berlin.
While the reduced formation of naive T cells can be attributed to the regression of the thymus gland, the naive B cells are a consequence of age-related, fatty bone marrow degeneration. The influence of adipocyte-derived tumor necrosis factor (TNF)–alpha also causes the bone marrow to develop B cells more and more weakly and slowly. “Through this [process], the preimmune range of B-cells decreases and becomes less healthy than in a young person.”
‘Inflamm-aging’
“In the periphery, we have identified a process we call “inflamm-aging,” where the cytokines interferon-gamma, interleukin (IL)–10, and IL-17 play a predominant role. This also alters the primary and secondary immune response,” said Dr. Dörner. Here, decreasing stimulation via the B-cell receptor by aging T-lymphocytes makes a difference.
As we age, the immune system restructures itself completely. “Protective immunity regresses and the inferior immunity emerges,” explained Dr. Weyand. Wounds heal more poorly, the protective action against infections and above all malignancies, as well as the immune response to vaccinations, decreases.
The increased occurrence of neurodegenerative, cardiovascular, and autoimmune diseases is not because of a loss of function, but rather to newly gained, undesired functions. These are associated with inflammatory changes. Hence, the term inflamm-aging.
With the B cells, functional germinal centers in the lymphoid organs and protective antibodies become rarer, and age-associated B cells accumulate. As Dr. Dörner emphasized, these cells are not under the command of the B-cell receptor and are independent of the cytokine BAFF (B-cell activating factor). Instead, they react to signals that are sent from the toll-like receptors 7 and 9.
This potentially also explains the increased development of autoantibodies in older people and the association of viral and autoimmune diseases. This means that age-associated B cells develop more frequently, such as with rheumatoid arthritis, scleroderma, and systemic lupus erythematosus. “There are good data that show that they are triggered by infections and that they are specialized to form autoantibodies,” Dr. Weyand said about the age-associated B cells.
‘Bad old T cells’
Under the influence of genetic stop-and-go signals, the composition of the T-cell population also changes over the course of our lives. It becomes less diverse. T-helper cells become less common, and as a result, terminally differentiated effector memory T cells become more common. According to Dr. Weyand, herein lies the problem. “These cells are not just lazy, old cells that sit around. Unfortunately, they are also malicious. What we see in both the T- and B-cell systems is that they become increasingly innate with age,” he said. “They are not quite so precise or good.”
In turn, myeloid cells are less active in old age because of phagocytosis and antigen presentation, and they get more mutations. They are released more often from the bone marrow, produce more cytokines, and essentially contribute to inflamm-aging.
Power sources fail
In her cellular and microbiological investigations, Dr. Weyand has devoted a lot of time to studying why T cells age prematurely in patients with RA. The key was in the cellular microbiology. “We learned how the T-cell aging process translates into metabolic reprogramming of the T cells – how a good, strong, and protective T cell transforms into a disease-inducing T cell.”
At the center of premature T-cell aging in RA are disrupted mitochondrial function and insufficient communication of the mitochondria with the lysosomes and the endoplasmic reticulum.
T cells of RA patients (RA T cells) contain less MRE11A, compared with those in healthy people. This is a nuclease that allows the repair of breaks in DNA. If MRE11A is inhibited, then senescent T cells accumulate and form proinflammatory cytokines such as IL-B, IL-6, and TNF. “This is the trio that we rheumatologists are always concerned with.”
Since mitochondrial DNA repair is essential for maintaining mitochondrial fitness, the cellular power sources in patients with RA cannot provide as much energy in the form of adenosine triphosphate as in healthy people. Metabolically, they are not so fit, Dr. Weyand said.
Inflammatory cell death
In fact, all metabolic pathways in the T cells are reduced. The bioenergetic failure has consequences. “Unfortunately, as the mitochondrion ages, its DNA leaks into the cytosol,” explained Dr. Weyand. “Cells do not like this.” This is because DNA activates inflammasomes in the cytosol via caspase-1. This process results in a highly inflammatory cell death: pyroptosis. Subsequently, there is no trace of the cells in the tissue. “RA patients’ synovial tissue is a graveyard of dying T cells.”
In the lysosomes, the cells’ “intestine,” problems arise because patients with RA can no longer activate the adenosine monophosphate–activated protein kinase enzyme. It does not receive the lipid tail it needs to take its position as energy sensor on the lysosomal membrane. As a result, its antagonist, mTOR – both usually keep each other in check – gains the upper hand. According to Dr. Weyand, “mTOR has a party.” It activates and stresses the cells.
Additional changes affect the endoplasmic reticulum (ER). “This is where all of your proteins are synthesized and packaged to migrate from within to outside the cell, or to the cell membrane.” Compared with healthy T cells, RA T cells have around 50% more ER. “The less that mitochondria work, the larger the ER. It gets really fat.”
Mitochondria communicate with the ER via aspartate, oxaloacetate, and malate. In so doing, they control their size. RA T cells appear to be aspartate deficient. In animal models, amino acids had an anti-inflammatory effect.
When sequencing the mRNA bound to the ER, Dr. Weyand and her colleagues encountered the building blocks for TNF. “There is more than three times as much mRNA as TNF. It transforms these T cells into TNF superproducers,” said the rheumatologist. “No wonder this kind of cell is proinflammatory – it forms precisely that cytokine on which you focus every day.”
This article was translated from Medscape’s German edition. A version of this article first appeared on Medscape.com.
LEIPZIG, GERMANY – With age comes illness: Cancer, cardiovascular and neurodegenerative diseases, increased infections, and autoimmune diseases such as rheumatism become more common. This is because the immune system also ages. In the case of autoimmune diseases, this aging happens particularly quickly.
“There is this phenomenon of premature aging of the immune system,” said Cornelia Weyand, PhD, director of Stanford (Calif.) University’s Center for Translational Medicine at the German Rheumatology Congress 2023. In healthy people, the immune system begins to age at age 20. From that point on, the thymus gland, which reaches peak function at 14-15 years old, plays an increasingly minor role. “At age 50 years, the aging process of the immune system gains momentum.”
“What’s good about this is that the T and B cells age together, but all a little differently, each system by itself,” said Thomas Dörner, MD, PhD, head of consultation hours for clinical hemostaseology at the Charité University Hospitals in Berlin.
While the reduced formation of naive T cells can be attributed to the regression of the thymus gland, the naive B cells are a consequence of age-related, fatty bone marrow degeneration. The influence of adipocyte-derived tumor necrosis factor (TNF)–alpha also causes the bone marrow to develop B cells more and more weakly and slowly. “Through this [process], the preimmune range of B-cells decreases and becomes less healthy than in a young person.”
‘Inflamm-aging’
“In the periphery, we have identified a process we call “inflamm-aging,” where the cytokines interferon-gamma, interleukin (IL)–10, and IL-17 play a predominant role. This also alters the primary and secondary immune response,” said Dr. Dörner. Here, decreasing stimulation via the B-cell receptor by aging T-lymphocytes makes a difference.
As we age, the immune system restructures itself completely. “Protective immunity regresses and the inferior immunity emerges,” explained Dr. Weyand. Wounds heal more poorly, the protective action against infections and above all malignancies, as well as the immune response to vaccinations, decreases.
The increased occurrence of neurodegenerative, cardiovascular, and autoimmune diseases is not because of a loss of function, but rather to newly gained, undesired functions. These are associated with inflammatory changes. Hence, the term inflamm-aging.
With the B cells, functional germinal centers in the lymphoid organs and protective antibodies become rarer, and age-associated B cells accumulate. As Dr. Dörner emphasized, these cells are not under the command of the B-cell receptor and are independent of the cytokine BAFF (B-cell activating factor). Instead, they react to signals that are sent from the toll-like receptors 7 and 9.
This potentially also explains the increased development of autoantibodies in older people and the association of viral and autoimmune diseases. This means that age-associated B cells develop more frequently, such as with rheumatoid arthritis, scleroderma, and systemic lupus erythematosus. “There are good data that show that they are triggered by infections and that they are specialized to form autoantibodies,” Dr. Weyand said about the age-associated B cells.
‘Bad old T cells’
Under the influence of genetic stop-and-go signals, the composition of the T-cell population also changes over the course of our lives. It becomes less diverse. T-helper cells become less common, and as a result, terminally differentiated effector memory T cells become more common. According to Dr. Weyand, herein lies the problem. “These cells are not just lazy, old cells that sit around. Unfortunately, they are also malicious. What we see in both the T- and B-cell systems is that they become increasingly innate with age,” he said. “They are not quite so precise or good.”
In turn, myeloid cells are less active in old age because of phagocytosis and antigen presentation, and they get more mutations. They are released more often from the bone marrow, produce more cytokines, and essentially contribute to inflamm-aging.
Power sources fail
In her cellular and microbiological investigations, Dr. Weyand has devoted a lot of time to studying why T cells age prematurely in patients with RA. The key was in the cellular microbiology. “We learned how the T-cell aging process translates into metabolic reprogramming of the T cells – how a good, strong, and protective T cell transforms into a disease-inducing T cell.”
At the center of premature T-cell aging in RA are disrupted mitochondrial function and insufficient communication of the mitochondria with the lysosomes and the endoplasmic reticulum.
T cells of RA patients (RA T cells) contain less MRE11A, compared with those in healthy people. This is a nuclease that allows the repair of breaks in DNA. If MRE11A is inhibited, then senescent T cells accumulate and form proinflammatory cytokines such as IL-B, IL-6, and TNF. “This is the trio that we rheumatologists are always concerned with.”
Since mitochondrial DNA repair is essential for maintaining mitochondrial fitness, the cellular power sources in patients with RA cannot provide as much energy in the form of adenosine triphosphate as in healthy people. Metabolically, they are not so fit, Dr. Weyand said.
Inflammatory cell death
In fact, all metabolic pathways in the T cells are reduced. The bioenergetic failure has consequences. “Unfortunately, as the mitochondrion ages, its DNA leaks into the cytosol,” explained Dr. Weyand. “Cells do not like this.” This is because DNA activates inflammasomes in the cytosol via caspase-1. This process results in a highly inflammatory cell death: pyroptosis. Subsequently, there is no trace of the cells in the tissue. “RA patients’ synovial tissue is a graveyard of dying T cells.”
In the lysosomes, the cells’ “intestine,” problems arise because patients with RA can no longer activate the adenosine monophosphate–activated protein kinase enzyme. It does not receive the lipid tail it needs to take its position as energy sensor on the lysosomal membrane. As a result, its antagonist, mTOR – both usually keep each other in check – gains the upper hand. According to Dr. Weyand, “mTOR has a party.” It activates and stresses the cells.
Additional changes affect the endoplasmic reticulum (ER). “This is where all of your proteins are synthesized and packaged to migrate from within to outside the cell, or to the cell membrane.” Compared with healthy T cells, RA T cells have around 50% more ER. “The less that mitochondria work, the larger the ER. It gets really fat.”
Mitochondria communicate with the ER via aspartate, oxaloacetate, and malate. In so doing, they control their size. RA T cells appear to be aspartate deficient. In animal models, amino acids had an anti-inflammatory effect.
When sequencing the mRNA bound to the ER, Dr. Weyand and her colleagues encountered the building blocks for TNF. “There is more than three times as much mRNA as TNF. It transforms these T cells into TNF superproducers,” said the rheumatologist. “No wonder this kind of cell is proinflammatory – it forms precisely that cytokine on which you focus every day.”
This article was translated from Medscape’s German edition. A version of this article first appeared on Medscape.com.
LEIPZIG, GERMANY – With age comes illness: Cancer, cardiovascular and neurodegenerative diseases, increased infections, and autoimmune diseases such as rheumatism become more common. This is because the immune system also ages. In the case of autoimmune diseases, this aging happens particularly quickly.
“There is this phenomenon of premature aging of the immune system,” said Cornelia Weyand, PhD, director of Stanford (Calif.) University’s Center for Translational Medicine at the German Rheumatology Congress 2023. In healthy people, the immune system begins to age at age 20. From that point on, the thymus gland, which reaches peak function at 14-15 years old, plays an increasingly minor role. “At age 50 years, the aging process of the immune system gains momentum.”
“What’s good about this is that the T and B cells age together, but all a little differently, each system by itself,” said Thomas Dörner, MD, PhD, head of consultation hours for clinical hemostaseology at the Charité University Hospitals in Berlin.
While the reduced formation of naive T cells can be attributed to the regression of the thymus gland, the naive B cells are a consequence of age-related, fatty bone marrow degeneration. The influence of adipocyte-derived tumor necrosis factor (TNF)–alpha also causes the bone marrow to develop B cells more and more weakly and slowly. “Through this [process], the preimmune range of B-cells decreases and becomes less healthy than in a young person.”
‘Inflamm-aging’
“In the periphery, we have identified a process we call “inflamm-aging,” where the cytokines interferon-gamma, interleukin (IL)–10, and IL-17 play a predominant role. This also alters the primary and secondary immune response,” said Dr. Dörner. Here, decreasing stimulation via the B-cell receptor by aging T-lymphocytes makes a difference.
As we age, the immune system restructures itself completely. “Protective immunity regresses and the inferior immunity emerges,” explained Dr. Weyand. Wounds heal more poorly, the protective action against infections and above all malignancies, as well as the immune response to vaccinations, decreases.
The increased occurrence of neurodegenerative, cardiovascular, and autoimmune diseases is not because of a loss of function, but rather to newly gained, undesired functions. These are associated with inflammatory changes. Hence, the term inflamm-aging.
With the B cells, functional germinal centers in the lymphoid organs and protective antibodies become rarer, and age-associated B cells accumulate. As Dr. Dörner emphasized, these cells are not under the command of the B-cell receptor and are independent of the cytokine BAFF (B-cell activating factor). Instead, they react to signals that are sent from the toll-like receptors 7 and 9.
This potentially also explains the increased development of autoantibodies in older people and the association of viral and autoimmune diseases. This means that age-associated B cells develop more frequently, such as with rheumatoid arthritis, scleroderma, and systemic lupus erythematosus. “There are good data that show that they are triggered by infections and that they are specialized to form autoantibodies,” Dr. Weyand said about the age-associated B cells.
‘Bad old T cells’
Under the influence of genetic stop-and-go signals, the composition of the T-cell population also changes over the course of our lives. It becomes less diverse. T-helper cells become less common, and as a result, terminally differentiated effector memory T cells become more common. According to Dr. Weyand, herein lies the problem. “These cells are not just lazy, old cells that sit around. Unfortunately, they are also malicious. What we see in both the T- and B-cell systems is that they become increasingly innate with age,” he said. “They are not quite so precise or good.”
In turn, myeloid cells are less active in old age because of phagocytosis and antigen presentation, and they get more mutations. They are released more often from the bone marrow, produce more cytokines, and essentially contribute to inflamm-aging.
Power sources fail
In her cellular and microbiological investigations, Dr. Weyand has devoted a lot of time to studying why T cells age prematurely in patients with RA. The key was in the cellular microbiology. “We learned how the T-cell aging process translates into metabolic reprogramming of the T cells – how a good, strong, and protective T cell transforms into a disease-inducing T cell.”
At the center of premature T-cell aging in RA are disrupted mitochondrial function and insufficient communication of the mitochondria with the lysosomes and the endoplasmic reticulum.
T cells of RA patients (RA T cells) contain less MRE11A, compared with those in healthy people. This is a nuclease that allows the repair of breaks in DNA. If MRE11A is inhibited, then senescent T cells accumulate and form proinflammatory cytokines such as IL-B, IL-6, and TNF. “This is the trio that we rheumatologists are always concerned with.”
Since mitochondrial DNA repair is essential for maintaining mitochondrial fitness, the cellular power sources in patients with RA cannot provide as much energy in the form of adenosine triphosphate as in healthy people. Metabolically, they are not so fit, Dr. Weyand said.
Inflammatory cell death
In fact, all metabolic pathways in the T cells are reduced. The bioenergetic failure has consequences. “Unfortunately, as the mitochondrion ages, its DNA leaks into the cytosol,” explained Dr. Weyand. “Cells do not like this.” This is because DNA activates inflammasomes in the cytosol via caspase-1. This process results in a highly inflammatory cell death: pyroptosis. Subsequently, there is no trace of the cells in the tissue. “RA patients’ synovial tissue is a graveyard of dying T cells.”
In the lysosomes, the cells’ “intestine,” problems arise because patients with RA can no longer activate the adenosine monophosphate–activated protein kinase enzyme. It does not receive the lipid tail it needs to take its position as energy sensor on the lysosomal membrane. As a result, its antagonist, mTOR – both usually keep each other in check – gains the upper hand. According to Dr. Weyand, “mTOR has a party.” It activates and stresses the cells.
Additional changes affect the endoplasmic reticulum (ER). “This is where all of your proteins are synthesized and packaged to migrate from within to outside the cell, or to the cell membrane.” Compared with healthy T cells, RA T cells have around 50% more ER. “The less that mitochondria work, the larger the ER. It gets really fat.”
Mitochondria communicate with the ER via aspartate, oxaloacetate, and malate. In so doing, they control their size. RA T cells appear to be aspartate deficient. In animal models, amino acids had an anti-inflammatory effect.
When sequencing the mRNA bound to the ER, Dr. Weyand and her colleagues encountered the building blocks for TNF. “There is more than three times as much mRNA as TNF. It transforms these T cells into TNF superproducers,” said the rheumatologist. “No wonder this kind of cell is proinflammatory – it forms precisely that cytokine on which you focus every day.”
This article was translated from Medscape’s German edition. A version of this article first appeared on Medscape.com.
Ginger consumption may mitigate neutrophil dysfunction and inflammation
TOPLINE:
Blood samples from healthy adults show an inhibition of neutrophil extracellular trap formation (NET) after 1 week of daily ginger supplements.
METHODOLOGY:
- Researchers recruited nine healthy adults aged 18-38 years to receive a 100-mg oral ginger supplement daily for 7 consecutive days.
- Blood samples were collected at baseline and on days 7 and 14, with isolation of neutrophils, peripheral blood mononuclear cells, and plasma.
- The researchers measured NET formation (NETosis) as a way to show the effect of ginger on inflammation.
TAKEAWAY:
- Measures of neutrophil cyclic AMP (cAMP) were significantly higher after 7 days of ginger supplements, compared with baseline levels, although these levels returned to near baseline by 1 week after discontinuing ginger consumption.
- Oral ginger supplements reduced neutrophil phosphodiesterase (PDE) activity by 40% from baseline, similar to results seen with synthetic PDE4 inhibitors.
- The results build on previous studies showing inhibition of neutrophil hyperactivity in mice with antiphospholipid syndrome and lupus after injection with a purified ginger preparation.
- Researchers replicated the results showing effects of oral ginger on neutrophils in eight additional healthy adults who also showed reduced NETosis and increased cAMP after 1 week of ginger supplements.
IN PRACTICE:
The results show biologic support for the potential of ginger to affect neutrophil function in humans; therefore, “ginger may have a real ability to complement treatment programs that are already underway,” said corresponding author Jason Knight, MD, of the University of Michigan, Ann Arbor, in a press release.
SOURCE:
First author Ramadan A. Ali, MD, of the University of Michigan, Ann Arbor, and colleagues reported their study in JCI Insight.
LIMITATIONS:
More research is needed in humans with inflammatory and autoimmune diseases to confirm the findings and explore ginger as an adjuvant therapeutic intervention.
DISCLOSURES:
The study received no outside funding. The researchers report no relevant financial relationships.
A version of this article appeared on Medscape.com.
TOPLINE:
Blood samples from healthy adults show an inhibition of neutrophil extracellular trap formation (NET) after 1 week of daily ginger supplements.
METHODOLOGY:
- Researchers recruited nine healthy adults aged 18-38 years to receive a 100-mg oral ginger supplement daily for 7 consecutive days.
- Blood samples were collected at baseline and on days 7 and 14, with isolation of neutrophils, peripheral blood mononuclear cells, and plasma.
- The researchers measured NET formation (NETosis) as a way to show the effect of ginger on inflammation.
TAKEAWAY:
- Measures of neutrophil cyclic AMP (cAMP) were significantly higher after 7 days of ginger supplements, compared with baseline levels, although these levels returned to near baseline by 1 week after discontinuing ginger consumption.
- Oral ginger supplements reduced neutrophil phosphodiesterase (PDE) activity by 40% from baseline, similar to results seen with synthetic PDE4 inhibitors.
- The results build on previous studies showing inhibition of neutrophil hyperactivity in mice with antiphospholipid syndrome and lupus after injection with a purified ginger preparation.
- Researchers replicated the results showing effects of oral ginger on neutrophils in eight additional healthy adults who also showed reduced NETosis and increased cAMP after 1 week of ginger supplements.
IN PRACTICE:
The results show biologic support for the potential of ginger to affect neutrophil function in humans; therefore, “ginger may have a real ability to complement treatment programs that are already underway,” said corresponding author Jason Knight, MD, of the University of Michigan, Ann Arbor, in a press release.
SOURCE:
First author Ramadan A. Ali, MD, of the University of Michigan, Ann Arbor, and colleagues reported their study in JCI Insight.
LIMITATIONS:
More research is needed in humans with inflammatory and autoimmune diseases to confirm the findings and explore ginger as an adjuvant therapeutic intervention.
DISCLOSURES:
The study received no outside funding. The researchers report no relevant financial relationships.
A version of this article appeared on Medscape.com.
TOPLINE:
Blood samples from healthy adults show an inhibition of neutrophil extracellular trap formation (NET) after 1 week of daily ginger supplements.
METHODOLOGY:
- Researchers recruited nine healthy adults aged 18-38 years to receive a 100-mg oral ginger supplement daily for 7 consecutive days.
- Blood samples were collected at baseline and on days 7 and 14, with isolation of neutrophils, peripheral blood mononuclear cells, and plasma.
- The researchers measured NET formation (NETosis) as a way to show the effect of ginger on inflammation.
TAKEAWAY:
- Measures of neutrophil cyclic AMP (cAMP) were significantly higher after 7 days of ginger supplements, compared with baseline levels, although these levels returned to near baseline by 1 week after discontinuing ginger consumption.
- Oral ginger supplements reduced neutrophil phosphodiesterase (PDE) activity by 40% from baseline, similar to results seen with synthetic PDE4 inhibitors.
- The results build on previous studies showing inhibition of neutrophil hyperactivity in mice with antiphospholipid syndrome and lupus after injection with a purified ginger preparation.
- Researchers replicated the results showing effects of oral ginger on neutrophils in eight additional healthy adults who also showed reduced NETosis and increased cAMP after 1 week of ginger supplements.
IN PRACTICE:
The results show biologic support for the potential of ginger to affect neutrophil function in humans; therefore, “ginger may have a real ability to complement treatment programs that are already underway,” said corresponding author Jason Knight, MD, of the University of Michigan, Ann Arbor, in a press release.
SOURCE:
First author Ramadan A. Ali, MD, of the University of Michigan, Ann Arbor, and colleagues reported their study in JCI Insight.
LIMITATIONS:
More research is needed in humans with inflammatory and autoimmune diseases to confirm the findings and explore ginger as an adjuvant therapeutic intervention.
DISCLOSURES:
The study received no outside funding. The researchers report no relevant financial relationships.
A version of this article appeared on Medscape.com.
Mortality in ankylosing spondylitis: CV disease, drug abuse are big contributors
TOPLINE:
Drug use disorder increased the likelihood of in-hospital mortality more than 10-fold in patients with ankylosing spondylitis (AS), compared with patients who did not die while hospitalized.
METHODOLOGY:
- Researchers reviewed data from 2,125 adults with AS who were hospitalized between 2015 and 2017, using the Cerner Health Facts Database.
- The final analysis included 41 patients with AS who died while hospitalized and 260 random control patients with AS who did not die.
- The mean age of the deceased patients with AS was 70 years, 85% were male, and 81% were White; 71% had hypertension, 32% had kidney disease, and 22% had congestive heart failure.
TAKEAWAY:
- Among the patients with AS, cardiovascular disease was the most frequent cause of death, followed by infection, respiratory failure, and fracture/trauma in 15, 14, 8, and 7 patients, respectively. (Some patients had more than one cause of death recorded in the discharge summary.)
- The most common cardiac causes of death were myocardial infarction and cardiac arrest, while the top causes of acute respiratory failure were pneumonia and pulmonary embolism.
- Drug abuse, including opioid dependence, was significantly associated with death among hospitalized patients with AS (adjusted odds ratio, 10.9; P = .001).
- Heart failure and kidney disease were the comorbidities most strongly associated with mortality; the odds of death in the presence of heart failure rose 2.76-fold, and it increased 2.46-fold in the presence of kidney disease.
IN PRACTICE:
Underlying comorbidities, especially cardiac and renal, are associated with mortality in AS, and patients should be screened early on for these comorbidities to help reduce the odds of death.
SOURCE:
First author Mohamad Bittar, MD, of the University of Tennessee Health Science Center, Memphis, and colleagues reported their findings in Clinical Rheumatology).
LIMITATIONS:
The study lacked AS-specific data such as disease activity scores, which were not in the database. Also missing were variables linked to disease activity and mortality, including smoking, BMI levels, and C-reactive protein levels.
DISCLOSURES:
The study received no outside funding. Several coauthors disclosed financial relationships with UCB, Amgen, Pfizer, AbbVie, Novartis, and Eli Lilly.
A version of this article first appeared on Medscape.com.
TOPLINE:
Drug use disorder increased the likelihood of in-hospital mortality more than 10-fold in patients with ankylosing spondylitis (AS), compared with patients who did not die while hospitalized.
METHODOLOGY:
- Researchers reviewed data from 2,125 adults with AS who were hospitalized between 2015 and 2017, using the Cerner Health Facts Database.
- The final analysis included 41 patients with AS who died while hospitalized and 260 random control patients with AS who did not die.
- The mean age of the deceased patients with AS was 70 years, 85% were male, and 81% were White; 71% had hypertension, 32% had kidney disease, and 22% had congestive heart failure.
TAKEAWAY:
- Among the patients with AS, cardiovascular disease was the most frequent cause of death, followed by infection, respiratory failure, and fracture/trauma in 15, 14, 8, and 7 patients, respectively. (Some patients had more than one cause of death recorded in the discharge summary.)
- The most common cardiac causes of death were myocardial infarction and cardiac arrest, while the top causes of acute respiratory failure were pneumonia and pulmonary embolism.
- Drug abuse, including opioid dependence, was significantly associated with death among hospitalized patients with AS (adjusted odds ratio, 10.9; P = .001).
- Heart failure and kidney disease were the comorbidities most strongly associated with mortality; the odds of death in the presence of heart failure rose 2.76-fold, and it increased 2.46-fold in the presence of kidney disease.
IN PRACTICE:
Underlying comorbidities, especially cardiac and renal, are associated with mortality in AS, and patients should be screened early on for these comorbidities to help reduce the odds of death.
SOURCE:
First author Mohamad Bittar, MD, of the University of Tennessee Health Science Center, Memphis, and colleagues reported their findings in Clinical Rheumatology).
LIMITATIONS:
The study lacked AS-specific data such as disease activity scores, which were not in the database. Also missing were variables linked to disease activity and mortality, including smoking, BMI levels, and C-reactive protein levels.
DISCLOSURES:
The study received no outside funding. Several coauthors disclosed financial relationships with UCB, Amgen, Pfizer, AbbVie, Novartis, and Eli Lilly.
A version of this article first appeared on Medscape.com.
TOPLINE:
Drug use disorder increased the likelihood of in-hospital mortality more than 10-fold in patients with ankylosing spondylitis (AS), compared with patients who did not die while hospitalized.
METHODOLOGY:
- Researchers reviewed data from 2,125 adults with AS who were hospitalized between 2015 and 2017, using the Cerner Health Facts Database.
- The final analysis included 41 patients with AS who died while hospitalized and 260 random control patients with AS who did not die.
- The mean age of the deceased patients with AS was 70 years, 85% were male, and 81% were White; 71% had hypertension, 32% had kidney disease, and 22% had congestive heart failure.
TAKEAWAY:
- Among the patients with AS, cardiovascular disease was the most frequent cause of death, followed by infection, respiratory failure, and fracture/trauma in 15, 14, 8, and 7 patients, respectively. (Some patients had more than one cause of death recorded in the discharge summary.)
- The most common cardiac causes of death were myocardial infarction and cardiac arrest, while the top causes of acute respiratory failure were pneumonia and pulmonary embolism.
- Drug abuse, including opioid dependence, was significantly associated with death among hospitalized patients with AS (adjusted odds ratio, 10.9; P = .001).
- Heart failure and kidney disease were the comorbidities most strongly associated with mortality; the odds of death in the presence of heart failure rose 2.76-fold, and it increased 2.46-fold in the presence of kidney disease.
IN PRACTICE:
Underlying comorbidities, especially cardiac and renal, are associated with mortality in AS, and patients should be screened early on for these comorbidities to help reduce the odds of death.
SOURCE:
First author Mohamad Bittar, MD, of the University of Tennessee Health Science Center, Memphis, and colleagues reported their findings in Clinical Rheumatology).
LIMITATIONS:
The study lacked AS-specific data such as disease activity scores, which were not in the database. Also missing were variables linked to disease activity and mortality, including smoking, BMI levels, and C-reactive protein levels.
DISCLOSURES:
The study received no outside funding. Several coauthors disclosed financial relationships with UCB, Amgen, Pfizer, AbbVie, Novartis, and Eli Lilly.
A version of this article first appeared on Medscape.com.
Progressive pulmonary fibrosis: treatment and support
MILAN – Numerous unresolved questions surround progressive pulmonary fibrosis (PPF) treatment, according to Elisabeth Bendstrup, MD, PhD, a researcher and clinical professor in the department of clinical medicine – department of respiratory diseases and allergy, Aarhus (Denmark) University, Denmark. These questions regard the optimal timing for treatment initiation, the role of available medications, either as monotherapy or in combination, and nonpharmacologic support options.
What’s in the toolbox?
Pulmonologists who manage PPF have a range of treatment options at their disposal. This includes careful patient observation, with treatment initiation based on clinical necessity. The therapeutic arsenal comprises immunomodulatory treatments, antifibrotic agents, palliative and supportive care, and, for a minority of patients, lung transplantation.
“Once a patient is diagnosed with PPF, it is important to remember that the diagnostic criteria from the guidelines are not exactly the same of those accepted for the reimbursement of antifibrotic treatments in different countries,” Dr. Bendstrup said, suggesting that nonclinical considerations could also potentially influence the treatment choice. She spoke at the annual congress of the European Respiratory Society.
Michael Kreuter, MD, director of the Lung Center at the University Hospital in Mainz, Germany, provided insight into the introduction of antifibrotic drugs for the treatment of PPF. Drawing from nearly a decade ago when the first antifibrotic medication was approved for idiopathic pulmonary fibrosis (IPF), Dr. Kreuter noted its effectiveness in slowing disease progression, although it does not reverse it. Subsequently, the discovery that non-IPF diseases, such as rheumatoid arthritis, exhibited IPF-like behavior led to the exploration of the use of the same drugs for similar conditions, even if not IPF.
“That’s how antifibrotic treatments came into place. Now we have more trials and data to be discussed in the future,” Dr. Kreuter added. He highlighted that antifibrotic drugs are effective for several diseases. Most of those diseases are treated with different anti-inflammatory drugs, which makes it difficult to decide when to start antifibrotic therapy and how to eventually combine it with different pharmacologic approaches.
A pivotal starting point
a question only partially addressed by existing guidelines. Dr. Bendstrup advocated for a comprehensive baseline evaluation. Factors to be considered include symptom burden, the severity of lung decline, radiologic characteristics, signs of alveolar inflammation, progression risk factors, quality of life, patient preferences, and medical history. “All these should be best discussed in a multidisciplinary team, including pulmonologists, nurses, experts in palliative care, occupational physicians, and more,” she said.
Current guidelines recommend nintedanib for PPF treatment for patients who have failed standard management for fibrotic interstitial lung disease (ILD) other than IPF. However, the definition of “standard management” remains a topic of debate, and it is acknowledged that evidence-based guidance for a standard of care varies among patients. Dr. Bendstrup pointed out the limited guidance clinicians receive from these guidelines. “As clinicians, we are not left with very much help from here.”
Choosing the right approach
Dr. Bendstrup delved into the factors influencing the choice between antifibrotic and anti-inflammatory therapies. This decision hinges on whether the patient presents with a predominantly inflammatory or a fibrotic progressive phenotype. Certain clinical characteristics contribute to the decision. Factors such as younger age, female gender, and the presence of connective tissue disease lean toward an inflammatory phenotype. Radiologic patterns, such as organized pneumonia, hypersensitivity pneumonia, or usual interstitial pneumonia–like patterns also provide valuable clues. Additionally, genetics plays a role, with shorter telomeres indicating a more fibrotic phenotype and an increased risk of immunomodulatory treatment side effects in non-IPF ILDs.
Bendstrup referred to a recent position paper on treatment recommendations and many other studies that support the use of different treatments for patients with PPF. The authors highlighted limited evidence for immunomodulation in fibrotic ILD, though such treatment is generally used except for ILD associated with systemic sclerosis. Moreover, the guidelines conditionally recommend nintedanib and call for further research on pirfenidone in PPF.
“We need intelligent, well-designed trials looking at subgroups of patients at higher risk, maybe based on molecular identification. We also need to have good biomarkers to better classify our patients based on disease behavior and treatment response. There’s a lot of discussion of biomarkers for progression, much less – if any – on biomarkers for the response to treatment. And we need them as well,” Dr. Bendstrup said in an interview.
The role of supportive care
Effective PPF treatment extends beyond pharmacologic interventions. It encompasses symptom management, patient education on vaccination and smoking cessation, and fostering social support networks. Psychological support, supplemental oxygen therapy, and pulmonary rehabilitation are integral components of care.
Elisabeth Robertson, a PPF patient representative from the United Kingdom, emphasized the importance of palliative care, not just in end-of-life scenarios but throughout the patient’s journey. Palliative care encompasses symptom alleviation, enabling patients to stay at home when possible, addressing mental health, and preparing for the end of life. Such holistic care can significantly enhance the patient’s quality of life.
The cochair of the session, Marlies S. Wijsenbeek, MD, PhD, pulmonary physician and head of the ILD Centre at the Erasmus University Medical Centre, Rotterdam, the Netherlands, underscored that palliative care begins at diagnosis and involves managing symptom burdens. “Supportive care also includes nurses, as they are precious for the patients while answering their questions and can help save time for the doctors,” she said in an interview.
In the discussion on treatment decisions, experts agreed on the pivotal role of patients in decision-making. However, Dr. Kreuter highlighted two critical factors that influence successful patient-doctor interactions: the cultural backgrounds of patients and their relatives, and the attitudes of health care providers.
Dr. Bendstrup has received honoraria or consultation fees from Boehringer Ingelheim, Roche, Astra Zeneca, Chiesi, and Daiichi Sankyo. Ms. Robertson disclosed no relevant financial relationships.
A version of this article first appeared on Medscape.com.
MILAN – Numerous unresolved questions surround progressive pulmonary fibrosis (PPF) treatment, according to Elisabeth Bendstrup, MD, PhD, a researcher and clinical professor in the department of clinical medicine – department of respiratory diseases and allergy, Aarhus (Denmark) University, Denmark. These questions regard the optimal timing for treatment initiation, the role of available medications, either as monotherapy or in combination, and nonpharmacologic support options.
What’s in the toolbox?
Pulmonologists who manage PPF have a range of treatment options at their disposal. This includes careful patient observation, with treatment initiation based on clinical necessity. The therapeutic arsenal comprises immunomodulatory treatments, antifibrotic agents, palliative and supportive care, and, for a minority of patients, lung transplantation.
“Once a patient is diagnosed with PPF, it is important to remember that the diagnostic criteria from the guidelines are not exactly the same of those accepted for the reimbursement of antifibrotic treatments in different countries,” Dr. Bendstrup said, suggesting that nonclinical considerations could also potentially influence the treatment choice. She spoke at the annual congress of the European Respiratory Society.
Michael Kreuter, MD, director of the Lung Center at the University Hospital in Mainz, Germany, provided insight into the introduction of antifibrotic drugs for the treatment of PPF. Drawing from nearly a decade ago when the first antifibrotic medication was approved for idiopathic pulmonary fibrosis (IPF), Dr. Kreuter noted its effectiveness in slowing disease progression, although it does not reverse it. Subsequently, the discovery that non-IPF diseases, such as rheumatoid arthritis, exhibited IPF-like behavior led to the exploration of the use of the same drugs for similar conditions, even if not IPF.
“That’s how antifibrotic treatments came into place. Now we have more trials and data to be discussed in the future,” Dr. Kreuter added. He highlighted that antifibrotic drugs are effective for several diseases. Most of those diseases are treated with different anti-inflammatory drugs, which makes it difficult to decide when to start antifibrotic therapy and how to eventually combine it with different pharmacologic approaches.
A pivotal starting point
a question only partially addressed by existing guidelines. Dr. Bendstrup advocated for a comprehensive baseline evaluation. Factors to be considered include symptom burden, the severity of lung decline, radiologic characteristics, signs of alveolar inflammation, progression risk factors, quality of life, patient preferences, and medical history. “All these should be best discussed in a multidisciplinary team, including pulmonologists, nurses, experts in palliative care, occupational physicians, and more,” she said.
Current guidelines recommend nintedanib for PPF treatment for patients who have failed standard management for fibrotic interstitial lung disease (ILD) other than IPF. However, the definition of “standard management” remains a topic of debate, and it is acknowledged that evidence-based guidance for a standard of care varies among patients. Dr. Bendstrup pointed out the limited guidance clinicians receive from these guidelines. “As clinicians, we are not left with very much help from here.”
Choosing the right approach
Dr. Bendstrup delved into the factors influencing the choice between antifibrotic and anti-inflammatory therapies. This decision hinges on whether the patient presents with a predominantly inflammatory or a fibrotic progressive phenotype. Certain clinical characteristics contribute to the decision. Factors such as younger age, female gender, and the presence of connective tissue disease lean toward an inflammatory phenotype. Radiologic patterns, such as organized pneumonia, hypersensitivity pneumonia, or usual interstitial pneumonia–like patterns also provide valuable clues. Additionally, genetics plays a role, with shorter telomeres indicating a more fibrotic phenotype and an increased risk of immunomodulatory treatment side effects in non-IPF ILDs.
Bendstrup referred to a recent position paper on treatment recommendations and many other studies that support the use of different treatments for patients with PPF. The authors highlighted limited evidence for immunomodulation in fibrotic ILD, though such treatment is generally used except for ILD associated with systemic sclerosis. Moreover, the guidelines conditionally recommend nintedanib and call for further research on pirfenidone in PPF.
“We need intelligent, well-designed trials looking at subgroups of patients at higher risk, maybe based on molecular identification. We also need to have good biomarkers to better classify our patients based on disease behavior and treatment response. There’s a lot of discussion of biomarkers for progression, much less – if any – on biomarkers for the response to treatment. And we need them as well,” Dr. Bendstrup said in an interview.
The role of supportive care
Effective PPF treatment extends beyond pharmacologic interventions. It encompasses symptom management, patient education on vaccination and smoking cessation, and fostering social support networks. Psychological support, supplemental oxygen therapy, and pulmonary rehabilitation are integral components of care.
Elisabeth Robertson, a PPF patient representative from the United Kingdom, emphasized the importance of palliative care, not just in end-of-life scenarios but throughout the patient’s journey. Palliative care encompasses symptom alleviation, enabling patients to stay at home when possible, addressing mental health, and preparing for the end of life. Such holistic care can significantly enhance the patient’s quality of life.
The cochair of the session, Marlies S. Wijsenbeek, MD, PhD, pulmonary physician and head of the ILD Centre at the Erasmus University Medical Centre, Rotterdam, the Netherlands, underscored that palliative care begins at diagnosis and involves managing symptom burdens. “Supportive care also includes nurses, as they are precious for the patients while answering their questions and can help save time for the doctors,” she said in an interview.
In the discussion on treatment decisions, experts agreed on the pivotal role of patients in decision-making. However, Dr. Kreuter highlighted two critical factors that influence successful patient-doctor interactions: the cultural backgrounds of patients and their relatives, and the attitudes of health care providers.
Dr. Bendstrup has received honoraria or consultation fees from Boehringer Ingelheim, Roche, Astra Zeneca, Chiesi, and Daiichi Sankyo. Ms. Robertson disclosed no relevant financial relationships.
A version of this article first appeared on Medscape.com.
MILAN – Numerous unresolved questions surround progressive pulmonary fibrosis (PPF) treatment, according to Elisabeth Bendstrup, MD, PhD, a researcher and clinical professor in the department of clinical medicine – department of respiratory diseases and allergy, Aarhus (Denmark) University, Denmark. These questions regard the optimal timing for treatment initiation, the role of available medications, either as monotherapy or in combination, and nonpharmacologic support options.
What’s in the toolbox?
Pulmonologists who manage PPF have a range of treatment options at their disposal. This includes careful patient observation, with treatment initiation based on clinical necessity. The therapeutic arsenal comprises immunomodulatory treatments, antifibrotic agents, palliative and supportive care, and, for a minority of patients, lung transplantation.
“Once a patient is diagnosed with PPF, it is important to remember that the diagnostic criteria from the guidelines are not exactly the same of those accepted for the reimbursement of antifibrotic treatments in different countries,” Dr. Bendstrup said, suggesting that nonclinical considerations could also potentially influence the treatment choice. She spoke at the annual congress of the European Respiratory Society.
Michael Kreuter, MD, director of the Lung Center at the University Hospital in Mainz, Germany, provided insight into the introduction of antifibrotic drugs for the treatment of PPF. Drawing from nearly a decade ago when the first antifibrotic medication was approved for idiopathic pulmonary fibrosis (IPF), Dr. Kreuter noted its effectiveness in slowing disease progression, although it does not reverse it. Subsequently, the discovery that non-IPF diseases, such as rheumatoid arthritis, exhibited IPF-like behavior led to the exploration of the use of the same drugs for similar conditions, even if not IPF.
“That’s how antifibrotic treatments came into place. Now we have more trials and data to be discussed in the future,” Dr. Kreuter added. He highlighted that antifibrotic drugs are effective for several diseases. Most of those diseases are treated with different anti-inflammatory drugs, which makes it difficult to decide when to start antifibrotic therapy and how to eventually combine it with different pharmacologic approaches.
A pivotal starting point
a question only partially addressed by existing guidelines. Dr. Bendstrup advocated for a comprehensive baseline evaluation. Factors to be considered include symptom burden, the severity of lung decline, radiologic characteristics, signs of alveolar inflammation, progression risk factors, quality of life, patient preferences, and medical history. “All these should be best discussed in a multidisciplinary team, including pulmonologists, nurses, experts in palliative care, occupational physicians, and more,” she said.
Current guidelines recommend nintedanib for PPF treatment for patients who have failed standard management for fibrotic interstitial lung disease (ILD) other than IPF. However, the definition of “standard management” remains a topic of debate, and it is acknowledged that evidence-based guidance for a standard of care varies among patients. Dr. Bendstrup pointed out the limited guidance clinicians receive from these guidelines. “As clinicians, we are not left with very much help from here.”
Choosing the right approach
Dr. Bendstrup delved into the factors influencing the choice between antifibrotic and anti-inflammatory therapies. This decision hinges on whether the patient presents with a predominantly inflammatory or a fibrotic progressive phenotype. Certain clinical characteristics contribute to the decision. Factors such as younger age, female gender, and the presence of connective tissue disease lean toward an inflammatory phenotype. Radiologic patterns, such as organized pneumonia, hypersensitivity pneumonia, or usual interstitial pneumonia–like patterns also provide valuable clues. Additionally, genetics plays a role, with shorter telomeres indicating a more fibrotic phenotype and an increased risk of immunomodulatory treatment side effects in non-IPF ILDs.
Bendstrup referred to a recent position paper on treatment recommendations and many other studies that support the use of different treatments for patients with PPF. The authors highlighted limited evidence for immunomodulation in fibrotic ILD, though such treatment is generally used except for ILD associated with systemic sclerosis. Moreover, the guidelines conditionally recommend nintedanib and call for further research on pirfenidone in PPF.
“We need intelligent, well-designed trials looking at subgroups of patients at higher risk, maybe based on molecular identification. We also need to have good biomarkers to better classify our patients based on disease behavior and treatment response. There’s a lot of discussion of biomarkers for progression, much less – if any – on biomarkers for the response to treatment. And we need them as well,” Dr. Bendstrup said in an interview.
The role of supportive care
Effective PPF treatment extends beyond pharmacologic interventions. It encompasses symptom management, patient education on vaccination and smoking cessation, and fostering social support networks. Psychological support, supplemental oxygen therapy, and pulmonary rehabilitation are integral components of care.
Elisabeth Robertson, a PPF patient representative from the United Kingdom, emphasized the importance of palliative care, not just in end-of-life scenarios but throughout the patient’s journey. Palliative care encompasses symptom alleviation, enabling patients to stay at home when possible, addressing mental health, and preparing for the end of life. Such holistic care can significantly enhance the patient’s quality of life.
The cochair of the session, Marlies S. Wijsenbeek, MD, PhD, pulmonary physician and head of the ILD Centre at the Erasmus University Medical Centre, Rotterdam, the Netherlands, underscored that palliative care begins at diagnosis and involves managing symptom burdens. “Supportive care also includes nurses, as they are precious for the patients while answering their questions and can help save time for the doctors,” she said in an interview.
In the discussion on treatment decisions, experts agreed on the pivotal role of patients in decision-making. However, Dr. Kreuter highlighted two critical factors that influence successful patient-doctor interactions: the cultural backgrounds of patients and their relatives, and the attitudes of health care providers.
Dr. Bendstrup has received honoraria or consultation fees from Boehringer Ingelheim, Roche, Astra Zeneca, Chiesi, and Daiichi Sankyo. Ms. Robertson disclosed no relevant financial relationships.
A version of this article first appeared on Medscape.com.
AT ERS 2023
Severe psoriasis linked to a higher risk for heart disease, study confirms
TOPLINE:
METHODOLOGY:
- Prior studies with small sample sizes have shown that CMD predicts poor cardiovascular outcomes in patients with severe psoriasis.
- In a prospective multicenter study, researchers enrolled 448 patients with moderate to severe psoriasis with no documented clinical cardiovascular disease who underwent transthoracic Doppler echocardiography to evaluate coronary microcirculation.
- The outcome variable of interest was CMD, defined as a coronary flow rate of 2.5 mL or less.
- The researchers used multivariable linear regression to model the associations of the characteristics of patients with psoriasis with CMD.
TAKEAWAY:
- Of the 448 patients, 141 (31.5%) showed CMD.
- Multivariable regression revealed four variables independently associated with CMD: higher Psoriasis Area Severity Index (PASI) score (per unit, odds ratio, 1.058; P < .001), duration of psoriasis (per year; OR, 1.046; P < .001), the presence of psoriatic arthritis (OR, 1.938; P = .015), and hypertension (OR, 2.169; P = .010).
- An increase of 1 point in the PASI score and 1 year of psoriasis duration were associated with a 5.8% and a 4.6% increased risk for CMD, respectively.
IN PRACTICE:
“We should diagnose and actively search for microvascular dysfunction in patients with psoriasis, as this population is at particularly high risk,” the researchers wrote.
SOURCE:
Stefano Piaserico, MD, PhD, of the University of Padova (Italy), led the research. The study was published in the Journal of Investigative Dermatology.
LIMITATIONS:
A small proportion of patients in the study were being treated for psoriasis, and other tools for assessing CMD were not used, such as PET-CT and cardiovascular MRI.
DISCLOSURES:
The authors reported having no relevant financial disclosures.
A version of this article first appeared on Medscape.com.
TOPLINE:
METHODOLOGY:
- Prior studies with small sample sizes have shown that CMD predicts poor cardiovascular outcomes in patients with severe psoriasis.
- In a prospective multicenter study, researchers enrolled 448 patients with moderate to severe psoriasis with no documented clinical cardiovascular disease who underwent transthoracic Doppler echocardiography to evaluate coronary microcirculation.
- The outcome variable of interest was CMD, defined as a coronary flow rate of 2.5 mL or less.
- The researchers used multivariable linear regression to model the associations of the characteristics of patients with psoriasis with CMD.
TAKEAWAY:
- Of the 448 patients, 141 (31.5%) showed CMD.
- Multivariable regression revealed four variables independently associated with CMD: higher Psoriasis Area Severity Index (PASI) score (per unit, odds ratio, 1.058; P < .001), duration of psoriasis (per year; OR, 1.046; P < .001), the presence of psoriatic arthritis (OR, 1.938; P = .015), and hypertension (OR, 2.169; P = .010).
- An increase of 1 point in the PASI score and 1 year of psoriasis duration were associated with a 5.8% and a 4.6% increased risk for CMD, respectively.
IN PRACTICE:
“We should diagnose and actively search for microvascular dysfunction in patients with psoriasis, as this population is at particularly high risk,” the researchers wrote.
SOURCE:
Stefano Piaserico, MD, PhD, of the University of Padova (Italy), led the research. The study was published in the Journal of Investigative Dermatology.
LIMITATIONS:
A small proportion of patients in the study were being treated for psoriasis, and other tools for assessing CMD were not used, such as PET-CT and cardiovascular MRI.
DISCLOSURES:
The authors reported having no relevant financial disclosures.
A version of this article first appeared on Medscape.com.
TOPLINE:
METHODOLOGY:
- Prior studies with small sample sizes have shown that CMD predicts poor cardiovascular outcomes in patients with severe psoriasis.
- In a prospective multicenter study, researchers enrolled 448 patients with moderate to severe psoriasis with no documented clinical cardiovascular disease who underwent transthoracic Doppler echocardiography to evaluate coronary microcirculation.
- The outcome variable of interest was CMD, defined as a coronary flow rate of 2.5 mL or less.
- The researchers used multivariable linear regression to model the associations of the characteristics of patients with psoriasis with CMD.
TAKEAWAY:
- Of the 448 patients, 141 (31.5%) showed CMD.
- Multivariable regression revealed four variables independently associated with CMD: higher Psoriasis Area Severity Index (PASI) score (per unit, odds ratio, 1.058; P < .001), duration of psoriasis (per year; OR, 1.046; P < .001), the presence of psoriatic arthritis (OR, 1.938; P = .015), and hypertension (OR, 2.169; P = .010).
- An increase of 1 point in the PASI score and 1 year of psoriasis duration were associated with a 5.8% and a 4.6% increased risk for CMD, respectively.
IN PRACTICE:
“We should diagnose and actively search for microvascular dysfunction in patients with psoriasis, as this population is at particularly high risk,” the researchers wrote.
SOURCE:
Stefano Piaserico, MD, PhD, of the University of Padova (Italy), led the research. The study was published in the Journal of Investigative Dermatology.
LIMITATIONS:
A small proportion of patients in the study were being treated for psoriasis, and other tools for assessing CMD were not used, such as PET-CT and cardiovascular MRI.
DISCLOSURES:
The authors reported having no relevant financial disclosures.
A version of this article first appeared on Medscape.com.
FROM THE JOURNAL OF INVESTIGATIVE DERMATOLOGY
Insurer’s foray into AI-based ‘shared savings’ program creates ethical problems
Editor’s note: As of this writing, the following proposed health insurance policy from Blue Cross and Blue Shield of North Carolina is still active. The Coalition of State Rheumatology Organizations and other rheumatology advocacy groups are in ongoing discussions with the health insurer and hope to have major changes to this policy implemented.
While AI has been in our world for years, it is expanding by the minute, perhaps by the nanosecond, within the health care sector. The $6.7 billion dollar health care AI market in 2020 is expected to climb to more than $120 billion by 2028. There are many questions regarding the application of AI in our world. Is it a mere instructional algorithm that computes things in a much faster way, or does it create a new story based on the information it has access to? Does it engender excitement or fear ... or both? Remember HAL? As we have seen throughout history with new inventions and technologies, there are risks and rewards. Even the best can have harmful unintended consequences. AI is no different, particularly when it comes to health care. In this case, AI can get a bad name if it is utilized along with biased data input and bad policy.
Shared savings
Here is where “shared savings” comes into play. A shared savings program starts with a baseline cost analysis of a particular care plan and then tracks costs (performance) going forward after certain changes to the original care plan are instituted. If savings are accrued when compared with baseline spending, those savings are shared with the providers of the care. Depending on how the shared savings program is implemented, the optics can be very bad if it appears as though physicians are being paid to reduce care.
‘The volunteer opportunity’
Recently, Blue Cross and Blue Shield of North Carolina, in partnership with Outcomes Matter Innovations, a data analysis company that uses AI/machine-learning technology, offered rheumatologists a new voluntary shared savings, value-based care (VBC) “opportunity.” Rheumatologists would be able to “utilize a web-based machine-learning technology platform that suggests evidence-based care pathways” in the treatment of rheumatoid arthritis and psoriatic arthritis (PsA). The VBC/shared savings model uses the AI platform to propose two different pathways. One model would delay the start of biologics or Janus kinase inhibitors (JAKi), and the second model would taper and/or stop biologics or JAKi altogether.
Delaying the start of biologics/JAKi would be achieved through “methotrexate optimization” and/or the use of triple therapy with methotrexate, sulfasalazine, and hydroxychloroquine. The other model would recommend tapering biologic/JAKi dosing in patients in remission or low disease activity and might even suggest a “medication holiday.”
The intention of this 3-year VBC/shared savings program is to reduce costs and create savings by reducing the use of biologics or JAKi. A tangential question might be, “Reduce costs and create savings for whom?” Apparently, the patients will not reap any of the cost savings, as this is proposed to be a shared savings program with the savings going to the physicians and the insurance company. Perhaps the idea is that patients will benefit by reducing unneeded expensive medications.
How will it work?
A cost baseline will be established on biologic and JAKi use prior to the start of the program. Once started, there will be a calculation of savings based on biologic/JAKi use going forward. It was stated that physicians would receive 22% of the total costs saved. In one flyer, it was estimated that, with methotrexate optimization, rheumatologists could be paid an average of $1,527 a month per patient per month of delay before starting a biologic or JAKi.
The American College of Rheumatology has guidelines for the treatment of RA and PsA, and while optimizing methotrexate and triple therapy is mentioned, tapering or stopping treatment with biologics or JAKi is not. Additionally, after lack of response at 3 months, the standard of care is to change to a more effective treatment, which for most patients is a biologic disease-modifying antirheumatic drug (DMARD). It could be construed that rheumatologists are being monetarily incentivized to reduce the use of expensive medications through ways that are not included in ACR guidelines and are not standard of care.
What if after the medication holiday the patient cannot recapture control of their disease? Is there a liability concern? Remember, there is no institutional review board or informed patient consent for this VBC data gathering model.
How will a patient feel knowing that their physician was paid to withhold care, or even worse, if a patient is not told of this and then finds out later? Not only are the optics for this suboptimal (at best), where does the liability fall if the patient does not do well and it comes out that their rheumatologist was paid to reduce the care, particularly in a way that is not supported in the guideline. Clearly, this appears to be a clinical study without an institutional review board and without patient consent.
There are also the data that are collected from this voluntary “opportunity.” A valid question would be, “What kind of data will this produce if rheumatologists are paid to delay, reduce, or stop the use of biologics/JAKi?” Is it possible that physicians may subconsciously delay putting patients on a biologic and taper more rapidly because of the reimbursement? This could lead to faulty, biased, AI-generated data that erroneously show this type of care is working. It would not be unheard of to wonder whether this once-voluntary opportunity might evolve into mandatory policy because now, they have “data to prove it.” … only this time there is no shared savings.
Low disease activity results in long-term savings
This is not meant to be an indictment of AI in health care, value-based care, or shared savings programs. In reality, AI had very little to do with how poorly this program was presented. Hopefully, it will bring about further discussions on how to achieve savings without sacrificing care. In fact, optimal care in RA and PsA is probably one of the best ways to save money in the long run. Nowhere in this program is there any mention of the high cost associated with uncontrolled disease activity in patients with RA or PsA. The downstream costs can be enormous when long- and short-term sequelae are taken into consideration: joint replacements, cardiovascular disease, certain kinds of malignancies, and all the side effects of increased steroid usage are just a few of the consequences we see with uncontrolled disease activity. It is only recently that we have been able to achieve low disease activity and remission in our patients. The rush to get patients off these medications is not the answer to achieving long-term savings. In addition to the very bad optics of paying rheumatologists to delay, taper, or stop using expensive mediations in their patients, the ultimate data achieved will be biased, and the only real winner will be the health insurance company.
Again, AI machine-learning and shared saving programs are not the guilty parties here. In fact, AI may be helpful in coming up with solutions to long-term health care costs, whether in the realm of economics or scientific research. CSRO and our state member organizations continue to educate the health insurance company on the significant drawbacks to this “volunteer opportunity.” Let’s hope a more reasonable program is put forward with AI-generated data that can be trusted. Hopefully not with a platform named “HAL,” for those of you old enough to remember “2001: A Space Odyssey.”
Dr. Feldman is a rheumatologist in private practice with The Rheumatology Group in New Orleans. She is the CSRO’s vice president of advocacy and government affairs and its immediate past president, as well as past chair of the Alliance for Safe Biologic Medicines and a past member of the American College of Rheumatology insurance subcommittee. You can reach her at [email protected].
Editor’s note: As of this writing, the following proposed health insurance policy from Blue Cross and Blue Shield of North Carolina is still active. The Coalition of State Rheumatology Organizations and other rheumatology advocacy groups are in ongoing discussions with the health insurer and hope to have major changes to this policy implemented.
While AI has been in our world for years, it is expanding by the minute, perhaps by the nanosecond, within the health care sector. The $6.7 billion dollar health care AI market in 2020 is expected to climb to more than $120 billion by 2028. There are many questions regarding the application of AI in our world. Is it a mere instructional algorithm that computes things in a much faster way, or does it create a new story based on the information it has access to? Does it engender excitement or fear ... or both? Remember HAL? As we have seen throughout history with new inventions and technologies, there are risks and rewards. Even the best can have harmful unintended consequences. AI is no different, particularly when it comes to health care. In this case, AI can get a bad name if it is utilized along with biased data input and bad policy.
Shared savings
Here is where “shared savings” comes into play. A shared savings program starts with a baseline cost analysis of a particular care plan and then tracks costs (performance) going forward after certain changes to the original care plan are instituted. If savings are accrued when compared with baseline spending, those savings are shared with the providers of the care. Depending on how the shared savings program is implemented, the optics can be very bad if it appears as though physicians are being paid to reduce care.
‘The volunteer opportunity’
Recently, Blue Cross and Blue Shield of North Carolina, in partnership with Outcomes Matter Innovations, a data analysis company that uses AI/machine-learning technology, offered rheumatologists a new voluntary shared savings, value-based care (VBC) “opportunity.” Rheumatologists would be able to “utilize a web-based machine-learning technology platform that suggests evidence-based care pathways” in the treatment of rheumatoid arthritis and psoriatic arthritis (PsA). The VBC/shared savings model uses the AI platform to propose two different pathways. One model would delay the start of biologics or Janus kinase inhibitors (JAKi), and the second model would taper and/or stop biologics or JAKi altogether.
Delaying the start of biologics/JAKi would be achieved through “methotrexate optimization” and/or the use of triple therapy with methotrexate, sulfasalazine, and hydroxychloroquine. The other model would recommend tapering biologic/JAKi dosing in patients in remission or low disease activity and might even suggest a “medication holiday.”
The intention of this 3-year VBC/shared savings program is to reduce costs and create savings by reducing the use of biologics or JAKi. A tangential question might be, “Reduce costs and create savings for whom?” Apparently, the patients will not reap any of the cost savings, as this is proposed to be a shared savings program with the savings going to the physicians and the insurance company. Perhaps the idea is that patients will benefit by reducing unneeded expensive medications.
How will it work?
A cost baseline will be established on biologic and JAKi use prior to the start of the program. Once started, there will be a calculation of savings based on biologic/JAKi use going forward. It was stated that physicians would receive 22% of the total costs saved. In one flyer, it was estimated that, with methotrexate optimization, rheumatologists could be paid an average of $1,527 a month per patient per month of delay before starting a biologic or JAKi.
The American College of Rheumatology has guidelines for the treatment of RA and PsA, and while optimizing methotrexate and triple therapy is mentioned, tapering or stopping treatment with biologics or JAKi is not. Additionally, after lack of response at 3 months, the standard of care is to change to a more effective treatment, which for most patients is a biologic disease-modifying antirheumatic drug (DMARD). It could be construed that rheumatologists are being monetarily incentivized to reduce the use of expensive medications through ways that are not included in ACR guidelines and are not standard of care.
What if after the medication holiday the patient cannot recapture control of their disease? Is there a liability concern? Remember, there is no institutional review board or informed patient consent for this VBC data gathering model.
How will a patient feel knowing that their physician was paid to withhold care, or even worse, if a patient is not told of this and then finds out later? Not only are the optics for this suboptimal (at best), where does the liability fall if the patient does not do well and it comes out that their rheumatologist was paid to reduce the care, particularly in a way that is not supported in the guideline. Clearly, this appears to be a clinical study without an institutional review board and without patient consent.
There are also the data that are collected from this voluntary “opportunity.” A valid question would be, “What kind of data will this produce if rheumatologists are paid to delay, reduce, or stop the use of biologics/JAKi?” Is it possible that physicians may subconsciously delay putting patients on a biologic and taper more rapidly because of the reimbursement? This could lead to faulty, biased, AI-generated data that erroneously show this type of care is working. It would not be unheard of to wonder whether this once-voluntary opportunity might evolve into mandatory policy because now, they have “data to prove it.” … only this time there is no shared savings.
Low disease activity results in long-term savings
This is not meant to be an indictment of AI in health care, value-based care, or shared savings programs. In reality, AI had very little to do with how poorly this program was presented. Hopefully, it will bring about further discussions on how to achieve savings without sacrificing care. In fact, optimal care in RA and PsA is probably one of the best ways to save money in the long run. Nowhere in this program is there any mention of the high cost associated with uncontrolled disease activity in patients with RA or PsA. The downstream costs can be enormous when long- and short-term sequelae are taken into consideration: joint replacements, cardiovascular disease, certain kinds of malignancies, and all the side effects of increased steroid usage are just a few of the consequences we see with uncontrolled disease activity. It is only recently that we have been able to achieve low disease activity and remission in our patients. The rush to get patients off these medications is not the answer to achieving long-term savings. In addition to the very bad optics of paying rheumatologists to delay, taper, or stop using expensive mediations in their patients, the ultimate data achieved will be biased, and the only real winner will be the health insurance company.
Again, AI machine-learning and shared saving programs are not the guilty parties here. In fact, AI may be helpful in coming up with solutions to long-term health care costs, whether in the realm of economics or scientific research. CSRO and our state member organizations continue to educate the health insurance company on the significant drawbacks to this “volunteer opportunity.” Let’s hope a more reasonable program is put forward with AI-generated data that can be trusted. Hopefully not with a platform named “HAL,” for those of you old enough to remember “2001: A Space Odyssey.”
Dr. Feldman is a rheumatologist in private practice with The Rheumatology Group in New Orleans. She is the CSRO’s vice president of advocacy and government affairs and its immediate past president, as well as past chair of the Alliance for Safe Biologic Medicines and a past member of the American College of Rheumatology insurance subcommittee. You can reach her at [email protected].
Editor’s note: As of this writing, the following proposed health insurance policy from Blue Cross and Blue Shield of North Carolina is still active. The Coalition of State Rheumatology Organizations and other rheumatology advocacy groups are in ongoing discussions with the health insurer and hope to have major changes to this policy implemented.
While AI has been in our world for years, it is expanding by the minute, perhaps by the nanosecond, within the health care sector. The $6.7 billion dollar health care AI market in 2020 is expected to climb to more than $120 billion by 2028. There are many questions regarding the application of AI in our world. Is it a mere instructional algorithm that computes things in a much faster way, or does it create a new story based on the information it has access to? Does it engender excitement or fear ... or both? Remember HAL? As we have seen throughout history with new inventions and technologies, there are risks and rewards. Even the best can have harmful unintended consequences. AI is no different, particularly when it comes to health care. In this case, AI can get a bad name if it is utilized along with biased data input and bad policy.
Shared savings
Here is where “shared savings” comes into play. A shared savings program starts with a baseline cost analysis of a particular care plan and then tracks costs (performance) going forward after certain changes to the original care plan are instituted. If savings are accrued when compared with baseline spending, those savings are shared with the providers of the care. Depending on how the shared savings program is implemented, the optics can be very bad if it appears as though physicians are being paid to reduce care.
‘The volunteer opportunity’
Recently, Blue Cross and Blue Shield of North Carolina, in partnership with Outcomes Matter Innovations, a data analysis company that uses AI/machine-learning technology, offered rheumatologists a new voluntary shared savings, value-based care (VBC) “opportunity.” Rheumatologists would be able to “utilize a web-based machine-learning technology platform that suggests evidence-based care pathways” in the treatment of rheumatoid arthritis and psoriatic arthritis (PsA). The VBC/shared savings model uses the AI platform to propose two different pathways. One model would delay the start of biologics or Janus kinase inhibitors (JAKi), and the second model would taper and/or stop biologics or JAKi altogether.
Delaying the start of biologics/JAKi would be achieved through “methotrexate optimization” and/or the use of triple therapy with methotrexate, sulfasalazine, and hydroxychloroquine. The other model would recommend tapering biologic/JAKi dosing in patients in remission or low disease activity and might even suggest a “medication holiday.”
The intention of this 3-year VBC/shared savings program is to reduce costs and create savings by reducing the use of biologics or JAKi. A tangential question might be, “Reduce costs and create savings for whom?” Apparently, the patients will not reap any of the cost savings, as this is proposed to be a shared savings program with the savings going to the physicians and the insurance company. Perhaps the idea is that patients will benefit by reducing unneeded expensive medications.
How will it work?
A cost baseline will be established on biologic and JAKi use prior to the start of the program. Once started, there will be a calculation of savings based on biologic/JAKi use going forward. It was stated that physicians would receive 22% of the total costs saved. In one flyer, it was estimated that, with methotrexate optimization, rheumatologists could be paid an average of $1,527 a month per patient per month of delay before starting a biologic or JAKi.
The American College of Rheumatology has guidelines for the treatment of RA and PsA, and while optimizing methotrexate and triple therapy is mentioned, tapering or stopping treatment with biologics or JAKi is not. Additionally, after lack of response at 3 months, the standard of care is to change to a more effective treatment, which for most patients is a biologic disease-modifying antirheumatic drug (DMARD). It could be construed that rheumatologists are being monetarily incentivized to reduce the use of expensive medications through ways that are not included in ACR guidelines and are not standard of care.
What if after the medication holiday the patient cannot recapture control of their disease? Is there a liability concern? Remember, there is no institutional review board or informed patient consent for this VBC data gathering model.
How will a patient feel knowing that their physician was paid to withhold care, or even worse, if a patient is not told of this and then finds out later? Not only are the optics for this suboptimal (at best), where does the liability fall if the patient does not do well and it comes out that their rheumatologist was paid to reduce the care, particularly in a way that is not supported in the guideline. Clearly, this appears to be a clinical study without an institutional review board and without patient consent.
There are also the data that are collected from this voluntary “opportunity.” A valid question would be, “What kind of data will this produce if rheumatologists are paid to delay, reduce, or stop the use of biologics/JAKi?” Is it possible that physicians may subconsciously delay putting patients on a biologic and taper more rapidly because of the reimbursement? This could lead to faulty, biased, AI-generated data that erroneously show this type of care is working. It would not be unheard of to wonder whether this once-voluntary opportunity might evolve into mandatory policy because now, they have “data to prove it.” … only this time there is no shared savings.
Low disease activity results in long-term savings
This is not meant to be an indictment of AI in health care, value-based care, or shared savings programs. In reality, AI had very little to do with how poorly this program was presented. Hopefully, it will bring about further discussions on how to achieve savings without sacrificing care. In fact, optimal care in RA and PsA is probably one of the best ways to save money in the long run. Nowhere in this program is there any mention of the high cost associated with uncontrolled disease activity in patients with RA or PsA. The downstream costs can be enormous when long- and short-term sequelae are taken into consideration: joint replacements, cardiovascular disease, certain kinds of malignancies, and all the side effects of increased steroid usage are just a few of the consequences we see with uncontrolled disease activity. It is only recently that we have been able to achieve low disease activity and remission in our patients. The rush to get patients off these medications is not the answer to achieving long-term savings. In addition to the very bad optics of paying rheumatologists to delay, taper, or stop using expensive mediations in their patients, the ultimate data achieved will be biased, and the only real winner will be the health insurance company.
Again, AI machine-learning and shared saving programs are not the guilty parties here. In fact, AI may be helpful in coming up with solutions to long-term health care costs, whether in the realm of economics or scientific research. CSRO and our state member organizations continue to educate the health insurance company on the significant drawbacks to this “volunteer opportunity.” Let’s hope a more reasonable program is put forward with AI-generated data that can be trusted. Hopefully not with a platform named “HAL,” for those of you old enough to remember “2001: A Space Odyssey.”
Dr. Feldman is a rheumatologist in private practice with The Rheumatology Group in New Orleans. She is the CSRO’s vice president of advocacy and government affairs and its immediate past president, as well as past chair of the Alliance for Safe Biologic Medicines and a past member of the American College of Rheumatology insurance subcommittee. You can reach her at [email protected].
Laboratory testing: No doctor required?
This transcript has been edited for clarity.
Let’s assume, for the sake of argument, that I am a healthy 43-year old man. Nevertheless, I am interested in getting my vitamin D level checked. My primary care doc says it’s unnecessary, but that doesn’t matter because a variety of direct-to-consumer testing companies will do it without a doctor’s prescription – for a fee of course.
Is that okay? Should I be able to get the test?
What if instead of my vitamin D level, I want to test my testosterone level, or my PSA, or my cadmium level, or my Lyme disease antibodies, or even have a full-body MRI scan?
These questions are becoming more and more common, because the direct-to-consumer testing market is exploding.
We’re talking about direct-to-consumer testing, thanks to this paper: Policies of US Companies Offering Direct-to-Consumer Laboratory Tests, appearing in JAMA Internal Medicine, which characterizes the testing practices of direct-to-consumer testing companies.
But before we get to the study, a word on this market. Direct-to-consumer lab testing is projected to be a $2 billion industry by 2025, and lab testing megacorporations Quest Diagnostics and Labcorp are both jumping headlong into this space.
Why is this happening? A couple of reasons, I think. First, the increasing cost of health care has led payers to place significant restrictions on what tests can be ordered and under what circumstances. Physicians are all too familiar with the “prior authorization” system that seeks to limit even the tests we think would benefit our patients.
Frustrated with such a system, it’s no wonder that patients are increasingly deciding to go it on their own. Sure, insurance won’t cover these tests, but the prices are transparent and competition actually keeps them somewhat reasonable. So, is this a win-win? Shouldn’t we allow people to get the tests they want, at least if they are willing to pay for it?
Of course, it’s not quite that simple. If the tests are normal, or negative, then sure – no harm, no foul. But when they are positive, everything changes. What happens when the PSA test I got myself via a direct-to-consumer testing company comes back elevated? Well, at that point, I am right back into the traditional mode of medicine – seeing my doctor, probably getting repeat testing, biopsies, etc., – and some payer will be on the hook for that, which is to say that all of us will be on the hook for that.
One other reason direct-to-consumer testing is getting more popular is a more difficult-to-characterize phenomenon which I might call postpandemic individualism. I’ve seen this across several domains, but I think in some ways the pandemic led people to focus more attention on themselves, perhaps because we were so isolated from each other. Optimizing health through data – whether using a fitness tracking watch, meticulously counting macronutrient intake, or ordering your own lab tests – may be a form of exerting control over a universe that feels increasingly chaotic. But what do I know? I’m not a psychologist.
The study characterizes a total of 21 direct-to-consumer testing companies. They offer a variety of services, as you can see here, with the majority in the endocrine space: thyroid, diabetes, men’s and women’s health. A smattering of companies offer more esoteric testing, such as heavy metals and Lyme disease.
Who’s in charge of all this? It’s fairly regulated, actually, but perhaps not in the way you think. The FDA uses its CLIA authority to ensure that these tests are accurate. The FTC ensures that the companies do not engage in false advertising. But no one is minding the store as to whether the tests are actually beneficial either to an individual or to society.
The 21 companies varied dramatically in regard to how they handle communicating the risks and results of these tests. All of them had a disclaimer that the information does not represent comprehensive medical advice. Fine. But a minority acknowledged any risks or limitations of the tests. Less than half had a statement of HIPAA compliance. And 17 out of 21 provided no information as to whether customers could request their data to be deleted, while 18 out of 21 stated that there could be follow-up for abnormal results, but often it was unclear exactly how that would work.
So, let’s circle back to the first question: Should a healthy person be able to get a laboratory test simply because they want to? The libertarians among us would argue certainly yes, though perhaps without thinking through the societal implications of abnormal results. The evidence-based medicine folks will, accurately, state that there are no clinical trials to suggest that screening healthy people with tests like these has any benefit.
But we should be cautious here. This question is scienceable; you could design a trial to test whether screening healthy 43-year-olds for testosterone level led to significant improvements in overall mortality. It would just take a few million people and about 40 years of follow-up.
And even if it didn’t help, we let people throw their money away on useless things all the time. The only difference between someone spending money on a useless test or on a useless dietary supplement is that someone has to deal with the result.
So, can you do this right? Can you make a direct-to-consumer testing company that is not essentially a free-rider on the rest of the health care ecosystem?
I think there are ways. You’d need physicians involved at all stages to help interpret the testing and guide next steps. You’d need some transparent guidelines, written in language that patients can understand, for what will happen given any conceivable result – and what costs those results might lead to for them and their insurance company. Most important, you’d need longitudinal follow-up and the ability to recommend changes, retest in the future, and potentially address the cost implications of the downstream findings. In the end, it starts to sound very much like a doctor’s office.
F. Perry Wilson, MD, MSCE, is an associate professor of medicine and public health and director of Yale’s Clinical and Translational Research Accelerator in New Haven, Conn. He reported no relevant conflicts of interest.
A version of this article first appeared on Medscape.com.
This transcript has been edited for clarity.
Let’s assume, for the sake of argument, that I am a healthy 43-year old man. Nevertheless, I am interested in getting my vitamin D level checked. My primary care doc says it’s unnecessary, but that doesn’t matter because a variety of direct-to-consumer testing companies will do it without a doctor’s prescription – for a fee of course.
Is that okay? Should I be able to get the test?
What if instead of my vitamin D level, I want to test my testosterone level, or my PSA, or my cadmium level, or my Lyme disease antibodies, or even have a full-body MRI scan?
These questions are becoming more and more common, because the direct-to-consumer testing market is exploding.
We’re talking about direct-to-consumer testing, thanks to this paper: Policies of US Companies Offering Direct-to-Consumer Laboratory Tests, appearing in JAMA Internal Medicine, which characterizes the testing practices of direct-to-consumer testing companies.
But before we get to the study, a word on this market. Direct-to-consumer lab testing is projected to be a $2 billion industry by 2025, and lab testing megacorporations Quest Diagnostics and Labcorp are both jumping headlong into this space.
Why is this happening? A couple of reasons, I think. First, the increasing cost of health care has led payers to place significant restrictions on what tests can be ordered and under what circumstances. Physicians are all too familiar with the “prior authorization” system that seeks to limit even the tests we think would benefit our patients.
Frustrated with such a system, it’s no wonder that patients are increasingly deciding to go it on their own. Sure, insurance won’t cover these tests, but the prices are transparent and competition actually keeps them somewhat reasonable. So, is this a win-win? Shouldn’t we allow people to get the tests they want, at least if they are willing to pay for it?
Of course, it’s not quite that simple. If the tests are normal, or negative, then sure – no harm, no foul. But when they are positive, everything changes. What happens when the PSA test I got myself via a direct-to-consumer testing company comes back elevated? Well, at that point, I am right back into the traditional mode of medicine – seeing my doctor, probably getting repeat testing, biopsies, etc., – and some payer will be on the hook for that, which is to say that all of us will be on the hook for that.
One other reason direct-to-consumer testing is getting more popular is a more difficult-to-characterize phenomenon which I might call postpandemic individualism. I’ve seen this across several domains, but I think in some ways the pandemic led people to focus more attention on themselves, perhaps because we were so isolated from each other. Optimizing health through data – whether using a fitness tracking watch, meticulously counting macronutrient intake, or ordering your own lab tests – may be a form of exerting control over a universe that feels increasingly chaotic. But what do I know? I’m not a psychologist.
The study characterizes a total of 21 direct-to-consumer testing companies. They offer a variety of services, as you can see here, with the majority in the endocrine space: thyroid, diabetes, men’s and women’s health. A smattering of companies offer more esoteric testing, such as heavy metals and Lyme disease.
Who’s in charge of all this? It’s fairly regulated, actually, but perhaps not in the way you think. The FDA uses its CLIA authority to ensure that these tests are accurate. The FTC ensures that the companies do not engage in false advertising. But no one is minding the store as to whether the tests are actually beneficial either to an individual or to society.
The 21 companies varied dramatically in regard to how they handle communicating the risks and results of these tests. All of them had a disclaimer that the information does not represent comprehensive medical advice. Fine. But a minority acknowledged any risks or limitations of the tests. Less than half had a statement of HIPAA compliance. And 17 out of 21 provided no information as to whether customers could request their data to be deleted, while 18 out of 21 stated that there could be follow-up for abnormal results, but often it was unclear exactly how that would work.
So, let’s circle back to the first question: Should a healthy person be able to get a laboratory test simply because they want to? The libertarians among us would argue certainly yes, though perhaps without thinking through the societal implications of abnormal results. The evidence-based medicine folks will, accurately, state that there are no clinical trials to suggest that screening healthy people with tests like these has any benefit.
But we should be cautious here. This question is scienceable; you could design a trial to test whether screening healthy 43-year-olds for testosterone level led to significant improvements in overall mortality. It would just take a few million people and about 40 years of follow-up.
And even if it didn’t help, we let people throw their money away on useless things all the time. The only difference between someone spending money on a useless test or on a useless dietary supplement is that someone has to deal with the result.
So, can you do this right? Can you make a direct-to-consumer testing company that is not essentially a free-rider on the rest of the health care ecosystem?
I think there are ways. You’d need physicians involved at all stages to help interpret the testing and guide next steps. You’d need some transparent guidelines, written in language that patients can understand, for what will happen given any conceivable result – and what costs those results might lead to for them and their insurance company. Most important, you’d need longitudinal follow-up and the ability to recommend changes, retest in the future, and potentially address the cost implications of the downstream findings. In the end, it starts to sound very much like a doctor’s office.
F. Perry Wilson, MD, MSCE, is an associate professor of medicine and public health and director of Yale’s Clinical and Translational Research Accelerator in New Haven, Conn. He reported no relevant conflicts of interest.
A version of this article first appeared on Medscape.com.
This transcript has been edited for clarity.
Let’s assume, for the sake of argument, that I am a healthy 43-year old man. Nevertheless, I am interested in getting my vitamin D level checked. My primary care doc says it’s unnecessary, but that doesn’t matter because a variety of direct-to-consumer testing companies will do it without a doctor’s prescription – for a fee of course.
Is that okay? Should I be able to get the test?
What if instead of my vitamin D level, I want to test my testosterone level, or my PSA, or my cadmium level, or my Lyme disease antibodies, or even have a full-body MRI scan?
These questions are becoming more and more common, because the direct-to-consumer testing market is exploding.
We’re talking about direct-to-consumer testing, thanks to this paper: Policies of US Companies Offering Direct-to-Consumer Laboratory Tests, appearing in JAMA Internal Medicine, which characterizes the testing practices of direct-to-consumer testing companies.
But before we get to the study, a word on this market. Direct-to-consumer lab testing is projected to be a $2 billion industry by 2025, and lab testing megacorporations Quest Diagnostics and Labcorp are both jumping headlong into this space.
Why is this happening? A couple of reasons, I think. First, the increasing cost of health care has led payers to place significant restrictions on what tests can be ordered and under what circumstances. Physicians are all too familiar with the “prior authorization” system that seeks to limit even the tests we think would benefit our patients.
Frustrated with such a system, it’s no wonder that patients are increasingly deciding to go it on their own. Sure, insurance won’t cover these tests, but the prices are transparent and competition actually keeps them somewhat reasonable. So, is this a win-win? Shouldn’t we allow people to get the tests they want, at least if they are willing to pay for it?
Of course, it’s not quite that simple. If the tests are normal, or negative, then sure – no harm, no foul. But when they are positive, everything changes. What happens when the PSA test I got myself via a direct-to-consumer testing company comes back elevated? Well, at that point, I am right back into the traditional mode of medicine – seeing my doctor, probably getting repeat testing, biopsies, etc., – and some payer will be on the hook for that, which is to say that all of us will be on the hook for that.
One other reason direct-to-consumer testing is getting more popular is a more difficult-to-characterize phenomenon which I might call postpandemic individualism. I’ve seen this across several domains, but I think in some ways the pandemic led people to focus more attention on themselves, perhaps because we were so isolated from each other. Optimizing health through data – whether using a fitness tracking watch, meticulously counting macronutrient intake, or ordering your own lab tests – may be a form of exerting control over a universe that feels increasingly chaotic. But what do I know? I’m not a psychologist.
The study characterizes a total of 21 direct-to-consumer testing companies. They offer a variety of services, as you can see here, with the majority in the endocrine space: thyroid, diabetes, men’s and women’s health. A smattering of companies offer more esoteric testing, such as heavy metals and Lyme disease.
Who’s in charge of all this? It’s fairly regulated, actually, but perhaps not in the way you think. The FDA uses its CLIA authority to ensure that these tests are accurate. The FTC ensures that the companies do not engage in false advertising. But no one is minding the store as to whether the tests are actually beneficial either to an individual or to society.
The 21 companies varied dramatically in regard to how they handle communicating the risks and results of these tests. All of them had a disclaimer that the information does not represent comprehensive medical advice. Fine. But a minority acknowledged any risks or limitations of the tests. Less than half had a statement of HIPAA compliance. And 17 out of 21 provided no information as to whether customers could request their data to be deleted, while 18 out of 21 stated that there could be follow-up for abnormal results, but often it was unclear exactly how that would work.
So, let’s circle back to the first question: Should a healthy person be able to get a laboratory test simply because they want to? The libertarians among us would argue certainly yes, though perhaps without thinking through the societal implications of abnormal results. The evidence-based medicine folks will, accurately, state that there are no clinical trials to suggest that screening healthy people with tests like these has any benefit.
But we should be cautious here. This question is scienceable; you could design a trial to test whether screening healthy 43-year-olds for testosterone level led to significant improvements in overall mortality. It would just take a few million people and about 40 years of follow-up.
And even if it didn’t help, we let people throw their money away on useless things all the time. The only difference between someone spending money on a useless test or on a useless dietary supplement is that someone has to deal with the result.
So, can you do this right? Can you make a direct-to-consumer testing company that is not essentially a free-rider on the rest of the health care ecosystem?
I think there are ways. You’d need physicians involved at all stages to help interpret the testing and guide next steps. You’d need some transparent guidelines, written in language that patients can understand, for what will happen given any conceivable result – and what costs those results might lead to for them and their insurance company. Most important, you’d need longitudinal follow-up and the ability to recommend changes, retest in the future, and potentially address the cost implications of the downstream findings. In the end, it starts to sound very much like a doctor’s office.
F. Perry Wilson, MD, MSCE, is an associate professor of medicine and public health and director of Yale’s Clinical and Translational Research Accelerator in New Haven, Conn. He reported no relevant conflicts of interest.
A version of this article first appeared on Medscape.com.