User login
Berloque Dermatitis Induced by “Florida Water”
Homeopathy ineffective for asthma
ABSTRACT
BACKGROUND: Many individuals with asthma are allergic to house dust mites. The incidence and severity of asthma is increasing. More people are seeking complementary medical care, including homeopathy. Homeopathy attempts to mitigate disease by diluting the treatment without diluting the effect.
POPULATION STUDIED: The investigators recruited 1000 asthmatic outpatients from 38 general practices in Hampshire and Dorset, England. Of these, 327 tested positive for house dust mite allergy. Eighty-five patients were excluded for asthma that was either too mild or too well-controlled. Thus 242 subjects between 18 and 55 years old were randomized into the study. This group included both sexes; no note was made of race.
STUDY DESIGN AND VALIDITY: A double-blind, randomized control design was used. A French manufacturer of homeopathic products prepared the active agent by making 30 sequential 1:100 dilutions of a house dust mite allergen (this “ultramolecular” is a highly diluted solution of allergen molecules). After a 4-week period to assess baseline symptoms, subjects were randomized to receive either an oral homeopathic immunotherapy preparation or a similarly prepared placebo in 3 doses over 24 hours. They were then followed for 16 weeks with 3 clinic visits and every-other-week symptom diaries.
OUTCOMES MEASURED: Primary outcomes were change in lung function as measured by forced expiratory volume in 1 second (FEV1) and quality of life as measured by proportion of symptom-free days in each 7-day diary period. Other outcomes included peak expiratory flow, scores for asthma visual analogue scale, and average mood scores.
RESULTS: This homeopathic therapy showed no significant improvement over placebo with regard to FEV1 (0.136 L/sec active agent vs 0.414 L/sec placebo, 95% confidence interval [CI] =0.136–0.693) or mean improvement in quality of life (0.090 active agent vs 0.117 placebo, 95% CI = –.096 to .0150). Neither was there any significant difference in any of the secondary outcomes. These results were independent of the subjects’ belief in complementary medicine. Interestingly, at different times during the study improvement was noted in both the active therapy and placebo groups in FEV1, quality of life, and mood.
This oral homeopathic immunotherapy neither decreased symptoms nor improved lung function over placebo in treatment of house dust mite allergy in asthmatic individuals. Based on this well-done trial, this therapy cannot be recommended for such patients. Because this was a placebo trial and showed no benefit, homeopathic immunotherapy should not be substituted for other efficacious pharmacological agents in the treatment of asthma.
ABSTRACT
BACKGROUND: Many individuals with asthma are allergic to house dust mites. The incidence and severity of asthma is increasing. More people are seeking complementary medical care, including homeopathy. Homeopathy attempts to mitigate disease by diluting the treatment without diluting the effect.
POPULATION STUDIED: The investigators recruited 1000 asthmatic outpatients from 38 general practices in Hampshire and Dorset, England. Of these, 327 tested positive for house dust mite allergy. Eighty-five patients were excluded for asthma that was either too mild or too well-controlled. Thus 242 subjects between 18 and 55 years old were randomized into the study. This group included both sexes; no note was made of race.
STUDY DESIGN AND VALIDITY: A double-blind, randomized control design was used. A French manufacturer of homeopathic products prepared the active agent by making 30 sequential 1:100 dilutions of a house dust mite allergen (this “ultramolecular” is a highly diluted solution of allergen molecules). After a 4-week period to assess baseline symptoms, subjects were randomized to receive either an oral homeopathic immunotherapy preparation or a similarly prepared placebo in 3 doses over 24 hours. They were then followed for 16 weeks with 3 clinic visits and every-other-week symptom diaries.
OUTCOMES MEASURED: Primary outcomes were change in lung function as measured by forced expiratory volume in 1 second (FEV1) and quality of life as measured by proportion of symptom-free days in each 7-day diary period. Other outcomes included peak expiratory flow, scores for asthma visual analogue scale, and average mood scores.
RESULTS: This homeopathic therapy showed no significant improvement over placebo with regard to FEV1 (0.136 L/sec active agent vs 0.414 L/sec placebo, 95% confidence interval [CI] =0.136–0.693) or mean improvement in quality of life (0.090 active agent vs 0.117 placebo, 95% CI = –.096 to .0150). Neither was there any significant difference in any of the secondary outcomes. These results were independent of the subjects’ belief in complementary medicine. Interestingly, at different times during the study improvement was noted in both the active therapy and placebo groups in FEV1, quality of life, and mood.
This oral homeopathic immunotherapy neither decreased symptoms nor improved lung function over placebo in treatment of house dust mite allergy in asthmatic individuals. Based on this well-done trial, this therapy cannot be recommended for such patients. Because this was a placebo trial and showed no benefit, homeopathic immunotherapy should not be substituted for other efficacious pharmacological agents in the treatment of asthma.
ABSTRACT
BACKGROUND: Many individuals with asthma are allergic to house dust mites. The incidence and severity of asthma is increasing. More people are seeking complementary medical care, including homeopathy. Homeopathy attempts to mitigate disease by diluting the treatment without diluting the effect.
POPULATION STUDIED: The investigators recruited 1000 asthmatic outpatients from 38 general practices in Hampshire and Dorset, England. Of these, 327 tested positive for house dust mite allergy. Eighty-five patients were excluded for asthma that was either too mild or too well-controlled. Thus 242 subjects between 18 and 55 years old were randomized into the study. This group included both sexes; no note was made of race.
STUDY DESIGN AND VALIDITY: A double-blind, randomized control design was used. A French manufacturer of homeopathic products prepared the active agent by making 30 sequential 1:100 dilutions of a house dust mite allergen (this “ultramolecular” is a highly diluted solution of allergen molecules). After a 4-week period to assess baseline symptoms, subjects were randomized to receive either an oral homeopathic immunotherapy preparation or a similarly prepared placebo in 3 doses over 24 hours. They were then followed for 16 weeks with 3 clinic visits and every-other-week symptom diaries.
OUTCOMES MEASURED: Primary outcomes were change in lung function as measured by forced expiratory volume in 1 second (FEV1) and quality of life as measured by proportion of symptom-free days in each 7-day diary period. Other outcomes included peak expiratory flow, scores for asthma visual analogue scale, and average mood scores.
RESULTS: This homeopathic therapy showed no significant improvement over placebo with regard to FEV1 (0.136 L/sec active agent vs 0.414 L/sec placebo, 95% confidence interval [CI] =0.136–0.693) or mean improvement in quality of life (0.090 active agent vs 0.117 placebo, 95% CI = –.096 to .0150). Neither was there any significant difference in any of the secondary outcomes. These results were independent of the subjects’ belief in complementary medicine. Interestingly, at different times during the study improvement was noted in both the active therapy and placebo groups in FEV1, quality of life, and mood.
This oral homeopathic immunotherapy neither decreased symptoms nor improved lung function over placebo in treatment of house dust mite allergy in asthmatic individuals. Based on this well-done trial, this therapy cannot be recommended for such patients. Because this was a placebo trial and showed no benefit, homeopathic immunotherapy should not be substituted for other efficacious pharmacological agents in the treatment of asthma.
Albuterol via metered-dose inhaler and nebulizer equivalent in adults
ABSTRACT
BACKGROUND: Historically, nebulizers have been preferred over metered-dose inhalers (MDIs) for the treatment of asthma exacerbations, although numerous studies have shown their equivalence. A systematic review of 21 randomized trials supported the equivalence of an MDI with spacer and a nebulizer; the method of albuterol delivery did not affect hospital admission rates, length of stay in the emergency department, or measures of pulmonary function.1 Advantages of MDIs may include lower costs, less excess drug exposure, and easier use for patients and physicians.
POPULATION STUDIED: The study population consisted of all patients older than 18 years who presented to an emergency department over a 2.5-year period with an asthma exacerbation (2342 visits, 1429 patients). Most patients were African American (75.4%). Most were women (58.6%), and the mean age was 35.5 ± 13.5 years.
STUDY DESIGN AND VALIDITY: The study was a large, prospective, unblinded, and nonrandomized trial consisting of 2 phases. For the first 12 months, physicians, using standard National Institues of Health guidelines, began treatment with a nebulizer (913 visits). Then for the next 18 months, physicians began treatment with albuterol delivered via MDI and spacer (1429 visits). The dose was 5 puffs, then 3 to 5 puffs every 20 minutes as needed. At the time of discharge from the emergency department during the MDI phase of the study, patients received a peak flow meter, an MDI and spacer, an inhaled corticosteroid, written materials, and counseling by emergency department nurses.
OUTCOMES MEASURED: The outcomes measured were PEFR, Sao 2, heart and respiratory rates, total albuterol dose, and the more patient-oriented outcomes of rate of hospital admission, relapse rate, time in the emergency department, and costs.
RESULTS: In the MDI phase, post-albuterol PEFR was 11.0% higher (342 L/min vs 308 L/min; P = .001) and change in PEFR was 13.3% higher (127 L/min vs 112 L/min; P = .002). Change in Sao 2 was significant (P = .043), and the total albuterol dose was significantly less in the MDI group (1125 μg vs 6700 μg; P = .001). However, these differences did not result in significantly lower hospital admission rates. Relapse rates were significantly lower at both 14 and 21 days in the MDI phase (6.6% and 10.7% vs 9.6% and 13.5%; P < .01 and P < .05). Patients treated with MDIs spent 6.5% less time in the emergency department (163.6 min vs 175.0 min; P = .007). The difference in visit charges was not significant.
This study is yet another to show that delivery of albuterol by MDI and spacer is as effective as delivery by nebulizer in adults with asthma presenting to the emergency department. Patients treated with an MDI and spacer had greater improvement in peak flow, and hospital admission rates did not differ. This trial was not well designed, but its results echo the many other studies, using tighter methods, that show equivalence.1 Although there may be some patients and practice situations for which the nebulizer is preferred, the MDI and spacer can safely be a first-line treatment much of the time. Incorporating MDI use in the treatment of acute asthma exacerbations may help dispel the misconception of many patients that the nebulizer is a more “powerful” way of treating asthma.
ABSTRACT
BACKGROUND: Historically, nebulizers have been preferred over metered-dose inhalers (MDIs) for the treatment of asthma exacerbations, although numerous studies have shown their equivalence. A systematic review of 21 randomized trials supported the equivalence of an MDI with spacer and a nebulizer; the method of albuterol delivery did not affect hospital admission rates, length of stay in the emergency department, or measures of pulmonary function.1 Advantages of MDIs may include lower costs, less excess drug exposure, and easier use for patients and physicians.
POPULATION STUDIED: The study population consisted of all patients older than 18 years who presented to an emergency department over a 2.5-year period with an asthma exacerbation (2342 visits, 1429 patients). Most patients were African American (75.4%). Most were women (58.6%), and the mean age was 35.5 ± 13.5 years.
STUDY DESIGN AND VALIDITY: The study was a large, prospective, unblinded, and nonrandomized trial consisting of 2 phases. For the first 12 months, physicians, using standard National Institues of Health guidelines, began treatment with a nebulizer (913 visits). Then for the next 18 months, physicians began treatment with albuterol delivered via MDI and spacer (1429 visits). The dose was 5 puffs, then 3 to 5 puffs every 20 minutes as needed. At the time of discharge from the emergency department during the MDI phase of the study, patients received a peak flow meter, an MDI and spacer, an inhaled corticosteroid, written materials, and counseling by emergency department nurses.
OUTCOMES MEASURED: The outcomes measured were PEFR, Sao 2, heart and respiratory rates, total albuterol dose, and the more patient-oriented outcomes of rate of hospital admission, relapse rate, time in the emergency department, and costs.
RESULTS: In the MDI phase, post-albuterol PEFR was 11.0% higher (342 L/min vs 308 L/min; P = .001) and change in PEFR was 13.3% higher (127 L/min vs 112 L/min; P = .002). Change in Sao 2 was significant (P = .043), and the total albuterol dose was significantly less in the MDI group (1125 μg vs 6700 μg; P = .001). However, these differences did not result in significantly lower hospital admission rates. Relapse rates were significantly lower at both 14 and 21 days in the MDI phase (6.6% and 10.7% vs 9.6% and 13.5%; P < .01 and P < .05). Patients treated with MDIs spent 6.5% less time in the emergency department (163.6 min vs 175.0 min; P = .007). The difference in visit charges was not significant.
This study is yet another to show that delivery of albuterol by MDI and spacer is as effective as delivery by nebulizer in adults with asthma presenting to the emergency department. Patients treated with an MDI and spacer had greater improvement in peak flow, and hospital admission rates did not differ. This trial was not well designed, but its results echo the many other studies, using tighter methods, that show equivalence.1 Although there may be some patients and practice situations for which the nebulizer is preferred, the MDI and spacer can safely be a first-line treatment much of the time. Incorporating MDI use in the treatment of acute asthma exacerbations may help dispel the misconception of many patients that the nebulizer is a more “powerful” way of treating asthma.
ABSTRACT
BACKGROUND: Historically, nebulizers have been preferred over metered-dose inhalers (MDIs) for the treatment of asthma exacerbations, although numerous studies have shown their equivalence. A systematic review of 21 randomized trials supported the equivalence of an MDI with spacer and a nebulizer; the method of albuterol delivery did not affect hospital admission rates, length of stay in the emergency department, or measures of pulmonary function.1 Advantages of MDIs may include lower costs, less excess drug exposure, and easier use for patients and physicians.
POPULATION STUDIED: The study population consisted of all patients older than 18 years who presented to an emergency department over a 2.5-year period with an asthma exacerbation (2342 visits, 1429 patients). Most patients were African American (75.4%). Most were women (58.6%), and the mean age was 35.5 ± 13.5 years.
STUDY DESIGN AND VALIDITY: The study was a large, prospective, unblinded, and nonrandomized trial consisting of 2 phases. For the first 12 months, physicians, using standard National Institues of Health guidelines, began treatment with a nebulizer (913 visits). Then for the next 18 months, physicians began treatment with albuterol delivered via MDI and spacer (1429 visits). The dose was 5 puffs, then 3 to 5 puffs every 20 minutes as needed. At the time of discharge from the emergency department during the MDI phase of the study, patients received a peak flow meter, an MDI and spacer, an inhaled corticosteroid, written materials, and counseling by emergency department nurses.
OUTCOMES MEASURED: The outcomes measured were PEFR, Sao 2, heart and respiratory rates, total albuterol dose, and the more patient-oriented outcomes of rate of hospital admission, relapse rate, time in the emergency department, and costs.
RESULTS: In the MDI phase, post-albuterol PEFR was 11.0% higher (342 L/min vs 308 L/min; P = .001) and change in PEFR was 13.3% higher (127 L/min vs 112 L/min; P = .002). Change in Sao 2 was significant (P = .043), and the total albuterol dose was significantly less in the MDI group (1125 μg vs 6700 μg; P = .001). However, these differences did not result in significantly lower hospital admission rates. Relapse rates were significantly lower at both 14 and 21 days in the MDI phase (6.6% and 10.7% vs 9.6% and 13.5%; P < .01 and P < .05). Patients treated with MDIs spent 6.5% less time in the emergency department (163.6 min vs 175.0 min; P = .007). The difference in visit charges was not significant.
This study is yet another to show that delivery of albuterol by MDI and spacer is as effective as delivery by nebulizer in adults with asthma presenting to the emergency department. Patients treated with an MDI and spacer had greater improvement in peak flow, and hospital admission rates did not differ. This trial was not well designed, but its results echo the many other studies, using tighter methods, that show equivalence.1 Although there may be some patients and practice situations for which the nebulizer is preferred, the MDI and spacer can safely be a first-line treatment much of the time. Incorporating MDI use in the treatment of acute asthma exacerbations may help dispel the misconception of many patients that the nebulizer is a more “powerful” way of treating asthma.
Intravenous albuterol effective for acute severe asthma
ABSTRACT
BACKGROUND: Bolus intravenous (IV) albuterol (salbutamol) improved outcomes in pediatric patients with severe asthma exacerbations in 1 earlier small study. Previous studies demonstrated that the addition of nebulized ipratropium bromide to initial emergency department therapy improves pulmonary function, but it is unclear whether combining the therapies results in earlier hospital discharge. This study compared these 2 approaches to determine their relative benefit in children with acute severe asthma.
POPULATION STUDIED: The researchers studied 55 children (aged 1–14 years) presenting with severe acute asthma to the emergency department of a ter-tiary children’s hospital in Sydney, Australia. Children were classified as having severe asthma if they had all 4 features of respiratory distress (wheezing, sternal retraction, accessory muscle use, and dyspnea) or had any of the absolute criteria (cyanosis, pulsus paradoxus, altered consciousness, or a silent chest auscultation). Baseline demographics and clinical characteristics were similar. Children who were excluded included those with life-threatening asthma, age younger than 12 months, presence of heart disease, family history of Wolff-Parkinson-White or past supraventricular tachycardia, other respiratory disease, or pneumonia, and those who had received inhaled ipratropium bromide that day.
STUDY DESIGN AND VALIDITY: This was a randomized, double-blind, double-dummy trial. The enrolling physician, treating physician, and assessor of outcome were all blinded. All children received 1 dose of nebulized albuterol 2.5 or 5 mg, then were assessed for asthma severity. Children meeting inclusion criteria received oxygen as needed, 1 mg/kg IV bolus methylprednisolone, and nebulized albuterol every 20 minutes for the first hour. The frequency of nebulized albuterol was then decreased based on clinical improvement. Patients were then randomized to receive IV albuterol (15 μg/kg); IV saline and inhaled ipratropium bromide (250 mg) every 20 minutes; or IV albuterol (15 μg/kg) and inhaled ipratropium bromide (250 μg) every 20 minutes. Asthma severity was assessed at 1 and 2 hours into the study using the clinical assessment scale and pulmonary index score. All 55 children completed the study.
OUTCOMES MEASURED: The primary outcomes for this study were mean recovery time (time from randomization to when patients no longer needed nebulized albuterol of a given frequency) and mean discharge time from the hospital. Secondary outcomes included clinical signs of moderate to severe asthma 2 hours after randomization and incidence of medication-related side effects.
RESULTS: Children treated with IV albuterol showed a significant benefit over those treated with inhaled ipratropium in recovery at 90, 120, and 180 minutes (P = .007, .01, and .004, respectively). Children in the IV albuterol group were ready for discharge 28.0 hours earlier than those in the ipratropium group (48.3 vs 76.3 hours; P = .005). The combination of IV albuterol and ipratropium showed a significant benefit over ipratropium alone in recovery time at 90 and 120 minutes (P = .02 and .008, respectively). However, no significant difference was evident between the combination and ipratropium alone in time to discharge (57.6 vs 76.3 hours, respectively; P = .2). The combination demonstrated no significant benefit over IV albuterol for any outcome. No significant adverse effects were documented in any of the patients, including tachycardia of more than 200 beats per minute for at least 5 minutes.
In children with severe acute asthma, IV albuterol (15 μg/kg) in addition to nebulized albuterol and IV methylprednisolone, resulted in more rapid improvement of symptoms and decreased length of stay as compared with the use of nebulized ipratropium. However, because IV albuterol is not available in the United States and a Cochrane Database Review1 concluded there is no evidence to support use of IV 2-agonists in patients with severe asthma, larger trials need to be conducted to determine the place in therapy for IV albuterol.
ABSTRACT
BACKGROUND: Bolus intravenous (IV) albuterol (salbutamol) improved outcomes in pediatric patients with severe asthma exacerbations in 1 earlier small study. Previous studies demonstrated that the addition of nebulized ipratropium bromide to initial emergency department therapy improves pulmonary function, but it is unclear whether combining the therapies results in earlier hospital discharge. This study compared these 2 approaches to determine their relative benefit in children with acute severe asthma.
POPULATION STUDIED: The researchers studied 55 children (aged 1–14 years) presenting with severe acute asthma to the emergency department of a ter-tiary children’s hospital in Sydney, Australia. Children were classified as having severe asthma if they had all 4 features of respiratory distress (wheezing, sternal retraction, accessory muscle use, and dyspnea) or had any of the absolute criteria (cyanosis, pulsus paradoxus, altered consciousness, or a silent chest auscultation). Baseline demographics and clinical characteristics were similar. Children who were excluded included those with life-threatening asthma, age younger than 12 months, presence of heart disease, family history of Wolff-Parkinson-White or past supraventricular tachycardia, other respiratory disease, or pneumonia, and those who had received inhaled ipratropium bromide that day.
STUDY DESIGN AND VALIDITY: This was a randomized, double-blind, double-dummy trial. The enrolling physician, treating physician, and assessor of outcome were all blinded. All children received 1 dose of nebulized albuterol 2.5 or 5 mg, then were assessed for asthma severity. Children meeting inclusion criteria received oxygen as needed, 1 mg/kg IV bolus methylprednisolone, and nebulized albuterol every 20 minutes for the first hour. The frequency of nebulized albuterol was then decreased based on clinical improvement. Patients were then randomized to receive IV albuterol (15 μg/kg); IV saline and inhaled ipratropium bromide (250 mg) every 20 minutes; or IV albuterol (15 μg/kg) and inhaled ipratropium bromide (250 μg) every 20 minutes. Asthma severity was assessed at 1 and 2 hours into the study using the clinical assessment scale and pulmonary index score. All 55 children completed the study.
OUTCOMES MEASURED: The primary outcomes for this study were mean recovery time (time from randomization to when patients no longer needed nebulized albuterol of a given frequency) and mean discharge time from the hospital. Secondary outcomes included clinical signs of moderate to severe asthma 2 hours after randomization and incidence of medication-related side effects.
RESULTS: Children treated with IV albuterol showed a significant benefit over those treated with inhaled ipratropium in recovery at 90, 120, and 180 minutes (P = .007, .01, and .004, respectively). Children in the IV albuterol group were ready for discharge 28.0 hours earlier than those in the ipratropium group (48.3 vs 76.3 hours; P = .005). The combination of IV albuterol and ipratropium showed a significant benefit over ipratropium alone in recovery time at 90 and 120 minutes (P = .02 and .008, respectively). However, no significant difference was evident between the combination and ipratropium alone in time to discharge (57.6 vs 76.3 hours, respectively; P = .2). The combination demonstrated no significant benefit over IV albuterol for any outcome. No significant adverse effects were documented in any of the patients, including tachycardia of more than 200 beats per minute for at least 5 minutes.
In children with severe acute asthma, IV albuterol (15 μg/kg) in addition to nebulized albuterol and IV methylprednisolone, resulted in more rapid improvement of symptoms and decreased length of stay as compared with the use of nebulized ipratropium. However, because IV albuterol is not available in the United States and a Cochrane Database Review1 concluded there is no evidence to support use of IV 2-agonists in patients with severe asthma, larger trials need to be conducted to determine the place in therapy for IV albuterol.
ABSTRACT
BACKGROUND: Bolus intravenous (IV) albuterol (salbutamol) improved outcomes in pediatric patients with severe asthma exacerbations in 1 earlier small study. Previous studies demonstrated that the addition of nebulized ipratropium bromide to initial emergency department therapy improves pulmonary function, but it is unclear whether combining the therapies results in earlier hospital discharge. This study compared these 2 approaches to determine their relative benefit in children with acute severe asthma.
POPULATION STUDIED: The researchers studied 55 children (aged 1–14 years) presenting with severe acute asthma to the emergency department of a ter-tiary children’s hospital in Sydney, Australia. Children were classified as having severe asthma if they had all 4 features of respiratory distress (wheezing, sternal retraction, accessory muscle use, and dyspnea) or had any of the absolute criteria (cyanosis, pulsus paradoxus, altered consciousness, or a silent chest auscultation). Baseline demographics and clinical characteristics were similar. Children who were excluded included those with life-threatening asthma, age younger than 12 months, presence of heart disease, family history of Wolff-Parkinson-White or past supraventricular tachycardia, other respiratory disease, or pneumonia, and those who had received inhaled ipratropium bromide that day.
STUDY DESIGN AND VALIDITY: This was a randomized, double-blind, double-dummy trial. The enrolling physician, treating physician, and assessor of outcome were all blinded. All children received 1 dose of nebulized albuterol 2.5 or 5 mg, then were assessed for asthma severity. Children meeting inclusion criteria received oxygen as needed, 1 mg/kg IV bolus methylprednisolone, and nebulized albuterol every 20 minutes for the first hour. The frequency of nebulized albuterol was then decreased based on clinical improvement. Patients were then randomized to receive IV albuterol (15 μg/kg); IV saline and inhaled ipratropium bromide (250 mg) every 20 minutes; or IV albuterol (15 μg/kg) and inhaled ipratropium bromide (250 μg) every 20 minutes. Asthma severity was assessed at 1 and 2 hours into the study using the clinical assessment scale and pulmonary index score. All 55 children completed the study.
OUTCOMES MEASURED: The primary outcomes for this study were mean recovery time (time from randomization to when patients no longer needed nebulized albuterol of a given frequency) and mean discharge time from the hospital. Secondary outcomes included clinical signs of moderate to severe asthma 2 hours after randomization and incidence of medication-related side effects.
RESULTS: Children treated with IV albuterol showed a significant benefit over those treated with inhaled ipratropium in recovery at 90, 120, and 180 minutes (P = .007, .01, and .004, respectively). Children in the IV albuterol group were ready for discharge 28.0 hours earlier than those in the ipratropium group (48.3 vs 76.3 hours; P = .005). The combination of IV albuterol and ipratropium showed a significant benefit over ipratropium alone in recovery time at 90 and 120 minutes (P = .02 and .008, respectively). However, no significant difference was evident between the combination and ipratropium alone in time to discharge (57.6 vs 76.3 hours, respectively; P = .2). The combination demonstrated no significant benefit over IV albuterol for any outcome. No significant adverse effects were documented in any of the patients, including tachycardia of more than 200 beats per minute for at least 5 minutes.
In children with severe acute asthma, IV albuterol (15 μg/kg) in addition to nebulized albuterol and IV methylprednisolone, resulted in more rapid improvement of symptoms and decreased length of stay as compared with the use of nebulized ipratropium. However, because IV albuterol is not available in the United States and a Cochrane Database Review1 concluded there is no evidence to support use of IV 2-agonists in patients with severe asthma, larger trials need to be conducted to determine the place in therapy for IV albuterol.
What environmental modifications improve pediatric asthma?
Reducing environmental tobacco smoke exposure decreases health care utilization among poor asthmatic children. Dust mite reduction by chemical measures is potentially harmful. (Grade of recommendations: B, based on single randomized controlled trial.) Evidence is insufficient for or against dust mite reduction by physical means, use of synthetic or feather bedding, removal of cats, use of air filters or reducing indoor humidity. (Grade of recommendations: D, inconsistent studies.)
Evidence summary
Although several studies have shown the benefit of placing asthmatic and allergic children in highly sanitized hospital and sanitarium environments,1 benefit has been extremely difficult to prove with measures used in the child’s home. Only reducing tobacco smoke exposure has been shown to be beneficial. In a randomized trial of predominantly poor minority subjects, fewer acute asthma medical visits were needed by children whose household members underwent behavioral education aimed at decreasing smoke exposure.2
Other methods of modifying the environment have not proved beneficial. Although a group of researchers found that home visits by care providers may decrease acute medical visits, specific allergy avoidance steps did not make a difference.3 Two of these authors also reported that the use of chemicals for house dust mite control and the use of synthetic pillows in lieu of feather pillows may actually exacerbate asthma.4 A Cochrane review was inconclusive on the risks or benefits of feather bedding.5 Benefit from removing cats is difficult to prove because of the ubiquitous nature of cat antigen and the difficulty in eradicating it from the home. Using air filters and reducing indoor humidity have likewise failed to show meaningful improvement in peak flow, medication use, or symptom scores.
The effectiveness of physical methods to reduce house dust mites is unclear. The Cochrane Review of 15 trials noted a small, statistically significant improvement in asthma symptom scores, but the results were not clinically important enough to recommend such measures.6 The potential harm of chemical measures was reiterated in this review.
TABLE
Environmental modifications for children with asthma
| Intervention | Effect |
|---|---|
| Tobacco smoke exposure reduction | Beneficial |
| Chemical reduction of dust mites | Harmful |
| Physical reduction of dust mites | Unknown |
| Bedding material (feather vs synthetic) | Unknown |
| Removal of cats | Unknown |
| Air filters or dehumidification | Unknown |
Recommendations from others
The National Heart, Lung, and Blood Institute continues to recommend physical barriers to reduce house dust mite antigen based on 4 small trials in which the major benefit was decreased bronchial hyperresponsiveness.7 Larger trials, now under way, may help resolve the issue.
Clinical Commentary by Nicholas J. Solomos, MD, at http://www.fpin.org.
1. Simon HU, Grotzer M, Nikolaizik WH, et al. Pediatr Pulmonol 1994;17:304-11.
2. Wilson SR, Yamada EG, Sudhakar R, et al. Chest 2001;120:1709-22.
3. Carter MC, Perzanowski MS, Raymond A, et al. J Allergy Clin Immunol 2001;108:732-7.
4. Platts-Mills TA, Vaughan JW, Carter MC, et al. J Allergy Clin Immunol 2000;106:787-804.
5. Campbell F, Jones K, Gibson P. In: The Cochrane Library, Issue 1, 2002. Oxford, England: Update Software.
6. Gotzsche P, Johansen H, Burr M, et al. In: The Cochrane Library, Issue 1, 2002. Oxford, England: Update Software.
7. National Asthma Education and Prevention Program. Expert Panel Report 2: Guidelines for the Diagnosis and Management of Asthma. Bethesda, MD: National Institutes of Health, National Heart, Lung, and Blood Institute; 1997. NIH publication 97-4051.
Reducing environmental tobacco smoke exposure decreases health care utilization among poor asthmatic children. Dust mite reduction by chemical measures is potentially harmful. (Grade of recommendations: B, based on single randomized controlled trial.) Evidence is insufficient for or against dust mite reduction by physical means, use of synthetic or feather bedding, removal of cats, use of air filters or reducing indoor humidity. (Grade of recommendations: D, inconsistent studies.)
Evidence summary
Although several studies have shown the benefit of placing asthmatic and allergic children in highly sanitized hospital and sanitarium environments,1 benefit has been extremely difficult to prove with measures used in the child’s home. Only reducing tobacco smoke exposure has been shown to be beneficial. In a randomized trial of predominantly poor minority subjects, fewer acute asthma medical visits were needed by children whose household members underwent behavioral education aimed at decreasing smoke exposure.2
Other methods of modifying the environment have not proved beneficial. Although a group of researchers found that home visits by care providers may decrease acute medical visits, specific allergy avoidance steps did not make a difference.3 Two of these authors also reported that the use of chemicals for house dust mite control and the use of synthetic pillows in lieu of feather pillows may actually exacerbate asthma.4 A Cochrane review was inconclusive on the risks or benefits of feather bedding.5 Benefit from removing cats is difficult to prove because of the ubiquitous nature of cat antigen and the difficulty in eradicating it from the home. Using air filters and reducing indoor humidity have likewise failed to show meaningful improvement in peak flow, medication use, or symptom scores.
The effectiveness of physical methods to reduce house dust mites is unclear. The Cochrane Review of 15 trials noted a small, statistically significant improvement in asthma symptom scores, but the results were not clinically important enough to recommend such measures.6 The potential harm of chemical measures was reiterated in this review.
TABLE
Environmental modifications for children with asthma
| Intervention | Effect |
|---|---|
| Tobacco smoke exposure reduction | Beneficial |
| Chemical reduction of dust mites | Harmful |
| Physical reduction of dust mites | Unknown |
| Bedding material (feather vs synthetic) | Unknown |
| Removal of cats | Unknown |
| Air filters or dehumidification | Unknown |
Recommendations from others
The National Heart, Lung, and Blood Institute continues to recommend physical barriers to reduce house dust mite antigen based on 4 small trials in which the major benefit was decreased bronchial hyperresponsiveness.7 Larger trials, now under way, may help resolve the issue.
Clinical Commentary by Nicholas J. Solomos, MD, at http://www.fpin.org.
Reducing environmental tobacco smoke exposure decreases health care utilization among poor asthmatic children. Dust mite reduction by chemical measures is potentially harmful. (Grade of recommendations: B, based on single randomized controlled trial.) Evidence is insufficient for or against dust mite reduction by physical means, use of synthetic or feather bedding, removal of cats, use of air filters or reducing indoor humidity. (Grade of recommendations: D, inconsistent studies.)
Evidence summary
Although several studies have shown the benefit of placing asthmatic and allergic children in highly sanitized hospital and sanitarium environments,1 benefit has been extremely difficult to prove with measures used in the child’s home. Only reducing tobacco smoke exposure has been shown to be beneficial. In a randomized trial of predominantly poor minority subjects, fewer acute asthma medical visits were needed by children whose household members underwent behavioral education aimed at decreasing smoke exposure.2
Other methods of modifying the environment have not proved beneficial. Although a group of researchers found that home visits by care providers may decrease acute medical visits, specific allergy avoidance steps did not make a difference.3 Two of these authors also reported that the use of chemicals for house dust mite control and the use of synthetic pillows in lieu of feather pillows may actually exacerbate asthma.4 A Cochrane review was inconclusive on the risks or benefits of feather bedding.5 Benefit from removing cats is difficult to prove because of the ubiquitous nature of cat antigen and the difficulty in eradicating it from the home. Using air filters and reducing indoor humidity have likewise failed to show meaningful improvement in peak flow, medication use, or symptom scores.
The effectiveness of physical methods to reduce house dust mites is unclear. The Cochrane Review of 15 trials noted a small, statistically significant improvement in asthma symptom scores, but the results were not clinically important enough to recommend such measures.6 The potential harm of chemical measures was reiterated in this review.
TABLE
Environmental modifications for children with asthma
| Intervention | Effect |
|---|---|
| Tobacco smoke exposure reduction | Beneficial |
| Chemical reduction of dust mites | Harmful |
| Physical reduction of dust mites | Unknown |
| Bedding material (feather vs synthetic) | Unknown |
| Removal of cats | Unknown |
| Air filters or dehumidification | Unknown |
Recommendations from others
The National Heart, Lung, and Blood Institute continues to recommend physical barriers to reduce house dust mite antigen based on 4 small trials in which the major benefit was decreased bronchial hyperresponsiveness.7 Larger trials, now under way, may help resolve the issue.
Clinical Commentary by Nicholas J. Solomos, MD, at http://www.fpin.org.
1. Simon HU, Grotzer M, Nikolaizik WH, et al. Pediatr Pulmonol 1994;17:304-11.
2. Wilson SR, Yamada EG, Sudhakar R, et al. Chest 2001;120:1709-22.
3. Carter MC, Perzanowski MS, Raymond A, et al. J Allergy Clin Immunol 2001;108:732-7.
4. Platts-Mills TA, Vaughan JW, Carter MC, et al. J Allergy Clin Immunol 2000;106:787-804.
5. Campbell F, Jones K, Gibson P. In: The Cochrane Library, Issue 1, 2002. Oxford, England: Update Software.
6. Gotzsche P, Johansen H, Burr M, et al. In: The Cochrane Library, Issue 1, 2002. Oxford, England: Update Software.
7. National Asthma Education and Prevention Program. Expert Panel Report 2: Guidelines for the Diagnosis and Management of Asthma. Bethesda, MD: National Institutes of Health, National Heart, Lung, and Blood Institute; 1997. NIH publication 97-4051.
1. Simon HU, Grotzer M, Nikolaizik WH, et al. Pediatr Pulmonol 1994;17:304-11.
2. Wilson SR, Yamada EG, Sudhakar R, et al. Chest 2001;120:1709-22.
3. Carter MC, Perzanowski MS, Raymond A, et al. J Allergy Clin Immunol 2001;108:732-7.
4. Platts-Mills TA, Vaughan JW, Carter MC, et al. J Allergy Clin Immunol 2000;106:787-804.
5. Campbell F, Jones K, Gibson P. In: The Cochrane Library, Issue 1, 2002. Oxford, England: Update Software.
6. Gotzsche P, Johansen H, Burr M, et al. In: The Cochrane Library, Issue 1, 2002. Oxford, England: Update Software.
7. National Asthma Education and Prevention Program. Expert Panel Report 2: Guidelines for the Diagnosis and Management of Asthma. Bethesda, MD: National Institutes of Health, National Heart, Lung, and Blood Institute; 1997. NIH publication 97-4051.
Evidence-based answers from the Family Physicians Inquiries Network
Evaluation and Treatment of Constipation
Constipation is an often-overlooked problem in primary care practice. It deserves careful evaluation, including consideration of the many possible causes and appropriate diagnostic testing. Fortunately, most patients respond well to conservative measures.
Constipation prompts a visit to a physician by 1.2% of the US population every year (although most persons with constipation do not seek the assistance of a physician).What You Should Know About Constipation,” is included with this article. (For your convenience, it may be freely duplicated and distributed.)
Suggested lifestyle changes include moderate physical activity, increased fluid intake, increased dietary fiber, and sitting on the toilet about 15–20 minutes after breakfast (taking advantage of the gastrocolic reflex). In selected patients, these changes may be useful, although specific benefits of moderate physical activity and increased fluid intake have not been conclusively proven.
Bulk laxatives
Wheat bran is one of the best and least expensive bulk laxatives. Methylcellulose (eg, Citrucel), psyllium (eg, Metamucil), and polycarbophil (eg, FiberCon) are bulk laxatives that are safe, more refined, and more concentrated than wheat bran, but they are also more expensive. Combined with diet and liquids, bulk laxatives are the most effective and “natural” long-term treatment for constipation. However, their slow onset of action (between 12 and 72 hours) limits their usefulness in acute management of constipation.
Saline laxatives
The saline laxatives include magnesium citrate (eg, Citroma) and magnesium hydroxide (eg, Milk of Magnesia). These agents decrease colonic transit time by stimulating cholecystokinin and draw fluid into the colon by their osmotic effect. Their rapid onset of action (between 30 minutes and 3 hours) makes saline laxatives an excellent choice for acute management of constipation. These laxatives commonly cause abdominal cramping and, in patients with renal failure, may cause magnesium toxicity. Nevertheless, saline laxatives are generally safe and effective.
Osmotic laxatives
Polyethylene glycol (eg, MiraLax) is an effective new osmotic laxative. Rapid onset of action (between 24 and 48 hours) makes an osmotic a good choice for patients who have chronic constipation that fails to respond to bulk and saline laxatives. Polyethylene glycol is equally effective, but better tolerated than the older osmotics, lactulose and sorbitol.16 Because it is not fermented, gas and cramps are minimal. Lactulose (eg, Chronulac) and sorbitol, which are poorly absorbed sugars, likewise have rapid onset of action, but flatulence and abdominal distention may limit tolerance. Sorbitol is generally less expensive than lactulose.
Stimulant laxatives
The oral stimulant laxatives include diphenylmethanes, the anthraquinones, and castor oil (eg, Emulsoil). They are more potent than bulk or osmotic laxatives, but long-term use is safe if limited to 3 days per week. Bisacodyl (eg, Dulcolax), a diphenylmethane, alters electrolyte transportation within intestinal mucosa and stimulates peristalsis. These actions may cause abdominal cramping and hypokalemia. Cascara (mildest), senna (eg, Senokot), and aloe (strongest) are anthraquinones, which are laxatives with actions and side effects similar to bisacodyl. These agents may cause a benign, reversible pigmentation of the colon (melanosis coli). It has been suggested that chronic use of these agents may damage the enteric nervous system, but a causal relationship has not been clearly established. The most prudent approach is to limit use of stimulant laxatives to constipation that is refractory to other laxatives.
Enemas and suppositories
Enemas and suppositories stimulate colonic contractions and soften stools. Water, saline, soap suds, hypertonic sodium phosphate, and mineral oil are used as enemas. Acute water intoxication can occur with water enemas, especially in infants, children, and the elderly, if they have difficulty evacuating the water. Phosphate enemas may cause hyperphosphatemia and hypocalcemic tetany in these patients and should therefore be used with caution in most patients and should not be used in children 3 years of age or younger. Glycerin and bisacodyl are stimulant suppositories that are clinically effective. Bisacodyl and soap suds enemas cause changes in the epithelium of the rectum, and the effect of glycerin on rectal mucosa is unclear. Therefore, these agents should only be used episodically. Mineral oil enemas are used to soften hardened stool in the rectal ampulla.
Other treatment options
More aggressive measures may be necessary for specific types of constipation. These include behavioral therapy and biofeedback for pelvic floor dysfunction, and surgery for slow-transit constipation or Hirschsprung’s disease.
Investigative pharmacologic treatments for constipation include agents that increase colonic contractions (prokinetic drugs) and prostaglandins. These agents have had limited efficacy and troublesome side effects. Therefore, at this time these drugs have limited usefulness in the treatment of constipation.
Fecal impaction
The management of fecal impaction begins with complete evacuation of the colon. Initially, patients with hard stool in the rectum may be given mineral oil retention enemas followed by manual disimpaction. Prior to further treatment, it is important to obtain an abdominal radiograph to rule out mechanical bowel obstruction. If there is no mechanical bowel obstruction, evacuation of the impaction can be accomplished with oral polyethylene glycol (eg, GoLytely) until clear (up to 8 liters or more may be required for complete evacuation).16 Administration of twice-daily enemas for 3 days or more is an acceptable alternative to oral polyethylene glycol. Lifestyle changes, bulk laxatives, saline, osmotic laxatives, and enemas should be used to maintain regular defecation after the colon has been cleansed. It is reasonable to attempt to withdraw laxatives after several months of regular bowel habits.
1. Sonnenberg A, Koch T. Physician visits in the United States for constipation. Dig Dis Sci 1989;34:606-11.
2. Sonnenberg A, Koch T. Epidemiology of constipation in the United States. Dis Colon Rectum 1989;32:1-8.
3. Johanson JF, Sonnenberg A, Koch T. Clinical epidemiology of chronic constipation. J Clin Gastroenterol 1989;11:525.-
4. Johanson JF. Geographic distribution of constipation in the United States. Am J Gastroenterol 1998;93:188-91.
5. Harari D, Gurwitz J, Avorn J, Bohn R, Minaker K. Bowel habit in relation to age and gender: findings from the National Health Interview Survey and clinical implications. Arch Intern Med 1996;156:315-20.
6. Nyam D, Pemberton JH, Ilstrup DM, et al. Long-term results of surgery for chronic constipation. Dis Colon Rectum 1997;40:273-7.
7. Koch A, Voderholzer W, Klauser A, Muller-Lissner SA. Symptoms in chronic constipation. Dis Colon Rectum 1997;40:902-6.
8. Ashraf W, Park F, Lof J, et al. An examination of the reliability of reported stool frequency in the diagnosis of idiopathic constipation. Am J Gastroenterol 1996;91:26-32.
9. Kamal N, Chami T, Andersen A, et al. Delayed gastrointestinal transit times in anorexia nervosa and bulimia nervosa. Gastroenterology 1991;101:1320-4.
10. Garvey M, Noyes R, Jr, Yates W. Frequency of constipation in major depression: relationship to other clinical variables. Psychosomatics 1990;31:204-6.
11. Manning AP, Thompson WG, Heaton KW, Morris AF. Towards a positive diagnosis of the irritable bowel. BMJ 1978;2:653-4.
12. Locke GR, Pemberton JH, Phillips SF. AGA technical review on constipation. Gastroenterology 2000;119:1766-78.
13. Tramonte SM, Brand MB, Mulrow CD, et al. The treatment of chronic constipation in adults. A systematic review. J Gen Intern Med 1997;12:15-24.
14. Petticrew M, Watt I, Brand M. What’s the “best buy” for treatment of constipation? Results of a systematic review of the efficacy and comparative efficacy of laxatives in the elderly. Br J Gen Pract 1999;49:387-93.
15. Hurdon V, Viola R, Schroder C. How useful is docusate in patients at risk for constipation? A systematic review of the evidence in the chronically ill. J Pain Symptom Manage 2000;19:130-6.
16. Tiongco F, Tsang T, Pollack J. Use of oral GoLytely solution in relief of refractory fecal impaction. Dig Dis Sci 1997;42:1454-7.
17. Anti M, Pignataro G, Armuzzi A, et al. Water supplementation enhances the effect of high-fiber diet on stool frequency and laxative consumption in adult patients with functional constipation. Hepatogastroenterology 1998;45:727-32.
18. Graham D, Moser S, Estes M. The effect of bran on bowel function in constipation. Gastroenterology 1982;77:599-603.
19. Marlett JA, Li BU, Patrow CJ, Bass P. Comparative laxation of psyllium with and without senna in an ambulatory constipated population. Am J Gastroenterol 1987;82:333-7.
20. Hamilton J, Wagner J, Burdick B, Bass P. Clinical evaluation of methylcellulose as a bulk laxative. Dig Dis Sci 1988;33:993-8.
21. Bass P, Clark C, DoPico GA. Comparison of the laxative efficacy and patient preference of calcium polycarbophil and psyllium suspension. Curr Ther Res Clin Exp 1988;43:770-4.
22. Attar A, Lemann M, Ferguson A, et al. Comparison of a low-dose polyethylene glycol electrolyte solution with lactulose for treatment of chronic constipation. Gut 1999;44:226-30.
23. Lederle F, Busch D, Mattox K, West M, Aske D. Cost-effective treatment of constipation in the elderly: a randomized double-blind comparison of sorbitol and lactulose. Am J Med 1990;89:597-601.
24. Sanders JF. Lactulose syrup assessed in a double-blind study of elderly constipated patients. J Am Geriatr Soc 1978;26:236-9.
25. Koustomanis D, Lennard-Jones J, Roy A, Kamm M. Controlled randomized trial of visual biofeedback versus muscle training without a visual display for intractable constipation. Gut 1995;37:95-9.
26. Nyman DC, Pemberton JH, Ilstrup DM, et al. Long-term results of surgery for chronic constipation. Dis Colon Rectum 1997;40:273-9.
Constipation is an often-overlooked problem in primary care practice. It deserves careful evaluation, including consideration of the many possible causes and appropriate diagnostic testing. Fortunately, most patients respond well to conservative measures.
Constipation prompts a visit to a physician by 1.2% of the US population every year (although most persons with constipation do not seek the assistance of a physician).What You Should Know About Constipation,” is included with this article. (For your convenience, it may be freely duplicated and distributed.)
Suggested lifestyle changes include moderate physical activity, increased fluid intake, increased dietary fiber, and sitting on the toilet about 15–20 minutes after breakfast (taking advantage of the gastrocolic reflex). In selected patients, these changes may be useful, although specific benefits of moderate physical activity and increased fluid intake have not been conclusively proven.
Bulk laxatives
Wheat bran is one of the best and least expensive bulk laxatives. Methylcellulose (eg, Citrucel), psyllium (eg, Metamucil), and polycarbophil (eg, FiberCon) are bulk laxatives that are safe, more refined, and more concentrated than wheat bran, but they are also more expensive. Combined with diet and liquids, bulk laxatives are the most effective and “natural” long-term treatment for constipation. However, their slow onset of action (between 12 and 72 hours) limits their usefulness in acute management of constipation.
Saline laxatives
The saline laxatives include magnesium citrate (eg, Citroma) and magnesium hydroxide (eg, Milk of Magnesia). These agents decrease colonic transit time by stimulating cholecystokinin and draw fluid into the colon by their osmotic effect. Their rapid onset of action (between 30 minutes and 3 hours) makes saline laxatives an excellent choice for acute management of constipation. These laxatives commonly cause abdominal cramping and, in patients with renal failure, may cause magnesium toxicity. Nevertheless, saline laxatives are generally safe and effective.
Osmotic laxatives
Polyethylene glycol (eg, MiraLax) is an effective new osmotic laxative. Rapid onset of action (between 24 and 48 hours) makes an osmotic a good choice for patients who have chronic constipation that fails to respond to bulk and saline laxatives. Polyethylene glycol is equally effective, but better tolerated than the older osmotics, lactulose and sorbitol.16 Because it is not fermented, gas and cramps are minimal. Lactulose (eg, Chronulac) and sorbitol, which are poorly absorbed sugars, likewise have rapid onset of action, but flatulence and abdominal distention may limit tolerance. Sorbitol is generally less expensive than lactulose.
Stimulant laxatives
The oral stimulant laxatives include diphenylmethanes, the anthraquinones, and castor oil (eg, Emulsoil). They are more potent than bulk or osmotic laxatives, but long-term use is safe if limited to 3 days per week. Bisacodyl (eg, Dulcolax), a diphenylmethane, alters electrolyte transportation within intestinal mucosa and stimulates peristalsis. These actions may cause abdominal cramping and hypokalemia. Cascara (mildest), senna (eg, Senokot), and aloe (strongest) are anthraquinones, which are laxatives with actions and side effects similar to bisacodyl. These agents may cause a benign, reversible pigmentation of the colon (melanosis coli). It has been suggested that chronic use of these agents may damage the enteric nervous system, but a causal relationship has not been clearly established. The most prudent approach is to limit use of stimulant laxatives to constipation that is refractory to other laxatives.
Enemas and suppositories
Enemas and suppositories stimulate colonic contractions and soften stools. Water, saline, soap suds, hypertonic sodium phosphate, and mineral oil are used as enemas. Acute water intoxication can occur with water enemas, especially in infants, children, and the elderly, if they have difficulty evacuating the water. Phosphate enemas may cause hyperphosphatemia and hypocalcemic tetany in these patients and should therefore be used with caution in most patients and should not be used in children 3 years of age or younger. Glycerin and bisacodyl are stimulant suppositories that are clinically effective. Bisacodyl and soap suds enemas cause changes in the epithelium of the rectum, and the effect of glycerin on rectal mucosa is unclear. Therefore, these agents should only be used episodically. Mineral oil enemas are used to soften hardened stool in the rectal ampulla.
Other treatment options
More aggressive measures may be necessary for specific types of constipation. These include behavioral therapy and biofeedback for pelvic floor dysfunction, and surgery for slow-transit constipation or Hirschsprung’s disease.
Investigative pharmacologic treatments for constipation include agents that increase colonic contractions (prokinetic drugs) and prostaglandins. These agents have had limited efficacy and troublesome side effects. Therefore, at this time these drugs have limited usefulness in the treatment of constipation.
Fecal impaction
The management of fecal impaction begins with complete evacuation of the colon. Initially, patients with hard stool in the rectum may be given mineral oil retention enemas followed by manual disimpaction. Prior to further treatment, it is important to obtain an abdominal radiograph to rule out mechanical bowel obstruction. If there is no mechanical bowel obstruction, evacuation of the impaction can be accomplished with oral polyethylene glycol (eg, GoLytely) until clear (up to 8 liters or more may be required for complete evacuation).16 Administration of twice-daily enemas for 3 days or more is an acceptable alternative to oral polyethylene glycol. Lifestyle changes, bulk laxatives, saline, osmotic laxatives, and enemas should be used to maintain regular defecation after the colon has been cleansed. It is reasonable to attempt to withdraw laxatives after several months of regular bowel habits.
Constipation is an often-overlooked problem in primary care practice. It deserves careful evaluation, including consideration of the many possible causes and appropriate diagnostic testing. Fortunately, most patients respond well to conservative measures.
Constipation prompts a visit to a physician by 1.2% of the US population every year (although most persons with constipation do not seek the assistance of a physician).What You Should Know About Constipation,” is included with this article. (For your convenience, it may be freely duplicated and distributed.)
Suggested lifestyle changes include moderate physical activity, increased fluid intake, increased dietary fiber, and sitting on the toilet about 15–20 minutes after breakfast (taking advantage of the gastrocolic reflex). In selected patients, these changes may be useful, although specific benefits of moderate physical activity and increased fluid intake have not been conclusively proven.
Bulk laxatives
Wheat bran is one of the best and least expensive bulk laxatives. Methylcellulose (eg, Citrucel), psyllium (eg, Metamucil), and polycarbophil (eg, FiberCon) are bulk laxatives that are safe, more refined, and more concentrated than wheat bran, but they are also more expensive. Combined with diet and liquids, bulk laxatives are the most effective and “natural” long-term treatment for constipation. However, their slow onset of action (between 12 and 72 hours) limits their usefulness in acute management of constipation.
Saline laxatives
The saline laxatives include magnesium citrate (eg, Citroma) and magnesium hydroxide (eg, Milk of Magnesia). These agents decrease colonic transit time by stimulating cholecystokinin and draw fluid into the colon by their osmotic effect. Their rapid onset of action (between 30 minutes and 3 hours) makes saline laxatives an excellent choice for acute management of constipation. These laxatives commonly cause abdominal cramping and, in patients with renal failure, may cause magnesium toxicity. Nevertheless, saline laxatives are generally safe and effective.
Osmotic laxatives
Polyethylene glycol (eg, MiraLax) is an effective new osmotic laxative. Rapid onset of action (between 24 and 48 hours) makes an osmotic a good choice for patients who have chronic constipation that fails to respond to bulk and saline laxatives. Polyethylene glycol is equally effective, but better tolerated than the older osmotics, lactulose and sorbitol.16 Because it is not fermented, gas and cramps are minimal. Lactulose (eg, Chronulac) and sorbitol, which are poorly absorbed sugars, likewise have rapid onset of action, but flatulence and abdominal distention may limit tolerance. Sorbitol is generally less expensive than lactulose.
Stimulant laxatives
The oral stimulant laxatives include diphenylmethanes, the anthraquinones, and castor oil (eg, Emulsoil). They are more potent than bulk or osmotic laxatives, but long-term use is safe if limited to 3 days per week. Bisacodyl (eg, Dulcolax), a diphenylmethane, alters electrolyte transportation within intestinal mucosa and stimulates peristalsis. These actions may cause abdominal cramping and hypokalemia. Cascara (mildest), senna (eg, Senokot), and aloe (strongest) are anthraquinones, which are laxatives with actions and side effects similar to bisacodyl. These agents may cause a benign, reversible pigmentation of the colon (melanosis coli). It has been suggested that chronic use of these agents may damage the enteric nervous system, but a causal relationship has not been clearly established. The most prudent approach is to limit use of stimulant laxatives to constipation that is refractory to other laxatives.
Enemas and suppositories
Enemas and suppositories stimulate colonic contractions and soften stools. Water, saline, soap suds, hypertonic sodium phosphate, and mineral oil are used as enemas. Acute water intoxication can occur with water enemas, especially in infants, children, and the elderly, if they have difficulty evacuating the water. Phosphate enemas may cause hyperphosphatemia and hypocalcemic tetany in these patients and should therefore be used with caution in most patients and should not be used in children 3 years of age or younger. Glycerin and bisacodyl are stimulant suppositories that are clinically effective. Bisacodyl and soap suds enemas cause changes in the epithelium of the rectum, and the effect of glycerin on rectal mucosa is unclear. Therefore, these agents should only be used episodically. Mineral oil enemas are used to soften hardened stool in the rectal ampulla.
Other treatment options
More aggressive measures may be necessary for specific types of constipation. These include behavioral therapy and biofeedback for pelvic floor dysfunction, and surgery for slow-transit constipation or Hirschsprung’s disease.
Investigative pharmacologic treatments for constipation include agents that increase colonic contractions (prokinetic drugs) and prostaglandins. These agents have had limited efficacy and troublesome side effects. Therefore, at this time these drugs have limited usefulness in the treatment of constipation.
Fecal impaction
The management of fecal impaction begins with complete evacuation of the colon. Initially, patients with hard stool in the rectum may be given mineral oil retention enemas followed by manual disimpaction. Prior to further treatment, it is important to obtain an abdominal radiograph to rule out mechanical bowel obstruction. If there is no mechanical bowel obstruction, evacuation of the impaction can be accomplished with oral polyethylene glycol (eg, GoLytely) until clear (up to 8 liters or more may be required for complete evacuation).16 Administration of twice-daily enemas for 3 days or more is an acceptable alternative to oral polyethylene glycol. Lifestyle changes, bulk laxatives, saline, osmotic laxatives, and enemas should be used to maintain regular defecation after the colon has been cleansed. It is reasonable to attempt to withdraw laxatives after several months of regular bowel habits.
1. Sonnenberg A, Koch T. Physician visits in the United States for constipation. Dig Dis Sci 1989;34:606-11.
2. Sonnenberg A, Koch T. Epidemiology of constipation in the United States. Dis Colon Rectum 1989;32:1-8.
3. Johanson JF, Sonnenberg A, Koch T. Clinical epidemiology of chronic constipation. J Clin Gastroenterol 1989;11:525.-
4. Johanson JF. Geographic distribution of constipation in the United States. Am J Gastroenterol 1998;93:188-91.
5. Harari D, Gurwitz J, Avorn J, Bohn R, Minaker K. Bowel habit in relation to age and gender: findings from the National Health Interview Survey and clinical implications. Arch Intern Med 1996;156:315-20.
6. Nyam D, Pemberton JH, Ilstrup DM, et al. Long-term results of surgery for chronic constipation. Dis Colon Rectum 1997;40:273-7.
7. Koch A, Voderholzer W, Klauser A, Muller-Lissner SA. Symptoms in chronic constipation. Dis Colon Rectum 1997;40:902-6.
8. Ashraf W, Park F, Lof J, et al. An examination of the reliability of reported stool frequency in the diagnosis of idiopathic constipation. Am J Gastroenterol 1996;91:26-32.
9. Kamal N, Chami T, Andersen A, et al. Delayed gastrointestinal transit times in anorexia nervosa and bulimia nervosa. Gastroenterology 1991;101:1320-4.
10. Garvey M, Noyes R, Jr, Yates W. Frequency of constipation in major depression: relationship to other clinical variables. Psychosomatics 1990;31:204-6.
11. Manning AP, Thompson WG, Heaton KW, Morris AF. Towards a positive diagnosis of the irritable bowel. BMJ 1978;2:653-4.
12. Locke GR, Pemberton JH, Phillips SF. AGA technical review on constipation. Gastroenterology 2000;119:1766-78.
13. Tramonte SM, Brand MB, Mulrow CD, et al. The treatment of chronic constipation in adults. A systematic review. J Gen Intern Med 1997;12:15-24.
14. Petticrew M, Watt I, Brand M. What’s the “best buy” for treatment of constipation? Results of a systematic review of the efficacy and comparative efficacy of laxatives in the elderly. Br J Gen Pract 1999;49:387-93.
15. Hurdon V, Viola R, Schroder C. How useful is docusate in patients at risk for constipation? A systematic review of the evidence in the chronically ill. J Pain Symptom Manage 2000;19:130-6.
16. Tiongco F, Tsang T, Pollack J. Use of oral GoLytely solution in relief of refractory fecal impaction. Dig Dis Sci 1997;42:1454-7.
17. Anti M, Pignataro G, Armuzzi A, et al. Water supplementation enhances the effect of high-fiber diet on stool frequency and laxative consumption in adult patients with functional constipation. Hepatogastroenterology 1998;45:727-32.
18. Graham D, Moser S, Estes M. The effect of bran on bowel function in constipation. Gastroenterology 1982;77:599-603.
19. Marlett JA, Li BU, Patrow CJ, Bass P. Comparative laxation of psyllium with and without senna in an ambulatory constipated population. Am J Gastroenterol 1987;82:333-7.
20. Hamilton J, Wagner J, Burdick B, Bass P. Clinical evaluation of methylcellulose as a bulk laxative. Dig Dis Sci 1988;33:993-8.
21. Bass P, Clark C, DoPico GA. Comparison of the laxative efficacy and patient preference of calcium polycarbophil and psyllium suspension. Curr Ther Res Clin Exp 1988;43:770-4.
22. Attar A, Lemann M, Ferguson A, et al. Comparison of a low-dose polyethylene glycol electrolyte solution with lactulose for treatment of chronic constipation. Gut 1999;44:226-30.
23. Lederle F, Busch D, Mattox K, West M, Aske D. Cost-effective treatment of constipation in the elderly: a randomized double-blind comparison of sorbitol and lactulose. Am J Med 1990;89:597-601.
24. Sanders JF. Lactulose syrup assessed in a double-blind study of elderly constipated patients. J Am Geriatr Soc 1978;26:236-9.
25. Koustomanis D, Lennard-Jones J, Roy A, Kamm M. Controlled randomized trial of visual biofeedback versus muscle training without a visual display for intractable constipation. Gut 1995;37:95-9.
26. Nyman DC, Pemberton JH, Ilstrup DM, et al. Long-term results of surgery for chronic constipation. Dis Colon Rectum 1997;40:273-9.
1. Sonnenberg A, Koch T. Physician visits in the United States for constipation. Dig Dis Sci 1989;34:606-11.
2. Sonnenberg A, Koch T. Epidemiology of constipation in the United States. Dis Colon Rectum 1989;32:1-8.
3. Johanson JF, Sonnenberg A, Koch T. Clinical epidemiology of chronic constipation. J Clin Gastroenterol 1989;11:525.-
4. Johanson JF. Geographic distribution of constipation in the United States. Am J Gastroenterol 1998;93:188-91.
5. Harari D, Gurwitz J, Avorn J, Bohn R, Minaker K. Bowel habit in relation to age and gender: findings from the National Health Interview Survey and clinical implications. Arch Intern Med 1996;156:315-20.
6. Nyam D, Pemberton JH, Ilstrup DM, et al. Long-term results of surgery for chronic constipation. Dis Colon Rectum 1997;40:273-7.
7. Koch A, Voderholzer W, Klauser A, Muller-Lissner SA. Symptoms in chronic constipation. Dis Colon Rectum 1997;40:902-6.
8. Ashraf W, Park F, Lof J, et al. An examination of the reliability of reported stool frequency in the diagnosis of idiopathic constipation. Am J Gastroenterol 1996;91:26-32.
9. Kamal N, Chami T, Andersen A, et al. Delayed gastrointestinal transit times in anorexia nervosa and bulimia nervosa. Gastroenterology 1991;101:1320-4.
10. Garvey M, Noyes R, Jr, Yates W. Frequency of constipation in major depression: relationship to other clinical variables. Psychosomatics 1990;31:204-6.
11. Manning AP, Thompson WG, Heaton KW, Morris AF. Towards a positive diagnosis of the irritable bowel. BMJ 1978;2:653-4.
12. Locke GR, Pemberton JH, Phillips SF. AGA technical review on constipation. Gastroenterology 2000;119:1766-78.
13. Tramonte SM, Brand MB, Mulrow CD, et al. The treatment of chronic constipation in adults. A systematic review. J Gen Intern Med 1997;12:15-24.
14. Petticrew M, Watt I, Brand M. What’s the “best buy” for treatment of constipation? Results of a systematic review of the efficacy and comparative efficacy of laxatives in the elderly. Br J Gen Pract 1999;49:387-93.
15. Hurdon V, Viola R, Schroder C. How useful is docusate in patients at risk for constipation? A systematic review of the evidence in the chronically ill. J Pain Symptom Manage 2000;19:130-6.
16. Tiongco F, Tsang T, Pollack J. Use of oral GoLytely solution in relief of refractory fecal impaction. Dig Dis Sci 1997;42:1454-7.
17. Anti M, Pignataro G, Armuzzi A, et al. Water supplementation enhances the effect of high-fiber diet on stool frequency and laxative consumption in adult patients with functional constipation. Hepatogastroenterology 1998;45:727-32.
18. Graham D, Moser S, Estes M. The effect of bran on bowel function in constipation. Gastroenterology 1982;77:599-603.
19. Marlett JA, Li BU, Patrow CJ, Bass P. Comparative laxation of psyllium with and without senna in an ambulatory constipated population. Am J Gastroenterol 1987;82:333-7.
20. Hamilton J, Wagner J, Burdick B, Bass P. Clinical evaluation of methylcellulose as a bulk laxative. Dig Dis Sci 1988;33:993-8.
21. Bass P, Clark C, DoPico GA. Comparison of the laxative efficacy and patient preference of calcium polycarbophil and psyllium suspension. Curr Ther Res Clin Exp 1988;43:770-4.
22. Attar A, Lemann M, Ferguson A, et al. Comparison of a low-dose polyethylene glycol electrolyte solution with lactulose for treatment of chronic constipation. Gut 1999;44:226-30.
23. Lederle F, Busch D, Mattox K, West M, Aske D. Cost-effective treatment of constipation in the elderly: a randomized double-blind comparison of sorbitol and lactulose. Am J Med 1990;89:597-601.
24. Sanders JF. Lactulose syrup assessed in a double-blind study of elderly constipated patients. J Am Geriatr Soc 1978;26:236-9.
25. Koustomanis D, Lennard-Jones J, Roy A, Kamm M. Controlled randomized trial of visual biofeedback versus muscle training without a visual display for intractable constipation. Gut 1995;37:95-9.
26. Nyman DC, Pemberton JH, Ilstrup DM, et al. Long-term results of surgery for chronic constipation. Dis Colon Rectum 1997;40:273-9.